

Machine Learning Aided Signature Code

2022

Graduate School of Engineering

Gifu University

Lantian Wei

Abstract

Signature codes are multi-user codes used for active user detection (AUD) in massive

random-access with high spectral efficiency. In the traditional signature code scheme,

a compressed matrix with discrete values is used as a dictionary called a signature

matrix. The codewords are sparse linear combinations of columns of the signature

matrix, and the user information is encoded in the indices of those columns.

This thesis investigates the signature code based on machine learning techniques

in massive random-access over additive white Gaussian noise channel with Rayleigh

fading.

We propose a signature code decoder based on the iterative deep neural net-

works (DNNs) that simultaneously perform AUD and channel estimation (CE). Its

structure refers to the classic decoding algorithm iterative soft shrinkage algorithm

(ISTA). Furthermore, we introduce a multi-loss function to converge the performance

of the iterative of the DNNs-based decoder. As a result, the proposed DNNs-based

decoder requires less computing time than the classical signal recovery algorithm in

compressed sensing while achieving higher AUD and CE accuracies.

We then offer an end-to-end machine-learning-aided learning architecture that

optimizes the signature matrix structure based on different communication environ-

ments, i.e., different channel models, called machine learning signature code (ML-SC).

The proposed ML-SC is implemented by binarized neural networks and trainable-

ISTA (TISTA). We show the performance of ML-SC under various SNRs and compare

it with other construction methods; the proposed ML-SC achieved improved perfor-

mance. In addition, we confirmed that the ML-SC generated matrix is suitable for

ii

multiple existing decoding methods such as the ISTA, TISTA, and orthogonal match-

ing pursuit in simulations. Furthermore, the ML-SC is wholly based on traditional

models and exhibits good scalability performance. Finally, we conclude by analyzing

the improved matrix.

iii

Preface

The works presented in Chapter 2 were done in collaboration with Shan Lu(S.L.),

Hiroshi Kamabe (H.K.), and Jun Cheng, and have been accepted for publication in

the IEEE GLOBECOM 2020 Conference Proceedings and IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences.

The work presented in Chapter 3 was done in collaboration with S.L. and H. K.,

and has been accepted for publication in the IEEE ITW 2023 Conference Proceedings.

iv

Acknowledgements

I would like to express my most profound appreciation to my supervisors, Professor

Hiroshi Kamabe and Assistant Professor Shan Lu, for their detailed mentorship,

constant support and encouragement, and precise critiques during my research for

the Ph.D. degree.

I would like to thank Professor Miwako Mishima and Associate Professor Satoshi

Tamura for reading this thesis and providing thought-provoking questions and con-

structive comments.

Finally, I would like to thank my parents and my wife for their support and

companionship, encouraging me with their best wishes.

v

Table of Contents

1 Introduction 1

1.1 Multiple-access channel . 1

1.1.1 N -user MAC with AWGN . 2

1.1.2 N -user MAC with Rayleigh fading 3

1.1.3 Massive random-access . 4

1.2 Signature code and compressed sensing 7

1.2.1 Properties of the signature matrix 9

1.2.2 Generation methods . 11

1.2.3 Decoding methods . 14

1.3 Machine learning . 17

1.3.1 Deep neural networks . 18

1.3.2 Binarized neural networks . 19

1.3.3 Autoencoder . 20

2 Active user detection and channel estimation by DNNs-based de-

coder on multiple-access channel 22

2.1 Decoder model based on simple FNNs structure 23

2.1.1 Parameters of FNNs models 23

2.1.2 Loss function for the simple FNNs-based decoder 23

2.1.3 Training results of the simple FNNs-based decoder 24

2.2 Proposed method . 25

2.2.1 DNNs-based decoder structure 25

vi

2.2.2 Training procedure . 27

2.3 Numerical experiments . 28

2.3.1 Active user detection accuracy 30

2.3.2 Channel estimation accuracy 31

2.3.3 Generalization ability discussion 32

2.3.4 Computation efficiency . 34

2.4 Conclusions . 35

3 BNNs- and TISTA- based signature code design for active user de-

tection and channel estimation 37

3.1 System model based on autoencoder 37

3.2 Proposed method . 38

3.2.1 Encoder in ML-SC . 39

3.2.2 Decoder in ML-SC . 40

3.2.3 Training procedure . 41

3.3 Numerical experiments . 42

3.3.1 Experiment setting . 42

3.3.2 Results of training . 43

3.3.3 Simulation based on other decoding methods 45

3.3.4 Comparison with Liu’s matrix 45

3.3.5 Matrix analysis . 46

3.4 Discussions . 49

4 Conclusions 50

4.1 Future directions . 51

Bibliography 52

vii

List of Tables

2.1 Parameters of the FNNs models . 23

2.2 Parameters of the neural networks . 27

2.3 Activation functions . 27

2.4 Average computing time for various decoders (in seconds) 35

3.1 Coherence of the signature matrices, when L/N = 1/2 47

3.2 Coherence of the signature matrices, when L/N �= 1/2 48

viii

List of Figures

1.1 Simple N -user multiple-access channel 1

1.2 Communication across the MAC . 2

1.3 Communication across the AWGN MAC 3

1.4 Communication across the AWGN MAC with fading 4

1.5 A wireless network . 5

1.6 A kind of unsourced massive random-access scheme 6

1.7 N -user Communication over MAC with Rayleigh fading 8

1.8 Rectified linear unit . 20

1.9 Standard sigmoid function . 20

1.10 Basic structure of autoencoder . 20

2.1 Training curve of the simple FNNs-based decoder 24

2.2 Iterative DNNs-based decoder with M generations 25

2.3 Schematic of the m-th generation of the DNNs-based decoder 26

2.4 Training curve of the DNNs-based decoder, when SNR = 10dB 29

2.5 MSE of the DNNs-based detector for different generations in training,

when SNR = 10dB . 29

2.6 MSE of the DNNs-based estimator for different generations in training,

when SNR = 10dB . 30

2.7 SER performance of DNNs-based decoder in various τ , when SNR =

10dB . 31

ix

2.8 SER performance of decoding with randomly generated (0, 1,−1)-signature

code . 32

2.9 NMSE performance of decoding with randomly generated (0, 1,−1)-

signature code . 33

2.10 NMSE performance of DNNs-based decoder with randomly generated

(0, 1,−1)-signature code . 34

2.11 NMSE performance of DNNs-based decoder in various ρ, when SNR =

10dB . 34

3.1 Modified system model . 38

3.2 Structure of ML-SC . 39

3.3 MMSE estimator ηMMSE(y, τ) under different τ
2 values 41

3.4 Changes in qkernel(SR) during the training in Experiment B with dif-

ferent training epochs . 43

3.5 Training curve of Experiment A (TISTA only), and Experiment B

(ML-SC) . 44

3.6 SER (left side) NMSE (right side) in Experiment A (TISTA only) and

Experiment B (ML-SC) during the training 44

3.7 NMSE performance of 250×500 (1,−1)-signature matrix under various

decoding methods, before (dashed line) and after (solid line) improve-

ment using ML-SC . 45

3.8 SER (left side) and NMSE (right side) performance of 15× 35 (dashed

line), and 40 × 130 (solid line) (1,−1)-signature matrix be generated

by randomly, Liu’s method, and ML-SC 46

3.9 RIC analysis of (1,−1)-signature matrix before training (dashed line)

and after training (solid line) in various sizes 47

3.10 RIC analysis of 15×35 (left side) 40×130 (right side) (1,−1)-signature

matrix . 48

x

List of Symbols

Latin

c Codeword

h Channel coefficients vector

k Channel coefficients vector of active users

m Message

S Signature matrix

SR Signature matrix with Real number field elements

S{1,−1} Signature matrix with Real number field elements

x User active status vector

y Output vector of channel

z AWGN vector

E[·] Expectation

Fq Finite field with q elements

F
(n)
q n-dimensional row vector space over the field Fq

R Field of real numbers

R
+ Field of nonnegative real numbers

N (0, σ2) Normal distribution with zero mean, σ2 variance

Eb Energy of the signal per user data bit

xi

G(·) PDF of the zero mean Gaussian distribution

L Code length

N Number of users

N0 Noise spectral density

R(·) PDF of the Rayleigh distribution

Greek

α Learning rate

Γ Set of trainable parameters in TISTA

Φ(·) CDF of the standard Gaussian distribution

ρ Active probability of users

σ2 Variance of the AWGN noise

Θ Set of weight matrices and bias vectors

xii

Abbreviations

AUD Active user detection.

AWGN Additive white Gaussian noise.

BS Base station.

CDF Cumulative distribution function.

CE Channel estimation.

CSI Channel state information.

DNN Deep neural network.

FNN Feedforward neural network.

ISTA Iterative soft shrinkage algorithm.

MAC Multiple-access channel.

MIMO Multi-input multi-output.

ML-SC Machine learning signature code.

mMTC Massive machine-type communication.

PDF Probability density function.

xiii

ReLU Rectified linear unit.

SER Status judgment error rate.

SGD Stochastic gradient descent.

SNR Signal-to-noise ratio.

TISTA Trainable- iterative soft shrinkage algorithm.

USI User state information.

xiv

Chapter 1

Introduction

This thesis investigates the signature code based on machine learning techniques in

massive random-access over additive white Gaussian noise (AWGN) channel with

Rayleigh fading.

1.1 Multiple-access channel

...

