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Abstract 
This study examined “Diversification of Ground Motion Distribution” which aims to cover various 

earthquakes, including the future earthquake, with the Scenario Earthquake Shaking Maps (SESMs). In 
addition, “Simulation of Ground Motion Distribution,” a part of the advanced use of SESMs (or already 
computed ground motion distribution data), is also the research objective. In particular, the former aims to 
achieve the above objective by diversifying the set values of source parameters in the “strong ground motion 
prediction method for earthquakes with specified source faults (“recipe”),” which is the standard setting 
criterion for scenario earthquakes in Japan, namely, by expanding the “recipe”. One of the features of this 
paper is that it combines the “decomposition, synthesis, regression, prediction, and synthesis” methods of 
“data mining” and “machine learning” to carry out these studies. Here, these studies consistently focus on 
earthquakes occurring on a strike-slip fault. For the numerical example, this study used 600 strike-slip fault 
models with varying the “recipe” settings, and their ground motion distributions. 

 
First, in “Simulation of Ground Motion Distribution,” this study proposes methods for generating 

ground motion distributions using the distributions calculated by strong ground motion simulation. In 
particular, this study proposed two methods. One is “Chapter 2: Simulation of Strong Ground Motion 
Distributions of Two Horizontal Components,” which can randomly generate many ground motion 
distributions with the spatial variation structure of the original ground motion distributions as a constraint. 
The other is “Chapter 3: Simplified Prediction Model for Ground Motion Distribution,” which can predict 
ground motion distribution for a specific fault rupture scenario. 

 
Chapter 2 extends the simulation method for single-component ground motion distributions proposed 

in the previous study to two horizontal component distributions. This method simultaneously generates the 
two-component distributions, preserving the mutual spatial variability structure of the two components. 
Specifically, singular value decomposition analysis was applied to the ground motion distributions of two 
horizontal components by period. Then, the mode shapes that reflect the mutual spatial variability structure 
of two components and the principal component scores (PCSs) representing the case-dependent mode 
weights were extracted for each mode. Next, the cross-covariance structure represented by the PCSs of the 
two components was reproduced by correlation simulation using the Cholesky decomposition; the ground 
motion distributions of the two components were generated. The simulated distributions adequately 
produced the two-component ground motion distribution and their interactive spatial variation structure. 

 
Chapter 3 proposed a simplified prediction model of ground motion distribution based on mode 

decomposition and machine learning as a surrogate model for a detailed based on strong ground motion 
simulation. The modeling used “multiple linear regression,” “support vector regression,” “random forest,” 
and “gradient boosting decision trees,” respectively. The predicted distribution shows spatial characteristics 
of ground motion corresponding to the fault rupture scenario, which roughly reproduces the ground motion 
distribution calculated by the detailed method. The differences in prediction accuracy among the four 
models were not seen in period 0.1 s where the effect of distance attenuation was dominant. However, they 
were seen at long periods where the directivity effect and radiation pattern were more significant than at 
short periods. The models with the highest prediction accuracy among the four models were GBDT. 
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“Diversification of Ground Motion Distribution” is a study on set scenario earthquakes that can cover 
various ground motion distributions. This study is socially significant because the adequacy of the scenario 
earthquake setting is directly related to disaster prevention and risk assessment quality. “Chapter 4: Analysis 
of Period and Component Dependent Spatial Characteristics” clarifies the relationship between the source 
parameters and the spatial characteristics of ground motions. Next, “Chapter 5: Diversification of Source 
Parameters” examines the method of expanding the “recipe” for efficiently reproducing the diversity of 
spatial characteristics. 

 
In Chapter4, the mode decomposition is applied to the ground motion distributions, then mode shapes 

that represent the spatial characteristics and the weight coefficients that characterize each case were 
obtained. Chapter 3 constructs the weight coefficient predictor with the source parameters as explanatory 
variables. Here, the input-output relationship of this predictor was analyzed for each mode by applying the 
machine learning model’s interpretation techniques, explainable AI, to the spatial characteristics and its 
dominant source parameters. As a result, there are three main modes that contribute significantly to the 
ground motion distributions. Firstly, the modes represent distance attenuation characteristics by period and 
component. Secondly, the modes increase or decrease the ground intensity of the entire area depending on 
the seismic moment and rupture velocity. Finally, the modes relate to the location of the hypocenter and the 
asperities. 

 
First, Chapter 5 shows the diversity of ground motion distributions for 600 fault models which was set 

up with a variation in the set values for the “recipe”. Next, the relative position of the ground motion 
distributions for the fault models based on the “recipe” (the recipe cases) with respect to the 600 cases was 
presented. The results show that the ground motion distributions of the recipe cases are average and limited. 
Then, based on the results in Chapter 4, fault models with varying “recipe” settings (the extended cases) 
were set up to analyze the spread of spatial characteristics represented by the recipe case and the extended 
cases. Here, the parameters varied were the seismic moment, the inner fault parameters (e.g., arrangement 
of asperities, rupture velocity), and the extra fault parameters (e.g., position of hypocenter). As a result, it 
is found that the diversification of ground motion distributions can be reproduced by setting appropriate 
extended cases. 

 
Finally, Chapter 6 clarifies the applicability and usefulness of data mining and machine learning methods 

used in this study to multi-hazards. This chapter applied the “decomposition” methods to tsunami 
inundation depth distribution and analyzed the spatial characteristics of tsunami inundation depth. As a 
result, it is found that the spatial characteristics of the tsunami are dominated by the large-slip area of the 
tsunami fault model. 
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1.1 Outline 
 
It is estimated that there are thousands of active faults throughout Japan, and all cities have the potential 

to be affected by earthquakes occurring on some faults. The National Research Institute for Earth Science 
and Disaster Resilience (NIED) [1] and the Headquarters for Earthquake Research Promotion (HERP) [2] 
designate 114 active fault zones that have a total length of 20 km or more and a high activity level and great 
social influence, as “major active fault zones.” They have compiled and published the “Scenario Earthquake 
Shaking Maps (SESMs)” showing earthquakes which can be potentially caused by these faults. In SESMs, 
several cases of fault rupture scenarios (characterized source models) and ground motion distributions are 
set based on a “strong ground motion prediction method for earthquakes with specified source faults 
(“recipe”) [3],” which is a standard method for setting up models for earthquake scenarios in Japan. 
However, actual earthquakes do not occur according to the assumed scenarios, and ground motion 
distribution trends often differ between the actual and the assumed earthquakes. Therefore, it is desirable 
to assume a wider variety of scenario earthquakes as SESMs and to represent a wider variety of ground 
motion distribution. 

 
This study attempts to give variations to the “recipe” setting conditions and to efficiently represent 

various ground motion distributions, in other words, to diversify SESMs. Furthermore, a simulation method 
of ground motion distributions is proposed based on the ground motion distributions calculated by strong 
ground motion (SGM) simulation as an example of effective use of existing calculation results, i.e., 
advanced use of SESMs. 

 
1.2 summarizes the research background and clarifies the objectives of the study. 1.3 describes the recipe, 

and 1.4 describes the seismic hazard maps in Japan and abroad. Next, 1.5 summarizes the previous studies 
related to this study; 1.6 summarizes the authors’ previous studies, which are the predecessors of this study. 
Finally, 1.7 outlines the methodology used in this study, and 1.8 describes the structure of this study. 
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1.2 Research Background 
 
The Southern Hyogo Prefecture Earthquake that occurred on January 17, 1995, was the first earthquake 

in Japan to be measured at seismic intensity of 7 on the Japan Meteorological Agency (JMA) scale, and it 
caused a great deal of seismic damage. Since this earthquake, NIED [1] has developed and operated Hi-net 
(High Sensitive Seismograph Network Japan) [4], K-Net (Kyoshin Network) [5], KiK-net (Kiban Kyoshin 
Network) [5], and F-net (Full Range Seismograph Network of Japan) [6], which cover all land areas in 
Japan. A large amount of strong-motion data has been accumulated, and the detailed rupture process of 
faults and the generation mechanism of strong-motion have been clarified. In June 1995, HERP [2] was 
established, and various seismic surveys are ongoing. 

 
In SESMs published by HERP [2] and the Japan Seismic Hazard Information Station (J-SHIS) [7] 

established by IED [1], several fault rupture scenarios are set up based on the “recipe” [3], and their ground 
motion distributions are calculated by the SGM simulation. The SGM simulation using fault rupture 
scenarios can consider the effects of the fault rupture process and the heterogeneity of the fault plane 
(asperity and background) and can represent strong ground motion areas that appear near the fault and in 
the direction of rupture. 

 
When designing a city for disaster prevention or conducting seismic risk assessment, it is very important 

to clarify and correctly assess the earthquakes that can be potentially caused by active faults near the target 
area and the ground motion distribution, especially the spatial distribution and correlation of the strong 
ground motions. Therefore, the adequacy of scenario earthquake setting is directly related to disaster 
prevention and risk assessment quality. However, it is very difficult to set up a fault rupture scenario that 
perfectly matches the actual earthquake in advance or even to set up a fault rupture scenario with conditions 
close to the actual earthquake. For example, the crustal earthquakes which caused significant damage in 
recent years, such as the 2000 Western Tottori earthquake, the 2016 Kumamoto earthquake, the 2018 
Northern Osaka earthquake, and the 2018 Hokkaido Eastern Iburi earthquake, were those that differed from 
(or were not based on) the assumed fault rupture scenarios. (The 2016 Kumamoto earthquake: The length 
of the Futagawa section of the Futagawa fault zone that caused the main shock was longer than that assumed 
by HERP [2] and extended into the Aso caldera. HERP set the scenario earthquakes at MJ 7.0, but the 
magnitude of the main shock was MJ 7.3.) In addition, the distribution trend of the ground motions for the 
actual earthquake was also different from the assumed trend (or could not be assumed).  

 
As described above, the limited cases that follow the "recipe" cannot cover the diversity of ground 

motion distributions, which contain various uncertainties. Considering the application of SESMs to disaster 
prevention, it is desirable to be able to describe the ground motion distribution of actual or future 
earthquakes by the spatial distribution trends (spatial characteristics) of ground motions represented by 
several cases of assumed scenario earthquakes. For this objective, it is necessary to give variations to the 
set values of fault rupture scenarios in the current recipe [3] and to extend the variety of spatial 
characteristics represented by scenario earthquakes. Therefore, even at the beginning of the recipe, it is 
described as follows: 

- “It is assumed that the “recipe” will be modified and revised by the considerations in the evaluation 
of strong ground motion.” [3] 
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- “When it is necessary to consider variations and uncertainties in phenomena, it is desirable to set 
the source fault with due consideration of these points.” [3]  

which suggests the need to update the “recipe” (i.e., to diversify the setting conditions). Here, regarding 
understanding and using SESMs, a relatively small number of published cases of scenario earthquakes is 
preferable to a large number, and the recipe should be diversified accordingly. 

 
From the above background, this study attempts to efficiently cover the spread of various ground 

motions, including those of possible future earthquakes, with a relatively small number of scenario 
earthquakes. Specifically, this study aims to extend the diversity of spatial characteristics represented by 
scenario earthquakes, i.e., “diversification of ground motion distributions (or diversification/expansion of 
the “recipe” setting conditions)”,” by giving appropriate variations to the set values of fault rupture 
scenarios in the “recipe” [3]. Furthermore, as an example of the advanced use of SESMs, this study proposes 
a method to simulate new ground motion distributions using the ground motion distribution calculated by 
SGM simulations. 
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1.3 Strong Ground Motion Prediction Method for Earthquakes with Specified Source Faults 
(“Recipe”) [3] 

 
HERP [2] defines the recipe as follows: 

“This summarizes the current methods of source characterization, subsurface structure modeling, 
calculation of strong ground motions, and validation of prediction results, which are the components 
of strong motion prediction methods, as well as the concept of setting parameters for source 
characterization.” [3] 

It also aims to establish a “standard methodology that will give the same answer no matter who does it [3]” 
in predicting scenario earthquakes and assumes that it will be revised through future surveys and studies.  

 
The recipe is made up of four processes: 
 

1. Setup of Characterized Source Model (Fig. 1-1) 
Set characterized source parameters considering the following three fault parameters. 

- Outer fault parameters : Geometry and location of a fault 
 (e.g., fault model size, dip angle, and seismic moment) 
- Inner fault parameters : Heterogeneity of source faults 
 (e.g., number and arrangement of asperities and rupture velocity) 
- Extra fault parameters : Propagation pattern of rupture 
 (e.g., hypocenter) 
 

2. Preparation of Subsurface Structure Model 
Model the following three geotechnical structures. 

- Surface soil layers : From the upper plane of engineering bedrock to the ground 
surface 

- Deep sedimentary layers : From the upper plane of seismic bedrock to the upper plane of 
engineering bedrock 

- Crustal structure : Deeper than the upper plane of seismic bedrock 
 

3. Calculation of Strong Ground Motions 
Calculate strong ground motions from the source fault to the engineering bedrock’s upper plane 
and from the engineering bedrock’s upper plane to the ground surface. 
 

4. Verification of Predicted Results 
The validity of the predicted results is verified. In the case of an active fault, the verification is 
carried out by comparing the predicted results with the estimated value of the ground motion 
prediction equation and the observations from past earthquakes. 
 

This study examines “1. Setup of Characterized Source Model” among the above four processes. 
Specifically, this study discusses how to assign appropriate variations to the setting conditions of “inner 
fault parameters” and “extra fault parameters” in addition to a seismic moment in “outer fault parameters 
(the other parameters are fixed),” which are shown in Fig. 1-1, circled in red. An example of setting source 
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parameters in a characterized source model is described below. 
 

- Seismic moment : Calculation based on empirical formula between fault area and seismic 
moment 

- Location of asperities : For estimating the average ground motions, the asperity is placed near 
the center of the fault when there is a single asperity, and the asperities 
are distributed in a balanced manner across the fault when there are 
several asperities. 

- Average rupture velocity : Calculation based on empirical formula between S-wave velocity and 
average rupture velocity 

- Hypocenter : Set at the left and right ends of the lower edge of asperity for strike-slip 
fault and the lower center of asperity for dip-slip fault. 

 
Since most of these standards are empirical formulas based on observation data, the set values of source 

parameters in the recipe are “average” for various earthquakes. In other words, the set values include 
“variations,” and the set values within the range of variations are the parameters of an earthquake that have 
the potential to occur. Therefore, it is important to clarify the effect of this variation on the spatial 
distribution of ground motions in the “recipe diversification” of this study. 
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(Red frame: Parameters examined in this study) 

Figure 1-1. Overall flow of setting up a characterized source model in “recipe” (Note: Adapted from [3] and partially edited.). 

Outer fault parameters Inner fault parameters

Characterized source model

Extract fault parameters
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1.4 Seismic Hazard Map around the World 
 

In Japan, NEID [1] and HERP [2] have published the “National Seismic Hazard Maps for Japan [7, 8]”. 
These hazard maps consist of two types of maps: the above “SESMs for Japan”, and the “Probabilistic Seismic Hazard 
Maps for Japan”, which show the relationship between the shaking intensity and the exceedance probability for all 
earthquakes in Japan. In SESMs, the detailed method of ground motion prediction based on the hybrid method is used 
to predict the ground motion distribution reflecting the rupture process of the source fault. Data on past earthquakes 
and the real-time ground motions are published by the Japan Meteorological Agency [9] and NIED [1], and other 
organizations. 

 
In the United States, the United States Geological Survey (USGS) [10] publishes the “Seismic Hazard Maps [11],” 

which provide information on earthquake hazards and damage, and the “ShakeMap [12],” which provides information 
on the ground motion distributions. The ShakeMap consists of three primary types of shake maps: past large 
earthquakes (the ShakeMap Atlas), recent earthquakes (Real-time ShakeMaps) and a hypothetical earthquake that 
could occur on a specific fault (the ShakeMap Scenarios). In the ShakeMap Scenarios, ground motions are calculated 
using a conventional method based on a ground motion prediction equation (GMPE). Therefore, unlike the SESMs in 
Japan, the ground motion distributions of the ShakeMap Scenarios in the United States do not take into account the 
detailed rupture process of the fault, such as the rupture initiation point and rupture direction, but are average 
distributions that depends only on the location and dimensions of the fault, earthquake magnitude, distance, and site 
characteristics. The USGS states that the main reason for not setting up a detailed fault rupture model, such as a 
characterized source model, for the scenario earthquakes is as follows: 

our approach is to generally show the average effect because it is difficult to justify a particular choice of 
hypocenter or to show the results for every possible hypocentral location.” [13] 

 
The USGS ShakeMap system is in operation in Switzerland [14], Italy [15], and other countries, and provides 

scenario earthquakes based on GMPEs and past observed earthquakes. In Italy [16] and New Zealand [17], 
probabilistic seismic hazard maps are provided. For global seismic hazard information, the Global Earthquake Model 
(GEM) Foundation, in collaboration with NIED, USGS, and others, has developed the “GEM Global Seismic Hazard 
Map,” a global probabilistic seismic hazard map, and the “Global Seismic Risk Map,” which shows the average annual 
loss to buildings from earthquakes [18]. 

 
As described above, various seismic hazard maps are also available in other countries. However, the Japanese 

SESMs are unique in the world in terms of scenario earthquake hazard maps (shake maps) that account for detailed 
rupture processes on specific source faults. In order to export the SESMs and the “recipe” to the rest of the world (for 
use by other countries), the key is to solve the problems identified by the USGS. The diversification of ground motion 

distributions (or diversification/expansion of the “recipe” setting conditions)” in this study is expected to be the 
basis for a solution to this problem. 
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1.5 Previous Studies on Fault Rupture Scenarios and Ground Motion Distribution 
 

There have been many studies on setting up fault rupture scenarios (characterized source models) for 
scenario earthquakes. This section describes studies on the “recipe for predicting strong ground motions” 
and “effects of variations in source parameters on ground motions” among them. 

 
 

1.5.1 Recipe for Predicting Strong Ground Motions 
 
Strong ground motion prediction, which is the key to earthquake disaster countermeasures, consists of 

four processes as described in 1.3: “Setup of Characterized Source Model,” “Preparation of Subsurface 
Structure Model,” “Calculation of Strong Ground Motions,” and “Verification of Predicted Results.” In 
particular, “setup of characterized source model” is one of the most important tasks in strong ground motion 
prediction. In Japan, the characterized source models are often set up based on the recipe [3] of HERP, and 
the prediction quality is largely dependent on this recipe. This paragraph outlines the flow of research on 
the recipe in Japan. 

 
In 1994, Irikura reviewed domestic and international papers on deterministic source modeling (setting 

up characterized source model) in strong ground motion prediction and mentioned the importance of 
examining the method of setting up source parameters [19]. In 1999, the paper [20] attempted to develop 
the “recipe for predicting strong ground motions” by compiling the procedures from source modeling to 
calculating strong ground motions for scenario earthquakes. In 2001, the paper [21] systematized the recipe 
with the aim of “everyone gets the same results when you assume a scenario earthquake.” Furthermore, the 
setup of a source model and calculation of strong ground motions for the 1995 Southern Hyogo Prefecture 
Earthquake and the 1948 Fukui Earthquake were carried out, and it was shown that the prediction results 
were consistent with the observation records and the actual damage distribution, thereby clarifying the 
validity of the recipe [21]. In 2004, the papers [22, 23] proposed a revised recipe, which introduced new 
knowledge on setting up characterized source models, for example, the empirical relationship between 
seismic moment and acceleration source spectrum level [24]. In addition, these papers [20–24] pointed out 
the need for verification of settings such as “number of asperities” and “positions of asperities and 
hypocenter” included in “inner fault parameters” and “extra fault parameters” when modeling seismic 
sources. Therefore, in 2011, the paper [25] incorporated the setting of “rupture nucleation and termination” 
into the recipe. In addition, the paper [25] provided examples of setting “the number and arrangement of 
asperities” and “the location of the hypocenter.” 

 
In 2005, HERP published the “strong ground motion prediction method for earthquakes with specified 

source faults (“recipe”) [26]” based on the recipe by Irikura et al. [23]. The recipe has also been 
continuously revised after its publication. For example, in 2008, the “setting of asperities and hypocenter” 
for evaluating the average earthquakes was added [27].  
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1.5.2 Effects of Variations in Source Parameters on Ground Motions 
 
a) Spatial Distribution of Variation 

Variations and uncertainties in source parameter settings can be classified into two categories [28]: 
- Epistemic uncertainty: These uncertainties are based on a lack of scientific understanding and may 

be reduced in the future as knowledge accumulates. 
- Aleatory variability (or Random uncertainty): These uncertainties cannot realistically be reduced 

even as knowledge accumulates. 
 
The objective of this study is more narrowly defined as “to set up a scenario earthquake that is consistent 

with a future earthquake.” Therefore, the uncertainties in this study are aleatory variabilities. 
 
Evaluating the effect of variations in source parameters in conformity with the recipes (aleatory 

variabilities) on the spatial distribution of variations in ground motions is an important issue in probabilistic 
seismic hazard assessment and setting scenario earthquakes. Many studies carried out in the past have 
attempted to clarify this effect. Some of these studies are reviewed below. 

 
Nozu et al. [29] pointed out that for a period 0.5 s and longer, the variability of ground motions between 

scenario earthquakes increases due to the directivity effects related to the arrangement of asperities and 
hypocenter (target: Fourier spectrum acceleration at period T = 0.1–1.0 s)). 

 
Okumura et al. [30] pointed out that the variability varied among observation sites and was longer for 

longer periods (target: acceleration response spectrum SA (T = 0.1, 2.0 s)) 
 
Ripperger et al. [31] found that the variability was dominated by the effect of the positional relationship 

with the hypocenter (target: peak ground velocity (PGV), SA (T = 0.4, 0.5, 1.0, 4.0s)). 
 
Yamada et al. [32–34] showed that the spatial distribution of variation in the short-period band is 

dominated by the location of asperity and hypocenter [32], that in the long-period band is dominated by the 
rupture velocity [32], and that the variation level is strongly influenced by the intensity of asperity (short 
period level) [33]. The papers [32–34] showed that the spatial distribution of variability is non-uniform 
regardless of fault type (target [32]: peak ground acceleration (PGA), PGV, SA (T = 0.2, 0.5, 1.0, 2.0, 5.0s), 
target [33]: PGA, PGV, SA (T = 0.2, 0.5, 1.0s), target [34]: PGV, SA (T = 1.0, 2.0, 5.0s)). 

 
Itoi et al. [35] found that the variability was larger for longer periods and that the distance dependence 

of the variability showed a negative dependence for shorter periods (the closer the distance between the 
fault and the site, the larger the variability at the site) and a positive dependence for longer periods (the 
farther away, the larger the variability) (target: SA (T = 0.01 – 10 s)). 

 
Kagawa [36, 37] pointed out that the variability is larger in the fault strike direction for the strike-slip 

fault and the dip direction from the bottom to the top of the fault for the reverse fault due to the directivity 
effect [36], and the effect is significant for a longer period [37] (target [36]: PGC, target [37]: SA (T = 0.1, 
0.5, 2.0s)). 
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Iwaki et al. [38] modeled the variability using the fault distance and the directivity parameter cos2ș (ș: 

the angle between the fault and the observation point). The results show that as the fault distance increases, 
the variability decreases for short periods and increases for long periods (especially significant at locations 
strongly affected by the directivity effect) (target: PGA, PGV, SA (T = 0.1, 0.2, 1.0, 2.0, 5.0s)). 

 
Hikita et al. [39, 40] pointed out the heterogeneous spatial distribution of variations. They found that 

variations in the fault strike direction are affected by parameters related to rupture pattern (e.g., asperity, 
hypocenter, and rupture velocity). In contrast, the variations in the fault orthogonal direction are strongly 
affected by major fault parameters (e.g., seismic moment, short period level) [39]. It was also noted that for 
earthquakes with MJMA 5.2 or greater, the periodic band over in which the variability increases differs by 
seismic magnitude [40] (targets [39, 40]: SA (T = 0.02–4.0s)). 

 
These previous studies [29–40] revealed the heterogeneous spatial distribution in event-to-event (events 

or earthquakes) variability, such that the variability varies depending on the positional relationship between 
the fault (or hypocenter) and the observation site and shows different characteristics depending on the 
period. 

 
Inter-event variability, a fundamental element in probabilistic seismic hazard assessment, has also been 

analyzed in various ways. For example, Iwaki et al. [38] found that the distance dependence of the inter-
event is similar to the above events. Imtiaz et al. [41] revealed that the distance dependence of the inter-
event depends on the rupture type (target: PGV). It was also noted that the intra-event variability increased 
with distance for the bilateral rupture, while the variability decreased for the unilateral rupture [41]. 
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b) Spatial Correlation of Variation 
The above studies [29–40] did not discuss the correlation of the ground motion variations among sites 

(site-to-site correlation). The distribution of site-to-site correlation (spatial correlation) of ground motion 
has a key role in considering the seismic risk assessment of portfolios of buildings in large areas. The spatial 
correlation of ground motions has also been studied extensively. 

 
A typical evaluation method for inter-ground correlation is the macro spatial correlation model 

depending on the separation distance between two sites, which is a non-negative exponential function [42–
44]. For example, Takada et al. [42] constructed a spatial correlation model based on the seismic records of 
the 1999 Chi-Chi earthquake in Taiwan, Hayashi et al. [43] constructed a model based on the seismic 
records in Kanto district (1996–2004, M > 5.0), and Sokolov et al. [44] constructed a model based on the 
seismic records in Taiwan (1993–2004, ML > 4.5). However, Sokolov et al. [44] pointed out that the 
correlation structure depends on the regional ground structure’s peculiarities and the rupture propagation 
path; a single generalized spatial correlation model may not adequately represent the correlation structure 
for the entire Taiwan region or large areas in other regions. 

