-1	
Т	
-	

1	Factors associated with recurrence of bleb-related infections
2	Kenji Ozawa ^{1,2} , Masayuki Inuzuka ¹ , Kazuhiro Murata ¹ , Takuma Ishihara ³ ,
3	Kiyofumi Mochizuki ¹ , Hirokazu Sakaguchi ¹
4	
5	Affiliations:
6	¹ Department of Ophthalmology, Gifu University Graduate School of Medicine, 1-1,
7	Yanagido, Gifu, Gifu, 501-1194, Japan
8	² Ogaki Municipal Hospital, Ogaki, Japan
9	³ Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu,
10	Japan
11	
12	TEL: +81-58-230-6288
13	FAX: +81-58-230-6289
14	E-mail: <u>kj-ozawa@umin.ac.jp</u>
15	

2	

16 Abstract

Purpose: To identify the risk factors for a recurrence of a bleb-related infection(BRI).

19 **Study Design:** Retrospective cohort study.

Methods: The medical records of all patients diagnosed with BRI at Gifu University 2021Hospital between January 1989 to December 2020 were reviewed. The time when the conjunctival hyperemia could not be detected and when the anterior chamber 22was guiet were defined as the resolution time of the BRI. The primary endpoint was 23a recurrence of a BRI. Kaplan-Meier estimation and the Cox proportional hazards 24model were used to determine the risk of a recurrence from the initial onset data of 25each eye. Bacteriological studies were performed to determine the pathogen causing 26the BRI. 27Results: There were 108 eyes of 103 patients who were followed for at least 3 2829months after the initial BRI. A recurrent bleb infection developed in 21 (19.4%) eyes of 21 patients (13 men, 8 women). Log-rank test at the 10-year follow-up 30examination revealed that hypotony at the onset of the BRI (P=0.004), the 31prophylactic use of topical antibiotics at the onset of the BRI (P=0.046), and bleb 32leakage after the resolution of the BRI (P=0.021) were significantly associated with a 33recurrence of the BRI. The Cox proportional hazards model showed that ocular 34

hypotony at the onset of the BRI (unadjusted, P=0.007; adjusted for bleb leakage,
P=0.015) and bleb leakage after the resolution of the BRI (unadjusted, P=0.027;
adjusted for hypotony, P=0.024) were significantly associated with the recurrence of
a BRI. The other factors were not significantly association with the recurrence of a
BRI.

40 Conclusion: We recommend close observations when a bleb leakage is detected
41 after the BRI has resolved.

42

- 43 **Key words:** bleb-related infection, recurrence of bleb-related infection, antifibrotic
- 44 agents, hypotony, bleb leakage, prophylactic use of topical antibiotics

46 Introduction

Trabeculectomy using antimetabolites is the most commonly performed surgery in 47the world for glaucoma patients who have progressive optic nerve head damage and 48severe visual field loss despite maximum medical therapy. [1] The antimetabolites 49have positive effects on the maintenance of the morphology of the blebs, but they 50have led to thin-walled avascular conjunctival blebs which increased the frequency of 51bleb-related infections (BRI). [2,3] The visual prognosis of eyes after endophthalmitis 52is poor [4-6] and even more so in eyes with recurrences.[7] Therefore, it is important 53to determine the risk factors for recurrences of BRIs. At present, there are only two $\mathbf{54}$ reports that statistically analyzed the risk factors for a recurrence of BRIs. [8,9] 5556Thus, the purpose of this study was to determine the risk factors for a recurrence of 57BRIs. To accomplish this, we reviewed the medical records of patients treated at the 5859Gifu University Hospital who had undergone trabeculectomy.

60

61 Materials and methods

The protocol for this retrospective cohort study was approved by the Institutional
Review Board of The Gifu University Hospital (decision number: 29-336, approval
date: November 30, 2020). We reviewed the medical records of all patients

 $\mathbf{5}$

65	diagnosed with BRI in the database of the Gifu University Hospital between January
66	1989 to December 2020.
67	
68	Patients receiving 5-fluorouracil (5-FU) were given 5 mg of 5-FU once a day
69	throughout the first postoperative week, then once every other day for the second
70	postoperative week. Thus, each patient received 50 mg of 5-FU in 2 weeks. Patients
71	receiving mitomycin C (MMC) were given from 0.02 to 0.2 mg in 0.04% MMC. The
72	MMC was dissolved in 0.5 ml of distilled water and absorbed by sponges (Spongel,
73	Yamanouchi Pharmaceuticals, Tokyo, Japan). The sponge was applied to the
74	exposed tissues including the posterior surfaces of the conjunctiva and Tenon's
75	capsule, scleral flap, and adjacent episcleral tissue for 5 minutes. After 5 minutes,
76	the wound was irrigated with 250 ml of a balanced salt solution.
77	
78	Late-onset cases in which the infections developed 1 month after the surgery were
79	included. [10]
80	
81	An anonymized database of age, sex, diabetic status, refractive status, use of
82	antifibrotic agents, lens status at the onset of the BRI, bleb leakage, oozing,
83	intraocular pressure (IOP), infection stage, prophylactic use of antibiotics/steroids,

84 and treatment methods of antibiotics was created.