Figure 1.1: Simple N -user multiple-access channel

Multiple-access channel (MAC) is a channel model in which multiple users share a

common medium for communication, a N -user MAC is depicted in Figure 1.1. The

channel generates output y ∈ R from N inputs xn ∈ R according to

y =
N∑

n=1

xn. (1.1)

Communication across the MAC In order to communicate across the MAC,

the senders need an appropriate encoding method to encode the information. Then

1

...

EncoderUser

User Encoder

EncoderUser

...

Decoder

Figure 1.2: Communication across the MAC

the receiver decodes the channel’s output back to meaningful information, like Figure

1.2. For the n-th user, the encoder encodes the message mn into a codeword cn =

(cn,1, cn,2, ..., cl,n)
T, cl,n ∈ R, where L is the code length. The channel’s output vector

y = (y1, y2, ..., yL)
T, yl ∈ R is generated as

y =
N∑

n=1

cn. (1.2)

Then the estimate of original message m̂ = (m̂1, m̂2, ..., m̂N) is recovered by receiver’s

decoder.

Usually, after the information is encoded to the codeword, a modulation step is

needed to generate the channel’s input symbol. However, the research object of this

thesis, i.e., signature code, generates the codeword and is directly used as the input

symbol of the channel, so we omit the modulation step in communication across the

MAC in our explanation.

1.1.1 N-user MAC with AWGN

AWGN is a typical noise model usually used in communication theory and its simu-

lations. Communication across the AWGN MAC shows in Figure 1.3. The channel’s

output vector y = (y1, y2, ..., yL)
T, yl ∈ R is generated as

y =
N∑

n=1

cn + z, (1.3)

where z = (z1, z2, ..., zL)
T is the noise vector, and its element is subject to normal

distribution N (0, σ2), where 0 is the mean, σ2 is the variance. In digital communi-

2

...

EncoderUser

User Encoder

EncoderUser

...

Decoder

Figure 1.3: Communication across the AWGN MAC

cation, the energy per bit to noise power spectral density ratio Eb/N0 is used as the

signal-to-noise ratio (SNR):

SNR � Eb

N0

, (1.4)

where Eb is the energy of the signal per user data bit, and N0 is the noise spectral

density. If the noise is the one-sided AWGN, the variance should be as follows:

σ2 = N0, (1.5)

for double-sided white noise, the bandwidth is doubled, so the variance of the AWGN

should be as follows:

σ2 = N0/2. (1.6)

1.1.2 N-user MAC with Rayleigh fading

Due to the multipath effect in the wireless network, the wireless signal will fade

during the propagation. Figure 1.4 shows the communication model considering signal

fading. The channel’s output vector y = (y1, y2, ..., yL)
T, yl ∈ R is generated as

y =
N∑

n=1

hncn + z, (1.7)

where hn ∈ R is the channel coefficient of the n-th user, and all elements in the

same codeword vector have the same channel coefficient hn, this situation is called

quasi-static fading. In another situation called fast fading, even the elements in the

3

...

EncoderUser

User Encoder

EncoderUser

...

Decoder

Figure 1.4: Communication across the AWGN MAC with fading

same codeword vector, have different channel coefficients hl,n, for l-th position in the

codeword vector from the n-th user.

Rayleigh fading Rayleigh fading is a statistical model for the effect of a propaga-

tion environment on the signal in wireless communications. This model assumes that

after the signal passes through the wireless channel, its signal amplitude is random,

and its envelope obeys the Rayleigh distribution, which is composed of the radial

component of the sum of two uncorrelated Gaussian random variables.

When the two components of a random two-dimensional vector are independent,

have the same variance, and are normally distributed with a mean of 0, the magnitude

of the vector is Rayleigh distributed. The probability density function of the Rayleigh

distribution is

f(x; σ) =
x

σ2
exp

(−x2

xσ2

)
, (1.8)

where σ is the standard deviation of the component normal distribution, called the

scale parameter of the Rayleigh distribution.

1.1.3 Massive random-access

In a wireless network depicted in Figure 1.5, there are various devices/users that

need to communicate with one base station (BS). When the number of devices/users

increases the complexity of the network also increases. For a wireless Internet of

4

Things (IoT) network, if there is a large number of devices/users, we call it massive

machine-type communication (mMTC).

Figure 1.5: A wireless network

There are several characters in mMTC:

• Massive users: a huge number of users need to communicate with the same

access point

• Random-access: only a small fraction of users are active at any given time

• Signal fading: signal fading will occur due to the multipath effect.

Therefore, mMTC is a classic massive random-access problem.

Unsourced scheme When devices/users access the channel without any prior re-

source requests to the BS, we call it unsourced. It can save independent communi-

cation resources, such as different time-slot, independent frequency bands, and in-

dependent codewords. An unsourced scheme is suitable for massive random-access

5

like mMTC. In unsourced massive random-access, each user is no longer allocated

exclusive resources, and all users share one codebook. In such a system, how a BS

recognizes a user becomes an important issue.

Figure 1.6: A kind of unsourced massive random-access scheme

The solution usually includes two parts, one part is the active user detection scheme

and another part is the information transmission scheme. As shown in Figure 1.6,

the active user i divides the message mi to be sent into two parts, identification part

mI
i and transmission part mT

i , m
T
i is the main part of the message mi. m

I
i is used

to generate the code used as user identification and to determine the pattern used

for transmitting for the main part mT
i . As long as the identification part mI

i of

the messages sent at the same time is different, different users can be identified. To

simplify the system model discussed later, assume that the identification part mI
i of

each active user is different.

The research object of this thesis is the user identification scheme in unsourced

massive random-access. The communication model discussed in the signature code is

based on that identification scheme.

6

1.2 Signature code and compressed sensing

Signature codes are multi-user codes used for active user detection in MAC. They can

be divided into two categories: uniquely decodable signature codes and compressed-

sensing-based (CS-based) signature codes. The problem of constructing binary uniquely

decodable signature codes for the noise adder MAC has been studied in [1] and sev-

eral signature codes for noise adder channel has proposed in [2, 3]. These codes are

designed for uniquely decodable over fading free channels and can be effectively iden-

tified no matter how many users are active. In the CS-based signature code scheme, a

sparse vector containing user state information (USI) and channel state information

(CSI) could be detected and reconstructed. The CS-based signature codes are able

to work in Fading channel. In this paper, we focus on CS-based signed codes and use

machine learning techniques to achieve improved performance.

At a communication system over MAC with Rayleigh fading, N users communicate

with one BS, as shown in Figure 1.7. Only a small fraction of these users are active

simultaneously. Let xn ∈ {0, 1} represent the active status of the n-th user (0 means

idle and 1 means active). We denote the probability of user activity by P (xn = 1).

In addition, the active statuses of these users are assumed to be independent, and

the probability is uniform over all users, which equals ρ; that is, P (xn = 1) = ρ for

any n.

To help the BS determine the active status of the users when the n-th user is active,

a unique binary signature sequence sn ∈ ({1,−1}L)T is sent, where L is the sequence

length, and L < N . The BS receives a superimposed signal y as follows:

y =
N∑

n=1

snxnhn + z, (1.9)

where hn is the channel coefficient for the n-th user, which is a random variable

following the Rayleigh distribution, and z ∈ (RL)T is a Gaussian noise vector with

variance σ2. Let k = (k1, k2, ..., kN)
T with kn = xnhn, and S be a L × N matrix

7

Figure 1.7: N -user Communication over MAC with Rayleigh fading

S = [s1, s2, ..., sN], we simplify the equation (1.9) as

y =
N∑
i=1

snkn + z

= Sk + z.

(1.10)

The compression ratio of the signature matrix is defined as N/L and is typically set to

2. Note that k = (k1, k2, ..., kN)
T is the fading coefficient vector that contains the USI

and CSI, which are the decoding target for the BS. Because we assume only a small

fraction of users are active simultaneously, the fading coefficient vector k is a sparse

vector, and most of the elements in k are 0. Then we can use the reconstructing

algorithm proposed in CS theory to estimate the k from the received signal y, and

the estimated version is denoted by k̂. Next, from the k̂, the estimation of the user

status x̂ = (x̂1, x̂2, ..., x̂N)
T is obtained by a positive threshold ι as

x̂n =

{
0 k̂n < ι

1 k̂n ≥ ι
, n ∈ {1, 2, ..., N}. (1.11)

8

1.2.1 Properties of the signature matrix

In the encoding process, the signature matrix plays a vital role in the quality of

the sparse vector reconstruction and affects decoding performance. Sensing matrices

with discrete elements are typically used as the signature matrix in the signature

code [2–5]. The elements are discrete and require less memory. Therefore, they are

more suitable for IoT devices with limited memory than matrices with elements in a

continuous real-number field.

Reconstructing the correct solution is called perfect reconstruction. Whether or

not perfect reconstruction is possible depends on the properties of the sensing matrix

S. There have been many theoretical studies in CS to evaluate the sensing matrix.

A key concept of a sensing matrix called the restricted isometry property (RIP)

was proposed [6], and the influence of restricted isometric constants (RIC) on signal

recovery performance was explained [7].

Restricted isometric property (RIP)[6–8]

Before introducing RIP, we first introduce a definition of vector sparsity.

Definition 1 (k-sparse vector) If the �0-norm of a sparse vector v is k, we called v

is a k-sparse vector. And we denote the set of k-sparse vectors by Σk := {v ∈ R
N :

||v||0 ≤ k}.

Let the original signal k0 ∈ Σk be a k-sparse vector, suppose there is a k′-sparse

vector such that Sk = 0. Then y = Sk0 = S(k0 + k) holds, so x0 + x satisfies

a linear constraint. For a (k + k′)-vector k0 + v, if there many vectors satisfy that

linear constraint, it will adversely affect the reconstruction. If the lengths of x and

the linear transformation Sk do not differ much (isometric), the linear transformation

of the sparse vector k does not become Sk = 0, so the reconstruction may work well.