 
Hayashi et al. [43] performed the spatial correlation simulations based on the Cholesky decomposition 

of correlation matrices (variance-covariance matrices) according to the separation distances between sites 
and a Monte Carlo method; the simulation results are applied to the seismic risk analysis of building 
portfolios. Although this simulation method is simple and efficient, the correlation matrix becomes large 
for wide-area disasters, resulting in a high computational load. Abe et al. [45] proposed a method to reduce 
the computational load by making the correlation matrix sparse by setting the correlation coefficient to 0 
above a certain separation distance. Apart from using a correlation matrix, Infantino et al. [46] showed that 
the 3D physics-based numerical simulations (3DPBNSs) can adequately reproduce the actual correlation 
structure from short to long periods. The paper also emphasizes the advantage of 3DPBNSs in reproducing 
spatial correlations even in regions where correlation models are difficult to define due to limited or no 
observational records [46]. 
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1.6 Basic Research on “Diversification and Simulation of Ground Motion Distribution” 
 
This section summarizes the basic research on “diversification of ground motions distribution (or 

diversification/expansion of the “recipe” setting conditions)” and” simulation of ground motion distribution” 
that the authors have carried out. 

 
 

1.6.1 Analysis of Spatial Characteristics in Scenario Earthquake Shaking Maps 
 
As mentioned above, in “diversification/expansion of the “recipe” setting conditions,” it is necessary to 

clarify the effect of the variation range of source parameters on the ground motion distributions, in other 
words, the variation in the spatial distribution trend of ground motions. 1.4.2 reviewed the previous studies 
on the analysis of the effect of different multiple fault rupture scenarios (source parameter variations) on 
the spatial distribution of ground motion variability and the modeling and simulation of spatial correlation 
of variability. The studies [29–40] in 1.4.2 a) analyze the “spatial distribution of variation” and do not focus 
on the “spatial correlation of variation.” The spatial correlation model [42–44] in 1.4.2 b) is a non-negative 
function based on the separation distance, assuming spatial uniformity (uniformity and isotropy) of the 
variation. Hence, it is not appropriate to apply this spatial correlation model to several ground motion 
distributions where the variation is spatially variable depending on the source parameter settings. 

 
Nojima et al. [47] proposed a mode decomposition method using singular value decomposition for 

evaluating the “spatial distribution of variations and its spatial correlation (spatial characteristics).” This 
method is unique because it decomposes the ground motion distributions into orthogonally mode spaces 
and visualizes spatial characteristics without directly dealing with a large variance-covariance matrix. The 
authors have applied this method to SESMs for seven faults (reverse fault: 5, strike-slip fault: 2) and 
specified the spatial characteristics represented by each fault and their dominant source parameters [47–
49]. As a result, it was revealed that the most dominant spatial characteristics that compose the ground 
motion distributions set based on the “recipe” are “distance attenuation characteristics and seismic 
amplification characteristics of the ground surface.” Moreover, the spatial characteristics related to the 
location of the asperities and the hypocenter are dominant to the ground motion distributions, and the 
influence of the hypocenter-dependent directivity effect on the spatial characteristics is more apparent for 
strike-slip fault than for reverse fault. The spatial characteristics of faults with a similar arrangement of 
asperities are a similar trend.  

 
 

1.6.2 Simulation of Ground Motion Distributions 
 
Nojima et al. [47] proposed a method to generate a large number of ground motion distributions by 

combining mode decomposition and synthesis with an efficient Monte Carlo simulation method [50]. This 
simulation method uses the spatial characteristics of the original ground motion distributions as a constraint 
condition. It has the advantage that it can efficiently generate many cases of ground motion distributions 
that keep the spatial correlation structure with a small amount of computation. The authors have applied 
the simulation results of this method to the earthquake damage prediction [47] and the seismic risk 
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assessment of portfolios of buildings [51], demonstrating the method’s usefulness. These studies [47, 51] 
were an advanced use of SESMs which are publicly available data and provides an example of the use of 
SESMs for disaster prevention and seismic risk assessment. 

 
 

1.6.3 Classification of Characteristics of Multiple Scenario Earthquake Shaking Maps 
 
The previous studies [47–49] in 1.5.1 mainly focused on the relationship between the spatial 

characteristics and the setting conditions of the source parameters. However, no similarity or characteristic 
evaluation was done based on the intercomparison of the predicted ground motion maps (SESMs). 
Therefore, Yoshida et al. [52] combined cluster analysis and principal component analysis to understand 
and analyze the effects of parameter settings on the characteristics of ground motion distributions in terms 
of similarity (or dissimilarity = features). The results show that the ground motion distributions caused by 
the strike-slip fault are similar in cases in which the hypocenter’s location and rupture propagation direction 
are close to each other. For reverse fault, the similarity was observed in cases where the conditions for 
setting asperities (location, size, and number of asperities) were common. Using the same method, the 
authors also evaluated the relative relationship between the actual earthquake (the 2018 Hokkaido Eastern 
Iburi earthquake) and the scenario earthquake for a nearby fault (the Southern Part of the Eastern Boundary 
Fault Zone of the Ishikari Lowland (hereinafter referred to as Ishikari fault)) in terms of similarity. 

 
 

1.6.4 Approximation Representation of Observed Ground Motion Distribution of Actual 
Earthquake using Scenario Earthquake Shaking Maps 

 
Takahashi et al. [53] attempted to approximate the spatial distribution of ground motion of the actual 

earthquake (the 2018 Hokkaido Eastern Iburi earthquake) using the predicted ground motion distributions 
of SESMs (the Ishikari fault). As a result, the spatial distribution of the actual earthquake is interpreted 
based on the spatial characteristics of SESMs; this result provides an important insight into how the scenario 
earthquakes should be set up. This approximation method takes the opposite approach to the simulation 
method [47] described in 1.4.2 and is an advanced use of SESMs. 
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1.7 Diversification and Simulation of Ground Motion Distribution Based on Data Mining and 
Machine Learning 

 
The studies [47–49, 51–53] in the previous sections are used as a basic study, and this study discusses 

the “diversification of ground motion distributions in scenario earthquakes.” The study also proposes a 
simulation method of ground motion distribution using already computed ground motion distributions as 
part of the advanced use of SESMs, as described in the studies [47, 53]. This study set the research theme 
as “Diversification and Simulation of Ground Motion Distribution” and applies “Data Mining” and 
“Machine Learning” methods to the study. Specifically, as shown in Fig. 1-2, this study applies the 
“Decomposition, Synthesis, Classification, Regression (Modeling), and Prediction” methods to the ground 
motion distribution. The features of each method are described below. 

 
- Decomposition (data mining) : Extract mode shapes representing spatial characteristics from 

ground motion distributions 
- Synthesis (data mining) : Reproduce ground motion distribution by superimposing 

mode shapes 
- Classification (data mining) : Understand characteristics of ground motion distributions 
- Regression (machine learning) : Modeling relationship between source parameters and mode 
- Prediction (machine learning) : Calculate weight of mode for any source parameters 
 

This study combines these methods for diversification and simulation studies. 
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Figure 1-2. Research flow (Earthquake: Chapter 2–5): Diversification and simulation of ground motion distributions based on data mining and machine learning. 
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1.8 Structure of This Dissertation 
 
The structure of this dissertation is as follows (Fig. 1-3). 
 
Chapter 2 proposes a simulation method for ground motion distributions of two horizontal components 

(Fault-Normal: FN, Fault-Parallel: FP). The previous study [47] proposed a simulation method for single-
component ground motion distribution. Chapter 2 attempts to extend this single-component simulation 
method to two-components ground motion distributions. Chapter 2 is a study on “Simulation” using 
“Decomposition and Synthesis.” As a numerical example, this study uses a large number of cases of the 
ground motion distributions caused by the strike-slip fault, which was set up and calculated by Kagawa [36, 
37] (the same applies to the following chapters). 

 
Chapter 3 develops a simplified prediction model of ground motion distribution. The simulation 

methods in the previous study [47] and Chapter 2 generate many ground motion distributions without 
relating them to fault models. In contrast, the prediction model of ground motion distribution in Chapter 3 
models the relation between source parameters and modes and predicts ground motion distribution by 
inputting any source model. Chapter 3 is a study on “Simulation” using “Decomposition, Synthesis, 
Regression (Modeling), and Prediction.” 

 
Chapter 4 analyzes the period- and component-dependent spatial characteristics of ground motion 

distributions. This chapter reveals the combined effects of multiple source parameter settings on the ground 
motion distributions. Specifically, the input-output relationship of the predictor (input: source parameters, 
output; mode) constructed in Chapter 3 is clarified by the Explainable AI, a machine learning model’s 
interpretation method. Then, the relationship between the spatial characteristics and the source parameters 
is comprehensively analyzed. Chapter 4 is a study on “Diversification” using “Decomposition and 
Regression.” 

 
Chapter 5 examines the diversification of ground motion distributions (or “recipe” setting conditions) 

based on Chapter 4. Specifically, it uses a classification method to visualize the diversity of spatial 
characteristics represented by multiple-case ground motion distributions. Next, the spatial characteristics 
of the fault models based on the current recipe (recipe cases) are compared with those of the multi-case. 
Based on the results of this comparison and the results of Chapter 4, some fault models (extended cases) 
are set up in which the set values of the source parameters in the recipe are varied, and an attempt is made 
to efficiently reproduce the diversity of spatial characteristics for multi-case by the recipe cases and the 
extended cases. The ground motion distributions for the recipe cases and extended cases are predicted using 
the prediction model for ground motion distribution in Chapter 3. Chapter 4 is a study on “Diversification” 
using “Decomposition and Classification.” 

 
Chapter 6 analyzes the spatial characteristics of the tsunami as an example of the application of the 

proposed method. Specifically, the “decomposition” method is applied to the inundation depth distribution 
of tsunamis, and the spatial characteristics of the inundation depth are revealed with the parameters of the 
tsunami fault models. As a numerical example, Chapter 6 uses tsunami inundation depth distributions for 
11 cases caused by the Nankai megathrust earthquakes, which were set up and calculated by the Central 
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Disaster Management Council of the Cabinet Office, Government of Japan. 
 
Chapter 7 summarizes the results of Chapters 2–4 as the conclusion of this study. It also summarizes 

the issues of this study and describes future developments. 
 
 
Each chapter in this dissertation has been edited and adapted from the following papers. 

- Chapter 2: Takahashi, Nojima and Kagawa (2022) [54] 
- Chapter 4: Takahashi, Nojima and Kagawa (2022) [55] 
- Chapter 6: Takahashi and Nojima (2020) [56], Takahashi and Nojima (2021) [57]  
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Figure 1-3. Outline in this paper. 
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2  Simulation of Strong Ground Motion Distributions of Two Horizontal 

Components Base on Singular Value Decomposition Analysis 
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2.1 Introduction 
 
In ground motion prediction for an earthquake with specified source faults (setting of characterized 

source model and strong ground motion simulation based on a detailed method), the heterogeneity on the 
fault plane and the direction of rupture propagation is taken into account by setting source parameters such 
as magnitude and location of asperities and hypocenter. As a result, the ground motion distribution can 
greatly vary depending on the fault rupture scenario. In earthquake risk assessment, therefore, an integrated 
assessment based on various ground motion distributions for a large number of fault rupture scenarios is 
preferable to an assessment based on limited ground motion distributions. However, the high computational 
cost of the detailed method of ground motion prediction makes it impractical to set up a variety of fault 
rupture scenarios and to predict their ground motion distributions. 

 
The previous study [1] proposed a method of simulating ground motion distributions by applying mode 

decomposition and synthesis to several ground motion distributions. The simulation method randomly 
generates a large number of ground motion distributions within the spatial structure of ground motion 
variability indicated by the original data. In the previous study [1], 192 and 960 ground motion distributions 
were newly generated from 12 cases; the results were applied to seismic damage prediction to clarify the 
usefulness of its simulation method. 

 
The simulation method in the previous study [1] is designed for a single (or one-component) ground 

motion index (e.g., instrumental seismic intensity). In other words, when this simulation method is applied 
to ground motion distributions of two horizontal components (Fault-Normal: FN, Fault-Parallel: FP), the 
relationship between two components within the same case is ignored, simulated ground motion 
distributions are generated independently for each component. Therefore, when this method is applied to 
simulate the distribution of two components, it is necessary to consider the reciprocal spatial variability of 
both components. 

 
As an example of dealing with spatial variability of different physical quantities, the spatial 

interrelationship between atmospheric circulation field and surface air (or sea surface) temperature has been 
analyzed in the meteorological field [2]; singular value decomposition analysis [2–5] has been adopted as 
an analysis method. Singular value decomposition analysis is a method to extract the spatial variation 
structure that is dominant in two physical quantities from the spatial distribution of both quantities.  

 
Therefore, in this chapter, singular value decomposition analysis is applied to the ground motion 

distribution of two horizontal components, homogeneous as physical quantities, to extract the spatial 
structure of the mutual variation of the two components. Then, using the results of singular value 
decomposition analysis, the simulation method for the single-component ground motion distributions 
proposed in the previous study [1] is extended to the two-component distributions. 

 
This chapter presents a numerical example using the distribution of the absolute acceleration response 

spectrum (period 0.1-2.0 s, two horizontal components (FN, FP)) in a strike-slip fault as set up and 
calculated in the references [6, 7].  
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2.2 outlines the application of singular value decomposition analysis to ground motion distributions. 2.3 
describes the ground motion distribution used as a numerical example, and 2.4 shows the results of singular 
value decomposition analysis. 2.5 describes a simulation method for ground motion distributions of two 
horizontal components, and 2.6 presents a numerical simulation example. Finally, 2.7 summarizes the 
conclusions obtained in this chapter. 
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2.2 Singular Value Decomposition Analysis 
 
2.2.1 Singular Value Decomposition and Singular Value Decomposition Analysis 

 
The previous study [1] used singular value decomposition (SVD) [8] to analyze the spatial 

characteristics in single-component ground motion distributions. In contrast, this chapter uses singular 
value decomposition analysis (SVD analysis) [3–5] to analyze the interrelationships in the spatial variation 
of the two components. While SVD is a method to extract dominant spatial characteristics from the 
variance-covariance structure in a single component of the ground motion distributions, SVD analysis is a 
method to extract the spatial characteristics that are strongly correlated with each other from the cross-
covariance structure in two horizontal components of the ground motion distributions. The following shows 
how SVD analysis is applied to ground motion distributions. 

 
 

2.2.2 SVD Analysis of Ground Motion Distributions 
 
Let x and y denote variables representing the common logarithmic values of absolute acceleration 

response spectrum (SA) of FN and FP components, respectively; the spatial distribution of SA (M: total 
number of computation points in the target area) is represented by M-dimensional feature vectors x = (x1, 
…, xM)T, y = (y1, …, yM)T, respectively. Thus, SA distributions for N cases (M  N) are described by the 
M × N matrices X and Y (the row i – column j entry is the SA for Case j at point i) as follows: 

 
11 1

1

1

, ,
N

N

M MN

x x

x x
X x x  (2-1) 

 
11 1

1

1

, ,
N

N

M MN

y y

y y
Y y y  (2-2) 

Here, the ranks of X and Y are both rank (X) = rank (Y) = N. X and Y are normalized by using the mean 
and standard deviation of all entries of each matrix, respectively. The normalized matrices are expressed as 
follows: 

 X
0

X

X HX  (2-3) 

 Y
0

Y

Y HY  (2-4) 

where ȝX, ȝY and ıX, ıY are the mean and standard deviation of all entries of X, Y, respectively. H is the M 
× N matrix in which all entries are 1. 

 
Let CXY denote the M × N cross-covariance matrix with X0 and Y0. 

 T
XY 0 0C X Y  (2-5) 
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Here, the rank of CXY is rank (CXY) = N. In the previous study targeting single-component ground motion 
[1], SVD was applied to the variance-covariance matrix CXX (or CYY) with X (or Y) to extract the spatial 
structure of a single component. In this chapter, to extract the reciprocal spatial variation structure of two 
horizontal components, SVD analysis is applied to the cross-covariance matrix CXY, and mode 
decomposition is performed on the product of the three matrices. SVD analysis is a process of applying 
SVD to the cross-covariance matrix.  

T

T
11 1 1 11 1

1 1

0

0

N N

M MN N M MN

u u d v v

u u d v v

XYC UDV

  
 (2-6)

 T TU U V V I  (2-7) 
 
The matrices U, D, V, and I in Eq. (2-6) and Eq. (2-7) have the following meanings. 

- The matrices U, V: the M × N matrices composed of orthonormal bases stretching an N-
dimensional subspace out of an M-dimensional space. The column vectors of the k-th 
column k N), uk= (u1k, …, uMk)T and vk= (v1k, …, vMk)T, are the singular vectors in 
Mode k of X0 and Y0, respectively. The singular vector represents the mode form that 
defines the spatial distribution and spatial correlation of the features at the computation 
points; its map display allows visualization of the spatial correlation between the 
computation points. 

- The matrix D: The N × N diagonal matrix. The diagonal entry dk is the singular value, equivalent 
to the square root of the eigenvalue, and represents the weight of Mode k.  

- The matrix I: The N×N identity matrix. 
In Eq. (2-6), U, D, and V are originally M × M matrices, but since rank (CXY) = N, there are N nonzero 
singular values, and the part concerning zero singular values (N+1 – M columns for U and V, N+1 – M 
rows and columns for D) does not affect the results. For this reason, U, D, and V are expressed as M × N 
matrices. 

 
The principal component scores (PCSs) of the matrices X0 and Y0 corresponding to the matrices U and 

V in Eq. (2-6) are defined as the matrices P and Q, respectively; Eq. (2-10) follows from the relationship 
between P and Q. 

 T
0P U X  (2-8) 

 T
0Q V Y  (2-9) 

 T TPQ QP D  (2-10) 
P and Q are N × N matrices in Eqs. (2-8)–(2-10). The row vectors of the k-th column, p(k) = (p1k, …, pNk), 
q(k) = (q1k, …, qNk), represent the PCSs for each case in Mode k for X0, Y0, respectively. Let l l N) 
denote the modal number; then the cross-covariance structure of the PCSs with two horizontal components, 
Eq. (2-10), can be described as follows:  

 T T
( ) ( ) ( ) ( ) 0

k
k l k l

d
p q q p  

( )
( )
k l
k l

 (2-11) 
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For k l, The PCSs between different components are orthogonal. In contrast, the PCSs between same 
components (p(k)-p(l), or q(k)-q(l)) are not orthogonal to each other. 

 
From Eqs. (2-6), (2-8) and (2-9), X0 and Y0 can be described using U-P, and V-Q, respectively. 

 
0X UP  (2-12) 

 
0Y VQ  (2-13) 

 
In the above calculations, SVD is applied to the cross-covariance matrix CXY in Eq. (2-6); however, 

since CXY is a huge matrix with M-rows and M-columns, it is impractical to compute it directly. Therefore, 
in actual calculations, the matrices U, D, V, P, and Q are obtained using a method called dual formalism 
[4]; SVD analysis based on dual formalism is described in Appendix I at the end of Chapter 2. 

 
 

2.2.3 Singular Values and Mode CFoefficients for Each Component 
 
By applying SVD to the M × N matrix X0 (or Y0), the mode shape (M × N matrix), singular values (N × 

N matrix), and mode coefficients (N × N matrix) are obtained [1]. Each column of the mode coefficients 
represents the case-dependent weight for each mode. The PCSs are obtained by multiplying them by the 
corresponding singular values. Similarly, the PCSs P and Q of SVD analysis are decomposed into singular 
values DP and DQ corresponding to X0 and Y0, and mode coefficients P0 and Q0, respectively. 

 
1 011 0 1

0 1 0

0

0

p N

p N N NN

d p p

d p p
P 0P D P  (2-14) 

 
1 0 11 0 1

0 1 0

0

0

q N

q N N NN

d q q

d q q
Q 0Q D Q  (2-15) 

The mode coefficients of SVD are constructed on an orthonormal basis. In contrast, since PCSs between 
the same components are not orthogonal in SVD analysis, P0 and Q0 in Eqs. (2-14) and (2-15) are also 
composed of unit vectors (row vectors) that do not satisfy the orthogonality condition. The mean of the row 
vectors in P0 and Q0 is N -1/2 for Mode 1 and 0 for Mode 2 and higher. The standard deviation for Mode 1 
is data set dependent and is N -1/2 for Mode 2 and higher. 
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2.3 Characterized Source Model and Ground Motion Distribution 
 
This study targets and discusses the strike-slip fault and the ground motion distribution caused by its 

fault, which was set up and calculated by Kagawa [6, 7]. The following is a description of the using dataset. 
 
 

2.3.1 Characterized Source Model 
 
Figure. 2-1 shows the target strike-slip and the computational area of strong ground motion simulation. 

The geometry and location of the strike-slip fault are as follows. 
- Length : 26 km 
- Width : 16 km 
- Depth of the fault top : 3 km 
- Strike : 0 ° 
- Dip : 90 ° 
- Location : center in the computational area 

The moment magnitude MW of this fault, evaluated from the fault area based on the recipe for predicting 
strong ground motions [9, 10], is slightly lower than 6.6.  
 

In the papers [6, 7], 300 cases of characterized source models with different source parameters are set 
up for this fault. The conditions for setting the source parameters are described below.  

 
- Fixed parameter 

-  Fault geometry (fault area) : 26 km × 16 km 
-  Number of asperities : 2 (The large and small asperities with different areas) 
 

- Variated Parameters: 
Set by taking the standard value for the recipe for predicting strong ground motions [9, 10] 

as the mean, and randomly giving a variation assuming a normal distribution [11, 12]. The 
following values are means and coefficients of variation. 
-  Seismic moment M0 : 9.63 × 1025 dyne cm, 5% 
-  Rupture velocity : 2.52 km/s, 5% 
-  Asperities area ratio* : 0.22, 10% 

(*Asperities are ratio: the ratio between the combined asperity area and total rupture area) 
 

- Other variated parameters for the location of asperity and hypocenter 
-  Location of asperities : set up by uniform distribution in both strike and depth on the fault 

plane with no overlap of each asperity 
-  Location of hypocenter : set at either edge of the bottom of the large asperity 

 
This study analyzes a total of 600 cases, including 300 cases in which the fault model is inverted around 

the perpendicular bisector of the fault model in consideration of the symmetry of the data. The inclusion of 
the inversion case has the merit of stabilizing the mode decomposition results in the next section since the 
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distribution of ground motion variation becomes line-symmetric across the perpendicular bisector of the 
fault, as shown in Fig. 2-4 and Fig. 2-5 below. 

 
Figure. 2-2 shows the frequency distribution of the source parameters for the 600 cases. The asperity 

area ratios in Fig. 2-2 (c) were rounded to fit the 2 km square mesh of the fault model after giving the 
variation. Figs. 2-2 (d), (e) are weighted averages of the seismic moment (  area to the power of 1.5) for 
the horizontal and vertical positions (distance from the southern corner of the fault top) of large and small 
asperities. 
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 (a) Image of fault model (b) Computational area 
(Blue rectangle: asperity, yellow star: hypocenter, circle: reference point) 

Figure 2-1. Target strike-slip fault. 
 
 
 

 
 (a) Seismic moment (b) Rupture velocity (c) Asperities area ratio 

 
 (d) Horizontal center of gravity (e) Vertical center of gravity (f) Horizontal hypocenter  
 of asperities of asperities location 

Figure 2-2. Frequency distribution of source parameters (ȝ represents mean value). 
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2.3.2 Strong Ground Motion Simulation and Calculation Condition 
 
The computational area (Fig. 2-1 (b)) is 200 km × 200 km, and the computational points are set every 2 

km × 2 km for a total of 10,201 points (= 101 points × 101 points). The ground structure is assumed to be 
a typical sedimentary plain or basin. As shown in Table. 2-1 and Fig. 2-3, the ground model is a horizontally 
stratified ground model with the engineering bedrock (VS = 350 m/s) as the ground surface, and the site 
amplification characteristics are the same at all computational points. 

 
Under the above conditions, three-component waveforms (Fault-Normal: FN, Fault-Parallel: FP, 

Vertical: UD) were calculated at each computation point by strong ground motion (SGM) simulation based 
on the stochastic Green’s function method [13]. The element waveforms at each point used in SGM 
simulation are different for each of the asperities and background areas, but they are all the same within the 
same area; the amplitude spectra are given their respective distance attenuation and azimuthal radiation 
characteristics. This treatment follows the empirical Green’s function method and does not give different 
random element waveforms for each computation point and element fault. The waveforms in the short-
period band at each point have no azimuthal characteristics [7], and their response spectra have been 
confirmed to be consistent with the attenuation relationship of the response spectrum [14]. In the long-
period band, azimuthal characteristics reflecting the directivity effect and the radiation pattern appear [7, 
14] and are consistent with the theoretical waveforms obtained by the discrete wavenumber method [13].  

 
The stochastic Green’s function method [13] applies to waveforms with periods 0.05–20 s. However, 

using a theoretical wave propagation calculation method for longer periods is preferable. Therefore, this 
study targets ground motions with periods up to 2.0 s. 

 
 
 
 

 Table 2-1. Horizontally stratified ground structure  
 (ȡ: density, Q(f) = Q0 × f Qf: attenuation) (Data source: [6]) 

  

Figure 2-3. Ground structures model and fault. 
  