85

We examined whether bleb leakage, oozing, and the IOP were involved in the 86 recurrence of BRIs by examining the data before and after the initial BRI. 87 88 89 Each infection was classified into three stages. [11-13] Stage I was when the infection was localized to the bleb site without cells in the anterior chamber, Stage II 90 was when the infection extended into the anterior chamber but not into the vitreous, 91and Stage III was when the infections also involved the vitreous. 9293 A stage-by-stage treatment protocol has been proposed for the treatment of bleb 94infections.[14] In Stage 1, aggressive fluroquinolone eyedrops and/or subconjunctival 95 injection of vancomycin and ceftazidime are given. In Stage 2, a strengthening of the 96 topical therapy is recommended, but the effectiveness of systemic antibiotics has not 97been documented.[15] In Stage 3, pars plana vitrectomy with injection of intravitreal 98antibiotics is immediate given.[16] The medical and surgical treatments were based 99on the protocol (above) which were determined by the treating physician according 100 to the opinion of infectious disease experts. All eyes were intensively treated with 101antibiotics and surgery when indicated. Antibiotic therapy consisted of either topical 102

103	and/or systemic antibiotics, subconjunctival, intracameral, and intravitreal treatments.
104	The surgical treatment included pars plana vitrectomy.
105	
106	Cases in which antibacterial topical drops were applied on a daily basis were defined
107	as prophylactic antibacterial drug administration cases. The frequency of
108	antibacterial topical drops varied, e.g., appropriate use and regular eye drops.
109	Similarly, the duration of use varied.
110	
111	The primary endpoint was a recurrence of a BRI that was defined as at least two
112	episodes of bleb purulence with or without intraocular inflammation that occurred at
113	intervals of three months or more. [9] Earlier studies have confirmed that there is a
114	period of complete resolution between the initial infection and the recurrence. [9] The
115	time when the conjunctival hyperemia was not detected and the anterior chamber
116	was confirmed to be quiet was defined as the resolution time of the BRI. [17]
117	Because the purpose of this study was to determine risk factors for recurrences, we
118	analyzed the data obtained at the initial onset of the BRI of each eye. In the
119	recurrence cases, we examined whether there was a bacteriological relationship
120	between the first and recurrent BRIs of each eye.

122	Bleb leakage and transconjunctival oozing were evaluated by fluorescein staining
123	and observing the bleb under cobalt blue slit-lamp illumination. No detailed
124	observation time has been set for the evaluation of transconjunctival oozing.
125	
126	Hypotony was defined as an IOP ≤5 mmHg as designated by the World Glaucoma
127	Association's Guidelines on Design and Reporting of Glaucoma Surgical Trials. [18]
128	
129	Statistical analyses
130	The baseline characteristics of the patients are presented as the median and
131	interquartile range (IQR) for continuous variables, and numbers (%) for categorical
132	variables. The recurrence of infections was considered to be independent events in
133	the analysis. Kaplan-Meier estimation was performed to estimate the recurrence-free
134	survival rate for each suspected factor. Log-rank tests and Cox proportional hazards
135	analyses were performed to identify the factors significantly associated with the
136	recurrence of a BRI. Cox proportional hazards analysis was performed both
137	unadjusted and adjusted for age or bleb leakage. A two-sided P <0.05 was taken to
138	be statistically significant. All statistical analyses were performed with the R version
139	4.0.3 (R Foundation for Statistical Computing, Vienna, Austria, www.r-project.org)
140	and EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan). [19]

141

142 **Results**

A total of 135 BRIs developed in 112 eyes of 107 patients. One patient was excluded 143because the eye required enucleation as a treatment for the initial BRI. Two other 144patients were excluded because the BRI developed one month after the glaucoma 145operation. Another patient was excluded because the date of onset was not posted. 146The data of the 21 infections with a second infection and 2 infections after a third 147infection were bacteriologically investigated. In the end, 108 eyes of 103 patients 148were analyzed (Figure 1), and the demographics of the participants are shown in 149Table 1. 150151Initial bleb-related infection 152The median age of the patients at the onset of the initial BRI was 59 years (IQ, 41 to 15369 years). There were 61 men and 42 women, and 11 (10.7%) of these patients were 154

- diabetic. The types of glaucoma were; primary open-angle glaucoma in 38 (35.2%),
- normal-tension glaucoma in 15 (13.9%), primary angle-closure glaucoma in 3
- 157 (2.8%), developmental glaucoma in 27 (25.0%), secondary glaucoma in 24 (22.2%),
- and congenital glaucoma in 1 (0.9%). More information of the eyes with secondary
- 159 glaucoma is presented in Table 1.