RIP represents restricted isometric to such sparse vectors and is defined as

Definition 2 (Restricted isometric property) For any k-sparse vector v ∈ Σk, when

9

the constant δ that satisfies the follow inequality

(1− δ)‖v‖22 ≤ ‖Sv‖22 ≤ (1 + δ)‖v‖22, (1.12)

exists. The matrix S ∈ R
L×N is said to have the restricted isometry property (RIP).

And the minimum value δk of the constant δ at this time is called the k-th order

restricted isometric constant (RIC) [6].

The smaller the RIP constant δk, the better the reconstruction. The RIC δk of the

signature matrix for the k-sparse vector is calculated as follows:

δk = max{1− min
U :U⊆V,|U |=k

λmin(S
T
USU), max

U :U⊆V,|U |=k
λmax(S

T
USU)}, (1.13)

where U(⊆ V = {1, ..., N}) is the set of indices of the nonzero elements in the

sparse vector, and λmax, λmin correspond to the maximum and minimum values of the

eigenvalues of the target sub-matrix, respectively [9].

Coherence

It is generally difficult to evaluate whether or not there is RIP. So we introduce

another property called coherence.

Definition 3 (Coherence) Maximum absolute value of the direction cosines of two

different column vectors si, sj of matrix S

coherence(S) � max
1≤i<j≤N

| < si, sj > |
‖si‖2‖sj‖2 , (1.14)

which is called the coherence of the matrix S.

Theorem 4 (Upper bound on the RIC) For an sensing matrix S where the �2-norm

of all column vectors is 1, For any k ∈ {1, ..., N}, we have the RIC

δk ≤ coherence(S)k. (1.15)

So when coherence is small, the upper bound on the RIC calculated by coherence is

also small [10].

10

1.2.2 Generation methods

Discrete sensing matrices can be mainly divided into two classes: randomly gener-

ated matrices and deterministic matrices from the generation method. Matrices with

entries drawn from i.i.d. symmetric Bernoulli random variables have the RIP with

overwhelming probability [11]. They have good sparse vector recovery ability and

only require fewer observation dimensions. Furthermore, a randomly generated ma-

trix can be easily generated to any size as required. Deterministic matrices, such as

the Toeplitz matrix, have also been used as the signature matrices in previous studies

[12]. DeVore [13] and Liu [14] provided deterministic constructions of a binary CS

matrix via polynomials and vector space over a finite field. For IoT devices, these

deterministic matrices can be generated with a few parameters and a fixed equation,

reducing storage costs compared to randomly generated matrices further. However, it

is difficult for these matrices to achieve the same performance as randomly generated

matrices. Moreover, the shape of the generated matrix is usually limited owing to

the parameter constraints.

Liu’s matrix [14]

Let Fq be a finite field with q elements, where q is the prime power and F
(n)
q be the n-

dimensional row vector space over the field Fq. Liu’s matrix is a kind of deterministic

matrix through the subspaces F
(n)
q .

Let 0 ≤ h ≤ n and N(h, n) be the amount of h-dimensional subspaces of F
(n)
q .

Then

N(h, n) =

⎡
⎣n
h

⎤
⎦
q

(1.16)

where the Gaussian coefficient is defined as Definition 5.

11

Definition 5 (Gaussian coefficient)⎡
⎣s2
s1

⎤
⎦

q

=
Πs2

i=s2−s1+1(q
i − 1)

Πs1
i=1(q

i − 1)
(1.17)

where s1, s2 are integers. By convention

⎡
⎣s2
0

⎤
⎦

q

= 1 for all integer s2 and

⎡
⎣s2
s1

⎤
⎦
q

= 0

whenever s1 < 0 or s2 < s1.

Let 0 ≤ d ≤ h ≤ n andN(d, h, n) be the number of d-dimensional subspaces contained

in a given h-dimensional subspace of F
(n)
q . Then

N(d, h, n) = N(d, h) =

⎡
⎣h
d

⎤
⎦
q

(1.18)

The construction steps of the Liu’s matrix are as follows:

(1) Given integers 0 ≤ d < h, 1 ≤ h ≤ �n
2
	.

(2) Let Ψ0 be the binary matrix, whose rows are indexed by the d-dimensional vec-

tor subspaces on F
(n)
q , whose columns are indexed by the h-dimensional vector

subspaces on F
(n)
q .

(3) If the i-th d-dimensional vector subspace is contained in the j-th h-dimensional

vector subspace, the (i, j) position of the matrix is marked as 1, otherwise, it is

marked as 0.

Ψ0 is a s× t matrix, the column weight is ω, where

s =

⎡
⎣n
d

⎤
⎦
q

, t =

⎡
⎣n
h

⎤
⎦
q

,ω =

⎡
⎣h
d

⎤
⎦
q

. (1.19)

Example 6 When considering the case of q = 2 and n = 4.

Let Ψ0 be the binary matrix, whose rows are indexed by the 1-dimensional vector

subspaces on F
(n)
q , whose columns are indexed by the 2-dimensional vector subspaces

12

on F
(4)
2 , i.e., d = 1, h = 2. we have

s =

⎡
⎣4
1

⎤
⎦
2

=
24 − 1

2− 1
= 15, t =

⎡
⎣4
2

⎤
⎦
2

=
(24 − 1)× (23 − 1)

22 − 1
= 35, (1.20)

ω =

⎡
⎣2
1

⎤
⎦
2

=
22 − 1

2− 1
= 3. (1.21)

Then Ψ0 is a 15 × 35 matrix, whose constant column weight is 3. In F
(4)
2 , the set of

all the 2-dimensional row vector subspaces and the set of all the 1-dimensional row

vector subspaces are denoted by M(2, 4) and M(1, 4) The element in M(2, 4) are:⎛
⎝1 0 0 0

0 1 0 0

⎞
⎠ ,

⎛
⎝1 0 0 0

0 0 1 0

⎞
⎠ ,

⎛
⎝1 0 0 0

0 0 0 1

⎞
⎠ ,

⎛
⎝1 0 0 0

0 1 1 0

⎞
⎠ ,

⎛
⎝1 0 0 0

0 1 0 1

⎞
⎠ ,

⎛
⎝1 0 0 0

0 0 1 1

⎞
⎠ ,

⎛
⎝1 0 0 0

0 1 1 1

⎞
⎠ ,

⎛
⎝0 1 0 0

0 0 1 0

⎞
⎠ ,

⎛
⎝0 1 0 0

0 0 0 1

⎞
⎠ ,

⎛
⎝0 1 0 0

1 0 1 0

⎞
⎠ , ...,

⎛
⎝0 0 1 1

1 1 1 0

⎞
⎠ , (1.22)

and there are total 35 2-dimensional row vector subspaces for F
(4)
2 . The element in

M(1, 4) are:

(
1 0 0 0

)
,
(
0 1 0 0

)
,
(
0 0 1 0

)
,
(
0 0 0 1

)
,
(
1 1 0 0

)
,(

1 0 1 0
)
,
(
1 0 0 1

)
,
(
0 1 1 0

)
,
(
0 1 0 1

)
,
(
0 0 1 1

)
,(

1 1 1 0
)
,
(
1 1 0 1

)
,
(
1 0 1 1

)
,
(
0 1 1 1

)
,
(
1 1 1 1

)
, (1.23)

and there are total 15 1-dimensional row vector subspaces. So

13

Ψ0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1, 1, 1, 1, 1, 1, 1, 0

1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0

0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0

0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1

0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(1.24)

and the Ψ0 is a 15 × 35 binary sensing matrix which is used as one of the signature

matrices in Chapter 3.

1.2.3 Decoding methods

From the received signal y, we estimate the fading coefficient vector k by solving the

following Lasso problem:

k̂ = arg min
k∈(R+N)T

1

2
‖y − Sk‖22 + μ‖k‖1. (1.25)

The decoder in the BS provides approximation of k, k̂ = (k̂1, k̂2, . . . , k̂N)
T. Next,

from the k̂, the estimation of the user status x̂ = (x̂1, x̂2, ..., x̂N)
T is obtained by a

positive threshold ι as

x̂i =

{
0 k̂i < ι

1 k̂i ≥ ι
, i ∈ {1, 2, ..., N}. (1.26)

14

Iterative soft shrinkage algorithm (ISTA)

ISTA algorithm is a proximal gradient descent algorithm for sparse signal reconstruc-

tion. The original problem considered by ISTA is the Lasso problem:

k̂ = arg min
k∈(RN)T

1

2
‖y − Sk‖22 + μ‖k‖1, (1.27)

where μ > 0 is a regularization parameter. Formula (1.27) is a little different from the

optimization problem in (1.25), the original ISTA is for recovering the spares vector

whose elements are in real number fields.