Vp (km/s) Vs (km/s) 3) Q0 Qf Depth (km)
1.60 0.35 1.70 35 0.5 0.000
1.80 0.55 1.80 55 0.5 0.092
2.50 1.00 2.10 100 0.5 0.599
5.40 3.20 2.70 63.8 1.0 1.101
6.00 3.50 2.80 63.8 1.0 2.000

Parameters

Depth of Layer Top  Fault
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2.3.3 Distribution and Correlation of Ground Motions of Horizontal Two Components 
 
The ground motion intensities used in this study are absolute acceleration response spectrum (SA) for 

5 % damping of two horizontal components (FN, FP) with periods 0.1–2.0 s (0.1, 0.5, 0.75, 1.0, and 2.0 s) 
calculated for the strike-slip fault. 

 
Figure. 2-4 and Fig. 2-5 show the distribution of the common logarithmic mean and common logarithmic 

standard deviation of the SA for the 600 cases. The mean at period 0.1 s of both components shows a 
distance-decaying distribution trend centered on the fault [7]. At period 2.0 s, the mean of FN component 
has large values in the fault strike (north and south) direction due to the forward directivity effect and the 
radiation pattern, while the mean of FP component has large values in the orthogonal (east and west) 
direction. The distributions of period 0.5–1.0 s tend to be intermediate between these two periods; the 
distribution trend changes from a distance-decaying distribution to an azimuthal distribution as short-period 
to long-period. A similar tendency is observed in the standard deviation, and the variation tends to be larger 
for longer periods. 

 
Figure. 2-6 shows the spatial distribution of the correlation coefficient between SA of FN and FP 

components (top of Fig. 2-4 and Fig. 2-5). In common with all periods, the SA of FN and FP components 
are positively correlated in almost the entire map. The correlation tends to be weaker in the fault strike 
direction and its orthogonal direction than in the surrounding area. This trend may be because the SA of FN 
and FP components are orthogonal. 

 
The correlation coefficients between components in each case (600 in total) are 0.77 – 0.94 for period 

0.1 s, 0.94–0.98 for period 0.5 s, 0.85–0.95 for period 0.75 s, 0.86–0.95 for period 1.0 S, and 0.66–0.86 for 
period 2.0 s, with the lowest for period 2.0 s. These results are because the impact of the radiation pattern 
and forward directivity effect becomes stronger for longer periods, suggesting that the same case can clearly 
show differences among components. 
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 (a) Period 0.1 s (b) Period 0.5 s (c) Period 0.75 s (d) Period 1.0 s (e) Period 2.0 s 

(Top: Spatial distribution of the common logarithmic mean of six hundred cases. 
Bottom: Spatial distribution of the common logarithmic standard deviation of six hundred cases.) 

Figure 2-4. Absolute acceleration response spectrum (SA) for 5 % damping of FN component. 
 
 
 

 

 (a) Period 0.1 s (b) Period 0.5 s (c) Period 0.75 s (d) Period 1.0 s (e) Period 2.0 s 
(Top: Spatial distribution of the common logarithmic mean of six hundred cases. 

Bottom: Spatial distribution of the common logarithmic standard deviation of six hundred cases.) 
Figure 2-5. Absolute acceleration response spectrum (SA) for 5 % damping of FP component. 

 
 
 

 
 (a) Period 0.1 s (b) Period 0.5 s (c) Period 0.75 s (d) Period 1.0 s (e) Period 2.0 s 

Figure 2-6. Spatial distribution of correlation coefficient between SA of FN and FP components. 
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2.4 SVD Analysis of Distributions of SA

 
2.4.1 Squared Covariance Fraction of Mode 

 
SVD analysis is applied to the distributions of SA (FN and FP components) for 600 cases by period. Fig. 

2-7 shows the cumulative squared covariance fraction (cumulative SCF) of eigenvalues (square of the 
singular value, which is the diagonal entries of the matrix D), and Fig. 2-8 shows the SCF from the 2nd-
order mode to the 10th-order mode. In common for all periods, the SCFs of Mode 1 are significantly high, 
showing more than 99.9 %. Modes 2–3 show constant SCFs, while Mode 4 and higher show almost 0 %. 
The SCF of Mode 1 at period 2.0 s is lower than that at other periods (0.1–1.0 s), while Modes 2–3 are 
higher than in other periods. The reason for this is discussed in the next paragraph. 

 
 
 

  

Figure 2-7. Cumulative squared covariance fraction.  Figure 2-8. Squared covariance fraction. 
 

 
 

2.4.2 Mode Shape
 
Figures. 2-9 (a), (b)–Figs. 2-11 (a), (b) show the mode shape in FN and FP components (only Modes 1–

3 at period 0.5, 1.0, 2.0 s are shown due to the limitation of space). The mode shape represents the spatial 
characteristics of ground motions with strong interrelationships between the two components. A red point 
is a positive value, and a blue point is a negative value; a correlation between points with the same (or 
different) sign is a positive (or negative) correlation. The mode shapes of the two components at same-
period and same mode show similar distribution trends; this indicates that the mutual spatial variation 
structure of two horizontal components can be extracted from the ground motion distribution of two 
components. 

 
For Mode 1, the distributions are simple, with positive values near the fault and negative values farther 

away, corresponding to the mean distribution (top of Fig. 2-4 and Fig. 2-5). Thus, as for the spatial 



39 
 

interrelationship between the two horizontal components, the most dominant spatial variability structure 
(mode form) is the spatial distribution of the mean ground motion (attenuation effect). The cross-covariance 
matrix with two components is 99.9 % represented by this spatial structure. 

 
For Mode 2 and Mode 3, the spatial distribution can be classified into two categories: “spatial variation 

with positive correlation in an almost entire area (e.g., Fig. 2-9: Mode 2)” and “spatial variation negatively 
correlated north and south of the map (e.g., Fig. 2-9: Mode 3).” The former represents a uniform variation 
of ground motion across the entire area. In addition, The FN component has a larger absolute value in the 
fault strike (north-south) direction, and the FP component has a larger absolute value in the orthogonal 
(east-west) direction, which is considered to be related to the bilateral rupture propagation of the fault. The 
latter emphasizes the difference in seismic intensity between the north and south of the map, i.e., the contrast 
in spatial seismic intensity, which may be related to the unilateral rupture propagation of the fault. 

 
In 2.4.2, it was pointed out that the SCFs of Modes 2–3 at period 2.0 s are higher than those of other 

periods. This result may be because the directivity effect represented by Modes 2–3 is stronger for longer 
periods. 

 
 

2.4.3 Principal Component Score of Mode 
 
Figures. 2-9 (c)– Fig. 2-11 (c) show the scatter plot of the PCSs between FN and FP components. The 

mean PCSs of Mode1 are 96.7–98.6, and the mean mode coefficients are 0.0408 (= N -1/2 = 600 -1/2). The 
standard deviations of the mode coefficient are 0.00075–0.0026, and the coefficient of variation are 1.8 – 
6.4%, with the coefficient being larger for longer periods. The mean of the PCSs and mode coefficients for 
Mode 2 and higher are 0; the standard deviations of the mode coefficients are 0.0408 (= N -1/2). 

 
Table. 2-2 shows the two horizontal components’ correlation coefficients of the PCSs (mode 

coefficients). The correlation coefficients for Modes 1–3 are all greater than 0.8, indicating that the two 
components are strongly correlated. 
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(a) Mode shape in FN component. 

 
(b) Mode shape in FP component. 

 
(c) Scatter plot between PCS of FN (horizontal axis) and FP (vertical axis). (R: correlation coefficient) 

Figure 2-9. Result of SVD analysis in period 0.5 s. 
 

 
(a) Mode shape in FN component. 

 
(b) Mode shape in FP component. 

 
(c) Scatter plot between PCS of FN (horizontal axis) and FP (vertical axis). (R: correlation coefficient) 

Figure 2-10. Result of SVD analysis in period 1.0 s. 
 

Mode 1 Mode 2 Mode 3

Mode 1 Mode 2 Mode 3

Mode 1 Mode 2 Mode 3

Mode 1 Mode 2 Mode 3
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(a) Mode shape in FN component. 

 
(b) Mode shape in FP component. 

 
(c) Scatter plot between PCS of FN (horizontal axis) and FP (vertical axis). (R: correlation coefficient) 

Figure 2-11. Result of SVD analysis in period 2.0 s. 
 
 
 
 

Table 2-2. The correlation coefficient of PCSs of two horizontal components. 
(Red: correlation coefficient is 0.9 – 1.0, blue: correlation coefficient is 0.8 – 0.9) 

 

 
 
 
 
  

Mode 1 Mode 2 Mode 3

Mode 1 Mode 2 Mode 3

Period [s] Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

       0.1 0.806 0.950 0.965 0.823 0.937 0.796 0.838 0.864 0.955 0.946

       0.5 0.946 0.979 0.957 0.960 0.955 0.908 0.900 0.916 0.943 0.900

       0.75 0.906 0.966 0.943 0.941 0.904 0.832 0.945 0.832 0.910 0.918

       1.0 0.870 0.933 0.910 0.728 0.926 0.755 0.765 0.704 0.848 0.840

       2.0 0.842 0.923 0.908 0.775 0.857 0.687 0.756 0.775 0.724 0.679
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2.5 Simulation Method of Ground Motion Distributions Considering Interrelationship between 
Horizontal Two Components  

 
2.5.1 Simulation Conditions for Ground Motion Distributions of Horizontal Two Components  

 
The previous study [1] proposed a method of simulating ground motion distributions for a single 

component based on mode decomposition and synthesis, which combines SVD and an efficient Monte 
Carlo method [15]. This section extends this simulation method to simultaneously generate ground motion 
distributions of the two components while maintaining the spatial correlation structure of ground motion 
between the two components. The following conditions must be satisfied by the ground motion distribution 
simulation of the two horizontal components based on the SVD analysis proposed in this section. 

 
- Condition : For reproducing the relationship between cases within the same component 

The mean of mode coefficients and the coefficient of variation or standard deviation of the mode 
coefficient must be consistent with the following values. 

- Mode 1 : mean N -1/2, coefficient of variation į 
- Modes 2–N (= 600) : mean 0, standard deviation N -1/2 

 
- Condition : For reproducing the cross-covariance structure and correlation coefficients of the two 

horizontal components 
The following equation must hold.  

- Eq. (2-10) : PQT = QPT = D 
- Eq. (2-31) in the later : rk = p0 (k) q0 (k)

T 
 
 

2.5.2 Simulation of Ground Motion Distributions of Horizontal Two Components Base on 
Singular Value Decomposition Analysis and Mode Synthesis 

 
Let S be the number of simulation trials, and replace the N × N matrix P representing the PCS of the FN 

component in Eq. (2-12) and Eq. (2-14) with the N × S matrix T; define the M × S matrix ZX 0 as follows:  

 
X0 P 0Z UT UD T  (2-16) 

 
(1) 11 1

( ) 1

S

N N NS

t t

t t

t
T

t
  (2-17) 

Where T0 is the N × S matrix representing the simulation mode coefficients of FN component, and t(k) = (t1k, 
…, t Sk) is the S-dimensional row vector. For FP component in Eq. (2-13) and Eq. (2-15), define the M × S 
matrix ZY 0 in the same way. 

 
Y0 Q 0Z V W VD W  (2-18) 

 
(1) 11 1

( ) 1

S

N N NS

w w

w w

w
W

w
 (2-19) 
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where W and W0 are the N × S matrices representing the simulation PCSs and mode coefficients of FP 
components, respectively. w(k) = (w1k, …, wSk) is the S-dimensional row vector. Set the condition that the 
cross-covariance matrices between the modes in T and W equal the cross-covariance matrices between the 
modes in P and Q.  

 
T T

N N
PQ QP  (2-20) 

 
T T

S S
TW WT  (2-21) 

Assuming that Eq. (2-20) and Eq. (2-21) are equal, Eq. (2-10) in condition  can be described as follows:  

 T T S
N

TW WT D  (2-22) 

The diagonal entry of TWT in Eq. (2-22) is described as follows: 

 
1

S

ki ki k
i

St w d
N

 (2-23) 

The simulation methods for the matrices T and W satisfying conditions 1 and 2 are described in 2.4.3 – 
2.4.4. 
 

Using the matrices ZX 0 in Eq. (2-16) and ZY 0 in Eq. (2-18), the simulation ground motion distributions 
of the two horizontal components are described as follows:  

 
X X Z X X0Z H Z  (2-24) 

 
Y Y Z Y Y0Z H Z  (2-25) 

where HZ is the M × S matrix in which all entries are 1. Accordingly, the simulation method of ground 
motion distribution for a single component in the previous study [1] can be extended to distributions of two 
components. 
 
 
2.5.3 Simulation Method of Matrices T and W  

 
The abovementioned simulated matrices T and W were used to generate the ground motion distributions 

of two horizontal components. From Eqs. (2-16) and (2-18), T and W are composed of the diagonal 
matrices DP and DQ, whose diagonal entries are singular values (constants) for each component, and the 
matrices T0 and W0, whose entries are mode coefficients. In practice, T and W are generated by simulating 
the mode coefficients T0 and W0 and synthesizing them with the singular values DP and DQ, respectively. 
As simulation methods for T0 and W0, four methods are proposed and compared with reference to the 
previous study [1]: a method that assumes no correlation between two components, a method that makes 
them correlated, a method that assumes perfect correlation, and a method that considers correlation by 
giving variation. 

 
 

a) Method A: Method to give two components independently as uncorrelated 
The relationship between two components is assumed to be uncorrelated, and N × S standard normal 

random numbers are generated independently for each component, which are the elements of the N × S 
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matrices T0 R and W0 R. For T0 R and W0 R, the following equations hold [1].  

 

T T
R R R R

T T
R R R R

E E

E E

S S

S S

0 0 0 0

0 0 0 0

T T W W
I

T W W T
0

 (2-26) 

where I is the N × N identity matrix, and 0 is the N×N zero matrix. The first equation in Eq. (2-26) represents 
that the norm of the row vectors t0 R (k), w0 R (k) of the matrices T0 R, W0 R is on average S 1/2. The first and 
second equations indicate that the row vectors are, on average orthogonal across modes and components. 
 

Since the row vectors p0 and q0 are N-dimensional unit vectors, T0 and W0 are obtained by adjusting the 
norm of t0 R and w0 R as follows: 

 R

N
0

0

T
T      R

N
0

0

W
W  (2-27) 

 
 

b) Method B: Method to consider the correlation of two components by correlation simulation 
In Method B, Cholesky decomposition is applied to the correlation matrix Rk between the mode 

coefficients p0 (k) and q0 (k), and correlation simulations are performed on the randomly sampled row vectors 
t0 R (k) and w0 R (k). 

 

T

T

2 2

1 0 1 01
1 1 1

k k k
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 (2-28) 
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 (2-29) 

Where rk is a correlation coefficient between p0 (k) and q0 (k), Lk is the 2 × 2 lower triangular matrix of Mode 
k. t0 Chol (k) and w0 Chol (k) are the S-dimensional vectors in the k-th row of the N × S matrices T0 Chol and W0 

Chol, respectively. In this section, t0 Chol (k) and w0 Chol (k) are obtained by giving a correlation to t0 R (k) of FN 
component based on w0 R (k) of FP component. As in Eq. (2-27), T0 and W0 are finally obtained as follows:  

 Chol

N
0

0

T
T      Chol

N
0

0

W
W  (2-30) 

 
p0 (k) and q0 (k) are the unit vectors, and the mean of the vector entries is zero for Mode 2 and higher. Thus, 

the correlation coefficient rk   is described as follows: 

 T
0 0 ( ) ( )2 1

N
ki ki k kk i

r p q 0 0p q  (2-31) 

In Mode 2 and higher, the row vectors t0 and w0 of the matrices T0 and W0 in Eq. (2-30) hold as follows:  
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 (2-32) 

Eq. (2-32) indicates that the diagonal entries of the matrix T0W0
T in Method B satisfy Eq. (2-23) on average. 

 
 
c) Method C: Method to make the two components perfectly correlated 

Based on the randomly sampled N × S matrix W0 R, T0, and W0 are obtained with the two components 
as perfect correlations. 

 R

N
0

0 0

W
W T  (2-33) 

 
 
d) Method D: Method to randomly give the difference between two components 

In method D, the sampled W0 R is given a normal random number based on the difference between P 
and Q as follows: 

 
R( ) P( )k k0 0w w      2

R( ) R( ) ( , )k k k kN0 0t w  (2-34) 
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where t0 R (k) and w0 R (k) are the S-dimensional vectors in the k-th row of the N × S matrices T0 R and W0 R, 
respectively. N(ȝk, ık2) is a normal random number following mean ȝk and variance ık2. In this section, t0 R 
of FN component is obtained by giving the variation to w0 R of FP component. Finally, as in Methods A – 
C, T0 and W0 are obtained as follows:  

 R

N
0

0

T
T      R

N
0

0

W
W  (2-36) 

 
 

2.5.4 Adjustment of Vector Entries for Mode 1 
 
In order to satisfy condition , the row vectors t0 (k) and w0 (k) are adjusted. The row vectors p0 and q0 for 

Mode 2 and higher (k  2) have mean ȝk= 0 and standard deviation ık = 0.0408 (= N -1/2); t0 (k  and w0 (k 

2) in Eqs. (2-27), (2-30), (2-33), and (2-36) satisfy condition . In contrast, t0 (1) and w0 (1) for Mode 1 have 
mean ȝ1 = 0.0408 (= N -1/2), standard deviation ı1 = 0.00075 – 0.0026, and coefficient of variation į1 = 1.8 
–  6.4 %. This coefficient of variation į1 depends on the distributions of ground motion for the 600 cases 
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for each period and component. Therefore, using this as a parameter, the first row t0 (1) and w0 (1) of matrices 
T0 and W0 is adjusted as follows [1]. 

 

00 1 P 1 P 1 01

P 1 P 1 P 1 01 P 1 01

00 1 Q 1 Q 1 01 Q 1 01

1

1

i i

i i

i i i

t Nt

Nt t
N

w N w w
N

 (2-37) 
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2.6 Numerical Example of Simulating Ground Motion Distributions of Two Horizontal 
Components 

 
2.6.1 Simulation of Matrices T and W 

 
Based on the results of the SVD analysis applied in 2.4, simulate the distribution of SA of two horizontal 

components. The matrices T and W are simulated by each of the four methods in 2.5.3, and the results are 
compared. The number of simulation trials is set to S = 9600. The common logarithmic mean at point i for 
600 cases of two components SA (matrices X and Y) are ȝXi and ȝYi, and the standard deviations are ıXi and 
ıYi, respectively. The range of the simulation results at point i is set from ȝXi - 3ıXi to ȝXi + 3ıXi (from ȝYi + 
3ıYi to ȝYi - 3ıYi). Note that the upper and lower limits are provisional values set in an exploratory manner 
by comparing the distributions of the original data and the simulation results.  

 
First, examine how well the PCSs for the 9600 cases of Methods A-D reproduce the 600 cases. Fig. 2-

12–Fig. 2-14 show the PCSs of the 600 cases (the matrices P and Q: Fig. 2-9 (c)–Fig. 2-11 (c)) in black 
dots, and the simulated PCSs of the 9600 cases by Methods A-D (A, B, C, and D) in light blue, green, 
purple, and orange, respectively. The simulated PCSs of FP component are the same for all methods, while 
the simulated PCSs of FN component differ for each method. Method A (light blue) and Method C (purple) 
do not reproduce the correlation between two components in the original 600 cases because they treat them 
as uncorrelated and perfectly correlated, respectively. In contrast, Method B (green) and Method D (orange) 
adequately reproduce the correlation between the two components. 

 
Table. 2-3 shows the correlation coefficients of simulated PCSs for two horizontal components by period. 

The correlation coefficients of Methods B and D are almost the same as those between P and D for the 600 
cases, suggesting that Methods B and D are almost equivalent. On the other hand, the correlation 
coefficients of Methods A and C are uncorrelated and perfectly correlated, respectively, and the correlation 
relationship between the two components cannot be reproduced. 

 
Next, focus on condition  “PQT = QPT = D.” Table. 2-4 shows the ratio of the simulated values of 

Methods A – D to the target value of the diagonal elements (singular values) of the matrix TWT in Eq. (2-
23). Red indicates the method with the ratio closest to 1 in each mode; blue indicates the method closest to 
2 in each mode. For Mode 1, the mean mode coefficient is ȝ1 = 0.0408, and the coefficient of variation is 
į1 = 1.8 – 6.4%, with the difference in results between Methods A – D due to the small variability. Among 
Methods A – D, it is Method B that satisfies Eq. (2-23) sufficiently well and reproduces the relationship 
between the two horizontal components. This result is because, as shown in Eq. (2-32), Method B satisfies 
Eq. (2-23) on average for Mode 2 and higher and converges to the right-hand side of Eq. (2-23) for a 
sufficient number of samples S. The next best reproducing the relationship between two components is 
Method D. On the other hand, Methods A and C have low reproducibility. Therefore, they are not 
appropriate as a simulation method for the two components’ PCSs (or mode coefficients). 
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 (a) Mode 1 (b) Mode 2 (c) Mode 3 
(Horizontal axis: FN component, vertical axis: FP component, black:600 cases of matrix P, Q (Fig. 2-9 (c)), 

blue: Method A, green: Method B, purple: Method C, and orange: Method D) 
Figure 2-12. Scatter plot of simulated PCSs for two horizontal components in period 0.5 s. 

 
 

     
 (a) Mode 1 (b) Mode 2 (c) Mode 3 

(Same as Fig. 2-12, 600cases of matrix P, Q: Fig. 2-10 (c)) 
Figure 2-13. Scatter plot of simulated PCSs for two horizontal components in period 1.0 s. 

 
 

     
 (a) Mode 1 (b) Mode 2 (c) Mode 3 

(Same as Fig. 2-13, 600cases of matrix P, Q: Fig. 2-11 (c)) 
Figure 2-14. Scatter plot of simulated PCSs for horizontal two components in period 2.0 s. 
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Table 2-3. Correlation coefficients of simulated PCSs for horizontal two components. 
(a) Period 0.5 s 

 
 
 

(b) Period 1.0 s 

 
 
 

(c) Period 2.0 s 

 
 
 

  

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Matrix P,Q 0.946 0.979 0.957 0.960 0.955 0.908 0.900 0.916 0.943 0.900

Method A -0.004 0.019 -0.014 -0.015 0.002 0.020 0.003 0.007 -0.010 0.003

Method B 0.947 0.979 0.958 0.959 0.955 0.910 0.899 0.918 0.944 0.902

Method C 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Method D 0.953 0.980 0.960 0.963 0.960 0.921 0.913 0.928 0.950 0.915

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Matrix P,Q 0.870 0.933 0.910 0.728 0.926 0.755 0.765 0.704 0.848 0.840

Method A -0.004 0.019 -0.014 -0.015 0.002 0.020 0.003 0.007 -0.010 0.003

Method B 0.872 0.933 0.912 0.721 0.925 0.762 0.763 0.709 0.849 0.843

Method C 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Method D 0.893 0.941 0.923 0.807 0.936 0.821 0.825 0.800 0.881 0.873

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Matrix P,Q 0.842 0.923 0.908 0.775 0.857 0.687 0.756 0.775 0.724 0.679

Method A -0.004 0.019 -0.014 -0.015 0.002 0.020 0.003 0.007 -0.010 0.003

Method B 0.845 0.923 0.910 0.769 0.857 0.696 0.755 0.778 0.725 0.684

Method C 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Method D 0.844 0.933 0.921 0.832 0.888 0.786 0.820 0.836 0.811 0.784
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Table 2-4. The ratio of simulated value to the target value of the diagonal element (singular value) of matrix 
TWT. (For each mode, a red number indicates the method with a ratio close to 1, and a blue 
number indicates the second-closest method.) 

(a) Period 0.5 s 

 
 
 

(b) Period 1.0 s 

 
 
 

(c) Period 2.0 s 

 
  

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Method A 1.00 0.02 -0.01 -0.01 0.00 0.02 0.00 0.01 -0.01 0.00

Method B 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Method C 1.00 1.02 1.05 1.04 1.05 1.10 1.11 1.09 1.06 1.11

Method D 1.00 1.00 1.00 1.00 1.00 1.01 1.02 1.01 1.01 1.02

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Method A 1.00 0.02 -0.02 -0.02 0.00 0.03 0.00 0.01 -0.01 0.00

Method B 1.00 1.00 1.00 0.99 1.00 1.01 1.00 1.01 1.00 1.00

Method C 1.00 1.07 1.10 1.37 1.08 1.32 1.31 1.42 1.18 1.19

Method D 1.00 1.01 1.01 1.11 1.01 1.09 1.09 1.13 1.03 1.04

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Method A 1.00 0.02 -0.02 -0.02 0.00 0.03 0.00 0.01 -0.01 0.00

Method B 1.00 1.00 1.00 0.99 1.00 1.01 1.00 1.00 1.00 1.01

Method C 1.00 1.08 1.10 1.29 1.17 1.45 1.32 1.29 1.38 1.47

Method D 1.00 1.01 1.01 1.08 1.03 1.15 1.09 1.07 1.11 1.15
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2.6.2 Simulated Ground Motion Distributions of Horizontal Two Components
 
Figure. 2-15 shows examples of the distributions of SA of two horizontal components for the 9600 cases 

t in Methods A – D (due to space limitation, only two cases in period 2.0 s are shown). Note that the matrix 
W for FP component is the same for all four methods. Because two components are treated independently 
in Method A, the cross-covariance structure between the two components is not reflected in the ground 
motion distributions of FN component. In contrast, the ground motion distributions of FN component in 
Method B reflect the cross-covariance structure of the two components. The ground motion distributions 
of FN component in Methods C and D also show similar trends to those of Method B. However, the 
difference appears between the case where two components are perfectly correlated and the case where 
correlation is considered. 