161	The median refractive error (spherical equivalent) was -2.25 diopters (D; IQR -7.00
162	to 0.50 D). The median interval from the glaucoma surgery to the onset of the initial
163	BRI was 6.3 years (IQ, 3.20 to 10.77 years), and the time from the resolution of the
164	initial BRI to the date of last consultation or the date of the recurrence BRI was 5.58
165	years (IQ, 1.38 to 11.54 years). Ninety-six eyes (89.7%) had been treated with
166	intraoperative MMC, 9 eyes (8.4%) with 5-FU, and 2 eyes (1.9%) without any
167	antifibrotic agent. The amount of MMC was 0.02 mg in 1 (0.9%), 0.03 mg in 1
168	(0.9%), 0.05 mg in 1 (0.9%), 0.1 mg in 75 (69.4%), and 0.2 mg in 18 (16.7%). The
169	concentration of the injected MMC was 0.04% in all cases.
170	
171	The bleb morphology was cystic in 94 (88.7%) eyes, diffuse in 11 (10.4%) eyes, and
172	flat in 1 (0.9%) eye. The bleb was avascular in 96 (89.7%) eyes, hypo-vascular in 10
173	(9.3%) eyes, and hypervascular in 1 (0.9%) eye. There was no description of the
174	bleb morphology in 2 eyes and of the vascular distribution in 1 eye.
175	
176	The lens status at the onset of BRI was phakia in 75 eyes (69.4%), aphakia in 9 eyes
177	(8.3%), and an implanted intraocular lens in 9 24 eyes (22.2%). There were 27 eyes

179	was implanted in 18 eyes. Trabeculectomy combined with cataract surgery was
180	performed on 9 eyes, and an intraocular lens was implanted in 6 eyes. Twelve eyes
181	(11.1%) underwent bleb revision surgery prior to the onset of the initial BRI.
182	
183	The conjunctival suture was exposed in three eyes (2.8%) before the onset of the
184	initial BRI, and these eyes had no recurrence after the initial BRI was resolved. One
185	eye required bleb revision after the initial BRI improved because the function of the
186	bleb decreased. Five eyes underwent conjunctival suture or amnion transplantation
187	after the initial BRI episode, and a recurrence of a BRI was observed in one of these
188	eyes. One eye had the conjunctival suture exposed after the second BRI episode,
189	and no recurrence was observed thereafter.
190	
191	Fifty-two (48.1%) eyes had bleb leakage at the onset of the BRI, and 33 eyes
192	(33.7%) had leakage after the initial BRI improved. Transconjunctival oozing was
193	observed in 7 (7.0%) eyes at the onset of the BRI and in 8 (8.2%) eyes had after the
194	initial BRI improved.
195	
196	The median IOP at the onset of a BRI was 9.0 mmHg (IQR, 5.0 to 12.5 mmHg), and

it was not posted in 5 eyes. Thirty eyes developed ocular hypotony with an IOP \leq 5

198	mmHg at the onset of the BRI. After a resolution of the initial BRI, the median IOP at
199	the onset of BRI was 10.0 mmHg (IQR, 7.0 to 14.0 mmHg), and hypotony was
200	present in 12 eyes (12.5%).
201	
202	The disease severity at the time of diagnosis was Stage I in 65 (60.2%) eyes, Stage
203	II in 20 (18.5%) eyes, and Stage III in 23 (21.3%) eyes.
204	
205	All eyes were intensely treated with antibiotics based on the advice of an infectious
206	disease experts. Topical antibiotic eye drops were used in all eyes. A subconjunctival
207	injection of antibiotics was performed in 32 Stage I (49%) eyes, in 15 Stage II (75%)
208	eyes, and in 19 Stage $ \mathrm{I\!I\!I} $ (83%) eyes. An intracameral injection of vancomycin and
209	ceftazidime was given in 6 Stage II eyes (30%), and an intravitreal injection of
210	vancomycin in 3 Stage II eyes (15%).
211	
212	Vitreous surgery was performed on 22 Stage $ \mathrm{I\!I\!I} $ eyes (96%) and in 8 Stage $ \mathrm{I\!I\!I} $
213	eyes (35%). Vancomycin and ceftazidime were administered intravitreally after
214	vitreous surgery or were added to the perfusion fluid during surgery, and in 1 Stage
215	${ m III}$ eye (4%), and vancomycin and amikacin were administered intravitreally after
216	surgery.