Like other proximal gradient descent algorithms, it has two steps in each iteration,

the gradient descent step and proximal step as follows:

r = at +
1

c
S(y − Sat), (1.28)

at+1 = η(r;μ), (1.29)

where c needs to be greater than the largest eigenvalue of STS and η(·;μ) is the soft
threshold shrinkage function as follows:

η(r;μ) =max(0, r + sgn(r)μ) (1.30)

=(max(0, r1 + sgn(r1)μ), ...,max(0, rN + sgn(rN)μ)), (1.31)

where 0 is a zero vector and sgn(·) is the sign function which is defined as:

sgn(SR(l,n)) =

⎧⎨
⎩ −1, SR(l,n) < 0

1, SR(l,n) ≥ 0
. (1.32)

Orthogonal matching pursuit (OMP)

OMP [15] is a greedy algorithm that finds the sparse vector element-by-element in a

step-by-step iterative manner. It consists of the following steps:

(1) Find the column vector vn in signature matrix S that has the biggest inner

product with received signal y

pt = arg max
vn

< vn,y > (1.33)

15

(2) Calculate the residue rt = pt − pt < pt,y >

(3) Find the column vector vn in signature matrix S that has the biggest inner

product with ri

pt+1 = max
n

< vn, rt > (1.34)

(4) Repeat step (2) and (3) until the residue achieve a certain threshold

Trainable-ISTA (TISTA)

TISTA [16] is a deep-unfolding algorithm based on the traditional ISTA algorithm

model proposed in [16]. Because TISTA is unfolded based on the traditional recursion

model, it can handle large-scale problems. The TISTA is defined by the following

recursion:

rt = at + γtW (y − Sat), (1.35)

at+1 = ηMMSE(rt, τ
2
t), (1.36)

v2t = max

{‖y − Sat‖22−Lσ2

trace(STS)
, ε

}
, (1.37)

τ 2t =
v2t
N
(N + (γ2

t − 2γt)L) +
γ2
t σ

2

N
trace(WW T), (1.38)

where γt is the trainable step size for the t-th iteration, matrix W = ST(SST)−1 is

the pseudo-inverse matrix of the signature matrix S, ηMMSE(·) is the minimum mean

squared error (MMSE) estimator and trace(·) denotes the trace of the matrix. a is

the estimation and the initial value a = ({0})N . After T iterations, the result is

k̂ = aT .

For an AWGN channel, defined as Y = X + N , where X represents a variable

with a probability density function (PDF) PX(·), Y represents a real-valued random

16

variable as well, The random variable N is a Gaussian random variable with mean 0

and variance σ2. The MMSE estimator ηMMSE(y) is defined by

ηMMSE(y) = E[X|y], (1.39)

where E[X|y] is the conditional expectation given by

E[X|y] =
∫ ∞

−∞
xP (x|y)dx. (1.40)

The posterior PDF P (x|y) is given by Bayes’ Theorem:

PX|Y (x|y) =
PX(x)PY |X(y|x)

PY (y)
, (1.41)

where the conditional PDF is Gaussian:

PY |X(y|x) = 1√
2πσ2

exp

(−(y − x)2

2σ2

)
. (1.42)

In the case of the Bernoulli-Gaussian prior, PX (x) is given by

PX(x) = (1− p)δ(x) +
p√
2πα2

exp

(−x2

2α2

)
(1.43)

From [16] the MMSE estimator ηMMSE(y) can be simplified as follows:

ηMMSE(y; σ
2) = y + σ2∇ logPY (y). (1.44)

Finally, the ηMMSE(y) for Bernoulli-Gaussian prior is:

ηMMSE(y; σ
2) =

(
yα2

ξ

)
pG(y; ξ)

(1− p)G(y; σ2) + pG(y; ξ)
(1.45)

where ξ = α2 + σ2 and G(·) is the PDF of the Gaussian distribution.

1.3 Machine learning

Machine learning (ML) algorithms enable one to perform tasks that are too challeng-

ing to perform with fixed programs written and designed by humans [17]. Standard

deep-learning techniques, such as stochastic gradient descent algorithms based on

17

mini-batches, are used to adjust the trainable variables to improve the performance

of the algorithm. Recently, ML, including deep neural networks (DNNs), has been

applied as a promising solution for practical applications, such as a stable and ef-

ficient decoder [18, 19]. In the field of signal processing, algorithms based on ML

have been applied to recover sparse signals [16, 20]. In related research on signature

codes, by applying training data to a properly designed DNN, the scheme proposed

in [21] learns the nonlinear mapping between the received signal and the support

for detecting active users. Unlike traditional algorithms and ML methods based on

conventional models, neural network-based solutions can improve the model’s perfor-

mance through a large amount of data, which is not present in traditional ML because

of the influence of the standard model used.

1.3.1 Deep neural networks

The neuron node is the fundamental element of the NNs. A neuron generates an

output based on the input from the previous layer. For example, for I inputs, the

output of a neuron node can be expressed as follows:

uo = σ(
I∑

i=1

ωizi + bo), (1.46)

where zi is the i-th input, ωi is the corresponding weight, bo is the bias, and σ is

the activation function. The weight ωi and deviation bo are the internal trainable

parameters of the neuron node.

Multiple parallel neuron nodes form a layer of NNs. In the dense layer, the neurons

from the previous layer are connected to all the neurons in the next layer, that is, the

output of all neuron nodes in the previous layer is passed to all neurons in the next

layer. The output of the next layer u = (u1, u2, ..., uO)
T is expressed as follows:

u = σ(ωz + b), (1.47)

where z = (z1, z2, ..., zI)
T is the output of the previous layer and ω is the weight

matrix of shape I ×O, called the kernel. b = (b1, b2, ..., bO)
T denotes a bias vector.

18

Feedforward neural networks (FNNs) are the most commonly used neural networks.

A basic structure of FNNs is composed of one input layer, N repetitive hidden layers,

and one output layer. Each hidden layer of the basic FNNs unit is composed of a

weight matrix, ωi; a bias vector, bi; and an activation function, φi, where i denotes

the index of the hidden layer. The output layer is composed of a weight matrix, ωo;

a bias vector, bo; and an activation function, φo. The output of the FNNs with N

hidden layers is expressed as

f(v; Θ) = φo(ωoφN(ωNφN−1(. . . φ1(ω1v + b1) . . .) + bN) + bo), (1.48)

where v denotes the input of the FNNs unit and Θ is the set of weight matrices and

bias vectors for FNNs, that is, Θ = {ωi, bi|i = 0, 1, . . . , N} ∪ {ωo, bo}.
Two types of activation functions are used in this study. The first is the rectified

linear unit (ReLU) [22], which is expressed as

φR(x) = x+ = max(0, x). (1.49)

ReLU is a non-linear function with the domain (−∞,+∞) and range [0,+∞). The

second activation function is the sigmoid function. The standard sigmoid function is

expressed as follows:

φs(x) =
1

1 + e−x
. (1.50)

It is a nonlinear function with the domain (−∞,+∞) and range (0, 1). The graph

of the standard sigmoid function is shown in Figure 1.9, it shows that the standard

sigmoid function is a non-linear function with a domain of (−∞,+∞) and a range of

(0, 1).

1.3.2 Binarized neural networks

Binarized neural networks (BNNs) [23] are NNs in which computations are performed

using binary values. BNNs have added quantization and pseudo-gradient methods

19

Figure 1.8: Rectified linear unit Figure 1.9: Standard sigmoid function

based on ordinary NNs. The quantization method makes kernel ω and input x dis-

crete binary values. The pseudo-gradient method solves the problem of the disappear-

ance gradient in backward propagation during the neural-network training process.

The dense layer to which the quantization method is applied is called the quantized

dense layer, which can be expressed as follows:

u = σ(qkernel(ω)qinput(z) + b), (1.51)

where qkernel and qinput are the quantization functions for the kernel and input in the

quantized dense layer, respectively.

Figure 1.10: Basic structure of autoencoder

1.3.3 Autoencoder

Autoencoder is a classic deep-learning model, as shown in Figure 1.10. It contains two

trainable units: a trainable encoder and a trainable decoder. The encoder encodes

20

the input as a codeword, and the decoder recovers this codeword to the original input

as the output.

In communication, autoencoder has been successfully applied to dictionary con-

struction and decoder training and has achieved remarkable results in many fields,

such as orthogonal frequency division multiple access [24], sparse code multiple access

[19], and CS-based AUD [25].

21

Chapter 2

Active user detection and channel
estimation by DNNs-based decoder
on multiple-access channel

In this chapter, we consider a machine-learning-based decoding method for the ran-

domly generated signature code in massive random-access over additive white Gaus-

sian noise (AWGN) channel with Rayleigh fading.

First, we build a decoder based on a simple FNNs structure, called a simple FNNs-

based decoder. And summarizing the result in Section 2.1.3.

We then design structures to improve the decoding efficiency of neural networks.

To detect the active users and estimate the channel coefficients, we designed two

basic units for our method: a DNNs-based user detector and a DNNs-based channel

estimator. The recursive algorithm between the DNNs-based detector and DNNs-

based estimator is designed. As the DNNs-based detector provides prior information

to the DNNs-based channel estimator, the DNNs-based estimator has a more accurate

estimation. We call our method the DNNs-based decoder.

Simulation results show that the proposed DNNs-based decoder achieves higher

active user detection accuracy and channel estimation accuracy than previous algo-

rithms derived from compressed sensing technology for binary signature code.

22

2.1 Decoder model based on simple FNNs struc-

ture

In this section, we built a decoder based on a simple FNNs structure called a simple

FNNs-based decoder. We tried five models based on FNNs with different parameters

and gave the training results.

2.1.1 Parameters of FNNs models

By adjusting the number of layers and the number of nodes of the FNNs, a simple

model, a middle model, a wide model, and two deep models were created. These

FNNs models use ReLU as the activation function in the hidden and output layers,

the Table 2.1 shows the structure details.