 
Next, the simulated ground motions of the 9600 cases at the selected points are compared with the 

original 600 cases. For symmetry, the computational area (Fig. 2-1 (b)) is divided into four quadrants, and 
seven points are selected in the second quadrant. Fig. 2-16 shows the relative frequency distribution of SA 
for the 600 and 9600 cases at three points (Fig. 2-16 (a), Points 1 – 3). The simulation’s relative frequency 
distribution adequately reproduces the distribution’s shape in the original data. In addition, as shown in the 
upper panels of Figs. 2-16 (d), (f), the hem of the relative frequency distribution is wider than that of the 
original data, indicating that the simulation method generates ground motions with large amplitude levels 
that are not included in the original data. These trends were also found at four other sites not shown in the 
figure and other periods. The results indicate that the ground motion distributions of two horizontal 
components generated by the simulation method in this section reproduce the trend of the distribution 
calculated by the stochastic Green’s function method [13].  
 
 
 
 

 
 (a) FP comp. (b) FN comp. (c) FN comp. (d) FN comp. (e) FN comp. 
 (Method A–D) (Method A) (Method B) (Method C) (Method D) 

Figure 2-15. Simulated distributions of SA (T = 2.0s). 

Trial 2500 Trial 2500 Trial 2500Trial 2500Trial 2500

Trial 6000 Trial 6000 Trial 6000Trial 6000Trial 6000
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 (a) Selected point. (b) FP comp. (c) FN comp. (d) FN comp. (e) FN comp. (f) FN comp. 
 (Green circle) (Method A – D) (Method A) (Method B) (Method C) (Method D) 

(Red: original 600 cases, black: simulated 9600 cases.) 
Figure 2-16. Relative frequency of SA (T = 2.0s) at selected point (green point in (a)). 

 

Point 1

Point 2

Point 3
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Evaluate the spatial correlation of the simulated horizontal two components. Fig. 2-17 shows the 
distribution of the correlation coefficients of two components for each point in the original 600 cases 
(reiteration of Fig. 2-6) and the simulated 9600 cases of Methods A – D. Method A, which treats the 
relationship between two components as uncorrelated, is almost uncorrelated over the entire area and does 
not reproduce the correlation distribution of two components in the 600 cases. The correlation coefficients 
of Method C, which treats the two components as perfectly correlated, show generally stronger positive 
correlations than those of the 600 cases. Methods B and D, which consider the correlation of two 
components, reproduce the correlation distribution of the 600 cases well enough, and there is no significant 
difference. 
 
 
 
 
 

 
(a) Period 0.5 s 

 
(b) Period 1.0 s 

 
(c) Period 2.0 s 

(“Original” on the left are restatements of Fig. 2-3.) 
Figure 2-17. Spatial distribution of correlation coefficient between FN and FP components SA for simulated 

9600 cases. 
 
 
  

Original Method A Method DMethod CMethod B

Original Method A Method DMethod CMethod B

Original Method A Method DMethod CMethod B
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Finally, evaluate the spatial structure of the site-to-site correlations for each component. This condition 
regarding site-to-site correlation is not included in conditions  and ; however, this is a condition in single-
component ground motion distribution simulation [1], and is an important requirement in the portfolio risk 
assessment for facility siting, a typical use case of simulation results. Fig. 2-18 shows the spatial distribution 
of the correlation between the selected point and each point surrounding the selected point for FN 
component in the original 600 cases and the simulated 9600 cases. The ground motions of FP component 
are the same for Methods A – D and are essentially the same as those of Method A in Fig. 2-18 (b) and are 
therefore not shown in the figure. Methods A – C can adequately reproduce the spatial structure of the site-
to-site correlations in the original 600 cases. In contrast, Method D, which randomly gives the differences 
between two components, has strong correlations and fails to reproduce the 600 cases, as shown in the 
upper panel of Fig. 2-18 (e). The above trend was also found in other periods. 

 
 
 
 
 

 
 (a) Original 600 cases (b) Method A (c) Method B (d) Method C (e) Method D 
Figure 2-18. Spatial correlations of SA (T = 2.0s, FN component) between the selected point (yellow circle) 

and each computational point surrounding the selected point. 
 
  

Original Method A Method DMethod CMethod B

Original Method A Method DMethod CMethod B

Original Method A Method DMethod CMethod B
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2.6.3 Comparison of Simulation Methods 
 
The relationship between two horizontal components is not reproduced by Methods A and C. In contrast, 

Methods B and D reproduce the correlation well, satisfying conditions  and . Focusing on the site-to-site 
correlation of ground motions within the same component, Methods A, B, and C can reproduce the spatial 
structure of the site-to-site correlation, but Method D cannot reproduce it. Therefore, it is preferable to use 
Method B as a simulation method of ground motion distributions that preserves the spatial interrelationship 
between two horizontal components. 

 
The number of trials for the simulations in this chapter was large (S = 9600); Method B satisfied Eq. (2-

23) and may have sufficiently reproduced the relationship between the two horizontal components. Thus, 
the same study was conducted with S = 1000 and 2400 trials. As a result, it was found that the 
reproducibility of the spatial correlation structure of two components (and the spatial structure of the site-
to-site correlation within the same component) in the simulation results of Method B was sufficient, 
although it was lower than S = 9600. 

 
 

2.6.4 Comparison with Simulation Method for Single Component 
 
The method for simulating ground motion distributions using mode decomposition and synthesis based 

on SVD proposed in the previous study [1] is for a single component. Therefore, when this method is 
applied to the distribution of SA of two horizontal components, correlation cannot be considered, and it can 
only be assumed to be uncorrelated or perfectly correlated. This case corresponds to Method A or Method 
C (light blue or purple in Fig. 2-12–Fig. 2-14). In contrast, the simulation method proposed in this study, 
based on SVD analysis that can simultaneously decompose two horizontal components, can adequately 
reproduce the correlation between the components. 
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2.7 Conclusions 
 
This chapter proposes a simulation method for ground motion distribution that considers the spatial 

interrelationship of two horizontal components. As an example of numerical simulation, the distributions 
of the absolute acceleration response spectrum of horizontal two components (FN, FP) and period 0.1 – 2.0 
s for 600 cases of earthquakes caused by a strike-slip fault were used. The major conclusions are listed 
below. 

 
1) Singular value decomposition analysis was applied to the ground motion distributions of two 

horizontal components by period, and the spatial variations related to the two components were 
extracted for each mode as mode form. The Mode shape of Mode 1 corresponds to the mean ground 
motion distribution and shows spatial variations attributed mainly to the distance attenuation effect. 
The mode shape of Mode 2 and Mode 3 could be classified as the “spatial variation with positive 
correlation in almost entire area” and the “spatial variation negatively correlated north and south of the 
map.” 
 

2) By replacing the matrices of principal component scores obtained from SVD analysis with matrices 
that reproduce the cross-covariance structure of the two horizontal component ground motion 
distributions, a method is proposed to simulate the ground motion distributions of two components 
while preserving the spatial interrelationship of the original two-component distribution. Four 
simulation methods were used: “Method A: treating the two components independently as 
uncorrelated,” “Method B: considering correlation by correlation simulation,” “Method C: making the 
two components perfectly correlated,” and “Method D: randomly giving the difference between the 
two components.” 
 

3) The simulation method using SVD analysis generated the distributions of SA of two horizontal 
components. The simulation results of Methods A – D were compared by the PCSs, the spatial 
distribution of the correlation between two horizontal components, and the site-to-site correlation 
distribution within the same component. The results showed that Method B adequately reproduced the 
ground motion distribution of two-component and their interactive spatial variation structure. 

 
The simulation method proposed in this chapter can simultaneously simulate the spatial distribution of 

two physical indicators. For future developments, this method should be applied to the simultaneous 
simulation of ground motion distributions in different periodic bands caused by the same earthquake is the 
subject of future work. 
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Appendix I: SVD Analysis Based on Dual Formalism 
 
The following is the procedure for calculating the SVD analysis based on dual formalism [4]. 
 
From Eqs. (2-7) and (2-10), the variance-covariance matrix of X0 is as follows: 

 T T T T
0 0X X P U UP P P  (I.1) 

Right-multiplying Eq. (I.1) by the matrix QT. 

 T T T T T( ) ( )0 0X X Q P P Q P D  (I.2) 

Right-multiplying Eq. (I.2) by the matrix D-1. 

 T T -1 T -1 T( )0 0X X Q D P DD P  (I.3) 

The same is done for Y0. 

 T T T T T( ) ( )0 0Y Y P Q Q P Q D  (I.4) 

 T -1 T( )0 0Y Y PD Q  (I.5) 

Substitute Eq. (I.5) for Eqs. (I.2) and (I.4) for Eq. (I.3) as follows: 

 T T T T 2( )( )0 0 0 0X X Y Y P P D  (I.6) 

 T T T T 2( )( )0 0 0 0Y Y X X Q Q D  (I.7) 

From Eqs. (I.6) and (I.7), the matrices P, Q and D are obtained as solutions to an N × N (= {(N × M) × (M 
× N)} × {(N × M) × (M × N)}) matrix eigenvalue problem. 

 
Next, the matrices U and V are computed. Since the PCSs between the same components are not 

orthogonal in SVD analysis (Eq. (2-11)), it is necessary to compute U from the PCSs Q of different 
components. Eqs. (2-10) and (2-12) are transformed as follows: 

 1-1 TDP Q  (I.8)  

 -1
0U X P  (I.9) 

U is obtained by substituting Eq. (I.8) into Eq. (I.9). 

 T 1
0U X Q D  (I.10) 

The same is done for V. 

 T 1
0V Y P D  (I.11) 

 
The above computational procedure (dual formalism) provides the matrices U, D, V, P, and Q without 

explicitly dealing with the M-by-M cross-covariance matrix CXY. 
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3  Development of Simplified Prediction Model for Ground Motion 

Distribution 
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3.1 Introduction 
 
Ground motion prediction is one of the most important issues in seismic risk assessment and disaster 

prevention/mitigation. There are two typical methods for ground motion prediction: a conventional method 
based on ground motion prediction equation (GMPE) and a detailed method based on strong ground motion 
(SGM) simulation. The former conventional method (upper left in Fig. 3-1) is an empirical/statistical 
method that models ground motion intensity with a relatively small number of parameters based on 
observation records; the source effects are described by magnitude, propagation path effects by attenuation 
models, and site effects by ground conditions [1–4]. This method can produce average prediction results. 
However, the trade-off for this feature is that it cannot account for complex fault rupture processes and 
subsurface structures that greatly impact ground motions. Therefore, some studies have introduced hanging-
wall effects, rupture directivity effects, and regional terms into GMPEs to reproduce more realistic ground 
motions (e.g., Japan: [5–7], the U.S.: the NGA-West2 (Enhancement of Next Generation of Attenuation 
Relationships for Western US) project [8–11]). 

 
On the other hand, the latter detailed method (upper right in Fig. 3-1) considers the three-dimensional 

geometry and rupture process of the source fault by setting a characterized source model and propagation 
path effects and site effects by setting a subsurface structure model [12–15]. This method can reproduce the 
fault rupture processes and the influence of the subsurface structure on seismic motion, and provide the 
time history waveforms of ground motions. However, the detailed method requires more parameters, 
computer resources, and time than the conventional method. 

 
In recent years, various attempts to use artificial intelligence (AI) have been actively made in the fields 

of seismology and earthquake engineering [16, 17]. In the aspect of ground motion prediction, prediction 
models for ground motion have been developed using AI (training data for the AI models: recorded data 
[18–26], simulation data [27]) (bottom right of Fig. 3-1). A hybrid predictor that combines AI with GMPE 
based on a physical model has also been proposed [28]. These AI models for ground motion prediction are 
an advanced version of GMPE; they can efficiently predict ground motion for various earthquakes with 
relatively high accuracy. However, these models target earthquakes caused by point-source; they cannot 
make predictions that directly reflect the detailed rupture process of the fault as the detailed method does. 
Therefore, it would be useful in various applications if the ground motion distribution for an arbitrary fault 
rupture scenario, as simulated by the detailed method, could be predicted easily and efficiently like the 
conventional method and AI models.  

 
The study in this chapter applies “mode decomposition and synthesis” and “modeling by machine 

learning (ML)” to the ground motion distributions calculated by the detailed method and constructs a 
simplified prediction model for ground motion distribution (bottom left of Fig. 3-1). Ref. [29] and Chapter 
2 propose methods to simulate many ground motion distributions using mode decomposition and synthesis. 
These methods generate ground motion distributions by random simulation using the spatial characteristics 
of the original distributions as a constraint. For future developments, the simulation of ground motion 
distribution in relation to the fault rupture scenario is a key issue. Therefore, this chapter models the 
relationship between fault rupture scenarios and modes, and applies it to a predictive ground motion 
distribution model. This model is a surrogate model of the detailed method (simplification of detailed 
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method), and its advantage is that it can simply predict the ground motion distribution from any 
characterized source model. In this chapter, four types of modeling (“multiple regression,” “support vector 
regression,” “random forest,” and “gradient boosting decision tree”) are performed, and their prediction 
accuracy is compared. 

 
3.2 outlines how to build a prediction model of ground motion distribution based on mode 

decomposition/synthesis and machine learning modeling. Then, 3.3 describes the mode decomposition of 
the ground motion distributions, and 3.4 describes the machine learning modeling. Next, 3.5 presents the 
results of applying the mode decomposition. 3.6 constructs the prediction model for ground motion 
distribution. 3.7 evaluates the validity of the proposed model by comparing the prediction results from the 
proposed prediction model with those from the detailed method. Finally, 3.8 summarizes the conclusions 
obtained in this chapter. 

 
 
 
 

 
Figure 3-1. Overview of ground motion prediction methods.  
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3.2 Simplified Prediction Model for Ground Motion Distribution
 

Figure. 3-2 shows an image of the simplified prediction model for ground motion distribution proposed 
in this study; the construction procedure is described below. First, the mode decomposition is applied to the 
ground motion distributions calculated by SGM simulation on the specific source fault to extract three 
elements: “spatial distribution of modes (mode shape)” which represent the spatial characteristics of ground 
motion, “singular values” which are weights for each mode, and “weight coefficients” for each mode 
corresponding to each case. Next, the “weight coefficients” are modeled for each mode by the “parameters 
of the characterized source model (source parameters)” based on machine learning regression analysis, and 
a predictor of the weight coefficients is constructed. Finally, by inputting arbitrary source parameters 
(arbitrary case) into the weight coefficient predictor for each mode, its weight coefficients are predicted; 
the ground motion distribution is predicted by mode synthesis with predicted weight coefficients, the mode 
shapes, and singular values. 

 
 
 
 
 

 
Figure 3-2. Prediction model of strong ground motion distribution using “mode decomposition and 

synthesis” and “modeling by machine learning.” 
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3.3 Mode Decomposition and Synthesis of Ground Motion Distributions 
 

Let x denote a variable representing ground motion, and a ground motion map consisting of M sites is 
represented by a column vector x = (x1, …, xM)T. Thus, ground motion distribution maps for N cases of 
different parameter settings are described by the M × N (M > N) matrix X as follows:  

 
11 1

1

1

, ,
N

N

M MN

x x

x x
X x x  (3-1) 

where xij ( i M, j N) is ground motion at site i in the ground motion distribution of Case j. The 
rank of X is rank(X) = N. 
 

Then the matrix X is normalized using the mean μG and the standard deviation ıG of all N cases of 
ground motion maps. The normalized matrix X0 is expressed as Eq. (3-2). 
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where H is the M×N matrix in which all entries are 1. Next, singular value decomposition is applied to the 
matrix X0 [29]. 

 

T
11 1 1 11 1

T

1 1

0

0

N N

M MN N N NN

u u d v v

u u d v v
0X UDV  (3-4) 

 TU U I      T TV V VV I  (3-5) 
 
The matrices U, D, V and I in Eq. (3-4) and Eq. (3-5) have the following meanings. 

- The matrix U: The column vector of the k-th column k N), uk = (u1k, …, uMk)T, is the left 
singular vector that consists of orthogonal basis, where uik represents ground motion at 
the site i in Mode k. The left singular vector represents the mode shape that defines the 
spatial correlation in a set of ground motion distributions. A map of the left singular 
vector visualizes the spatial correlation between different sites. 

- The matrix D: The diagonal matrix whose diagonal entry dk is the singular value equivalent to the 
square root of eigenvalue in Mode k. The singular value represents the case-independent 
weight for each mode. 

- The matrix V: The column vector of the k-th column, vk = (v1k, …, vNk)T, is the right singular 
vector that consists of orthogonal basis, where vkj is the weight of Mode k in case j. The 
right singular vector represents the case-dependent weight for each mode; thus, these 
entries are the weight coefficients that characterize each case. 

- The matrix I: N×N identity matrix. 
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The matrix UD represents the fundamental structure dominating all cases of ground motion distributions 
and their spatial correlation. Based on the fundamental structure, the ground motion distribution of Case j 
is characterized by the j-th row vector of the matrix V. 

 
The weight coefficients of Mode 1–N for arbitrary characterized source model (arbitrary case) are 

described by an N-dimensional row vector vy as follows:  

 
y  1 y  , , Nv vyv  (3-6) 

The vector of weight coefficients is modally synthesized with UD in Eq. (3-4) to obtain an M-dimensional 
column vector y0.  

 T

1

N

k k y k
k

d v0 yy UDv u  (3-7) 

The ground motion distribution for arbitrary case is described as y = (y1, …, yM)T
 using y0. 

 
G G 0y h y  (3-8) 

where h is the M-dimensional column vector in which all entries are 1. As shown on the right side of Fig. 
3-2, if we can predict the weight coefficients for arbitrary characterized source model, we can avoid an 
SGM simulation and predict the ground motion distribution. The next section describes the weight 
coefficient prediction method. 
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3.4 Modeling Weight Coefficient 
 
3.4.1 Weight Coefficient Predictor and Prediction Model of Ground Motion Distribution 
 

The weight coefficients for each mode (element v of matrix V in Eq. (3-4)) are modeled by the 
parameters of the characterized source models (source parameters) based on the regression analysis of 
machine learning. The source parameters (number of parameters: p) are defined as the p-dimensional row 
vector s = (s1, …, sp). The issue covered in this chapter can be described as constructing a predictor with 
the source parameters s as the input-vector and the weight coefficient v̂ k for Mode k as the output-value, 
as follows:  
 ˆ ( )k kv f s  (3-9) 
From Eqs. (3-7) and (3-9), when the source parameters for arbitrary case is sy, its standardized ground 
motion distribution y0 is described as follows: 

 
1

( )
N

k k k
k

d f y0y u s  (3-10) 

The prediction model for ground motion distribution in Eq. (3-10) is a linear combination model of the 
mode shape. 

 
A dataset including n* n* < N) of source parameters and weight coefficients is used as the 

training data to construct the predictor. The source parameters for arbitrary case in the training data are 
described by the p-dimensional row vector sL = (sL 1, …, sL p), and the training dataset of the source 
parameters is described by the n* × p matrix SL. The weight coefficients for arbitrary case in the training 
data are by the n*-dimensional column vector vL = (vL 1, …, vL n*)T, and the training dataset of the weight 
coefficients is described by the n* × N matrix VL. 
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This study uses four methods for modeling weight coefficient: “multiple regression,” which is the 

simplest method, “support vector regression,” which can handle linear and nonlinear data through kernel 
methods, and “random forest,” and “gradient boosting decision tree,” which often show high prediction 
accuracy. The following paragraphs outline each of these methods.  
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3.4.2 Multiple Regression [30, 31] 
 
The first is a multiple regression (MR). MR-predictor is a linear combination model in which the 

objective variable is a linear function of the explanatory variables, and the relationship between the training 
data weight coefficients vL and the source parameter SL are described as follows: 

 

0

1 11 1 1 1

0

* *1 * *

L L L p

L n L n L n p p n

b

v s s b e
b

v s s b e

L Lv S b e

 (3-13) 

where b0 is a scalar quantity called bias, and b is a p-dimensional column vector whose elements are the 
regression coefficients bl l p). e is a residual vector with n* entries. The MR is formulated as an 
optimization problem (the least squares method) to minimize the sum of squares of the residual vectors 
||e||2=eTe, as follows:  

 
0

* 22
* 0 ( *), * 1

min min
n

j jb j
v b Lb

e s b  (3-14) 

Thus, the MR-predictor fMR (s) is described as follows:  

 0 0 1 1( )MLR p pf b b b s b ss sb  (3-15) 

In this study, the explanatory variables are selected using a stepwise method, and the MR that minimizes 
Akaike’s information criterion (AIC) is used as the final MR-predictor for the weight coefficients.  
 

The main advantage of the MR-predictor is that the linearity of the regression coefficients makes the 
behavior of the predictor very easy to interpret (i.e., a white-box model). In contrast, it also has the fatal 
drawback of poor expressiveness due to the linearity concerning the explanatory variables, which is a trade-
off for the interpretability of the regression model. Furthermore, there is also the risk of multicollinearity 
when correlations are observed among the explanatory variables, among other drawbacks. 
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3.4.3 Support Vector Regression [30, 32, 33] 
 

Support vector regression (SVR) is an extension of support vector machine (SVM), a popular method 
for 2-class classification problems, to regression problems. The SVR-predictor fSVR (s) is described as 
follows: 

 ( )SVR SVRf bs s w  (3-16) 

where w is the weight vector and bSVR is the bias. ĭ is the mapping function, and a ĭ (s) is obtained by a 
nonlinear mapping of the input vector s to a higher-dimensional feature space. SVR is formulated as an 
optimization problem using an İ-insensitive loss function based on the insensitivity parameter İ as 
shown in Fig. 3-3, instead of the squared error loss function used in MR. 

 
*

2
* ( *), * 1

1min max 0, ( )
2SVR

n

j SVR jb j
C v f Lw

s w  (3-17) 

where C is the regularization parameter that determines the penalty for data exceeding İ and controls the 
trade-off between training data and model complexity. The tolerance error İ function (the first term in Eq. 
(3-17)) is consistent with the minimum absolute error method when = 0. Note that C and İ are 
hyperparameters that must be set a priori. 
 
 
 
 

   
 Figure 3-3. İ-insensitive loss function. Figure 3-4. İ-tube and slack variables for SVR. 
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The optimization problem in Eq. (3-17) can be represented by introducing the slack variables ȟj*  
ȟ*j* j* = 1, …, n*) as follows:  
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 (3-18) 

The constraint allows the points of the training data to lie outside the İ-tube (the area indicated by both 
arrows in Fig. 3-3), which is the error dead band. Fig. 3-4 shows an image of the relationship between the 
regression model, the İ-tube (blue area), and the slack coefficients. ȟj* > 0 and ȟ*j* = 0 hold for points 
located above the -tube, and ȟj* = 0 and ȟ*j* > 0 hold for points located below. For points inside the İ-tube, 
ȟj* = ȟ*j* = 0 holds. Eq. (3-18) can be optimized by solving the following Lagrange function LSVR using the 
Lagrange multipliers Įj* Į*j* ȝj* ȝ*j* . 
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Partial derivative Eq. (3-19) with w: 
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By performing partial differentiation for bSVR, ȟj* and ȟ*j* in the same way and transforming the Lagrange 
functions using them, the SVR optimization problem (Eqs. (3-17) and (3-18)) can be formulated as a 
quadratic programming problem that maximizes the following equation:  
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 (3-21) 

where a kernel function K () is the inner product of ĭ (s) as follows:  

 
T

( *) ( *) ( *) ( *),i j i jK L L L Ls s s s  (3-22) 

 
Assigning Eq. (3-16) to Eq. (3-20), the SVR-predictor can be described as follows: 

 
*

* *
* 1

( ) * ,
n

SVR j j SVR
j

f K bLs s s  (3-23) 

This equation shows that SVR does not require direct computation of ĭ (s) but only its inner product. This 
mapping of a higher-dimensional space using kernel functions is called a “kernel trick” or “kernel 
substitution.” This study uses the radial basis function (RBF) kernel, which can realize nonlinear models 
and perform well for various data types. 

 2, expK L Ls s s s  (3-24) 
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where Ȗ is a hyperparameter representing the range of influence (precisely, the reciprocal of the radius of 
influence) for each case in the training data. In other words, the smaller Ȗ is, the greater the influence of the 
individual data, resulting in a simple decision boundary, and the larger Ȗ is, the smaller the range of influence 
of the data, resulting in a more complex decision boundary. 

 
SVR has the advantage of handling a wide range of data, from linear to nonlinear, and is less susceptible 

to noise in the training data, making it difficult to over-learn. However, it has the disadvantage that the 
combination of hyperparameters and kernels is complex, making it difficult to construct an optimal model. 
In addition, the trade-off for high prediction accuracy is low model interpretability, as with the random 
forest and gradient boosting decision trees. 
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3.4.4 Decision Tree [30–32, 34]
 
Next, the decision tree, which is the basis of “random forest” and “gradient boosting decision tree” 

algorithms, is described in the outline. As shown in Fig. 3-5, a decision tree is a tree structure-based learner 
that performs classification (in this case, the decision tree is called a classification tree) or regression 
(regression tree) by dividing the input space into multi-dimensional cuboid regions with two branching 
nodes. Although decision trees do not have high predictive accuracy, they have a clear structure and can be 
interpreted intuitively. In contrast, decision trees can only consider one explanatory variable per partition 
and, therefore, can only draw partition lines orthogonal to the axis of the explanatory variable being 
considered, which may not reflect the relationship between the explanatory variable and the objective 
variable well. In the following, the decision tree-predictor for an input vector s is denoted by fTree (s). 
 