217	
218	Systemic antibiotics were given to 45 Stage I eyes (69%), 19 Stage II eyes (95%),
219	and 23 Stage III eyes (100%).
220	
221	Recurrent bleb-related infections
222	A recurrent BRI developed in 21 eyes of 21 patients (13 men, 8 women).
223	Two patients developed a third episode of BRI at 7 and 27 months after the second
224	infection.
225	
226	The cultured pathogens detected in eyes with recurrent infections were diverse
227	(Table 2). Staphylococcal species were isolated in 14 cases of Staphylococcus
228	aureus including 5 cases of methicillin resistant S. aureus, and 9 cases of coagulase
229	negative staphylococcus including methicillin resistant, Staphylococcus epidermidis.
230	Streptococcus species were isolated in 7 cases. Corynebacterium, Rothia
231	mucilaginosa, Moraxella catarrhalis, and Cutibacterium acnes were detected in 1
232	case each. <i>M. catarrhalis</i> and <i>C. acnes</i> were isolated in the same culture of 1 eye.
233	
234	The cultures were negative in 18 BRIs in the recurrent eyes. Cultures were not
235	obtained from three episodes. The infecting organism that was isolated at the time of

236	the recurrent infection was the same as the ones isolated from the initial infection in
237	Case 20 (Table 2: S. epidermidis).
238	
239	The stage of the infections, whether vitreous surgery was performed, and changes in
240	visual acuity before and after treatment are shown in Table 2. The presence or
241	absence of bleb leakage and hypotony before each BRI are also presented in Table
242	2.
243	
244	Significance of correlations between each risk factor and recurrence of BRI
245	Kaplan-Meier estimation showed that there was no significant difference in the
246	recurrence of BRIs between the patients who were ≤60 years to those >60 years for
247	up to ten years. The threshold age was defined by the median value. There were no
248	significant differences in the sex distribution, status of diabetes, lens status at the
249	onset, refractive error, morphology of the bleb, vascularity of the bleb, use of
250	antifibrotic agents, prophylactic use of steroid eye drops, bleb leakage at the onset of
251	the initial BRI, oozing at the onset of the initial BRI, oozing after the resolution of the
252	initial BRI, hypotony after the resolution of the initial BRI, infection stage, bleb
253	revision before the initial BRI, and antibiotic therapy for up to ten years.

255	The recurrence-free rate in cases with hypotony at the onset of the initial BRI was
256	0.522 (95% confidence interval [CI]: 0.288–0.712) which was significantly lower than
257	cases without hypotony at 0.833 (95%CI: 0.669–0.921) at the 10 years follow-up
258	time ($P = 0.004$, log-rank test Figure 2). The recurrence-free survival rate for the
259	eyes with prophylactic use of topical antibiotics was 0.659 (95%CI: 0.495–0.782)
260	which was significantly lower than that of eyes without use at 0.941 (95%CI: 0.650–
261	0.991) at the 10 years follow-up time ($P = 0.046$, log-rank test Figure 3). The
262	recurrence free rate in cases with bleb leakage after the resolution of the initial BRI
263	was 0.660 (95% confidence interval [CI]: 0.441-0.810) which was significantly lower
264	than cases without bleb leakage after the resolution of the initial BRI at 0.893
265	(95%CI: 0.760-0.955) at the 10 years follow-up time ($P = 0.021$, log-rank test Figure
266	4).

The hazard ratios were calculated to determine which factors were significantly associated with the recurrence of BRIs. The factors examined by univariate Cox proportional hazards regression analysis are shown in Table 3. Ocular hypotony at the onset of the initial BRI and bleb leakage after the resolution of the initial BRI were identified as significant risk factors for the recurrence of BRI (ocular hypotony: Hazard ratio [HR]: 0.301; 95% CI: 0.126–0.716; *P* = 0.007; bleb leakage: HR: 2.882;

274	95% CI: 1.129-7.354; $P = 0.027$). The other factors were not significantly associated
275	with recurrence of BRIs by univariate analysis (all $P > 0.05$).
276	
277	The Cox proportional hazards model adjusted for age confirmed that ocular hypotony
278	at the onset of the initial BRI and bleb leakage after the resolution of the initial BRI
279	were significantly associated with the recurrence of BRIs (ocular hypotony: HR:
280	0.266; 95% CI: 0.111–0.641; <i>P</i> = 0.003; bleb leakage HR: 3.137; 95% CI: 1.206-
281	8.162; $P = 0.019$). Similar to the univariate Cox proportional hazards regression
282	findings, the other factors were not significantly associated with the recurrence of
283	BRIs (all, $P > 0.05$). The Cox proportional hazards model adjusted for bleb leakage at
284	the onset of the BRI or refractive error showed that hypotony at the onset of the BRI
285	was significantly associated with the recurrence of a BRI (HR: 0.333; 95% CI: 0.138-
286	0.805; <i>P</i> = 0.015, HR. 0.362; 95% CI: 0.147-0.895; <i>P</i> = 0.028). The Cox proportional
287	hazards model adjusted for hypotony after the resolution of the BRI or the refractive
288	error showed that bleb leakage after the resolution of the BRI was significantly
289	associated with the recurrence of a BRI (HR: 2.989; 95% CI: 1.155-7.739 <i>; P</i> =
290	0.024).