Table 2.1: Parameters of the FNNs models

Model Number of hidden layers Hidden layer’s neural

Simple model 1 N + L

Middle model 3 N + L

Wide model 3 (N + L)× 2

Deep model 1 6 N + L

Deep model 2 14 N + L

2.1.2 Loss function for the simple FNNs-based decoder

The decoder recovers the fading coefficient vector k by receiving the signal y. There-

fore, the input of the FNNs is y, and we expect the output of FNNs f(y; Θ) to be

close to the fading coefficient vector k. To represent the difference between f(y; Θ)

and k, we use the mean squared error (MSE):

N∑
n=1

(kn − f(y; Θ)n)
2/N, (2.1)

which is also used as a loss function in training.

23

2.1.3 Training results of the simple FNNs-based decoder

We trained each decoder using training data that was randomly generated by a fixed

(0, 1,−1)-signature matrix with size 100 × 50, when setting ρ = 0.1, and SNR =

10dB. The training curves are shown in Fig.2.1. In the training, the wide model

and deep model 1 show the best performance, the middle model shows the next-best

performance, and deep model 2 shows the worst performance.

Figure 2.1: Training curve of the simple FNNs-based decoder

In the simulation, increasing the number of hidden layers and the number of nodes

in a hidden layer within a certain range can improve the performance of the model.

Although increasing the number of nodes in the hidden layer can increase the perfor-

mance, the network complexity increases exponentially as the number of nodes in a

hidden layer increases. Another technique to improve performance is to increase the

number of hidden layers. However, if the number of hidden layers is too large, the

training of the neural network becomes difficult, and the model performance begins to

decrease. Therefore, the performance improvement cannot rely solely on the simple

stacking of neural networks, we need to design the network further. In addition, the

wide model has 3.6 times more trainable parameters than the middle model and 1.46

times more than the deep model 1. To obtain the trade-off between the complexity

24

and performance of the FNNs, we choose L + N as the number of nodes in each

hidden layer in the following proposed DNNs-based decoder.

2.2 Proposed method

In this section, we first describe how the superimposed signal y is recovered from the

fading coefficient vector k in our proposed DNNs-based decoder. Subsequently, we

present a training procedure for the proposed scheme.

2.2.1 DNNs-based decoder structure

To solve the optimization problem in (1.25), we propose an iterative DNNs-based

decoder consisting of several generations, as shown in Figure 2.2. In the m-th gen-

eration of the DNNs-based decoder, the soft information on the user status, denoted

by x̂m
s , and the estimate of the fading coefficient vector k of active users, denoted by

k̂
m

s , are obtained, given the received signal y and the previous generation’s outputs

x̂m−1
s and k̂

m−1

s . For the first generation, the input x̂0
s is defined as an all-zero vector

(0, 0, . . . , 0) ∈ R
N , and k̂

0

s is defined as an all-one vector (1, 1, . . . , 1) ∈ R
N .

x̂M−1
s

k̂
M−1

s

k̂
M

s

x̂m
s

y
k̂
m

s

k̂
m−1

s

x̂m−1
s

x̂M
s

x̂0
s

x̂1
s

k̂
1

s

k̂
0

s

k̂s

Figure 2.2: Iterative DNNs-based decoder with M generations

As shown in Figure 2.3, the m-th generation of the DNNs-based decoder contains a

user detector and a channel estimator, named DNNs-based user detector and DNNs-

based channel estimator, respectively.

25

k̂
m

s

x̂m
s

x̂m−1
s

k̂
m−1

s

y

Figure 2.3: Schematic of the m-th generation of the DNNs-based decoder

Given the received signal y and the previous estimator’s output k̂
m−1

s , the DNNs-

based user detector estimates the soft information on the user status as

x̂m
s = fd((y, k̂

m−1

s); Θd), (2.2)

where fd is the output function of the FNNs for the DNNs-based channel estimator

(1.48) and Θd denotes the set of weights and biases of the DNNs-based user detector.

The DNNs-based channel estimator provides the received signal y and the previous

detector’s output x̂m−1
s as

k̂
m

s = fe((y, x̂
m−1
s); Θe), (2.3)

where fe is the output function of the FNNs for the DNNs-based channel estimator

(1.48) and Θe denotes the set of weights and biases of the DNNs-based estimator.

Note that the DNNs-based channel estimator aims to solve the problem of minimizing

‖y − Sk‖22. This problem always has a solution, but the solution may not be unique.

Therefore, the DNNs-based user detector is necessary to provide prior information

on the position of the non-zero elements in the vector k. The prior information

makes the solution of the minimization problem unique or approximately unique.

26

The DNNs-based user detector can also be viewed as a shrinkage process for channel

estimation.

The DNNs-based user detector and DNNs-based channel estimator both use the

FNNs structure described in Section 1.3.1. The parameters and activation functions

of the FNNs are listed in Tables 2.2 and 2.3, respectively. In addition, we add a

batch-normalization layer before each hidden layer [26] for substantially accelerating

the training of deep networks. The batch-normalization layer reparametrizes the

underlying optimization problem to make it stabler and smoother. Consequently, the

neural network can converge faster during training [27].

Table 2.2: Parameters of the neural networks

Parameter Estimator Detector

Number of hidden layers 3 3

Input layer’s neural N + L N + L

Hidden layer’s neural N + L N + L

Output layer’s neural N N

Table 2.3: Activation functions

Layer Estimator Detector

Main hidden layer ReLU ReLU

Last hidden layer ReLU None

Output layer None Sigmoid

2.2.2 Training procedure

The proposed FNNs structure is trained with the detector, fd((y, k̂
m−1

s); Θd), and the

estimator, fe((y, x̂
m−1
s); Θe), which can recover the fading coefficient vector k. In the

27

training procedure, a multi-loss function inspired by [18] is used:

Loss(y, k̂
0

s , x̂
0
s , . . . , k̂

M−1

s , x̂M−1
s ,k,x; Θd,Θe)

=
M∑

m=1

(MSEm
d (y, k̂

m−1

s ,x; Θd) + MSEm
e (y, x̂

m−1
s ,k; Θe)), (2.4)

where MSEm
d denotes the MSE of the DNNs-based user detector in m-th generation,

which is defined as

MSEm
d (y, k̂

m−1

s ,x; Θd) �
∑N

n=1(fd((y, k̂
m−1

s); Θd)n − xn)/N. (2.5)

MSEm
e denotes the MSE of the DNNs-based estimator in the m-th generation, which

is defined as

MSEm
e (y, x̂

m−1
s ,k; Θe) �

N∑
n=1

(fe((y, x̂
m−1
s); Θe)n − kn)/N. (2.6)

Let θi ∈ {Θd∪Θe} be a trainable parameter of the DNNs-based decoder. The updated

θi, denoted by θ+i , is obtained using the stochastic gradient descent (SGD) method

as follows:

θ+i := θi − α
∂

∂θi
Loss(y, . . . ,k,x; Θd,Θe), (2.7)

where α is the learning rate (step size). Note that other optimization algorithms

based on the SGD method can also be used, such as Adam [28] and RMSprop [29].

2.3 Numerical experiments

In this section, we present the DNNs-based decoder’s performance for various signal-

to-noise ratios (SNRs). In the experiments, the (0, 1,−1)-signature matrix with size

100 × 50 was used, and the zero elements in the matrix were set according to a

Bernoulli distribution with a probability of 0.5. Furthermore, non-zero elements take

the values 1 or −1 according to the Bernoulli distribution with a probability of 0.5.

The user activity probabilities ρ is fixed at 0.1, and the channel coefficient obeys the

Rayleigh distribution, with the scale parameter being 1.

28

To make the neural network converge fully, we randomly generated 75, 000 batches

of training data to train the DNNs-based decoder; the batch size was 1, 000. The

Xavier method was used to initialize the weights and biases [30]. The learning rate

α is fixed at 1 × 10−3. Figure 2.4 shows the training curve for the DNNs-based

Figure 2.4: Training curve of the DNNs-based decoder, when SNR = 10dB

Figure 2.5: MSE of the DNNs-based detector for different generations in training,
when SNR = 10dB

decoder with five generations when SNR = 10dB. Our trained batches are sufficient

to stabilize the decoder’s multi-loss. Figure 2.5 and Figure 2.6 show the MSE of

29

Figure 2.6: MSE of the DNNs-based estimator for different generations in training,
when SNR = 10dB

the detector and estimator, respectively, for different generations in the DNNs-based

decoder. The MSE tends to stabilize after three to five generations. In order to get

relatively stable results for performance analysis, in the subsequent experiments, the

number of generations in training and simulation was set to five.

2.3.1 Active user detection accuracy

Here, we present the performance of the DNNs-based decoder in AUD and CE. The

status judgment error rate (SER) is defined as follows:

SER � E

[‖x̂− x‖0
N

]
. (2.8)

Figure 2.7 shows the SER performance of the DNNs-based decoder in various values

of τ when SNR = 10dB. The DNNs-based decoder has the best performance when τ

is in the interval (0.01, 0.1), so we take an intermediate value 0.05 as the value of τ .

Figure 2.8 shows the SER results in various generations of the DNNs-based decoder

for randomly generated (0, 1,−1)-signature matrices when τ was set to 0.05. The

horizontal axis represents the SNR of this system. For the DNNs-based decoder, the

training SNR is equal to the testing SNR. The results in Figure 2.8 show that as

30

Figure 2.7: SER performance of DNNs-based decoder in various τ , when SNR = 10dB

the number of iterations increases, the performance of the DNNs-based decoder is

better, which proves the validity of the iterative approach for the proposed DNNs-

based decoder. For comparison, the figure also shows the SER results for several

classical recovery algorithms: ISTA [31]; OMP [32]; basis pursuit (BP) [33], which

was implemented by disciplined convex programming [34] in our simulations; and

large-scale �1-regularized LSPs [35]. The results show that the proposed DNNs-based

decoder achieves the lowest SER among the compared methods.