 

   

 (a) Tree structure (b) Divide data based on tree structure 
Figure 3-5. Decision tree model. 
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3.4.5 Random Forest [30–32, 34] 
 
Random forest (RF) is a model based on bootstrap aggregating (bagging), an ensemble method that 

combines multiple training units (in this case, decision trees) to achieve high prediction accuracy. Bagging 
is a method in which multiple models of the same type (decision trees in RF) are created in parallel for a 
training subset (the same number of samples as training data) created by the bootstrap method (overlapping 
sampling), and the average of their predictions is used as the prediction result. In addition to bootstrap 
sampling, RF constructs the training subset by sampling only some of the explanatory variables. As shown 
in Fig. 3-6, the RF-predictor fRF (S) is described as follows: 

 ( )

1

1 ( )
K

k
RF Tree

k
f f

K
s s  (3-25) 

where K is the number of decision trees constituting the RF-predictor, and fTree
(k) is the k-th decision tree. In 

RF, sampling training data and explanatory variables allow the construction of decision trees with diversity 
(i.e., decision trees that are low in correlation with each other), thus reducing the variance of the prediction 
results. Typical hyperparameters of RF are the number of decision trees K (Eq. (3-25)) and the number of 
explanatory variables used in the decision tree. 
 
 
 
 
 

 
Figure 3-6. Random forest. 
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The decision tree’s node splitting condition for RF in the regression problem is expressed as the 
minimization of the mean squared error between the training data and the predictions as follows: 

 
2 21 1ˆ ˆmin

R R L L

R L

j j j j
j jR L

v v v v
n n

R LD D
 (3-26) 

where nR and nL are the total number of samples divided into two parts at the target node, respectively, and 
DR and DL are the sets of training subsets for each of the two parts. v̂ is the predicted value of the weight 
coefficient at the target node. 

 
The advantages of RF are its high performance for most problems, its ease of achieving high accuracy 

without adjusting hyperparameters, and its ability to account for interactions among explanatory variables. 
In addition, while the prediction accuracy of machine learning models is greatly affected by the 
standardization of explanatory variables, RF based on bifurcated decision trees focuses only on large and 
small values of explanatory variables, thus eliminating the need for standardization. One disadvantage is 
the relatively large number of hyperparameters, but a certain degree of prediction accuracy can be achieved 
without tuning. 
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3.4.6 Gradient Boosting Decision Tree [30–32, 34]
 

Gradient boosting decision tree (GBDT) is a model that achieves high performance by combining 
multiple decision trees based on boosting in the ensemble method. Specifically, as shown in Fig. 3-7, the 
first decision tree is constructed from training data; the second and subsequent decision trees are 
sequentially trained on the difference between the “objective variable” and the “sum of the predictions of 
the previously constructed decision trees.” The more decision trees are created, the more the bias is reduced, 
and the weights (influence) of the decision trees gradually decrease. The GBDT-predictor fGBDT (s) is 
described as follows: 

 ( )

1
( )

K
k

GBDT Tree
k

f fs s  (3-27) 

where K is the number of decision trees constituting the GBDT-predictor. 
 
 
 
 
 

 
Figure 3-7. Gradient boosting decision tree. 
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This study uses the framework xgboost [35] to construct the GBDT. The objective function LGBDT in 
xgboost is formulated as follows. 
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The loss function l is the error between the objective variable and the predictions, which in the LGBDT is the 
sum of the errors for all training data. In the regularization term k fTree

(k)(sL) ), Ȗ is a hyperparameter that 
represents the penalty on the number of leaves T(k) in the k-th decision tree; increasing its value prevents 
the model from becoming too complex. Į and Ȝ are hyperparameters related to the L1 and L2 regularization 
terms for the leaf weights, respectively, and larger values prevent overlearning. w(k) = (w(k)

1, …, w(k)
T) is 

T(k)-dimensional vector whose entries are the values w(k  of the leaf nodes in the k-th decision tree (the 
average value of the training subset contained in the leaf nodes, i.e., the prediction value obtained with 
fTree

(k)). Next, the objective function for training the k-th decision tree (i.e., the recurrence formula in Eq. (3-
28)) is expressed as follows: 
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By finding w(k) such that this LGBDT
(k) is minimized, the GBDT-predictor fGBDT (s) is constructed. In addition 

to the regularization term, xgboost also includes the following innovations to suppress overlearning. For 
example, regularization by shrinkage for the second and subsequent decision trees, sampling of training 
data and explanatory variables when constructing decision trees, limiting the depth of decision trees, and 
setting a minimum number of samples when splitting nodes. Among these, the regularization by shrinkage 
is explained below. In Eq. (3-27), the predictions from the first decision tree are corrected directly with the 
optimal w obtained in Eq. (3-29); however, there is a high possibility that overlearning will occur if this is 
not done. Applying a learning rate Ș (0 < Ș to the second and subsequent decision trees gradually 
compensates for errors in the predictions made by the first decision tree, thereby preventing overlearning. 
By introducing the learning rate into Eq. (3-27), the GBDT-predictor can be described as follows: 

 (1) ( )

2
( ) ( )

K
k

GBDT Tree Tree
k

f f fs s s  (3-30) 

 
The GBDT has similar advantages to the RF and generally shows higher accuracy than the RF. However, 

because decision trees in GBDT are serially arranged, model training time is longer, and over-training is 
more likely to occur than in RF, where decision trees are arranged in parallel. Parameter tuning is also 
essential to achieve high performance with GBDT, but many hyperparameters make tuning difficult. 
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3.5 Mode Decomposition of Ground Motion Distributions 
 

As in Chapter 2, this chapter presents a numerical example using the distribution of absolute 
acceleration response spectrum (SA) of periods 0.1–2.0 s and two horizontal components (FN: Fault-Normal, 
FP: Fault-Parallel) for 600 cases [36]. The prediction model for ground motion distribution constructed in 
this study is a surrogate model of the stochastic Green’s function method [15], and the target is an 
earthquake that occurs on a strike-slip fault consisting of a single fault plane. 
 
3.5.1 Contribution Ratio of Mode 

 
The mode decomposition method using singular value decomposition is applied to the distributions of 

SA for 600 cases by period and component. Fig. 3-8 shows the cumulative ratio of eigenvalues (square of 
the singular value, which is the diagonal entries of the matrix D), and Fig. 3-9 shows the contribution ratio 
from the 2nd-order mode to the 20th-order mode. First, a common feature of both components is that the 
contributions of Mode 1 are significantly larger than that of the other. Modes 2–3 also have large 
contribution in all periods, while Modes 4–6 contributions decrease. The mode contribution ratio exceeds 
1/600 (= 0.167 %, the dashed brown line in Fig. 3-9) only for Mode 1 through Modes 4–9; for the higher 
modes, the information content is less than 1 case. At period 2.0 s, the proportion of Modes 2–3 in both 
components is larger than in other periods. The reason for this is discussed in Chapter 4. 
 
 

 

 (a) FN component (b) FP component 
Figure 3-8. Cumulative contribution ratio of the eigenvalue (square of singular value). 

 
 

 

 (a) FN component (b) FP component 
Figure 3-9. Contribution ratio from 2nd to 20th order mode.  
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3.5.2 Mode Shape
 
Figure. 3-10 and Fig. 3-11 show the spatial distributions of left singular vectors (the column vector of 

the matrix U), i.e., mode shape, in the FN and FP components, respectively (due to space limitations, only 
Modes 1–6 with periods 0.5, 1.0, 2.0 s are shown). The mode shape represents the spatial characteristics of 
ground motion (e.g., distance attenuation of ground motion and expansion of strong ground motion caused 
by fault rupture propagation). A red point is a positive value, and a blue point is a negative value; a 
correlation between points with the same (or different) sign is a positive (or negative) correlation. The 
characteristics of the mode shape and their dominant factors are analyzed in Chapter 4. 

 
 

 
(a) Period 0.5 sec 

 
(b) Period 1.0 s 

 
(c) Period 2.0 s 

Figure 3-10. Mode shape in FN component. 
 
 

 
(a) Period 0.5 s 

 
(b) Period 1.0 s 

 
(c) Period 2.0 s 

Figure 3-11. Mode shape in FP component.  
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3.5.3 Mean and Standard Deviation of Weight Coefficients 
 
The entries of the right singular vector (the column vector of the matrix V) are the weight coefficients that 

characterize each case. The mean value of the weight coefficients for Mode 1 is 0.0408 (= N -1/2), regardless 
of period or component. The coefficients of variation ranged 1.8–6.4 %, with both components being larger 
for longer periods. The mean values for Mode 2 and higher are 0, and the standard deviations are 0.0408 
(= N -1/2). 
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3.6 Simplified Prediction Model for Ground Motion Distribution based on Mode Decomposition 
and Machine Learning 

 
3.6.1 Input Data and Hyperparameters 

 
Table. 3-1 summarizes the source parameters (i.e., the features) used in modeling the weight coefficients. 

Fig. 3-12 shows an image of the location of the hypocenter and asperities for the quantitative variables. Fig. 
3-13 shows the images of the classifications of horizontal and vertical arrangement patterns of qualitative 
variables. These patterns are set up by classifying each case according to the location of large and small 
asperities and hypocenter. For the horizontal position, let XL and XS denote the center of gravity of the large 
and small asperities, respectively. Similarly, for the vertical position, let YL, and YS be the centers of gravity 
of the large and small asperities, respectively. 

 
Horizontal arrangement pattern: four patterns (Fig. 3-13 (a)) 

- Horizontal pattern 1 (black) : XL < XS, and the hypocenter is located at the south end of asperity 
- Horizontal pattern 2 (red) : XL < XS, and the hypocenter is located at the north end of asperity 
- Horizontal pattern 3 (blue) : XL XS, and the hypocenter is located at the south end of asperity 
- Horizontal pattern 4 (green) : XL XS, and the hypocenter is located at the north end of asperity 

 
Vertical arrangement pattern: two patterns (Fig. 3-13 (b)) 

- Vertical pattern 1 (black) : YL < YS 
- Vertical pattern 2 (red) : YL YS 

 
For qualitative variables, the MR and SVR were assigned numerical values (0 or 1) by one-hot encoding, 
while the RF and GBDT were assigned by label encoding according to the pattern numbers shown in Fig. 
3-13.  
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Table 3-1. Features for modeling 

 

 
 

 
Figure 3-12. Image of the horizontal and vertical location of hypocenter and large and small asperity. 

 
 

 
 (a) Horizontal pattern classifications (b) Vertical pattern classifications 

Figure 3-13. Classification by asperities arrangement and hypocenter position. 

Variable
Type Abbreviation

M0

Vr

Horizontal position [km] Hypo.H

Vertical position [km] Hypo.V

Horizontal position [km] aspL.H

Vertical position [km] aspL.V

Horizontal position [km] aspS.H

Vertical position [km] aspS.V

ratio

Horizontal
arrangement pattern Hor.P

Vertical
arrangement pattern Ver.P

Qualitative
Variable

Classification by
asperities arrangement and

hypocenter position
 (Fig. 3-13)

Feature

Quantitative
Variable

Seismic moment [dyne*cm]
(common logarithmic conversion)

Rupture velocity [km/s]

Hypocenter

(Fig. 3-12 Orange)

Large asperity

(Fig. 3-12 Blue)

Small asperity

(Fig. 3-12 Green)

Ratio between
combined asperity area and total rupture area

South North

Large asperity

Hypocenter

Small asperity
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This study randomly divided the data set of all 600 cases (weight coefficients and source parameters) 
into 500 cases as training data and 100 cases as test data. Fig. 3-14 shows the seismic moment, rupture 
propagation velocity, and horizontal hypocenter location for the original (all 600 cases), the training (500 
cases) and test (100 cases) data. Compared to the original data (left), the training data (center) and the test 
data (right) show no bias in the data. 

 
 
 
 
 

 
 (a-1) Original: seismic moment (b-1) Training: seismic moment (c-1) Test: seismic moment 
 
 

 
 (a-2) Original: rupture velocity (b-2) Training: rupture velocity (c-2) Test: rupture velocity 
 
 

 
 (a-3) Original: Horizontal (b-3) Training: Horizontal (c-3) Test: Horizontal 
 hypocenter location  hypocenter location hypocenter location 
Figure 3-14. Frequency distribution of source parameters in original data (600 cases, left), learning data 

(500 cases, center) and test data (100 cases, right). 
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This chapter applied each of the four regression methods (MR, SVR, RF and GBDT) described in 3.4 
to the training data and constructed predictors of weight coefficient for each period component and mode. 
The hyperparameters of SVR, RF and GBDT were the same for all five periods, both components and all 
modes, and were determined exploratively by grid search, subject to minimizing the root mean square error 
(RMSE) between the weight coefficients and predicted values. Typical hyperparameters for each model are 
listed below. 

 
SVR: Support Vector Machine 

-  Regularization parameter C : 10 
-  Insensitivity parameter İ : 0.05 
-  Range of influence for training data Ȗ : 0.03 
 

RF: Random Forest 
-  Number of decision trees K: 500 
-  Number of explanatory variables in a decision tree:  
 Determined by the Function tuneRF() in the program package “randomForest” [37]  

 
GBDT: Gradient Boosting Decision Tree 

-  Number of decision trees K : 1500 
-  Maximum depth of tree : 4 
-  Minimum node weights required for branching : 6 
-  Sampling rate of features in tree :0.8 
-  Sampling rate of explanatory variables in tree : 0.7 
-  L1 regularization term Į : 0 
-  L2 regularization term Ȝ : 1 
-  Learning rate Ș : 0.01 
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3.6.2 Weight Coefficient Predictor 
 
Figure. 3-15 shows the predicted weight coefficients (T = 2.0 s, FN component) by the four predictors 

(MR, SVR, RF and GBDT). For all three predictors except MR, the predictions for Mode 1–3 are located 
around the 45-degree line, and the RMSE of the predictions is sufficiently small. Note that, in common 
with all modes, the prediction tends to be slightly overestimated when the weight coefficient (correct value) 
is small (left side of the horizontal axis) and slightly underestimated when the weight coefficient is large 
(right side of the horizontal axis). This is due to the nature of the prediction method itself (the prediction of 
RF or GBDT: the average or sum of the leaves of the decision trees), and it is possible that the error will 
decrease as the training data increases. 

 
The weight coefficients for Modes 1–3, which have the largest contributions (Modes 1–3 in order: 

92.16%, 2.89%, 1.85%), are accurately modeled by the source parameters. In contrast, some modes above 
Mode 4 have larger RMSEs, and the range of predictions tended to be narrower relative to the range of 
correct values (i.e., the explanatory power of the source parameters was low). These trends were common 
to all four methods and were more pronounced for the higher-order modes. However, the contributions of 
these modes (Modes 4–6 in order: 0.35%, 0.28%, 0.19%) are sufficiently small to have a small effect on 
the ground motion distribution. The same trend was observed for the FN component with periods 0.1–1.0 
s and the FP component.  

 
Figure. 3-16 and Fig.3-17 show the RMSEs of the predicted weight coefficients for Modes 1–10 in the 

FN and FP components, respectively. The RMSEs for the lower-order modes are small, while the RMSEs 
for the high-order modes are large. The RMSEs of the RF- and GBDT-predictors are often smaller than the 
MR- and SVR-predictors, regardless of period, component, or mode. 
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(a) MR-predictor 

 

 
(b) SVR-predictor 

 

 
(c) RF-predictor 

 

 
(d) GBDT-predictor 

(Black: training data, red: test data, black dashed line: mean of weights coefficients for 600 cases) 
Figure 3-15. Scatter plot of weight coefficients (horizontal axis) and predicted values (vertical axis) for 

600 cases in period 2.0 s - FN component. 
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 (a) Period 0.1 s (b) Period 0.5 s (c) Period 0.75 s (d) Period 1.0 s (e) Period 2.0 s 
Figure 3-16. RMSE of predicted weight coefficients for 100 test cases in FN component. 

 
 

 

 (a) Period 0.1 s (b) Period 0.5 s (c) Period 0.75 s (d) Period 1.0 s (e) Period 2.0 s 
Figure 3-17. RMSE of predicted weight coefficients for 100 test cases in FP component. 

 
 



86 
 

3.6.3 Consideration of Number of Modes to be Used in Prediction Model 
 
Next, the ground motion distribution is predicted by mode synthesis of the weight coefficients obtained 

by inputting any source parameters into the weight coefficient predictor. Fig. 3-18 shows the RMSE 
between the ground motions from the SGM simulation and those predicted by the GBDT-model for each 
number of modes used (synthesized) in the prediction. The decrease in RMSE with the increase in the 
number of modes used for prediction is particularly pronounced for Modes 1–3. However, some decrease 
is also observed for the higher modes. Thus, this study uses up to Mode 15 as a sufficient number of modes 
for the prediction and constructs a model for the ground motion distribution. The next section provides 
some examples of prediction models. 

 
 
 
 
 

 

Figure 3-18. RMSE of ground motion distribution (T = 2.0 s, FN component) by number of modes used 
for prediction in GMPR-model. 
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3.7 Prediction Performance Evaluation of Prediction Model for Ground Motion Distribution 
 
The prediction performance is evaluated by comparing the ground motion distribution predicted by the 

prediction model in this study with the distribution calculated by the SGM simulation for the test data. Fig. 
3-19 shows the five fault rupture scenarios included in the test data; Fig. 3-20 shows the ground motion 
distributions of the SGM simulation and predicted by the four prediction models (MR, SVR, RF and GBDT) 
for FN component in period 2.0 s. 

 
The fault models of Case 86 and Case 289 (Fig. 3-19, left two) show that rupture propagates unilaterally 

from the southern end of the fault bottom, where the hypocenter is located, to the northern end of the fault 
top. In the ground motion distribution calculated by SGM simulation (Fig. 3-20 (a)), the strong-motion area, 
log10(SA [cm/s2]) = 1.2 (yellow area in the figure) and larger, spreads from the fault to the northern part of 
the map, reflecting this rupture process. The ground motion distributions predicted by the prediction model 
(Figs. 3-20 (b)-(e)) also reproduce the spreading of the strong motion zone from the fault to the northern 
part of the map. Next, attention is paid to the difference between the fault rupture scenarios in these two 
cases. The fault model of Case 86 has large and small asperities in the direction of rupture progression from 
the bottom to the top of the fault, while Case 289 has asperities in the direction of rupture progression from 
the southern to the northern part of the fault. Therefore, in the distributions calculated by SGM simulation, 
Case 289 shows a stronger impact of forward directivity effect to the north than Case 86. All three prediction 
models except MR-model reproduce this difference between cases. 

 
In Case 351 (Fig. 3-19 and Fig. 3-20, middle), the ground motion distribution by SGM simulation 

reflects the effect of the unilateral rupture propagation from the northern to the southern part of the fault, 
and the strong motion zone spreads from the fault to the south. The distributions by the prediction models 
also reproduce this spatial trend. 

 
The fault models of Case 410 and Case 569 (Fig. 3-19, right two) show that the hypocenter is located 

near the center of the fault; the rupture propagates bilaterally from the center of the fault in the north-south 
direction. The distributions by the SGM simulation (Fig. 3-20 (a)) show that strong motion zone spreads in 
the north-south direction. The distribution by the prediction models (Figs. 3-20 (b)–(e)) also reproduces the 
north-south bilateral rupture propagation. Case 410 has a large asperity in the southern part of the fault, and 
the SGM simulation results show particularly strong ground motion in the southern part of the map. Case 
569, in contrast, has a large asperity in the northern part of the fault, and the SGM simulation results are 
stronger in the northern part of the map. The differences between these cases also appear in the prediction 
models. 

 
The results show that the ground motion distribution by the prediction model can represent different 

fault rupture scenarios and roughly reproduce the fault rupture’s spatial trend. 
 
Figure. 3-21 shows the scatter plots of the ground motion calculated by SGM simulation and predicted 

by the prediction model. The MR tends to overestimate the strong ground motion, and its RMSE is larger 
than the other three prediction models. In contrast, the SVR, RF and GBDT results are located around the 
45-degree line, indicating that they can reproduce the strong ground motions.  
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Figure 3-19. Some fault rupture scenarios in test data. 

 

 
 (a) SGM simulation (original data) 

 
 (b) MR-model 

 
 (c) SVR-model 

 
 (d) RF-model 

 
 (e) GBDT-model 
 Figure 3-20. Distribution of SA (T = 2.0 s, FN component). 
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(a) MR-model 

 

 
(b) SVR-model 

 

 
(c) RF-model 

 

 
(d) GBDT-model 

(Color coding follows original SA value calculated by SGM simulation (a legend in Fig. 3-20). “RMSE_all” 
is the predicted RMSE for the entire area, and “RMSE_high” is the RMSE for the strong-motion points 
(gray box; horizontal axis  1.2).) 
Figure 3-21. Scatter plot of SA (T = 2.0 s, FN component) calculated by SGM simulation (horizontal axis) 

and predicted values (vertical axis).  
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Finally, the predicted accuracies of the four prediction models are compared. Fig. 3-22 shows the RMSE 
distribution of predicted ground motion of FN component in the entire map for the 100 cases of test data. 
Furthermore, Fig. 3-23 shows the RMSE distribution of FN component limited to the points with strong-
motion (periods 0.1–2.0 s in order: log10(SA [cm/s2]) = 2.5, 2.2, 2, 1.7, and 1.2 and larger) for the test data; 
the RMSE at period 2.0 s corresponds to the gray box in Fig. 3-21. Fig. 3-24 and Fig. 3-25 also show the 
RMSE distribution of FP component in the entire map and the strong-motion area, respectively. The model 
with the highest prediction accuracy is the GBDT-model, which is based on an ensemble method of decision 
trees. The RF-model, which is also based on decision trees, has the second-highest prediction accuracy. The 
third most accurate method is the SVR-model, which can handle a wide range of data using a kernel method. 
The difference between the RF- and SVR-model is small for RMSE in the strong-motion area. Finally, the 
MR-model has the lowest prediction accuracy because it cannot express nonlinearity.  

 
The differences in prediction accuracy among the models are distinct for longer periods when the 

directivity effect and the radiation pattern are more significant. Since these characteristics are strongly 
influenced by the combined effects of multiple source parameters, the RF- and GBDT-model, which can 
reflect the interaction between the factors, are considered to have higher prediction accuracy than the other 
two models. In contrast, there is no clear differences among the four models for period 0.1 s. This trend 
may be attributed to the dominant effect of distance attenuation for ground motions in period 0.1 s, which 
has a relatively simple relationship with the source parameters. 

 
These results show that a simplified prediction model based on mode decomposition and machine 

learning can predict ground motion distribution reflecting the source characteristics, such as the fault 
rupture process, by inputting arbitrary fault rupture scenarios (source parameters) into the model. In other 
words, a surrogate model for a detailed method (in this case, the stochastic Green’s function method [15]) 
could be constructed by combining mode decomposition and machine learning. As the prediction model, 
the GBDT-model, which shows high prediction accuracy for all periods and components, should be adopted. 
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 (a) Period 0.1 s (b) Period 0.5 s (c) Period 0.75 s (d) Period 1.0 s (e) Period 2.0 s 

Figure 3-22. RMSE distribution of predicted SA of FN component in entire map for 100 test cases. 

 

 
 (a) Period 0.1 s (b) Period 0.5 s (c) Period 0.75 s (d) Period 1.0 s (e) Period 2.0 s 

Figure 3-23. RMSE distribution of predicted SA of FN component in strong-motion area for 100 test cases. 
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 (a) Period 0.1 s (b) Period 0.5 s (c) Period 0.75 s (d) Period 1.0 s (e) Period 2.0 s 

Figure 3-24. RMSE distribution of predicted SA of FP component in the entire map for 100 test cases. 
 
 

 
 (a) Period 0.1 s (b) Period 0.5 s (c) Period 0.75 s (d) Period 1.0 s (e) Period 2.0 s 

Figure 3-25. RMSE distribution of predicted SA of FP component in the strong-motion area for 100 test cases. 
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3.8 Conclusion 
 
This chapter proposes a simplified prediction model of ground motion distribution based on mode 

decomposition and machine learning as a surrogate model for a detailed method based on SGM simulation. 
As a numerical example, a prediction model was constructed for the distribution of the absolute acceleration 
response spectrum (periods 0.1–2.0 s, FN and FP components) [36] for a strike-slip fault calculated by the 
stochastic Green’s function method [15]. The major conclusions are listed below. 

 
1) Mode decomposition was applied to the distributions of SA by period and component, then mode 

shapes, singular values and weight coefficients were obtained. Next, a weight coefficient predictor was 
constructed using the source parameters as explanatory variables. Multiple regression, support 
vector regression, random forest, and gradient boosting decision trees were used for the 
modeling, respectively. By inputting arbitrary fault rupture scenario (source parameters) into the 
predictor, the three predictors, except MR, could predict the weight coefficients for Modes 1–3, which 
have high contribution ratios, with high prediction accuracy. 
 