Discussion

294	Earlier studies have identified several factors that were significantly correlated with a
295	recurrence of a BRI. The major factors were the use of antifibrotic agents, [20] the
296	presence of bleb leakage, [8, 21-24] a younger age, [2, 24] and a thin-walled
297	avascular bleb. [2,3] Our results showed that the use of antifibrotic agents, age,
298	morphology of the bleb, vascularity of the bleb, and bleb revision before the initial
299	BRI were not significant risk factors for recurrences of BRIs (Table 3).
300	
301	Kaplan-Meier estimation analyses for the recurrence of BRI showed that the eyes
302	treated by MMC tended to develop recurrences of BRI at significantly higher rates
303	than eyes treated with 5-FU. This may be because the eyes treated with MMC had
304	longer follow-up times than those treated with 5-FU. In addition, the number of cases
305	using 5-FU was only 9 eyes, and this low number may have contributed to the lack of
306	statistical significance. Thus, with our data, the use of antifibrotic agents was not a
307	statistically significant factor for a recurrence of a BRI.
308	
309	Most of blebs were cystic and hypovascular, and we suggest that this was because
310	this study was conducted on eyes that developed a BRI. The grading system for the
311	classification of the blebs may be used [25] [Cantor LB J Glaucoma 2003], but this

312	study included older cases. Therefore, only the morphological evaluations and the
313	blood vessel distributions were described in the evaluations of the blebs.
314	
315	Although there have been reports [2,3] that the morphology and vascularity of the
316	blebs are factors that lead to the development of BRIs, our findings did not find
317	significant differences in the bleb morphology or vascularity in eyes that had a
318	recurrence BRI.
319	
320	Our results confirmed that ocular hypotony at the onset of the initial BRI was
321	significantly correlated with recurrences of a BRI (Figure 2, Table 3). However, no
322	significant correlation was found between the presence of hypotony after the
323	resolution of the BRI and the recurrence of a BRI. Kim et al. [26] reported that an
324	intraocular pressure below the target pressure was a risk factor for a BRI, and
325	Higashide et al. [27] reported that BRI was associated with persistent hypotony.
326	However, these studies were not designed specifically to determine the cause of a
327	recurrence of a BRI. To the best of our knowledge, there have not been any reports
328	that statistically confirmed a significant relationship between the recurrence of a BRI
329	and hypotony. However, a significant relationship was found between hypotony at
330	the onset of the initial BRI and the recurrence of a BRI in our cohort.

332	There have been several reports that bleb leakage is associated with a BRI. [8, 21-
333	24, 27] Our Kaplan-Meier estimation comparing the eyes with bleb leakage after the
334	resolution of the initial BRIs to those without leakage showed that the cases with
335	leakage were significantly corelated with the recurrence of BRIs.
336	
337	The presence of bleb leakage lowers the IOP, so it can be inferred that leakages and
338	ocular hypotony should be correlated. Cox analysis adjusted for hypotony and bleb
339	leakage was performed to examine whether these factors were correlated to each
340	other. This statistical examination was made for each period before and after the
341	BRIs. The results showed that hypotony at the onset of BRI and bleb leakage after
342	the resolution of the BRI were significant risk factors for BRIs and that each factor is
343	an independent risk factor for the recurrence of a BRI.
344	
345	Conjunctival sutures are an effective means of stopping leakages and preventing the
346	development of a BRI [26]. Because the number of conjunctival sutured cases before
347	the initial BRI was few, statistical analysis on the effects of conjunctival sutures were
348	not meaningful. In 1 of 5 eyes, the infection recurred after the conjunctival suture or
349	amnion transplantation was used after the initial BRI.

351	In 21 eyes that had a recurrent BRI, bleb leakage was observed before the initial BRI
352	in 15 of these eyes, and the leakage continued after the initial BRI in 8 eyes.
353	Although no leakage was observed at the time of initial infection, the leakage
354	appeared after the treatment in 4 eyes. Considering that the leakage after the
355	treatment for initial BRI was significantly correlated with the recurrence of a BRI,
356	treatments for leakage should be actively performed.
357	
358	Transconjunctival oozing was usually found when the avascular area of the filtering
359	bleb is wide [28,29] and the wall of is thin. [28,30] It has been suggested that
360	transconjunctival oozing may be present before bleb leakage occurs [29] and that
361	oozing may be correlated with the onset of a BRI [30].
362	
363	Although our results showed a significant association between hypotony and a
904	
364	recurrence of a BRI, consideration should be given to the possibility that the factors
364 365	recurrence of a BRI, consideration should be given to the possibility that the factors of oozing may be involved because cases with oozing tend to have lower IOP and
365	of oozing may be involved because cases with oozing tend to have lower IOP and