2.3.2 Channel estimation accuracy

To evaluate the CE accuracy of the decoders, we used the average normalized MSE

(NMSE), which is defined as follows:

NMSE(dB) � 10 log10 E

[
‖k̂ − k‖22
‖k‖22

]
. (2.9)

The average NMSE reflects the gap between the estimated fading coefficient vector k̂

and the actual fading coefficient vector k. A smaller average NMSE results in a better

channel estimate accuracy of the decoder. To avoid a situation where the denominator

is zero when calculating the NMSE, we excluded data corresponding to inactive users,

that is, x �= (0)N . Figure 2.9 shows the average NMSE performance of each decoder

31

Figure 2.8: SER performance of decoding with randomly generated (0, 1,−1)-
signature code

for a randomly generated (0, 1,−1)-signature matrix with various SNRs. For the

DNNs-based decoder, the training SNR is equal to the testing SNR. The results in

Figure 2.9 show the validity of the iterative approach for the proposed DNNs-based

decoder, and the proposed DNNs-based decoder achieves the lowest average NMSE

among all the compared methods. For ISTA and BP, the NMSE is relatively high

because, in the recursion of optimization, no prior information on the user status is

provided. OMP is an iterative greedy algorithm that easily falls into a locally optimal

solution.

2.3.3 Generalization ability discussion

In order to test the generalization ability of the DNN decoder under different testing

SNRs, we conducted experiments on the decoder trained under different training

SNRs and perform these decoders at testing SNRs of 1dB, 6dB, 10dB, and 20dB.

The experimental results are shown in Figure 2.10. It can be seen from Figure 2.10

that the training SNR basically determines the performance limit of the decoder.

The larger the training SNR be using, the better the performance of the decoder

in the high-testing SNR field, however when the training SNR is greater than 8dB,

32

Figure 2.9: NMSE performance of decoding with randomly generated (0, 1,−1)-
signature code

the performance of the decoder in the low-testing SNR field becomes to accelerate

deterioration, so we think testing SNR in the interval (8, 13) is a more appropriate

parameter. Since the data in training is completely set by the program and randomly

generated, these parameters may deviate from the actual situation. We recommend

using the data obtained in the working environment for neural network training, and

this will be the best choice.

We also observed the performance of the decoder when the user’s active probability

ρ changes in testing when training ρ = 0.1, SNR = 10dB, and the results are shown in

Figure 2.11. When the testing ρ is greater than the training ρ, the decoding difficulty

increases due to the increase of active users in the same time slot, and the performance

of the decoder will decrease. When the testing ρ is slightly smaller than the training

ρ, the decoding difficulty is reduced due to the reduction of active users in the same

time slot, and the performance of the decoder will be improved, like in the interval

(0.07, 0.1). However, when ρ continues to decrease, although the decoding difficulty

decreases, the received signal at this time is too different from the signal in the training

phase, and the performance of the decoder begins to deteriorate, like in the interval

(0.01, 0.07). Therefore, the DNNs-based decoder has a certain generalization ability

33

Figure 2.10: NMSE performance of DNNs-based decoder with randomly generated
(0, 1,−1)-signature code

for ρ, when ρ does not change much, like an interval (0.04, 0.12), its performance does

not deteriorate.

Figure 2.11: NMSE performance of DNNs-based decoder in various ρ, when SNR =
10dB

2.3.4 Computation efficiency

Table 2.4 lists the average computing times in the above experiment. The decoding

methods explained in the previous subsections were performed offline using a com-

34

puter equipped with an Intel Core i5 CPU at 3.10 GHz with 8 GB memory. To ensure

fairness, no GPU was used in this test. The table demonstrates that the proposed

DNNs-based decoder is less time-consuming than those based on BP, ISTA, and LSPs

for recovering the fading coefficient vector k. However, the computing time of the

OMP-based decoder is less than that of the DNNs-based decoder. This is because the

OMP-based decoder is a greedy algorithm that considers only the local minimum so-

lution and not the global solution. Consequently, the performance of the OMP-based

decoder is significantly lower than that of the DNNs-based decoder in user detection

as well as channel estimation.

Table 2.4: Average computing time for various decoders (in seconds)

OMP DNN ISTA LSPs BP

4.15E-4 3.12E-3 4.09E-2 0.177 0.507

2.4 Conclusions

In this chapter, we considered a randomly generated (0, 1,−1)-signature code for

a multi-access wireless fading channel, in which a small fraction of users are active

simultaneously, and proposed an iterative DNNs-based decoder for the code to identify

active users and estimate the channel coefficients. A recursive algorithm was designed

between the DNNs-based detector and DNNs-based estimator. Because the DNNs-

based detector provides prior information to the DNNs-based channel estimator, the

DNNs-based estimator achieves highly accurate estimation.

Simulation results show that the proposed DNNs-based decoder achieves higher

accuracies in AUD and CE than existing algorithms derived from compressed sensing

technology for the randomly generated (0, 1,−1)-signature code.

As the performance of sparse signal recovery in compressed sensing depends sub-

35

stantially on the compression matrix used, in Chapter 3, we will investigate the design

of a signature matrix that can achieve good sparse signal recovery performance in

massive random-access over AWGN channel with Rayleigh fading.

36

Chapter 3

BNNs- and TISTA- based
signature code design for active
user detection and channel
estimation

In this chapter, we use binarized neural networks (BNNs) to optimize the (−1, 1)-

binary signature matrix to improve the decoding performance. We propose an au-

toencoder structure based on BNNs and trainable iterative soft threshold algorithm

(TISTA) [16] named machine-learning signature code (ML-SC). Our simulation re-

sults show that the (−1, 1)-signature matrix generated by the ML-SC has improved

decoding performance than that of the (−1, 1)-signature matrix generated randomly

and Liu’s construction [14]. In addition, we confirmed that the ML-SC generated ma-

trix is suitable for various existing decoding methods such as the iterative shrinkage

thresholding algorithm (ISTA) [31], TISTA, and orthogonal matching pursuit (OMP)

[15] in simulations. Finally, we perform a theoretical analysis of the signature matrix

and discuss why the performance of the matrix improves.

3.1 System model based on autoencoder

Based on the received signal of our system model, y = Sk + z, we regard k as the

input of this system, as shown in Figure 3.1, although it contains some properties

37

from the communication channel. Then, k and its estimation k̂ become the input

and output of the autoencoder structure used in our method. We require a trainable

encoder and decoder for k. Because we are generating a binary matrix, we require

Figure 3.1: Modified system model

a technique to handle binary computations. Therefore, BNNs are considered for use

in the encoding part. In addition, an algorithm called TISTA [16] is used in the

decoding process. The TISTA algorithm was selected because it is an ISTA-based

deep-unfolding technique, and is stable and effective in large-scale problems, allowing

our method to handle more users or devices.

3.2 Proposed method

In this section, we propose an end-to-end machine-learning-aided signature code

scheme over a multiple-access channel (MAC) with Rayleigh fading, called ML-SC.

The structure of the ML-SC is shown in Figure 3.2.

ML-SC fML-SC(k, z;SR,Γ) is based on the autoencoder structure, that is composed

of the encoder fML-SC-en(k;SR) and decoder fML-SC-de(y; Γ). This relationship can be

38

k̂1

k̂2

y2

y1

yL

x1h1 = k1

x2h2 = k2

xNhN = kN k̂N

a1,1

a1,2

a1,N a2,N

a2,2

a2,1 aT−1,1

aT−1,2

aT−1,N

z1

z2

zL

SR

Figure 3.2: Structure of ML-SC

expressed as follows:

fML-SC(k, z;SR,Γ) = fML-SC-de(fML-SC-en(k;SR) + z; Γ), (3.1)

where the vector k contains the USI and CSI information, and the AWGN vector z

as the inputs. The output of the ML-SC is denoted as k̂, which is an approximation

of vector k.

3.2.1 Encoder in ML-SC

The encoder fML-SC-en(k;SR) is composed of one quantized fully connected layer,

which can be expressed as follows:

fML-SC-en(k;SR) = kqkernel(SR). (3.2)

Notably, this layer has no bias or activation function. To optimize the signature

matrix, SR is the trainable kernel of the NNs. After quantization with element in

real number field R, the (1,−1)-signature matrix was obtained as follows:

S{1,−1} = qkernel(SR), (3.3)

39

we use the sign function sgn(·) consisting of the quantization function as follows:

qkernel(SR) = (sgn(SR(1,1)), sgn(SR(1,2)), ..., sgn(SR(L,N))), (3.4)

where SR(l,n) denotes element at the (l, n) position in matrix SR.

The straight-through estimator (STE) was used as the pseudo-gradient method in

backward propagation.