2) By mode synthesis of the predicted weight coefficients, mode shapes, and singular values, the ground 
motion distribution for arbitrary fault rupture scenario was predicted. The predicted distribution shows 
spatial characteristics of ground motion corresponding to the fault rupture scenario, which roughly 
reproduces the ground motion distribution calculated by the detailed method. 
 

3) The differences in prediction accuracy among the four models were not seen in period 0.1 s where the 
effect of distance attenuation was dominant. However, they were seen in long periods where the 
directivity effect and radiation pattern were more significant than in short periods. The models with 
the highest prediction accuracy among the four models were GBDT. 

 
This chapter unifies the hyperparameters for all periods, all components, and all modes for simplicity. 

Therefore, the prediction accuracy is expected to be improved by tuning the hyperparameters for each mode and 
adding new feature (i.e., “feature engineering”). The prediction model of ground motion distribution 
developed in this chapter is based on a single event caused by a single strike-slip fault. Therefore, the future 
study will construct a prediction model for earthquakes on various fault types, including reverse fault. 
Furthermore, applying this prediction model to seismic risk assessment will be the subject of future 
developments. 
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4.1 Introduction 
 
The research objective is to cover a wide variety of possible ground motion distributions, including those 

that may occur in the future, in several pre-estimated scenario ground motion distributions. Since the 
diversity of ground motion distributions depends on the fault rupture scenarios, it is necessary to clarify the 
relationship between the set values of the fault rupture scenarios (source parameters) and the ground motion 
distributions. Therefore, this chapter analyzes the effect of variations in the source parameters on the ground 
motion distributions. 

 
There have been many quantitative evaluations on the effect of different source parameters (e.g., location, 

area, and intensity of asperities, location of the hypocenter, and rupture velocity) on the spatial distribution 
of ground motion variability [1–8] (see Chapter 1 for details). These studies [1–8] focused on the spatial 
distribution of variability. In contrast, this chapter presents an analysis focusing on the spatial distribution 
of variation and its spatial correlation structure (hereafter referred to as “spatial characteristics”). 

 
A quantitative evaluation method for spatial characteristics of several ground motion distributions is the 

“mode decomposition method using singular value decomposition” proposed by Nojima et al. [9]. This 
method is unique and distinctive because it can evaluate the spatial correlation structure for each mode. We 
have previously used this method to analyze the spatial characteristics of measured seismic intensity 
distributions (Scenario Earthquake Shaking Maps) for 4–12 cases of fault rupture scenarios [9–11]. 
However, the limited number of scenarios has limited the diversity of the variability that can be expressed. 
In addition, because the measured seismic intensity was used as the target, it was impossible to examine 
the period dependence and component dependence. 

 
This chapter evaluates the spatial characteristics of various ground motion distributions by period and 

components. As before, the distributions of absolute acceleration response spectrum (SA) by period and 
component for 600 cases caused by a strike-slip fault [7] are used for the analysis. In addition, this chapter 
attempts to clarify the combined effects of multiple source parameter settings on the ground motion 
distributions by considering the interaction effects among the source parameters and the resulting spatial 
characteristics for each case. Specifically, some machine learning model’s interpretation methods called 
“explainable AI” is applied to the weight coefficient predictor of each mode (Chapter 3) which is modeled 
on the relationship between the weight coefficients and the source parameters that may affect ground 
motions. Then, the relationship between the modes and the source parameters is comprehensively analyzed. 

 
Through the above attempts, this chapter aims to grasp the diversity of spatial characteristics expressed 

by the applied ground motion prediction method (here, the stochastic Green’s function method [12]) for a 
given source parameter. As described in 2.3, the ground model of the data in this study has a uniform 
horizontal stratification structure at all computation points, and the site amplification characteristics are the 
same at all points [7]. Therefore, the diversity of spatial characteristics for the ground motion distributions 
expressed in all cases can be considered to reflect only the effects of source rupture within the range of the 
characterized source model. Accordingly, the ground motion distributions in this chapter are expected to 
show a clearer relationship between source and spatial characteristics than Scenario Earthquake Shaking 
Maps in the previous studies [9–11] that reflect complex propagation path characteristics and site 
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characteristics by considering deep and shallow ground model. 
 
4.2 shows the mode decomposition results again and classifies the characteristics of the mode shape. 

Next, 4.3 outlines “explainable AI,” and 4.5 shows the results of interpreting the modes. Finally, 4.6 
summarizes the conclusions obtained in this chapter. 
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4.2 Mode Decomposition of Distributions of Absolute Acceleration Response Spectrum 
 
4.2.1 Mode Shape and Cluster Classification 

 
As in Chapter 3, the mode decomposition is applied to the distributions of SA (period: T = 0.1, 0.5, 0.75, 

1.0, and 2.0 s, component: Fault-Normal (FN) and Fault-Parallel (FP)) for 600 cases [7] by period and 
component. Fig. 4-1 and Fig. 4-2 show the spatial distributions of the left singular vectors, which are mode 
shapes of the FN and FP components, respectively (mode shapes of period 0.5, 1.0, and 2.0 s are 
restatements of Fig. 3-10 and Fig. 3-11). The mode shape represents the spatial characteristics of ground 
motion; a correlation between points with the same (or different) sign is a positive (or negative) correlation. 

 
First, feature classification, or similarity evaluation, is performed to capture the general characteristics 

of the mode shapes of Modes 1–6 (60maps in total) in two horizontal components and 5-period bandwidth. 
ui and uj be the mode shapes (unit vectors) of Mode i and Mode j, respectively; the distance dij (i.e., 
dissimilarity) based on the cosine similarity Sij between modes is described as follows: 

 
1 1 cos( , ) 1 1

0 1

i j
ij ij i j i j

i j

ij

d S

d

u u
u u u u

u u  (4-1) 

The hierarchical cluster analysis is used as the analysis method, and the distance between clusters is defined 
by the group average method. 

 
Figure. 4-3 shows the dendrogram of the hierarchical cluster analysis. For k = 2 clusters, the similarity 

of mode shapes can be divided into “symmetric modes,” whose spatial distribution is symmetric around the 
perpendicular bisector of the fault, and “reverse modes,” whose distribution is reversed. The number of 
clusters for simply classifying Modes 1–6 is k = 10, and the classification results are shown in Table. 4-1. 
Cluster numbers are assigned in ascending order from lower-order modes to higher-order modes. Cluster a 
is hereafter denoted “Ca,” and the reverse mode is denoted “Ca*.”  

 
The symmetric mode C1 (black in Fig. 4-1 and Fig. 4-2) contains Mode 1 of all periods and both 

components, and C2 (red in Fig. 4-1 and Fig. 4-2)contains “mode with a spatial variation that positively 
correlated over the almost entire area.” In contrast, the reverse mode C3* (blue in Fig. 4-1 and Fig. 4-2) 
contains to “mode that roughly divides the entire area of the map into positive and negative areas.” The C1–
C3* modes appear in Modes 1–3 for most of all-period and two components. The cumulative contribution 
of Modes 1–3 is more than 94 % (Fig. 3-8), indicating that these modes almost completely define the ground 
motion distribution. In some periods and components, the C4–C10 modes do not appear in Table. 4-1, which 
shows Modes 1–6. 

 
The definition of the distance between clusters is given in Table. 4-2. The validity of the cluster analysis 
results from each method was compared by the Cohen correlation coefficient [13] (the correlation 
coefficient between the Cohen matrix representing the distance between clusters and the original distance 
matrix). The results confirmed that the group average method used in this study is the best definition, 
taking the maximum valu. 
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(a) Period 0.1 s 

 
(b) Period 0.5 s 

 
(c) Period 0.75 s 

 
(d) Period 1.0 s 

 
(e) Period 2.0 s 

Figure 4-1. Mode shape in FN component. (Color coding follows the classification in Fig. 4-3.)  
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(a) Period 0.1 s 

 
(b) Period 0.5 s 

 
(c) Period 0.75 s 

 
(d) Period 1.0 s 

 
(e) Period 2.0 s 

Figure 4-2. Mode shape in FP component. (Color coding follows the classification in Fig. 4-3.) 
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(The numbers at the bottom indicate the cluster number at k = 10; “*” indicates a reverse mode cluster. 

For example, “FP_0.75_3” is “Mode 3 in period 0.75 s and FP component”.) 
Figure 4-3. Dendrogram of mode shapes for Modes 1–6 in FN and FP components and the 5-period band. 
 
 

Table 4-1. Cluster number (k = 10) of mode shapes in FN and FP components of the 5-period band. 
(“*” indicates a reverse mode; brackets “()” indicate clusters with fewer than two modes of 

occurrence in the same component.) 

 

 
 

Table 4-2. Cophenetic correlation coefficient. (Red number is the maximum score.) 
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4.2.2 Mode Shape and Weight Coefficient 
 
The ground motion distribution xj for Case j j N = 600) can be described by a linearly coupled 

model with mode shape u and principal component scores dv (= singular value d × weight coefficient v) as 
follows:  

 
1

N

j k kj k
k

d vx u  (4-2) 

Here, the mode shape and singular value are common to all cases, while the values of weight coefficients 
differ from case to case. Therefore, it can be said that the spatial characteristics of ground motion 
distributions for 600 cases are defined by the mode shapes common to all cases, and the weight coefficients 
define the differences among the cases. 

 
The study in this chapter focuses on the weight coefficients for each mode and examines the mode’s 

dominant factors, considering the interaction effects among the source parameters and the resulting spatial 
characteristics for each case. Considering that the modes are affected by the combined effects of the source 
parameters, the input-output relationship of the weight coefficient predictor (Chapter 3) with all possible 
source parameters as explanatory variables for influence on the ground motion distribution is clarified. 
Specifically, “explainable AI” is applied to the weight coefficient predictor based on random forest, which 
has obtained relatively good results among the prediction models proposed in Chapter 3. 
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4.3 Interpretable Machine Learning “Explainable AI” 
 
4.3.1 Explainable AI 

 
“Explainable AI (XAI)” or “Interpretable Machine Learning (IML)” are interpretation methods for 

machine learning models [14–16]. This section uses the following four methods of XAI.  
- Permutation Feature Importance (PFI)  
- Individual Conditional Expectation Plot (ICE) 
- Partial Dependence Plot (PD) 
- Accumulated Local Effects Plot (ALE) 

Each of these features is described below. 
 
 

4.3.2 Permutation Feature Importance (PFI) 
 
PFI is a method for evaluating the importance of a feature in a prediction model based on the increase 

in prediction error (decrease in prediction accuracy) when the permutations of a certain feature in the data 
set are shuffled [14]. A high value of PFI (a large prediction error after shuffling) indicates that the 
importance of the feature is high. Unlike the correlation coefficient, PFI can evaluate the importance of a 
feature regardless of the linear system between the predictions and the feature; it allows the macro behavior 
of the model to be understood. 

 
This chapter adopts the increase in the mean square error (MSE) as the evaluation index for PFI; PFI is 

defined as the mean increase in MSE over five trials of feature shuffling. 
 
In contrast, PFI has some problems [14]:  

- If the model includes features correlated with the features of interest, they will compete with each 
other for importance and will be underestimated. 

- It is unclear how the prediction changes when the feature value changes. 
 
 

4.3.3 Individual Conditional Expectation Plot (ICE) and Partial Dependence Plot (PD) 
 
ICE is a method for obtaining the change in predictions for a single instance (case) when only a certain 

feature is changed (other features are fixed) [14, 16]. ICE can represent the heterogeneity of each case, and 
the relationship between the feature and prediction can be interpreted based on the interaction between the 
features. 

 
PD is a method for obtaining the average relationship between feature and prediction by averaging the 

ICEs of all cases in a dataset [14, 16]. Although PD provides stable results due to averaging, it may not 
represent the relationship between feature and prediction well because the interactions of the features cancel 
out. 
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This chapter attempts to provide an integrated interpretation based on both methods by plotting a 
combination of PD and ICE. Note that these methods independently handle features that originally change 
in conjunction with other features; thus, care must be taken in interpreting the model in such cases. 

 
 

4.3.4 Accumulated Local Effects Plot (ALE) 
 
ALE is a method for obtaining the average effect on predictions when only a certain feature value is 

changed and has similar characteristics to PD [16]. The advantage of ALE compared to PD is that it can 
express the relationship with the predictions well, even when there are correlated features. The disadvantage 
is that it cannot be plotted simultaneously as ICE, which provides clues for case-by-case interpretation. 
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4.4 Modal Interpretation 
 
4.4.1 Modal Interpretation Based on XAI 

 
This chapter applies XAI to the weight coefficient predictor based on random forest in Chapter 3 and 

attempts to interpret the modes based on the results. For the analysis, 500 cases of training data are used. 
 
First, PFI is used to determine the importance of features in the model. Next, focusing on the feature 

with high importance, the relationship between the feature and prediction is evaluated by ICE, PD, and 
ALE; the mode is interpreted. This chapter basically uses ALE, which can well express the relationship 
between the feature and the prediction even when the feature is correlated with other features; however, 
ICE and PD are used when case-by-case heterogeneity is considered. The following paragraphs discuss the 
dominant factors of the C1, C2 and C3

* modes, which contribute significantly to the ground motion 
distribution. 

 
Table. 4-3, Fig. 4-4 and Fig. 4-5 show the source parameters (input parameters of the predictor) for 

analysis (restatements of Table. 3-1, Fig. 3-12 and Fig. 3-13). For details on the horizontal and vertical 
arrangement patterns, see 3.6.1. The asperities area ratio (Fig. 2-2 (c)) is not used for model interpretation 
due to the large bias of the original data. 
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Table 4-3. Features for modeling 

 

 
 

 
Figure 4-4. Image of the horizontal and vertical location of hypocenter and large and small asperity. 

 
 

 
 (a) Horizontal pattern classifications (b) Vertical pattern classifications 

Figure 4-5. Classification by asperities arrangement and hypocenter position. 

Variable
Type Abbreviation

M0

Vr

Horizontal position [km] Hypo.H

Vertical position [km] Hypo.V

Horizontal position [km] aspL.H

Vertical position [km] aspL.V

Horizontal position [km] aspS.H

Vertical position [km] aspS.V

ratio

Horizontal
arrangement pattern Hor.P

Vertical
arrangement pattern Ver.P

Qualitative
Variable

Classification by
asperities arrangement and

hypocenter position
 (Fig. 4-4)

Feature

Quantitative
Variable

Seismic moment [dyne*cm]
(common logarithmic conversion)

Rupture velocity [km/s]

Hypocenter

(Fig. 4-4 Orange)

Large asperity

(Fig. 4-4 Blue)

Small asperity

(Fig. 4-4 Green)

Ratio between
combined asperity area and total rupture area

South North

Large asperity

Hypocenter

Small asperity
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4.4.1 Cluster C1: Attenuation Characteristics 
 
The spatial distributions of mode shapes in C1 (Mode 1 in Fig. 4-1 and Fig. 4-2) are used to examine its 

characteristics. The spatial distribution of both components is simple, with positive values near the fault 
and negative values farther away. These distribution trends correspond to the mean distribution for each 
period (Fig. 2-4 and Fig. 2-5). From the above, C1 reflects the distribution of deviations for the common 
logarithmic mean distribution (attenuation characteristics per period and component). 

 
 

a) PFI in C1 Mode 
XAI is applied to the RF-predictor in C1 to evaluate the relationship between the source parameters 

(Table. 4-3) and the weight coefficients. Table. 4-4 shows the importance (PFI) of the source parameters. 
The PFI is obtained for each model (by period and component: line direction in the table). When the 
maximum value of PFI for each model is “max,” the PFI for the same model in Table. 4-4 is color-coded 
as follows: 

- Red  
- Blue  
 

The PFI for each period and component shows that for C1, the PFI for “rupture velocity (Vr)” or “one 
of the source parameters of the vertical arrangement of the hypocenter and large and small asperities 
(Hypo.V, aspL.V, aspS.V, Ver.P)” tend to have high values. On the other hand, the PFI (period T = 2.0 s, 
FN component) has a high value for “the horizontal position of hypocenter (Hypo.H)”. Next, the 
relationship between these source parameters and weight coefficients is clarified by ALE. 

 
 
 

Table 4-4. PFI of source parameters in Cluster 1 represents distance attenuation gradient.  
(Red (or blue) indicates that the PFI value is 80–100 % (or 60–80 %) of the maximum 
PFI value for the same period and component.) 

 

Component Period
[s] M0 Vr Hypo.H Hypo.V aspL.H aspL.V aspS.H aspS.V ratio Hor.P Ver.P

    0.1 4 4 2 12 3 20 2 44 1 1 4
    0.5 37 55 12 24 11 41 14 78 6 3 27
    0.75 32 262 16 48 12 49 17 38 9 25 9
    1.0 31 105 28 60 17 133 19 36 16 13 78
    2.0 32 182 278 178 27 194 23 29 9 14 7
    0.1 4 5 2 10 2 17 4 47 1 1 5
    0.5 35 57 16 28 14 37 16 92 7 4 30
    0.75 42 160 18 40 15 43 23 43 9 10 16
    1.0 31 41 43 87 20 100 21 53 10 19 71
    2.0 24 60 70 149 27 141 10 22 5 11 21

FN

FP

* The above values are PFI x 108.
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b) Vertical Position of Large Asperity (aspL.V) in Mode 1 (T = 0.1 s, FN Component) 
First, as an example of the relationship between the “vertical position of large asperity (aspL.V)” and 

the weight coefficients, Fig. 4-6 shows the relationship between aspL.V (horizontal axis) and ALE (vertical 
axis) of Mode 1 (T = 0.1 s, FN. Fig. 4-1 (a)). The black line on the horizontal axis of the figure represents 
the data distribution of aspL.V for 500 cases of training data.  

 
ALE is positive when aspL.V is shallow (small value) and negative when aspL.V is deep (large value). 

This trend is the average effect on the predicted value of the feature (aspL.V in this case); when aspL.V is 
located at shallow, the predicted weight coefficient is larger, indicating stronger ground motion directly 
above the fault. A similar trend was observed for the “vertical position of small asperity (aspS.V)” (not 
shown in the figure). Thus, C1 reflects the effect of the vertical position of the asperities on the strong 
ground motion. 

 
 

c) Vertical and Horizontal Position of Hypocenter (Hypo.V, Hypo.H) and Rupture Velocity (Vr) 
in Mode 1 (T = 2.0 s, FN Component) 
Figure. 4-7 shows the results for Mode 1 (T = 2.0 s, FN. Fig. 4-1 (e)). In Fig. 4-7 (a), the ALE 

corresponding to the “vertical position of hypocenter (Hypo.V)” is negative when Hypo.V is shallow and 
positive when Hypo.V is deep. This trend seems to reflect that the deeper the hypocenter, the clearer the 
attenuation characteristics. In Fig. 4-7 (b), the ALE of the “horizontal position of hypocenter (Hypo.H)” is 
positive when Hypo.H is located near the center of the fault and negative when Hypo.H is located at the 
edge of the fault. This trend seems to reflect the effect of horizontal bilateral fault rupture propagation. Fig. 
4-7 (c) shows that as the “rupture velocity (Vr)” increases, the ALE also increases. This trend reflects that 
the effect of attenuation characteristics changes with the values of Vr. 

 
 

d) Vertical Arrangement Pattern (Ver.P) in Mode 1 (T = 1.0 s, FP Component) 
Figure. 4-8 for Mode 1(T = 1.0 s, FP. Fig. 4-2 (d)) clearly shows the effect of “vertical arrangement 

pattern of large and small asperities (Ver.P)”. Vertical pattern 2 (red in Fig. 4-5 (b), Ver. P = 2), where the 
large asperity is located deeper than the small one, has a larger ALE than vertical pattern 1 (black in Fig. 4-
5 (b), Ver. P = 1), where the large asperity is located shallower than the small one. This trend reflects that 
when large and small asperities are placed in the direction of vertical rupture propagation, the effect of the 
vertical upward forward directivity effect increases and the ground motion directly above the fault becomes 
stronger. 
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Figure 4-6. Effect of predictions in Cluster 1 and vertical position of large asperity (aspL.V). 

(Period 0.1 s, FN component and Mode 1. ALE. Vertical axis: ALE, horizontal axis: parameter.) 
 
 
 

   
(a) Vertical position of hypocenter (b) Horizontal position of hypocenter (c) Rupture velocity 
 (Hypo.V) (Hypo.H) (Vr) 

Figure 4-7. Effect of predictions in Cluster 1 and source parameters. 
(Period 2.0 s, FN component and Mode 1. ALE. Vertical axis: ALE, horizontal axis: parameter.) 

 
 
 

 
Figure 4-8. Effect of predictions in Cluster 1 and vertical arrangement pattern (Ver.P). 

(Period 0.1 s, FP component and Mode 1. ALE. Vertical axis: ALE, horizontal axis: parameter.) 
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e) Summary in C1 
The dominant factors of C1 were evaluated comprehensively based on XAI and those shown here. Table. 

4-5 shows a summary of the results. The results do not exactly match the red and blue numbers in Table. 4-
4. This is because, in addition to the importance of a feature, it also includes an evaluation of the impact of 
the changes in features on the predictions (the same applies to Tables. 4-6, 4-7 and Tables. 4-8, 4-9 below). 
It can be observed that C1 (T = 0.75, 1.0 s) reflect the influence of either “rupture velocity (Vr)” or 
“horizontal position of hypocenter (Hypo.H)”, while C1 (T = 2.0 s) reflects both influences. These trends 
seem to be related to the fact that the longer the period, the more significant the influence of bilateral 
directivity effects and radiation patterns becomes. 
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Table 4-5. Dominant source parameters for modes of Cluster 1 (distance attenuation gradient) in the 5-period band and FN and FP components. 

 

Rupture velocity
(Vr)

Horizontal position of hypocenter
(Hypo.H)

Gradient of
distance attenuation

Bilateral rupture propagation

    0.1
Asperities (aspL.V, aspS.V):

shallow position

    0.5
Rupture propagation

from bottom to top of fault

    0.75

    1.0
Rupture propagation

from bottom to top of fault

    2.0
Hypocenter (Hypo.V):

deep location
Rupture propagation

from near center of fault

    0.1
Asperities (aspL.V, aspS.V):

shallow position

    0.5
Rupture propagation

from bottom to top of fault

    0.75

    1.0
Rupture propagation

from bottom to top of fault
Rupture propagation

from near center of fault

    2.0
Hypocenter (Hypo.V):

deep location
Rupture propagation

from near center of fault

Directivity effect + Radiation pattern

Component
Period

[s]

Vertical position of hypocenter and asperities
(Hypo.V, aspL.V, aspS.V, Ver.P)

FN

FP

Gradient of distance attenuation Vertical forward directivity effect
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4.4.2 Cluster C2: Mode with Positive Correlation in Almost Entire Area 
 
C2 is a mode that causes simultaneous changes in ground motion intensity over the entire area and 

appears as Mode 2 or Mode 3 for both components at all periods (Table. 4-1). The spatial distribution of C2 
(red in Fig. 4-1 and Fig. 4-2) shows that FN component has a larger absolute value in the direction of the 
fault strike (North-South), while FP component has it in the orthogonal direction to the fault (East-West)., 
This distribution reflects the influence of bilateral rupture propagation and radiation patterns as in Mode 1 
(C1). 

 
 

a) PFI in C2 Mode 
Table. 4-6 shows the PFI of the source parameters in C2 mode. The PFI for “seismic moment (M0)” is 

commonly high for C2 (except for period 2.0 s). The PFI for “rupture velocity (Vr)” and “horizontal position 
of hypocenter (Hypo.H)” are also high for some periods and components. 

 
 
 
 
 
Table 4-6. PFI of source parameters in Cluster 2 represents a positive correlation in the whole area.  

(Red (or blue) indicates that the PFI value is 80–100 % (or 60–80 %) of the maximum 
PFI value for the same period and component.) 

 
 

  

Component Period
[s] M0 Vr Hypo.H Hypo.V aspL.H aspL.V aspS.H aspS.V ratio Hor.P Ver.P

    0.1 85 13 11 18 5 22 5 28 12 40 2
    0.5 55 48 3 50 1 63 1 16 2 3 1
    0.75 74 61 22 14 5 17 4 19 8 9 2
    1.0 67 24 31 6 5 8 5 85 22 12 3
    2.0 17 46 86 8 12 11 6 10 10 18 1
    0.1 90 16 7 22 3 41 4 33 12 18 2
    0.5 81 36 6 46 2 39 2 32 2 6 1
    0.75 60 73 9 27 3 29 3 18 6 4 2
    1.0 119 22 5 13 2 15 3 93 39 3 1
    2.0 27 53 77 15 6 21 2 9 57 2 1

FN

FP

* The above values are PFI x 105.
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b) Seismic Moment (M0), Rupture Velocity (Vr) and Vertical Location of Large Asperity (aspL.V)
in C2 Mode (T = 0.5 s, FN Component, Mode 2)
Figure. 4-9 (a) for C2 (T = 0.5 s, FN, Mode 2. Fig. 4-1 (b)) shows the relationship between the “seismic 

moment (M0)” and the ALE. Since the spatial distribution of the corresponding mode shape is positive over 
the entire area, the ground motion intensity is pushed up over the entire area when M0 is large (positive 
value of ALE) and pushed down when M0 is small (negative value of ALE). Figs. 4-9 (b), (c) show the 
same trend for “rupture velocity (Vr)” and “vertical location of large asperity (aspL.V)” as the above seismic 
moment (M0), which seems to reflect the effect on the ground motions in the whole area. 