avascular and bleb leakage that were found in 52 eyes (48.1%) at the onset of the 369BRI and in 33 eyes (33.7%) after the resolution of the BRI, oozing could have been 370 identified in more cases with observation criteria. 371372Jampel et al. reported that the chronic use of topical antibiotics increased the 373374likelihood of BRIs due to the alterations of the conjunctival flora.[20] However, Waheed et al.[9] did not confirm this. Our Kaplan-Meier estimation results showed 375that the prophylactic use of antibiotics significantly increased the risk of recurrent 376 BRIs during the ten-year follow-up period (Figure 3). However, the Cox proportional 377hazards regression analysis did not detect a significant difference (Table 3). The 378regular use of antimicrobial eye drops was not involved in the prevention of BRI but it 379had an effect on the bacterial flora. Therefore, we suggest that the regular use of 380 antibacterial eye drops should be avoided. After the resolution of the initial BRI, 381prophylactic use of antibiotics was continued in 92 eyes (85.2%). Due to the bias of 382the data, statistical examination on the prophylactic use of antibiotics after the 383resolution of the initial BRI could not be performed. 384385In the cases of recurrences, only one case had the same causative organism as the 386

original infection. In most cases, the causative organism was different between the

388	initial and recurrence cases (Table 2) although there were many false negative eyes.
389	Waheed et al. [9] reported little uniformity in the microbiological spectrum of the
390	cultured organisms at the time of the initial and recurrent infections. Similar results
391	were obtained in this study.
392	
393	Yamamoto et al reported that Stage 3 BRIs cause significant reduction of vision [8].
394	The changes in the visual acuity were not statistically examined by stages because
395	of the small number of eyes. In Case 21, a rapid decrease in the visual acuity was
396	observed even though the second BRI was at Stage 1 (Table 2). The central visual
397	field disorder of this eye was serious before the onset of the second infection, and it
398	was not measurable due to the infection. This resulted in a sudden decrease in the
399	visual acuity. We suggest that in cases with slight visual field alterations, aggressive
400	treatment be instituted even if the BRI stage is mild.
401	
402	Our study has several limitations. First, this was a retrospective study in a single
403	institution. Therefore, a patient selection bias cannot be ruled out. Second, the
404	number of recurrent cases was low. Because this study was not conducted by
405	statistically determining the required number of cases, future studies are needed to
406	confirm our findings. Third, insufficient description in the past medical records

407	prevented us to obtain important and relevant clinical findings, such as blepharitis
408	that can alter the ocular surface. We cannot eliminate the fact that there may be
409	cases where oozing was overlooked due to lack of strict observation criteria.
410	
411	In conclusion, the prophylactic use of topical antibiotics at the onset of BRI, ocular
412	hypotony at the onset of BRI, and bleb leakage after the resolution of a BRI were
413	found to be risk factors for the recurrence of BRIs. Special attention with carefully

- 414 check for leakage and frequent follow-ups are required for eyes after a resolution of
- 415 a BRI. Treatment for leakage should be actively performed.

417 Acknowledgements/Financial Disclosure

- The authors have no proprietary interest in the material described in this manuscript.
- 419 We thank Professor Emeritus Duco Hamasaki of the Bascom Palmer Eye Institute
- 420 for discussions and editing this manuscript, and we thank Akira Sawada, Nobuhide
- 421 Hori, Satoko Kokuzawa, Shinsuke Suemori, and Kyoko Ishida for their cooperation in
- 422 this research.

References 424Razeghinejad MR, Havens SJ, Katz LJ. Trabeculectomy bleb-associated 1. 425infections. Surv Ophthalmol 2017; 62(5):591-610. doi: 42610.1016/j.survophthal.2017.01.009. Epub 2017 Feb 8. 4272. Wolner B, Liebmann JM, Sassani JW, Ritch R, Speaker M, Marmor M. Late 428bleb-related endophthalmitis after trabeculectomy with adjunctive 5-fluorouracil. 429Ophthalmology 1991; 98(7):1053-60. doi: 10.1016/s0161-6420(91)32177-8. 430 3. Higginbotham EJ, Stevens RK, Musch DC, Karp KO, Lichter PR, Bergstrom 431TJ, Skuta GL. Bleb-related endophthalmitis after trabeculectomy with mitomycin C. 432Ophthalmology 1996 ;103(4):650-6. doi: 10.1016/s0161-6420(96)30639-8. 4334. Song A, Scott IU, Flynn HW Jr, Budenz DL. Delayed-onset bleb-associated 434endophthalmitis: clinical features and visual acuity outcomes. Ophthalmology 4352002;109(5):985-91. doi: 10.1016/s0161-6420(02)00965-x. 436Al-Turki TA, Al-Shahwan S, Al-Mezaine HS, Kangave D, Abu El-Asrar AM. 437 5. Microbiology and visual outcome of bleb-associated endophthalmitis. Ocul Immunol 438Inflamm 2010;18(2):121-6. doi: 10.3109/09273940903370730. 439Leng T, Miller D, Flynn HW Jr, Jacobs DJ, Gedde SJ. Delayed-onset bleb-6. 440 associated endophthalmitis (1996-2008): causative organisms and visual acuity 441outcomes. Retina 2011;31(2):344-52. doi: 10.1097/IAE.0b013e3181e09810. 442