∂q(SR(l,n))

∂SR(l,n)

=

⎧⎨
⎩ 1 |SR(l,n)| ≤ 1

0 |SR(l,n)| > 1
. (3.5)

3.2.2 Decoder in ML-SC

The decoder fML-SC-de(y; Γ) is based on the TISTA recursion proposed in [16], where

Γ = {γ1, γ2, ..., γT} is the set of trainable parameters, and T is the maximum number

of iterations. The original TISTA paper only provides ηMMSE(·) for a sparse vector

subject to the Bernoulli-Gaussian distribution; however, in this study, we consider the

sparse vector subject to the Bernoulli-Rayleigh distribution. We derive a ηMMSE(·)
for the Bernoulli-Rayleigh distribution vector as equation (3.6),

ηMMSE(y; τ) = y + τ 2
A
B (3.6)

A =(p− 1)y
G(y; τ 2)

τ 2
+ p

[
α√
ξ
R(y; ξ)G

(
y;

τ 2ξ

α2

)
− y

ξ
G(y; τ 2)

]

+ p

[√
2παG(y; ξ)Φ(αy

τ
√
ξ
)

ξ
−

αyR(y; ξ)Φ(αy
τ
√
ξ
)

ξ3/2

]
(3.7)

B = (1− p)G(y; τ 2) + p

(
τ 2G(y; τ 2)

ξ
+

αR(y; ξ)Phi(αy
τ
√
ξ
)√

ξ

)
(3.8)

where ξ = σ2+α2 and G(·) is the PDF of the Gaussian distribution (variance v) such

that

G(y; v) =
1√
2πv

exp

(−y2

2v

)
, (3.9)

40

R(·) is the PDF of the Rayleigh distribution (scale
√
v) as follows:

R(y; v) =
y

v
exp

(−y2

2v

)
, (3.10)

and Φ(·) is the cumulative distribution function (CDF) of the standard Gaussian

distribution as follows:

Φ(y) =
1

2

[
1 + Erf

(
y√
2

)]
. (3.11)

Figure 3.3 shows the graph of ηMMSE(·) for different values of τ 2.

Figure 3.3: MMSE estimator ηMMSE(y, τ) under different τ
2 values

3.2.3 Training procedure

The mean square error (MSE) is used as the loss function and is defined as follows:

Loss(k, z;SR,Γ) = MSE(fML-SC(k, z;SR,Γ),k) (3.12)

= E[(fML-SC(k, z;SR,Γ)− k)2]. (3.13)

Let θi be a set of trainable parameters of the ML-SC, which contains the element in

SR and Γ, let the updated θi, denoted by θ+i , is updated by the stochastic gradient

descent (SGD) method in this study as follows:

θ+i := θi − α
∂

∂θi
Loss(k, z;SR,Γ), (3.14)

41

where α denotes the learning rate (step size). Other optimization algorithms based

on the SGD method such as the Adam [28] and RMSprop [29] algorithms can also be

used here.

3.3 Numerical experiments

In this section, we design two comparative experiments to confirm the improvement

of the ML-SC on signature matrices. Then, we verify the performance of the ML-

SC generated signature matrix under different decoding algorithms and compare the

decoding performance with deterministic binary matrices proposed in [14] called Liu’s

matrix. Finally, we present an analysis of the matrices.

The computer programs in the numerical experiment are implemented based on

the TensorFlow [36] and Larq [37] libraries of the Python language.

3.3.1 Experiment setting

To verify the ability of ML-SC to optimize the signature matrix, we designed two

experiments for comparison. In the experiments, the number of users N was set to

500, the code length L was 250, the probability of the user being active ρ was 0.1,

and the maximum number of iterations for the TISTA decoder T was 20.

Experiment A

In Experiment A, we only trained the ML-SC decoder part parameter Γ, and the

encoder part parameters were fixed at randomly generated values, that is, a fixed

randomly generated (1,−1)-signature matrix S was used. The elements of the (1,−1)-

signature matrix follow a symmetric Bernoulli distribution, that is, P (S(l,n) = −1) =

P (S(l,n) = 1) = 0.5.

42

Experiment B

In Experiment B, we trained the entire ML-SC. After training, the optimized (−1, 1)-

signature matrix was obtained through the quantization operation qkernel(SR). Ex-

periments A and B used the same initial signature matrices.

Figure 3.4: Changes in qkernel(SR) during the training in Experiment B with different
training epochs

3.3.2 Results of training

To make the ML-SC fully converge, we train the decoder part iteration by iteration.

For each iteration, the trainable parameter γt was trained in mini-batches, the batch

size was 1, 024, and the learning rate α was 1×10−3. Figure 3.4 shows the effect of the

number of batches on the signature matrix change in each iteration. The left vertical

axis shows the cumulative number of flipped bits, and the right vertical axis shows the

corresponding percentage. These changes are stable at approximately 14%; therefore,

we used 1k epochs per iteration to train ML-SC in the following experiments.

Figure 3.5 shows the loss during the training of Experiments A and B for different

iterations. Figure 3.6 left side shows the status judgment error rate (SER) during the

training. The average normalized mean squared error (NMSE) was used to evaluate

43

Figure 3.5: Training curve of Experiment A (TISTA only), and Experiment B (ML-
SC)

the channel estimation accuracy in Experiments A and B. Figure 3.6 right side shows

the NMSE during training. The average NMSE reflects the gap between the estimated

channel coefficient k̂ and the channel coefficient k of the actual active user. The

smaller the average NMSE, the better the channel estimate accuracy of the decoder.

To avoid a zero denominator when calculating the NMSE, we excluded data that

were no active users from the training set K, that is, ({0})T �∈ K. From the results in

Figure 3.6: SER (left side) NMSE (right side) in Experiment A (TISTA only) and
Experiment B (ML-SC) during the training

44

Figures 3.5, 3.6, ML-SC improved the accuracy of the AUD and CE of the signature

matrix and the convergence speed when TISTA decoded it.

Figure 3.7: NMSE performance of 250× 500 (1,−1)-signature matrix under various
decoding methods, before (dashed line) and after (solid line) improvement using ML-
SC

3.3.3 Simulation based on other decoding methods

We subsequently provide the decoding performance of (1,−1)-signature matrices gen-

erated at random and by ML-SC with the decoding methods ISTA [31], TISTA [16],

and OMP [15] under different SNRs.

The results in Figure 3.7 show that our proposed ML-SC-generated (1,−1)-signature

matrix is suitable for ISTA, TISTA, and OMP, which are decoding methods proposed

in previous studies, and achieves improved performance compared to the randomly

generated (1,−1)-signature matrix.

3.3.4 Comparison with Liu’s matrix

To prove that our proposed scheme has a performance that is not matched by tra-

ditional schemes, we compared our scheme with the deterministic matrices. Liu’s

matrix is a deterministic sensing matrix constructed using vector space over a finite

45

field. Owing to parameter limitations, Liu’s matrix can only generate matrices of a

certain size. Here, we chose 15 × 35 and 40 × 130 for comparison. Figure 3.8 left

side shows the SER performance of the symmetric Bernoulli matrix, Liu’s matrix,

and ML-SC-generated matrix under different SNRs. Figure 3.8 right side shows the

NMSE performance of the symmetric Bernoulli matrix, Liu’s matrix, and ML-SC-

generated matrix under different SNRs. These results show that the signature matrix

size and compression ratio N/L significantly influence decoding performance. Our

proposed matrix exhibited the best performance. Moreover, the different matrices

generated by Liu’s method have a more significant performance difference. Therefore

our method was more stable than Liu’s matrix.

Figure 3.8: SER (left side) and NMSE (right side) performance of 15 × 35 (dashed
line), and 40 × 130 (solid line) (1,−1)-signature matrix be generated by randomly,
Liu’s method, and ML-SC

3.3.5 Matrix analysis

We provide a theoretical analysis of the signature matrix to explain why the ML-SC

can improve the performance of the generated signature matrix. Here, we consider

two analysis methods: one is based on RIC and the other on the coherence of the

(1,−1)-signature matrix.

46

Result and discussion

Table 3.1 and Figure 3.9 show the coherence and RIC results of the symmetric

Bernoulli matrix before and after training when the compression ratio N/L = 2.

The coherence result shows that ML-SC improved the upper bound of the RIC cal-

culated by coherence. Because of the complexity of computing RIC, we can only

show limited RIC results. From the RIC results, we calculated that the ML-SC-

generated (1,−1)-signature matrix has a lower RIC than the symmetric Bernoulli

matrix. The linear transformation based on the ML-SC-generated (1,−1)-signature

matrix is closer to the orthogonal transformation. Thus, the ML-SC improved the

(1,−1)-signature matrix.

Table 3.1: Coherence of the signature matrices, when L/N = 1/2

L×N 250× 500 50× 100 25× 50

Bernoulli 0.28 0.60 0.68

ML-SC 0.23 0.32 0.44

Figure 3.9: RIC analysis of (1,−1)-signature matrix before training (dashed line) and
after training (solid line) in various sizes

Table 3.2, Figure 3.10 show the coherence results and the RIC results of 15×45, 40×

47

130 Liu’s matrix, and the symmetric Bernoulli matrix before and after training. In the

coherence results, for the 15×45 signature matrix, Liu’s matrix has the lowest results,

which means that Liu’s matrix has the lowest upper bound of the RIC calculated by

the coherence. However, in RIC results, even the RIC of Liu’s matrix is the lowest

when k is small (k < 4), but as k increases, its RIC increases more rapidly than

that of the other compared matrices. When k is in the interval [4, 8], the RIC of the

signature matrix generated by ML-SC is lower than that of Liu’s matrix. Therefore,

its performance was improved and more stable. This is consistent with the results of

the simulation experiments.

Table 3.2: Coherence of the signature matrices, when L/N �= 1/2

L×N 40× 130 15× 45

Bernoulli 0.60 0.60

Liu’s matrix 0.70 0.47

ML-SC 0.45 0.60

Figure 3.10: RIC analysis of 15× 35 (left side) 40× 130 (right side) (1,−1)-signature
matrix

48

3.4 Discussions

In this chapter, we consider a method for optimizing the (1,−1)-signature matrix

over a MAC with Rayleigh fading. We propose an end-to-end autoencoder structure

based on BNNs and TISTA to generate a (1,−1)-signature matrix called ML-SC. The

signature matrix generated by ML-SC achieves improved decoding performance than

the randomly generated and Liu’s matrices. In our simulation, the ML-SC-generated

(1,−1)-signature matrix performed well under the ISTA and OMP decoding methods.