 
 

c) Horizontal Position of Hypocenter in C2 Mode (T = 2.0 s, FN Component, Mode 3)
Figure. 4-10 for C2 (T = 2.0 s, FN, Mode 3. Fig. 4-1 (e)) shows the relationship between the “horizontal 

position of hypocenter (Hypo.H)” and the ALE. ALE has the same sign (positive value) as the mode shape 
when Hypo.H is near the center of the fault and has a different sign (negative value) when Hypo.H is near 
the edges of the fault. This trend reflects the effect of horizontal bilateral rupture propagation. 
 
 

   
 (a) Seismic moment (b) Rupture velocity (c) Vertical position of large asperity  
 (M0) (Vr) (aspL.V) 

Figure 4-9. Effect of predictions in Cluster 2 and source parameters. 
(Period 0.5 s, FN component and Mode 2. ALE. Vertical axis: ALE, horizontal axis: parameter.) 

 

 
Figure 4-10. Effect of predictions in Cluster 2 and horizontal position of hypocenter (Hypo.H). 
(Period 2.0 s, FN component and Mode 3. ALE. Vertical axis: ALE, horizontal axis: parameter.) 
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d) Summary in C2 
Table. 4-7 summarizes a discussion of the dominant factors of the C2 mode for all periods and two 

components based on XAI. In period 1.0 s with FN component (Mode 3 in Fig. 4-1 (d)) and period 2.0 s 
with both components (FN: Mode 3 in Fig. 4-1 (e), FP: Mode 3 in Fig .4-2 (e)), where the spatial distribution 
of modes is dominant in the fault strike or orthogonal directions, relationships are found with “rupture 
velocity (Vr)” and “horizontal position of hypocenter (Hypo.H)”. This trend seems to reflect that, as in C1, 
the bilateral directivity effect and the influence of the radiation pattern become more pronounced with Vr 
and Hypo.H.  

 
For C2 of period 0.75 s (Mode 2 of both components), a larger Vr pushes down the intensity of ground 

motion in the whole area. On the other hand, Table. 4-5 shows that for C1 (Mode 1) with the same period, 
the attenuation characteristics tend to become stronger as Vr increases. Therefore, it is assumed that at 
period 0.75 s, the mode C1 represents the global spatial variability, and the C2 mode, which shows a more 
complex mode shape than C1, Adjusts and complements spatial variation in detail. 

 
In the previous studies [9–11] (target: Scenario Shaking Earthquake Maps for 4–12 cases of measured 

seismic intensity), the C2 mode rarely appeared because the recipe is basically set to a single seismic 
moment and rupture velocity. However, in this study, the dataset with a variation in the seismic moment 
and rupture velocity (Figs. 2-2 (a), (b)) was used; as shown in Fig. 4-9 (a), a uniform spatial variation (C2 
mode) appears in the entire area for all periods with both components. In order to incorporate the uniform 
spatial variation in the entire area into the spatial characteristics represented by the Scenario Shaking 
Earthquake Maps, such considerations are necessary for setting the source parameters. 
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Table 4-7. Dominant source parameters for modes of Cluster 2 (positive correlation in the whole area) in the 5-period band and FN and FP components. 

 

Seismic moment
(M0)

Rupture velocity
(Vr)

Horizontal location of hypocenter
(Hypo.H, Hor.P)

Vertical location of hypocenter and asperities
(Hypo.V, aspL.V, aspS.V)

Ground motion intensity
in whole area

Bilateral rupture propagation

    0.1
Rupture propagation

from near center of fault

    0.5
Hypocenter and asperity (Hypo.V, aspL.V):

deep location

    0.75 (C 1 Complement)

    1.0
Rupture propagation

from near center of fault
Asperity (aspS.V): deep location

    2.0
Rupture propagation

from near center of fault

    0.1

    0.5

    0.75 (C 1 Complement)

    1.0 Asperity (aspS.V): deep location

    2.0
Rupture propagation

from near center of fault

FN

FP

Ground motion intensity
in whole area

Ground motion intensity in whole area
Directivity effect + Radiation pattern

Component
Period

[s]
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4.4.3 Cluster C3*: Mode that Divides Entire Area into Two Positive and Negative Parts 
 
C3

* is a mode that shows a negative correlation across the perpendicular bisector of the fault and appears 
as Mode 2 or Mode 3 for both components at all periods (Table. 4-1). The spatial distribution of most of 
C3

* (blue in Figs. 4-1 and Fig. 4-2) have large absolute values in the fault strike direction. 
 
 

a) PFI in C3* Mode 
Table. 4-8 shows the PFI of the source parameters in C3* mode. The PFI for “horizontal location of 

hypocenter and asperities (Hypo.H, aspL.H, aspS.H, Hor.P)” shows a high value. In the following 
discussion of the dominant factors of C3* mode, in order to analyze the effect of the arrangement of large 
and small asperities on the ground motion in the direction of rupture propagation, ICE, which can represent 
the heterogeneity of each case, and PD, which can represent the average change in predicted values, are 
used. ICE is a sensitivity analysis that visualizes changes in predictions by varying only specific features 
within the original data range; however, even if there are constraints between features, they are not 
considered in ICE. Since it is preferable to focus on changes in the original data’s neighborhood, the original 
data predictions are plotted as dots in this study. In addition, ICEs are color-coded corresponding to the 
horizontal arrangement pattern (Fig. 4-5 (a)) to clarify the characteristics of each case. 

 
 
 
 
 

Table 4-8. PFI of source parameters in Cluster 3 that represents two divided areas.  
(Red (or blue) indicates that the PFI value is 80–100 % (or 60–80 %) of the maximum 
PFI value for the same period and component.) 

 
  

Component Period
[s] M0 Vr Hypo.H Hypo.V aspL.H aspL.V aspS.H aspS.V ratio Hor.P Ver.P

    0.1 1 1 5 1 230 1 74 5 0 86 0
    0.5 4 7 14 3 212 3 45 6 0 73 1
    0.75 5 16 132 3 30 4 43 10 1 11 1
    1.0 7 13 19 5 91 5 101 29 11 23 2
    2.0 3 7 57 2 25 2 6 3 1 104 1
    0.1 1 2 5 0 142 1 48 2 0 224 0
    0.5 5 8 15 2 141 3 44 4 1 100 1
    0.75 3 4 143 2 27 2 38 4 2 7 0
    1.0 2 3 117 1 38 2 18 3 1 8 1
    2.0 4 12 40 2 33 3 18 5 6 121 0

FN

FP

* The above values are PFI x 105.
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b) C3* Mode on Short Period 
Figure. 4-11 shows the results of the C3* mode for a short period (T = 0.5, FN, Mode 3. Fig. 4-1 (b)). 

The mode shape is negative values in the southern part of the fault and positive values in the northern part. 
 
Figure. 4-11 (a) shows ICE (black, red, blue, and green line) and PD (yellow line) of the “horizontal 

position of large asperity (aspL.H).” ICEs and PDs are negative when aspL.H is near the south (small 
values) and positive when aspL.H is near the north (large values). This trend is the predicted value (ICE: 
by case, PD: average of all cases) corresponding to the change in the feature (in this case aspL.H). When 
aspL.H is in the southern part of the fault (negative predicted value), it indicates larger ground motions in 
the southern part of the map, and when aspL.H is located in the northern part of the fault (positive predicted 
value), it indicates larger ground motions in the northern part of the map. This trend reflects the bias of the 
center of gravity of the asperity arrangement in the horizontal direction. 

 
Figure. 4-11 (b) shows the ICEs and the PD of the “horizontal position of the hypocenter (Hypo.H)”, 

but no clear feature can be found in them. However, for the PD of “horizontal arrangement pattern of 
hypocenter and asperities (Hor.P)” in Fig. 4-11 (c), differences are found in the horizontal patterns 1 and 4 
in which the hypocenter is located outside of the large and small asperities. The horizontal pattern 1 (black 
in Fig. 4-5 (a), Hor.P = 1), where the large asperity is located further south than the small one, is a positive 
value, and the horizontal pattern 4 (green in Fig. 4-5 (a), Hor.P = 4), where the large one is located further 
north than the small one, is a negative value. For horizontal patterns 2 and 3 (red and blue in Fig. 4-5 (a), 
Hor.P = 2, 3), where the hypocenter is located inside the large and small asperities, the PD is almost zero. 
The ICE also has a maximum value at Hor.P = 1, a minimum value at Hor.P = 4, and intermediate values at 
Hor.P = 2 and 3. The above results suggest that when the rupture propagates from the end of the fault to the 
direction where the large and small asperities are located, the ground motion in the direction of propagation 
is larger. 

 
 

c) C3* Mode on Long Period 
Next, Fig. 4-12 shows the results of the C3* mode for a long period (T = 2.0, FN, Mode 2. Fig. 4-1 (e)). 

The spatial distribution of the mode shape is positive values in the southern part of the fault and negative 
values in the northern part. 

 
The PD of the “horizontal position of the hypocenter (Hypo.H)” in Fig. 4-12 (b) is a negative value near 

the southern end of the fault, 0 at the center, and a positive value near the northern end. In Fig. 4-12 (a), the 
PD obtained by changing only the “horizontal location of large asperity (aspL.H)” takes zero. The ICE for 
each case can be classified into two types of cases: one with negative predictions (horizontal patterns 1 and 
3: black and blue in Fig. 4-5 (a)) and the other with positive predictions (horizontal patterns 2 and 4: red 
and green in Fig. 4-5 (a)) when aspL.H is changed from the southern to the northern part of the fault. In 
horizontal patterns 2 and 3 (red and blue), where the hypocenter is located inside the large and small 
asperities, the absolute value of the predicted value is small; in other words, the degree of influence is small. 
In contrast, horizontal patterns 1 and 4 (black and green) strongly influence where the hypocenter is near 
the fault edge. These results indicate that this mode strongly influences Hypo.H, but the degree of influence 
depends on the aspL.H of each case. 
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Next, examine the PD for the “horizontal arrangement pattern (Hor.P)” in Fig. 4-12 (c). The PD is 

negative values for horizontal patterns 1 and 3 (black and blue in Fig. 4-5 (a), Hor.P = 1, 3), where the 
hypocenter is located at the southern end of the large asperity, and positive values for horizontal patterns 2 
and 4 (red and green in Fig. 4-5 (a), Hor.P = 2, 4), where it is located at the northern end. These trends 
reflect the horizontal forward directivity effect. In the case of horizontal patterns 1 and 4 (black and green 
in Fig. 4-5 (a), Hor.P = 1, 4), where the hypocenter is located outside the large and small asperities, the PD 
and the ICEs have large absolute values. This trend indicates that the forward directivity effect is stronger 
when large and small asperities are placed in the direction of rupture propagation. 
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 (a) Horizontal position of (b) Horizontal position of (c) Horizontal arrangement  
 large asperity (aspL.H) hypocenter (Hypo.H) pattern (Hor.P) 

Figure 4-11. Effect of predictions in Cluster 3 and source parameters. 
(Period 0.5 s, FP component and Mode 3. ICE (black, red, blue, and green) + PD (yellow). 

Vertical axis: Predicted values, horizontal axis: parameter.) 
 
 
 
 

   
 (a) Horizontal position of (b) Horizontal position of (c) Horizontal arrangement  
 large asperity (aspL.H) hypocenter (Hypo.H) pattern (Hor.P) 

Figure 4-12. Effect of predictions in Cluster 3 and source parameters. 
(Period 2.0 s, FN component and Mode 2. ICE (black, red, blue, and green) + PD (yellow). 

Vertical axis: Predicted values, horizontal axis: parameter.) 
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d) Summary in C3* 
Table. 4-9 summarizes a discussion of the dominant factors of the C3* mode for all periods and two 

components based on XAI. The C3* modes are dominated by the effect of the horizontal position of 
arrangement of asperities for short periods (T = 0.1, 0.5, 0.75, and 1.0 s) and by the effect of forward 
directivity, which depends on the horizontal position of the hypocenter, for long-period (T = 2.0 s). 

 
In 3.5.1, it is pointed out that the contributions of Modes 2–3 at period 2.0 s of both components (Fig. 

3-8 and Fig. 3-9) are larger than that of the other periods. This result seems to reflect that the influence of 
the directivity effect and the radiation pattern is dominant at period 2.0 s, rather than the bias of the seismic 
moment and the center of gravity of asperities. 
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Table 4-9. Dominant source parameters for modes of Cluster 3 (two divided areas) in the 5-period band and FN and FP components. 

    0.1 Hypocenter (Hor.P): Located outside of large and small asperities

    0.5 Hypocenter (Hor.P): Located outside of large and small asperities

    0.75

    1.0

    2.0
Rupture propagation involving large asperities

The effect is particularly strong when hypocenter is located outside of the large and small asperities.

    0.1 Hypocenter (Hor.P): Located outside of large and small asperities

    0.5 Hypocenter (Hor.P): Located outside of large and small asperities

    0.75

    1.0

    2.0
Rupture propagation involving large asperities

The effect is particularly strong when hypocenter is located outside of the large and small asperities.

FN

FP

Period
[s]

Horizontal location of hypocenter and asperities
(Hypo.H, aspL.H, aspS.H, Hor.P)

Bias in
gravity center of asperities

Horizontal forward directivity effect
Component
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4.4.4 Mode Include in Cluster C4 or C5* 
 
From Table. 4-1, the modes in C4 or C5

* appear as Mode 4 and higher (except for C5
* at period 1.0 s of 

FN component). The spatial distribution of the mode shape (Fig. 4-1 and Fig. 4-2) is “several partitions of 
the entire map area,” but the spatial correlation becomes more complex with higher-order modes. These 
modes are also attempted to be interpreted based on XAI. 

 
a) Cluster C5*: Mode 2 at Period 1.0 s with FN Component 

Examine Mode 2 for period 1.0 s of FN component (Fig. 4-1 (d)) in cluster C5
*. This mode is assumed 

to represent a significant spatial characteristic because of its high contribution. Positive values in the mode 
shape are distributed in the map’s north and from the fault’s south to the southwest and southeast.  

 
Figure. 4-13 shows the relationship between this mode and the source parameters. Figs. 4-13 (a), (b) 

show that the ALE is a positive value when “horizontal positions of the hypocenter and the large asperity 
(Hypo.H and aspL.H)” is in the southern part of the fault, and the ALE is a negative value when them is in 
the northern part. This trend could reflect the expansion of the strong motion area caused by the hypocenter 
and the large asperity. In addition, the ALE of “horizontal arrangement pattern (Hor.P)” in Fig. 4-13 (c) has 
positive and negative values for horizontal patterns 1 and 4 (black and green in Fig. 4-5 (a), Hor.P = 1 and 
4), where the hypocenter is located outside of the large and small asperities, respectively. This trend reflects 
that the forward directivity effect is accentuated when large and small asperities are in the direction of 
rupture progression. 

 
 

b) Cluster C4: Mode 4 at Period 1.0 s with FP Component 

Finally, evaluate the dominant factors for Mode 4 (T = 1.0 s, FP. Fig. 4-2 (d)) in cluster C4. Fig. 4-14 
shows the ALE of the “horizontal position of the hypocenter (Hypo.H)” and “vertical position of the 
hypocenter and the large asperity (Hypo.V, aspL.V)”. The relationship with these source parameters in this 
mode is similar to that of Mode 1 (C1, Fig. 4-2 (d)) of the same period (T = 1.0 s) and the same component 
(FP) (Table. 4-5). This trend suggests that the details of the global spatial variability represented by the 
mode shape of Mode 1 are adjusted and complemented by the mode shape of Mode 4, which represents 
complex spatial variability. 

 
The relationship between the weight coefficients and the source parameters was also examined for other 

modes above cluster C4. These modes are assumed to adjust for details of spatial variability not fully 
represented by the lower-order modes (except for C5

* at period 1.0 s of FN component). 
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 (a) Horizontal position of (b) Horizontal position of (c) Horizontal arrangement  
 hypocenter (Hypo.H) large asperity (aspL.H) pattern (Hor.P) 

Figure 4-13. Effect of predictions in Cluster 5 and source parameters. 
(Period 1.0 s, FN component and Mode 2. ALE. Vertical axis: ALE, horizontal axis: parameter.) 

 
 
 

   
 (a) Horizontal position of (b) Vertical position of (c) Horizontal position of  
 hypocenter (Hypo.H) hypocenter (Hypo.V) large asperity (aspL.H) 

Figure 4-14. Effect of predictions in Cluster 4 and source parameters. 
(Period 1.0 s, FP component and Mode 4. ALE. Vertical axis: ALE, horizontal axis: parameter.) 
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4.4.5 Advantages of Modal Interpretation Based on Explainable AI 
 
This chapter comprehensively analyzes the relationship between modes and all source parameters with 

possible effects on ground motions by modeling with machine learning regression and evaluating the 
dominant factors of the mode based on explainable AI (XAI). The advantage of the proposed method is its 
ability to analyze the combined effects of complex fault rupture scenarios on spatial characteristics. In other 
words, it is now possible to evaluate the relationship between source parameters and case-specific weight 
factors, including the arrangement of hypocenter and asperities, as well as the combined effect on the 
distribution of ground motion. 
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4.5 Conclusions 
 
This chapter aims to understand the diversity of spatial characteristics expressed by the ground motion 

prediction method and analyzes the effects of different source parameters on the spatial characteristics by 
period and component. The analysis covers the distributions of the absolute acceleration response spectrum 
by period (0.1–2.0 s) and component (FN, FP) for 600 cases caused by a strike-slip fault. These ground 
motion distributions were calculated by the stochastic Green’s function method [12]. Since the site 
amplification characteristics are the same for all computation points, the spatial characteristics analyzed in 
this section can be considered to reflect only the effects of source rupture within the setting range of the 
characterized source model. The major conclusions are listed below. 

 
1) Hierarchical cluster analysis was applied to the spatial distributions of mode shapes obtained by mode 

decomposition by period and component, and each mode was classified into clusters with clear 
characteristics. The modes can be classified into two major categories, “symmetric mode” and “reverse 
mode,” with the perpendicular bisector of the fault as the boundary, and Modes 1–6 can be briefly 
classified into ten categories. 
 

2) For clarifying the relationship between the weight coefficients and the source parameters, an 
explainable AI (XAI) was applied to the weight coefficient predictor with the source parameters as 
explanatory variables constructed in Chapter 3. Based on the XAI results, the mode’s dominant factors 
were evaluated. 
 

3) Mode 1 mainly represents the attenuation characteristics. Depending on the period and component, the 
attenuation characteristics and vertical forward directivity effects due to the vertical location of the 
hypocenter and asperities were observed. For a longer period, the influence of bilateral directivity 
effects and radiation patterns became more significant and tended to increase in variation depending 
on the rupture velocity and the horizontal position of the hypocenter. 
 

4) The “mode with positive correlation in almost entire area” indicates that the ground motion intensity 
varies over the entire area because of the influence of seismic moment and rupture velocity. In addition, 
this mode also shows the influence of bilateral directivity effect and radiation pattern. 
 

5) The “mode that divides the entire area into two positive and negative parts” is strongly influenced by 
the center of gravity of the asperity arrangement in the short period and by the horizontal forward 
directivity effect in the long period. 
 

6) The modes of “positive correlation over the whole area” and the “dividing the entire area into two 
parts” mostly appear in Mode 2 and Mode 3 for all periods and both components, and their contribution 
to the spatial structure of the variability is large. In particular, the contribution of these modes is larger 
in period 2.0 s, when the influence of the directivity effect and the radiation pattern is more significant 
than in other periods. 
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The results of this chapter relate to the spatial characteristics represented by the inner fault parameters 
and the extra fault parameters (e.g., rupture velocity and location of hypocenter) under relatively simple 
conditions. However, actual earthquakes rarely occur according to the assumed scenario and may be caused 
by the rupture of a part of the assumed source fault or in conjunction with the surrounding active faults. 
Therefore, in addition to the inner and extra fault parameters, it is necessary to consider the influence of the 
outer fault parameters (e.g., geometry and location of the fault) on spatial characteristics in the future. 
Specifically, we plan to analyze the spatial characteristic of the ground motions for multi-segment 
earthquakes caused by the coupling of multiple faults for future development. 
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5  Diversification of Source Parameter Settings in Recipe for 

Predicting Strong Ground Motions  
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5.1 Introduction 
 
The “Recipe for Predicting Strong Ground Motions” [1] has been proposed as a standard for setting up 

fault rupture scenarios on source faults in Japan. However, the “Scenario Earthquake Shaking Maps 
(SESMs)” [2], which are set up based on the “recipe,” has a limited number of cases; therefore, SESMs do 
not cover the various possibilities of ground motion distributions. For this reason, it is important and of 
great social significance to systematize a method for setting scenario earthquakes that can efficiently cover 
the diversity of ground motion distributions in terms of disaster countermeasures, designing a city for 
disaster prevention, and seismic risk assessment. Therefore, this study aims to “diversify ground motion 
distributions” by expanding the conditions for setting source parameters in the “recipe.” 

 
In Chapter 4, this study clarified the mode shapes that define the distribution of ground motions and 

the source parameters that affect the diversity of the ground motion distributions. Based on the result of 
Chapter 4, in this chapter, the “recipe” setting conditions are extended to represent the diversity of ground 
motion distributions.  

 
As a numerical example, this study uses 600 cases of fault models that were set with varying values of 

the “recipe” [3, 4] and their ground motion distributions [5]; this study attempt to reproduce the diversity 
of spatial characteristics represented by the 600 cases. We attempt to reproduce the diversity of the 600 
ground motion distributions by using the ground motion distribution of the fault model conforming to the 
“recipe” (hereafter referred to as the “recipe case”) and the distribution of the fault model with extended 
“recipe” setting conditions (hereafter referred to as the “extended case”). Note that in this study, the set 
values of source parameters for “outer fault parameters (e.g., fault location, fault geometry)” except for 
seismic moment are fixed, and the set values for a seismic moment and “inner fault parameters (e.g., area 
and location of asperities, rupture velocity)” and “extract fault parameters (e.g., hypocenter)” are extended. 

 
The data used in this study are characterized source models set up for a strike-slip fault consisting of a 

single fault plane [5] and the ground motion distributions [5] calculated by the stochastic Green’s function 
method [6]. In other words, this study aims to cover the diversity of ground motion distributions represented 
by the stochastic Green’s function method within the setting of the characterized source model for the strike-
slip fault by using the recipe cases and the extended cases. 

 
5.2 shows the diversity of the ground motion distributions in the 600 cases by using mode decomposition 

and cluster analysis. Next, 5.3 reveals the spatial characteristics of ground motion distributions and their 
spread shown by the fault model conforming to the “recipe.” 5.4 attempts to diversify the spatial 
characteristics of scenario earthquakes by extending the “recipe” setting conditions. Finally, 5.5 
summarizes the conclusions obtained in this chapter. 
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5.2 Diversity of Ground Motion Distributions
 

5.2.1 Visualization of Diversity of Ground Motion Distributions 
 
First, the ground motion distribution diversity for the 600 cases is understood. The previous study [7] 

applied hierarchical cluster analysis and principal component analysis to SESMs to clarify the 
interrelationships among scenario earthquakes and the influence of source parameters on ground motions, 
focusing on the distribution shapes. Hierarchical cluster analysis is a classification method that integrates 
similar cases in a bottom-up approach [8]. In contrast, this study uses non-hierarchical cluster analysis, in 
which the number of clusters is determined in advance in a top-down approach [8], as a classification 
method for many cases. This method is outlined in 5.2.2. 

 
Figure. 5-1 shows the method for understanding the diversity of the ground motion distribution for the 

600 cases. First, mode decomposition is applied to the 600 cases to extract mode forms which are spatial 
characteristics of the ground motion distribution and principal component scores (PCS; singular value × 
weight coefficient) which are modal weights. Next, non-hierarchical cluster analysis is applied to the PCSs 
to cluster the 600 cases based on the similarity of the PCSs (i.e., the similarity of spatial distribution trends 
represented by the ground motion distribution). Then, using a two-dimensional distribution with mode as 
the axis, the relative relationships among the clusters are clarified to visualize the diversity of the 600 
ground motion distributions. 

 

 
Figure 5-1. Evaluation of the diversity of ground motion distributions using mode decomposition and non-

hierarchical cluster analysis.  

Principal Component ScoreMode ShapeGround Motion Distributions

… …

Case 1 2 600 Mode 1 2 3
Mode 1 2 3

Mode Decomposition

Non-hierarchical Cluster Analysis

Two-dimensional distribution of PCSs with Modes 2-3 as axes
Each case is color-coded in clusters
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5.2.2 Non-hierarchical Cluster Analysis
 
Non-hierarchical cluster analysis is a classification method that forms clusters in a top-down approach 

by pre-determining the number of partitions k [8]. This analysis method is generally used for big data, and 
the k-means clustering is representative. This study treats the PCSs of all modes as feature vectors and 
applies the k-means method to the dissimilarity matrix based on the Euclidean distance between feature 
vectors. Fig. 5-2 shows an image of the k-means algorithm. 

 
1. Randomly assign the centroids of the initial k clusters.  
2. Each element (PCS in each case) is assigned to the nearest centroid, forming k clusters. 
3. For each cluster, compute its centroid.  
4. Iterate steps 2.–3. until the cases no longer change clusters. 
 
 

 
Figure 5-2. K-means algorithm. 