	27	
443	7.	Maalouf F, Abdulaal M, Hamam RN. Chronic postoperative endophthalmitis:
444	a revie	w of clinical characteristics, microbiology, treatment strategies, and outcomes.
445	Int J In	flam 2012;2012:313248. doi: 10.1155/2012/313248. Epub 2012 Feb 22.
446	8.	Yamamoto T, Kuwayama Y, Kano K, Sawada A, Shoji N; Study Group for the
447	Japan	Glaucoma Society Survey of Bleb-related Infection. Clinical features of bleb-
448	related	infection: a 5-year survey in Japan. Acta Ophthalmol 2013;91(7):619-24. doi:
449	10.111 [,]	1/j.1755-3768.2012.02480.x. Epub 2012 Aug 8.
450	9.	Waheed S, Liebmann JM, Greenfield DS, Ritterband DC, Seedor JA, Shah
451	M, Ritc	h R. Recurrent bleb infections. Br J Ophthalmol 1998 Aug;82(8):926-9. doi:
452	10.113	6/bjo.82.8.926.
453	10.	Kangas TA, Greenfield DS, Flynn HW Jr, Parrish RK, Palmberg P. Delayed-
454	onset e	endophthalmitis associated with conjunctival filtering blebs. Ophthalmology

1997;104(5):746-52. doi: 10.1016/s0161-6420(97)30238-3. 455

Azuara-Blanco A, Katz LJ. Dysfunctional filtering blebs. Surv Ophthalmol 11. 456

1998;43(2):93-126. doi: 10.1016/s0039-6257(98)00025-3. 457

Greenfield DS..Bleb-related ocular infection. J Glaucoma 1998;7(2):132-6. 12. 458

- Yamamoto T, Kuwayama Y. Interim clinical outcomes in the collaborative 13. 459
- bleb-related infection incidence and treatment study. Ophthalmology 460
- 2011;118(3):453-8. doi: 10.1016/j.ophtha.2010.07.002. Epub 2010 Oct 8. 461

462	14.	Yassin SA. Bleb-related infection revisited: a literature review. Acta							
463	Ophtha	almol. 2016;94(2):122-34. doi: 10.1111/aos.12805. Epub 2015 Aug 6.							
464	15.	Azuara-Blanco A, Katz LJ. Dysfunctional filtering blebs. Surv Ophthalmol							
465	1998;43(2):93-126. doi: 10.1016/s0039-6257(98)00025-3.								
466	16.	Sharan S, Trope GE, Chipman M, Buys YM. Late-onset bleb infections:							
467	prevalence and risk factors. Can J Ophthalmol 2009;44(3):279-83. doi: 10.3129/i09-								
468	050.								
469	17.	Douglas A Jabs DA, Busingye J. Approach to the diagnosis of the uveitides							
470	Am J Ophthalmol 2013;156(2):228-36. doi: 10.1016/j.ajo.2013.03.027. Epub 2013								
471	May 10.								
472	18.	Jampel HD. Reporting post-operative complications in glaucoma surgical							
473	trials. I	n: Shaarawy TMS, Sherwood MB, Grehn F (eds) Guidelines on Design and							
474	Reporting of Glaucoma Surgical Trials. Amsterdam, the Netherlands, Kugler								
475	Publica	ations. 2009; pp 33e9.							
476	19.	Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for							
477	medica	al statistics. Bone Marrow Transplant 2013;48(3):452-8. doi:							
478	10.103	8/bmt.2012.244. Epub 2012;3. PMID: 23208313; PMCID: PMC3590441.							
479	20.	Jampel HD, Quigley HA, Kerrigan-Baumrind LA, Melia BM, Friedman D,							
480	Barron	Y; Glaucoma Surgical Outcomes Study Group. Risk factors for late-onset							

- infection following glaucoma filtration surgery. Arch Ophthalmol 2001;119(7):1001-8.
- 482 doi: 10.1001/archopht.119.7.1001.
- 483 21. Poulsen EJ, Allingham RR. Characteristics and risk factors of infections after
- 484 glaucoma filtering surgery. J Glaucoma 2000 Dec;9(6):438-43. doi:
- 485 10.1097/00061198-200012000-00004.
- 486 22. Soltau JB, Rothman RF, Budenz DL, Greenfield DS, Feuer W, Liebmann JM,
- 487 Ritch R. Risk factors for glaucoma filtering bleb infections. Arch Ophthalmol
- 488 2000;118(3):338-42. doi: 10.1001/archopht.118.3.338.
- 489 23. Matsuo H, Tomita G, Araie M, Suzuki Y, Kaji Y, Obata H, Tanaka S.
- 490 Histopathological findings in filtering blebs with recurrent blebitis. Br J Ophthalmol
- 491 2002;86(7):827. doi: 10.1136/bjo.86.7.827.
- 492 24. Yamamoto T, Sawada A, Mayama C, Araie M, Ohkubo S, Sugiyama K,
- 493 Kuwayama Y. The 5-year incidence of bleb-related infection and its risk factors after
- 494 filtering surgeries with adjunctive mitomycin C: collaborative bleb-related infection
- incidence and treatment study 2. Ophthalmology 2014;121(5):1001-6. doi:
- 496 10.1016/j.ophtha.2013.11.025. Epub 2014 Jan 11.
- 497 25. Cantor LB, Mantravadi A, WuDunn D, Swamynathan K, Cortes A.
- 498 Morphologic classification of filtering blebs after glaucoma filtration surgery: the
- 499 Indiana Bleb Appearance Grading Scale. J Glaucoma 2003;12(3):266-71. doi:

500 **10.1097/00061198-200306000-00015**.

502	26. Kim EA, Law SK, Coleman AL, Nouri-Mahdavi K, Giaconi JA, Yu F, Lee JW,							
503	Caprioli J. Long-Term Bleb-Related Infections After Trabeculectomy: Incidence,							
504	Risk Factors, and Influence of Bleb Revision. Am J Ophthalmol 2015;159(6):1082-							
505	91. doi: 10.1016/j.ajo.2015.03.001. Epub 2015 5.							
506	27. Higashide T, Ohkubo S, Sugimoto Y, Kiuchi Y, Sugiyama K. Persistent							
507	hypotony after trabeculectomy: incidence and associated factors in the							
508	Collaborative Bleb-Related Infection Incidence and Treatment Study. Jpn J							
509	Ophthalmol 2016; 60(4):309-18. doi: 10.1007/s10384-016-0450-4. Epub 2016							
510	May 13.							
511	28. Matsuo H, Tomidokoro A, Suzuki Y, Shirato S, Araie M. Late-onset							
512	transconjunctival oozing and point leak of aqueous humor from filtering bleb after							
513	trabeculectomy. Am J Ophthalmol 2002;133(4):456-62. doi: 10.1016/s0002-							
514	9394(01)01432-5.							
515	29. Anand N, Arora S, Clowes M. Mitomycin C augmented glaucoma surgery:							
516	evolution of filtering bleb avascularity, transconjunctival oozing, and leaks. Br J							
517	Ophthalmol 2006;90(2):175-80. doi: 10.1136/bjo.2005.077800.							
518	30. Nakashima K, Inoue T, Fukushima A, Hirakawa S, Kojima S, Tanihara H.							

519	Evaluation of filtering blebs exhibiting transconjunctival oozing using anterior
520	segment optical coherence tomography. Graefes Arch Clin Exp Ophthalmol
521	2015;253(3):439-45. doi: 10.1007/s00417-014-2872-3. Epub 2014 Dec 9.
522	

523 Figure legends

524

- 525 **Figure 1.** Flow diagram of experimental procedures.
- 526 Flow chart showing the number of infections enrolled and analyzed. BRI = Bleb-
- 527 related infection.

528

529	Figure 2.	Hypotony.	Cumulative	recurrence-fre	e survival	rate of BR	I determined b	у а
-----	-----------	-----------	------------	----------------	------------	------------	----------------	-----

- 530 Kaplan-Meier estimation. Thirty eyes with hypotony with intraocular pressure (IOP)
- 531 ≤5 mmHg, and 73 eyes without hypotony and IOP unknown in 5 eyes. The
- recurrence-free survival rate for eyes with hypotony is 0.522 [0.288-0.712] and for
- eyes without hypotony was 0.833 [0.669-0.921] at the 10 years follow-up (cumulative
- probability [95%Cl]).

- 536 **Figure 3.** Prophylactic use of antibiotics.
- 537 Cumulative recurrence-free survival rate of BRI calculated by a Kaplan-Meier
- 538 estimation. Subjects are 81 eyes with use of antibiotics, and 26 eyes without it, and
- unknown in 1 eye. The recurrence-free survival rate for eyes with use of antibiotics is
- 540 0.659 [0.495-0.782] and for eyes without use of antibiotics is 0.941 [0.650-0.991] at
- the 10 years follow-up (cumulative probability [95%Cl]).
- 542

33

Figure 4. Bleb leakage after the resolution of the initial BRI.

- 545 Cumulative recurrence-free survival rate of bleb-related infection calculated by
- 546 Kaplan-Meier estimation. Subjects are 33 eyes with bleb leakage, and 65 eyes
- 547 without it, and unknown in 10 eyes. The recurrence-free survival rate for eyes with
- bleb leakage after the resolution of the initial BRI is 0.660 [0.441-0.810] and for eyes
- without it is 0.893 [0.760-0.955] at the 10 years follow-up (cumulative probability

550 [95% Cl]).