Moreover, the proposed method can generate signature matrices of arbitrary size and

is suitable for large-scale problems.

To investigate the improvement in the signature matrix, we showed the RIC and

coherence of the proposed matrices. The RIC and coherence of the signature matrix

were improved by the ML-SC.

49

Chapter 4

Conclusions

In this thesis, we investigated the signature code based on machine learning for active

user detection (AUD) and channel estimation (CE) over the additive white Gaus-

sian noise (AWGN) multiple-access channel (MAC) with Rayleigh fading in massive

random-access.

In Chapter 2, we proposed a joint active user detection and channel estimation

decoder based on deep neural networks (DNNs) for the signature code, named a

DNNs-based decoder. Simulation results show that the proposed DNNs-based decoder

achieves higher accuracies in AUD and CE than existing algorithms derived from

compressed sensing technology for the randomly generated signature code.

In Chapter 3, we consider a method for optimizing the (1,−1)-signature matrix

over an AWGN MAC with Rayleigh fading. We propose an end-to-end autoencoder

structure based on the binarized neural networks and trainable iterative soft thresh-

old algorithm (TISTA) to generate a (1,−1)-signature matrix called ML-SC. The

signature matrix generated by ML-SC achieves improved decoding performance than

the randomly generated and Liu’s matrices. In our simulation, the ML-SC-generated

(1,−1)-signature matrix performed well under the ISTA and OMP decoding methods.

Moreover, the proposed method can generate signature matrices of arbitrary size and

is suitable for large-scale problems.

To investigate the improvement in the signature matrix, we showed the RIC and

50

coherence of the proposed matrices. The RIC and coherence of the signature matrix

were improved by the ML-SC. Furthermore, the matrix trained by the end-to-end

model can adapt to a specific distribution of channel noise, which is also the reason

for the improved performance.

4.1 Future directions

Comparative between theoretical performance and channel capacity In

Chapter 3, we proposed a machine-learning-based signature code named ML-SC.

Although we provide simulation results and some theoretical analysis based on some

theory proposed in compressed sensing fields to show the superiority of our proposed

method, this work still needs further comparison with channel capacity to position

the results of this study in the literature.

Massive multi-input multi-output (MIMO) The communication model we

consider in this thesis is unsourced random-access, such as massive machine-type com-

munication, which can be seen as a particular case of massive MIMO. That is, the

receiving and sending ends are all single-antenna. If multiple antennas are considered

at the transmitter and receiver, the multi-signature matrix can be directly applied to

massive MIMO, but it is not beneficial to further improve the performance. If the

characteristics of massive MIMO multi-antenna communication, such as simultane-

ous activation of multiple antennas, multiplexing gain, etc., as a priori information

to design the decoder and codebook used by massive MIMO, better performance can

be achieved.

51

Bibliography

[1] S.-C. Chang and E. Weldon, “Coding for T -user multiple-access channels,”
IEEE Transactions on Information Theory, vol. 25, no. 6, pp. 684–691, 1979.

[2] J. Cheng, K. Kamoi, and Y. Watanabe, “User identification by signature code
for noisy multiple-access adder channel,” in 2006 IEEE International Sympo-
sium on Information Theory, 2006, pp. 1974–1977.

[3] S. Lu, W. Hou, and J. Cheng, “A family of (k + 1)-ary signature codes for
noisy multiple-access adder channel,” IEEE Transactions on Information The-
ory, vol. 61, no. 11, pp. 5848–5853, 2015.

[4] L. Wei, S. Lu, H. Kamabe, and J. Cheng, “User identification and channel
estimation by dnn-based decoder on multiple-access channel,” in GLOBECOM
2020-2020 IEEE Global Communications Conference, IEEE, 2020, pp. 1–6.

[5] L. Wei, S. Lu, H. Kamabe, and J. Cheng, “User identification and channel esti-
mation by iterative dnn-based decoder on multiple-access fading channel,” IE-
ICE Transactions on Fundamentals of Electronics, Communications and Com-
puter Sciences, vol. 105, no. 3, pp. 417–424, 2022.

[6] E. Candes and T. Tao, “Decoding by linear programming,” IEEE Transactions
on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005. doi: 10.1109/TIT.
2005.858979.

[7] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,” IEEE
Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006. doi:
10.1109/TIT.2005.862083.

[8] 三村和史, “圧縮センシング: 疎情報の再構成とそのアルゴリズム (時間周
波数解析の理論とその理工学的応用),” 数理解析研究所講究録, vol. 1803,
pp. 26–56, 2012.

[9] 坂田綾香 and 樺島祥介, “24aBL-3 レプリカ法による制限等長定数の評価,”
日本物理学会講演概要集, vol. 70.1, p. 3180, 2015. doi: 10.11316/jpsgaiyo.70.
1.0 3180.

[10] J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of
linear inverse problems,” Proceedings of the IEEE, vol. 98, no. 6, pp. 948–958,
2010.

52

[11] R. Lu, “On the strong restricted isometry property of bernoulli random ma-
trices,” Journal of Approximation Theory, vol. 245, 2019, issn: 10960430. doi:
10.1016/j.jat.2019.04.005.

[12] W. Yin, S. Morgan, J. Yang, and Y. Zhang, “Practical compressive sensing
with toeplitz and circulant matrices,” in Visual Communications and Image
Processing 2010, vol. 7744, 2010, pp. 182–191.

[13] R. A. DeVore, “Deterministic constructions of compressed sensing matrices,”
Journal of Complexity, vol. 23, 4-6 2007, issn: 10902708. doi: 10.1016/j.jco.
2007.04.002.

[14] X. Liu and L. Jia, “Deterministic construction of compressed sensing matrices
via vector spaces over finite fields,” IEEE Access, vol. 8, pp. 203 301–203 308,
2020. doi: 10.1109/ACCESS.2020.3034912.

[15] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pur-
suit: Recursive function approximation with applications to wavelet decompo-
sition,” in Proceedings of 27th Asilomar conference on signals, systems and
computers, 1993, pp. 40–44.

[16] D. Ito, S. Takabe, and T. Wadayama, “Trainable ISTA for sparse signal recov-
ery,” IEEE Transactions on Signal Processing, vol. 67, no. 12, pp. 3113–3125,
2019.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[18] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear codes
using deep learning,” in 2016 54th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), IEEE, 2016, pp. 341–346.

[19] M. Kim, N.-I. Kim, W. Lee, and D.-H. Cho, “Deep learning-aided SCMA,”
IEEE Communications Letters, vol. 22, no. 4, pp. 720–723, 2018.

[20] J. Zhang and B. Ghanem, “ISTA-Net: Interpretable optimization-inspired deep
network for image compressive sensing,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, IEEE, 2018, pp. 1828–1837.

[21] W. Kim, Y. Ahn, and B. Shim, “Deep neural network-based active user de-
tection for grant-free noma systems,” IEEE Transactions on Communications,
vol. 68, no. 4, pp. 2143–2155, 2020.

[22] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
Proceedings of the fourteenth international conference on artificial intelligence
and statistics, 2011, pp. 315–323.

[23] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks,” Advances in neural information processing systems, vol. 29,
2016.

53

[24] A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. Ten Brink, “Ofdm-autoencoder
for end-to-end learning of communications systems,” in 2018 IEEE 19th Inter-
national Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), 2018, pp. 1–5.

[25] N. Kim, D. Kim, B. Shim, and K. B. Lee, “Deep learning-based spreading
sequence design and active user detection for massive machine-type commu-
nications,” IEEE Wireless Communications Letters, vol. 10, pp. 1618–1622, 8
Aug. 2021, issn: 21622345. doi: 10.1109/LWC.2021.3071453.

[26] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[27] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch normal-
ization help optimization?” In Advances in Neural Information Processing Sys-
tems, 2018, pp. 2483–2493.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[29] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude,” COURSERA: Neural networks for
machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[30] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-
ward neural networks,” in Proceedings of the thirteenth international conference
on artificial intelligence and statistics, 2010, pp. 249–256.

[31] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint,” Communications on
Pure and Applied Mathematics: A Journal Issued by the Courant Institute of
Mathematical Sciences, vol. 57, no. 11, pp. 1413–1457, 2004.

[32] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements
via orthogonal matching pursuit,” IEEE Transactions on Information Theory,
vol. 53, no. 12, pp. 4655–4666, 2007.

[33] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis
pursuit,” SIAM review, vol. 43, no. 1, pp. 129–159, 2001.

[34] M. Grant, S. Boyd, and Y. Ye, “Disciplined convex programming,” in Global
optimization, Springer, 2006, pp. 155–210.

[35] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point
method for large-scale �1-regularized least squares,” IEEE Journal of Selected
Topics in Signal Processing, vol. 1, no. 4, pp. 606–617, 2007. doi: 10 .1109/
JSTSP.2007.910971.

[36] M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous
systems, Software available from tensorflow.org, 2015. [Online]. Available: https:
//www.tensorflow.org/.

54

[37] L. Geiger and P. Team, “Larq: An open-source library for training binarized
neural networks,” Journal of Open Source Software, vol. 5, no. 45, p. 1746, Jan.
2020. doi: 10.21105/joss.01746. [Online]. Available: https://doi.org/10.21105/
joss.01746.

55