 
  

1. Assign centroid 2. Cluster

2’. Re-cluster3. Compute centroid

4.
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5.2.3 Understanding the Diversity of 600 Ground Motion Distributions 
 
In Chapter 3, mode decomposition was applied to the 600 ground motion distributions to obtain the 

mode shapems and the PCSs; K-means is applied to the PCS, with k = 60 as the number of divisions, 
assuming that an average of about 10 cases belong to a single cluster. In the following, the analysis results 
are shown for the distribution of the absolute acceleration response spectrum of the FN component in period 
2.0 s (hereafter referred to as SA (T = 2.0, FN)). 

 
Figure. 5-3 shows the two-dimensional distribution of PCSs with Mode 1-2 and Mode 2-3. Here, the 

dots represent the PCS for each case, color-coded in clusters classified by non-hierarchical cluster analysis. 
Each case formss a cluster with its surrounding cases, indicating that the cluster analysis results are good. 
The two-dimensional distributions represent the diversity of spatial characteristics in the 600 ground motion 
distributions. 

 
The spatial characteristics of the case where Mode 1 is around 80 and Mode 2 is around 0 in Fig. 5-3 

(a), and those where Mode 2 is around 0 and Mode 3 is around -25 in Fig. 5-3 (b) are not represented in the 
600 cases. Here, Mode 1 and Mode 3 reflect the effect of bilateral rupture propagation. From Fig. 4-7 (b) 
and Fig. 4-10 in Chapter 4, this effect is stronger when the hypocenter is located at the fault center and 
weaker when it is located at the fault edge. In contrast, Mode 2 reflects the effect of unilateral rupture 
propagation. Fig. 4-12 (b) shows that this effect is stronger when the hypocenter is located at the fault edge 
and weaker when the hypocenter is located at the fault center. Thus, the spatial characteristics in these 
regions in Fig. 5-3 on Mode 1 or Mode 3 axis appear when the hypocenter is located at the fault edge, 
whereas on the Mode 2 axis, they appear when the hypocenter is located at the fault center; therefore, these 
conditions are never satisfied simultaneously, and the spatial characteristics of the region in question are 
not represented. The above results indicate that there are spatial characteristics in the two-dimensional 
distribution between some of the modes that are not represented because the setting conditions of the source 
parameters constrain them. Therefore, when examining the “diversification of ground motion distribution,” 
it is necessary to extend the “recipe” to consider such diversity that depends on the source parameters’ 
setting. 

 
Figure. 5-4 shows the kernel density estimation for PCSs in Modes 1-2 and Modes 2-3. The kernel 

density estimation uses a Gaussian kernel, and the bandwidths are estimated using a bandwidth estimator 
[9]. The results show that the diversity of spatial characteristics and the density of the 600 cases can be 
described simultaneously. Therefore, the density analysis results will be one of the indices for determining 
the spatial characteristics to be expressed preferentially in the expansion of the “recipe” and for comparison 
with the 600 cases. 

 
 

  



139 
 

 
 
 

  
 (a) PCSs with Mode 1 and Mode 2 (b) PCSs with Mode 2 and Mode 3 
Figure 5-3. Results of applying non-hierarchical cluster analysis (k = 60) and mode shapes in SA (T = 2.0, 

FN). (Dashed line: mean of PCSs, black line on an axis: distribution of PCSs) 
 
 
 

   

 (a) Mode 1 and Mode 2 (b) Mode 2 and Mode 3 
Figure 5-4. Six hundred cases: Kernel density estimation in two-dimensional space of PCS by two modes. 
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Figure. 5-5 (b) and Fig. 5-6 (b) show the centroid of each cluster. They show the positional relationship 
among the clusters and simplify the diversity of the ground motion distribution. The following 9 clusters 
are defined as representative clusters in a Modes 1-2 or Modess 2-3 two-dimensional distribution. 

- Red circle: 8 clusters located in the outer periphery 
- Blue circle: 1 cluster located in the center 

 
Figure. 5-5 (c) and Fig. 5-6 (c) show the PCSs for all cases belonging to the representative clusters. In 

Fig. 5-6 (c), the cluster on the right contains the cases with positive values of Mode 2, and the cluster on 
the left contains the cases with negative values of Mode 2. Furthermore, the upper cluster contains cases 
with positive values of Mode 3, while the lower cluster contains cases with negative values of Mode 3. In 
summary, it is found that the cluster analysis integrated the cases showing similar spatial characteristics. 

 
The representative case is defined as the case with the minimum Euclidean distance between the cluster 

centroid and the cases belonging to the cluster. Fig. 5-5 (d) and Fig. 5-6 (d) show the ground motion 
distributions for the representative cases. 

 
First, focus on Mode 1 and Mode 2 in Fig. 5-5 (d). The ground motion distribution on the right side of 

the figure (Mode 1: large) shows high ground motion levels around the fault and strong ground motion 
(log10(SA [cm/s2  In contrast, 
on the left side of the figure (Mode 1: small value), the ground motion level around the fault is smaller than 
that on the right side, and there is no effect of bilateral rupture propagation. Next, on the upper side of the 
figure (Mode 2: positive), strong ground motions spread from the fault to the southern part of the map, 
while on the lower side (Mode 2: negative), strong ground motions spread from the fault to the northern 
part of the map. These trends are consistent with the relationship between mode shapes and PCS showed in 
Fig. 5-3 (a). The relationship of ground motion distribution between clusters in Mode 2 and Mode 3 in Fig. 
5-6 (d) is also consistent with the relationship between mode shape and PCS in Fig. 5-3 (b). 

 
As described above, the ground motion distributions in Fig. 5-5 (d) and Fig. 5-6 (d) reflect the modal 

characteristics. Hence, by using mode decomposition and non-hierarchical cluster analysis, the diversity of 
the distribution of ground motions in the 600 cases can be classified and visualized concerning spatial 
characteristics.  

 
In the following, this study assumes that the 600 fault models that are set with the “recipe” value and its 

surrounding values and their ground motion distributions [5] cover the diversity of fault models and ground 
motion distributions; then this study examines the extension of the “recipe.” 
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 (a) 600 cases (Reprint of Fig. 5-3 (a)) (b) Centroids of clusters (c) PCSs in representative clusters (d) Ground motion Maps in 
  (Number: cluster number) (Red and blue circles in Fig. 5-5 (b)) representative clusters 

Figure 5-5. Modes 1-2 for 600 cases: Results of applying non-hierarchical cluster analysis (k = 60) and characteristics between clusters. 

  
 (a) 600 cases (Reprint of Fig. 5-3 (b)) (b) Centroids of clusters (c) PCSs in representative clusters (d) Ground motion Maps in 
  (Number: cluster number) (Red and blue circles in Fig. 5-6 (b)) representative clusters 

Figure 5-6. Modes 2-3 for 600 cases: Results of applying non-hierarchical cluster analysis (k = 60) and characteristics between clusters. 
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5.3 Fault Models Conforming “Recipe of Predicting Strong Ground Motions” and their Ground 
Motion Distributions 

 
First, fault models conforming to the setting conditions for the source parameters of the “recipe” 

(hereafter referred to as “recipe cases”) and their ground motion distributions are assumed. Then, the 
relative positions of the ground motion distributions of the recipe cases to the 600 cases are shown to clarify 
their diversity. In the following study, the ground motion distribution is estimated by the prediction model 
using gradient boosting decision trees in Chapter 3 (modes used for synthesis: Modes 1–15).  

 
 

5.3.1 Fault Models Conforming “Recipe of Predicting Strong Ground Motions” 
 
Set up fault models for the recipe cases on a transverse strike-slip fault consisting of a single fault plane 

(length: L = 26 km, width: W = 16 km). Fig. 5-7 shows the fault models for the four recipe cases set based 
on the source parameters setting conditions in the “recipe” [1, 3, 4] below. 

 
- Seismic moment M0 : 9.63 × 1025 [dyne cm] 
- Rupture velocity Vr : 2.52 [km/s] 
- Asperities area ratio ratio : 22 % 
- Stress drop (average) *1 : 2.76 [MPa] *1   = 7/16 × M0 × ( LW)3/2 
- Stress drop (asperities) a

*2
 : 12.5 [MPa] *2  a =  / ratio  

- Arrangement of asperities  : A well-balanced arrangement 
- Position of hypocenter  : Left and right corners of the lower edge of asperities 
 

The four recipe cases are denoted as R1–R4. 
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5.3.2 Ground Motion Distributions for Recipe Cases 
 
Figure. 5-8 shows the ground motion distributions for recipe cases. The strong ground motions are 

distributed in the northern (R1, R3) or southern (R2, R4) part of the map.  
 
Figure. 5-9 (a) and Fig. 5-10 (a) show the relative positions of the recipe cases to the 600 cases. These 

figures plot R1–R4 on Fig. 5-5 (b) and Fig. 5-6 (b). The values for Mode 1 and Mode 3 of the recipe cases 
are similar to the average of the 600 cases, while Mode 2 has a large absolute value and is positively and 
negatively split. This result indicates that the gradient of distance attenuation (Mode 1) and the global level 
of ground motion (Mode 3) for R1–R4 are average, and that these ground motion distributions reflect the 
effects of unilaterally rupture propagation (Mode 2). 

 
Figure. 5-9 (a) and Fig. 5-10 (a) show the kernel density estimation. Here, the kernel density bandwidths 

are the same value as in the 600 cases in Fig. 5-4 for comparison with the 600 cases. The bandwidth is the 
same in the following studies. The recipe cases are located around the regions of high density among the 
600 cases. However, the spatial characteristics represented by the recipe cases are very limited, indicating 
that the diversity of the ground motion distribution cannot be estimated (or represented) from the four recipe 
cases. 

 
From the above, the ground motion distributions for the recipe case (Fig. 5-8) represent average and 

limited spatial characteristics for the 600 cases, and do not adequately represent the spread of Mode 1 and 
Mode 3. Furthermore, the ground motion distribution such that the influence of Mode 2 does not appear 
(Mode 2 is 0) is also not represented in the recipe cases. 
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Figure 5-7. Recipe cases: fault models. (Star: hypocenter, blue rectangle: asperity) 

 

 
Figure 5-8. Recipe cases: ground motion distributions in SA (T = 2.0, FN). 

 

   
(a) Recipe cases (red) and 600 cases (b) Recipe cases: Kernel density (c) 600 cases: Kernel density 
 (gray) (Plotted on Fig. 5-5 (b)) estimation estimation (Fig. 5-4 (a)) 

Figure 5-9. Modes 1-2 for recipe cases. 
 

   
(a) Recipe cases (red) and 600 cases (b) Recipe cases: Kernel density (c) 600 cases: Kernel density 
 (gray) (Plotted on Fig. 5-6 (b)) estimation estimation (Fig. 5-4 (b)) 

Figure 5-10. Modes 2-3 for recipe cases. 

South North South North

R1 R2 R3 R4

R1 R2 R3 R4
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5.4 Fault Models Extending “Recipe of Predicting Strong Ground Motions” and its Ground 
Motion Distributions 

 
By diversifying the “recipe” setting conditions, it attempted to reproduce the diversity of spatial 

characteristics that could not be expressed in the recipe cases. Based on the analysis results in Chapter 4, 
this study sets fault models with extended setting conditions for source parameters (hereafter referred to as 
the “extended case”). The source parameters to be extended are described below and listed in Fig. 5-11. 

- Horizontal position of hypocenter : H1–H4  (green) 
 
- Rupture velocity (Vr) : Case with large value ; V(L)1–V(L)4 (blue) 
  Case with small value ; V(S)1–V(S)4 (blue) 
 
-Seismic moment (M0) : Case with large value ; M(L)1–M(L)4 (gold) 
  Case with small value ; M(S)1–M(S)4 (gold) 
 
- Hypocenter + Rupture velocity (Vr) : Case with large value of Vr ; V(L)H1, V(L)H4 (navy) 
  Case with small value of Vr ; V(S)H1, V(S)H4 (navy) 
 
- Hypocenter + Seismic moment (M0) : Case with large value of M0 ; M(L)H1, M(L)H4 (brown) 
  Case with small value of M0 ; M(S)H1, M(S)H4 (brown) 
 
- Horizontal arrangement of asperities* : A(H)1–A(H)4  (violet) 
 
- Vertical arrangement pf asperities* : A(V)1–A(V)8  (light blue) 
 
- Corner arrangement of asperities* : A(C)1–A(C)8  (purple) 
 
* The position of the hypocenter also changes with the arrangement of asperities. 
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Figure 5-11. Extended conditions for source parameters in the “Recipe.” 
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5.4.1 Cases with Extended Setting Conditions for Hypocenter 
 
From Chapter 4, the parameters related to the horizontal position of the hypocenter (Hypo.H, Hor.P) 

are among the dominant parameters for the spatial characteristics in Modes 1–3 of SA (T = 2.0, FN). 
However, in the recipe cases, the hypocenter is set only on the fault edge side of the lower edge of asperity, 
as shown in Fig. 5-7. Then, as extended cases about the horizontal position of the hypocenter in the “recipe,” 
this study assumes fault models in which the hypocenter is located at the fault central side of the lower edge 
of asperity (Fig. 5-12, H1–H4). In H1–H4, all parameters (except the hypocenter, e.g., seismic moment and 
rupture velocity) are the same as in the recipe cases (R1–R4). 

 
Figure. 5-13 shows the ground motion distributions for H1 – H4; these maps reflect the effects of 

bilateral rupture propagation from the fault to the northern and southern parts of the map. 
 
Figure. 5-14 (a) and Fig. 5-15 (a) show the expression range of the spatial characteristics based on PCSs 

for the recipe cases (R1–R4: red) and the extended case (H1–H4: green). In H1–H4, Mode 2 is closer to 
zero than in the recipe cases, indicating that the effect of unilaterally rupture propagation does not appear. 
The values for Mode 1 and Mode 3 are larger than those of the recipe cases; they indicate that the ground 
motion levels for H1–H4 are higher than those for the recipe cases, and that the bilateral rupture influences 
the spread of ground motion. 

 
Figure. 5-14 (b) and Fig. 5-15 (b) show the kernel density estimates for the recipe and extended cases 

(H1–H4). By setting the extended cases H1–H4 for the horizontal position of the hypocenter, the range of 
spatial characteristics that can be expressed is broadened; the density distribution for the recipe and 
extended cases (R1–R4, H1–H4) captures the characteristics of the 600 cases better than the recipe case 
alone (Fig. 5-10– Fig. 11). 

 
The above results show that by setting H1–H4, it is possible to have a spread for Mode 1 and Mode 3 

and also express the spatial characteristics with a small effect of Mode 2. 
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Figure 5-12. Extended cases for hypocenter: fault models.  

 

 
Figure 5-13. Extended cases for hypocenter: ground motion distributions in SA (T = 2.0, FN). 

 

   
(a) Recipe and extended cases (b) Recipe and extended cases: (c) 600 cases: Kernel density 
 (Plotted on Fig. 5-5 (b)) Kernel density estimation estimation (Fig. 5-4 (a)) 

Figure 5-14. Modes 1-2 for extended cases for hypocenter. 
 

   
(a) Recipe and extended cases (b) Recipe and extended cases: (c) 600 cases: Kernel density 
 (Plotted on Fig. 5-5 (b)) Kernel density estimation estimation (Fig. 5-4 (a)) 

Figure 5-15. Modes 2-3 for extended cases for hypocenter.  

South North South North

H1 H2 H3 H4

H1 H2 H3 H4
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5.4.2 Cases with Extended Setting Conditions for Rupture Velocity 
 
The “recipe” basically sets only one type of rupture velocity and seismic moment. However, these values 

are averages based on various observation records and contain variations. Specifically, the set value of 
rupture velocity in the “recipe” is  = 2.52 [km/s] [3], [4], and its variation is  = 0.126 [km/s] [10], [11]. 
This study assumed fault models with large rupture velocity (V(L)1–V(L)4) and fault models with small 
one (V(S)1–V(S)4); the rupture velocities of V(L) and V(S) are set as follows: 

- V(L)1–V(L)4:  +  = 2.646 [km/s] 
- V(S)1–V(S)4:  +  = 2.394 [km/s] 

Figure. 5-16 and Fig. 5-17 show their fault models and ground motion distributions, respectively. 
 
Figure. 5-18 and Fig. 5-19 show the PCSs and their kernel density estimates for the recipe cases (R1–

R4: red) and the extended cases (V(L)1–V(L)4, V(S)1–V(S)4: blue). For Mode 1 and Mode 2, the 
improvement effect of the diversity of the ground motion distribution (hereafter referred to as the 
“diversifying effect”) by adding the extended case is small. In contrast, for Mode 3, a slight diversifying 
effect is observed: increasing (/ decreasing) the rupture velocity results in higher (/ lower) global ground 
motion levels. 

 
The current SESMs basically do not set up fault models that vary the global ground motion level; 

therefore, when considering diversification of ground motion distribution, it is necessary to set up multiple 
types of rupture velocities (and seismic moments). 
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Figure 5-16. Extended cases for rupture velocity: fault models. 

 

 
Figure 5-17. Extended cases for rupture velocity: ground motion distributions in SA (T = 2.0, FN). 

s 

   
(a) Recipe and extended cases (b) Recipe and extended cases: (c) 600 cases: Kernel density 
 (Plotted on Fig. 5-5 (b)) Kernel density estimation estimation (Fig. 5-4 (a)) 

Figure 5-18. Modes 1-2 for extended cases for rupture velocity. 
 

   
(a) Recipe and extended cases (b) Recipe and extended cases: (c) 600 cases: Kernel density 
 (Plotted on Fig. 5-5 (b)) Kernel density estimation estimation (Fig. 5-4 (a)) 

Figure 5-19. Modes 2-3 for extended cases for rupture velocity.  
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5.4.3 Cases with Simultaneously Extended Setting Conditions for Hypocenter and Rupture 
Velocity 

 
In 5.4.1 and 5.4.2, the diversifying effect of the extended cases was clarified by independently varying 

the horizontal position of the hypocenter and the rupture velocity. Next, the extended cases are set up in 
which these parameters are varied simultaneously to clarify the diversifying effect. 

 
Fault models (V(L)H1, V(L)H4 and V(S)H1, V(S)H4) are assumed, in which the rupture velocities of H1 
and H4 are varied from large or small (Vr = 2.646, 2.394 [km/s]). Fig. 5-20 and Fig. 5-21 show their fault 
models and ground motion distributions, respectively. 

 
Figure. 5-22 and Fig. 5-23 show the PCSs and their kernel density estimates for the recipe cases (R1–

R4: red) and the extended cases (V(L)H1, V(L)H4, V(S)H1, V(S)H4: navy). Focusing on Mode 1 and Mode 
3, the PCS is larger than that of the recipe cases (R1–R4); the ground motion distributions (Fig. 5-21) are 
strongly influenced by the bilateral rupture propagation reflected in these modes. For Mode 2, the absolute 
value of PCS is smaller than that of the recipe case, indicating that the effect of unilaterally propagating 
rupture is small. 

 
The PCSs of Mode 1 and Mode 3 for V(L)H1 and V(L)H4 with large rupture velocity are larger than 

the extended cases where the hypocenter (Figs. 5-14, 15: H1–H4) or the rupture velocity (Figs. 5-18, 19: 
V(L / S)1–V(L / S)4) are independently varied. Therefore, these extended cases, in which several source 
parameters are varied simultaneously, have a wider range of spatial characteristics that can be expressed 
than the case in which only a single parameter is extended. 

 
These results indicate that the expansion condition combining multiple source parameters can express 

various spatial characteristics more efficiently than the expansion condition for a single parameter. 
Therefore, when examining the extension of the “recipe,” it is effective to assume extended conditions that 
consider the interaction of multiple parameters. 
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Figure 5-20. Extended cases for hypocenter and rupture velocity: fault models. 

 

 
Figure 5-21. Extended cases for hypocenter and rupture velocity: ground motion distributions in SA (T = 

2.0, FN). 
 

   
(a) Recipe and extended cases (b) Recipe and extended cases: (c) 600 cases: Kernel density 
 (Plotted on Fig. 5-5 (b)) Kernel density estimation estimation (Fig. 5-4 (a)) 

Figure 5-22. Modes 1-2 for extended cases for hypocenter and rupture velocity. 
 

   
(a) Recipe and extended cases (b) Recipe and extended cases: (c) 600 cases: Kernel density 
 (Plotted on Fig. 5-5 (b)) Kernel density estimation estimation (Fig. 5-4 (a)) 

Figure 5-23. Modes 2-3 for extended cases for hypocenter and rupture velocity. 
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5.4.4 Representation of Diversity of Spatial Characteristics Expressed by Ground Motion 
Distributions of Recipe Cases and Extended Cases 

 
a)  Absolute Acceleration Response Spectrum of FN Component in Period 2.0 s  

In addition, as shown in Fig. 5-11, this study attempted to the diversification of the ground motion 
distribution by assuming the following extended cases: 

- M(L) and M(S) : Extended case with large and small seismic moments 
- M(L)H and M(L)H : Extended case where the hypocenter and the seismic moment are varied 

simultaneously 
- A(H), A(V) and A(C) : Extended cases for asperities arrangement 

Here, the set value of seismic moment in the “recipe” is  = 9.63 × 1025 [dyne cm] [3, 4], and its variation 
is  = 0.482 × 1025 [dyne cm] [10, 11]. The extended cases with large rupture velocity (M(L) and M(L)H) 
and fault models with a small one (V(S)1–V(S)4); The seismic moment for the extended cases with large 
seismic moment (M(L) and M(L)H) and small cases (M(S) and M(S)H) are set as follows: 

- M(L)1 – M(L)4,  M(L)H1 and M(L)H4 :    = 10.1 × 1025 [dyne cm] 
- M(S)1 – M(S)4,  M(S)H1 and M(S)H4 :  -  = 9.15 × 1025 [dyne cm] 

In the extended cases related to seismic moment, the set values of “asperities area ratio” and “stress drop 
of asperities” related to seismic moment vary simultaneously. Therefore, this study assumed a total of 48 
extended cases in addition to the four recipe cases. 

 
Figure. 5-24 and Fig. 5-25 show the diversity of spatial characteristics represented by the 52 recipe and 

extended cases. These cases are able to reproduce the diversity of spatial characteristics of the 600 cases. 
However, most of the extended cases are located in the periphery of the recipe cases, and the kernel density 
shape of the recipe and extended cases does not have the overall spread of the 600 cases; thus, the recipe 
and extended cases do not efficiently represent the diversity. In addition, some areas are not covered by the 
recipe and extended cases, such as the area where Mode 2 is 0. 
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(a) Recipe and extended cases (b) Recipe and extended cases: (c) 600 cases: Kernel density 
 (Plotted on Fig. 5-5 (b)) Kernel density estimation estimation (Fig. 5-4 (a)) 
Figure 5-24. Modes 1-2 for recipe cases (4 cases) and all extended cases (48 cases) in SA (T = 2.0, FN). 

 
 

   

(a) Recipe and extended cases (b) Recipe and extended cases: (c) 600 cases: Kernel density 
 (Plotted on Fig. 5-5 (b)) Kernel density estimation estimation (Fig. 5-4 (a)) 
Figure 5-25. Modes 2-3 for recipe cases (4 cases) and all extended cases (48 cases) in SA (T = 2.0, FN). 
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b)  Absolute Acceleration Response Spectrum of Horizontal Two Components (FN, FP) and 
Period 0.1–2.0 s  
This study attempted to diversify the distribution of SA (T = 2.0, FN). The same examination was 

performed for the SA distributions of other periods (0.1, 0.5, 0.75, and 1.0 s) and component (FP). Fig. 5-
26–Fig. 5-29 show the two-dimensional distribution of PCSs for the distributions of SA (T=0.1 – 2.0, FN 
and FP) for the recipe and extended cases (52 cases). The recipe and extended cases reproduce some of the 
diversity of the 600 cases. However, some regions are not fully represented in the extended cases set up in 
this study, such as Modes 2-3 with FN component in period 0.1 s (Fig. 5-27 (a)) and Modess 2-3 with FP 
component in period 1.0 s (Fig. 5-27 (a)). 

 
The above results indicate that, by appropriately setting the extended cases, it is possible to represent 

the diversity of ground motion distribution, regardless of the period or component. However, the modes 
tend to differ for each period and component, and the dominant source parameters are also different. 
Therefore, it is necessary to consider the differences for each period and component when assuming 
extension conditions.  

 
In this study, there were only two types of extended cases in which multiple source parameters were 

varied simultaneously: the hypocenter and the rupture velocity or seismic moment. Therefore, it is 
necessary to try various extension conditions, such as extended cases in which the asperity arrangement 
and the rupture velocity (or seismic moment) are varied simultaneously. This study has 48 extended cases, 
but considering that the extended cases will be published in addition to the recipe cases, it is desirable to 
have a relatively small number of extended cases. Therefore, it is necessary to diversify the setting 
conditions of source parameters while simultaneously eliminating those with little diversifying effect. 
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 (a) Period 0.1 s (b) Period 0.5 s (c) Period 0.75 s (d) Period 1.0 s (e) Period 2.0 s (Fig. 5-24 (a)) 

Figure 5-26. Modes 1-2 for recipe cases (4 cases) and all extended cases (48 cases) in SA of FN component. 
 
 

 
 (a) Period 0.1 s (b) Period 0.5 s (c) Period 0.75 s (d) Period 1.0 s (e) Period 2.0 s (Fig. 5-25 (a)) 

Figure 5-27. Modes 2-3 for recipe cases (4 cases) and all extended cases (48 cases) in SA of FN component. 
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 (a) Period 0.1 s (b) Period 0.5 s (c) Period 0.75 s (d) Period 1.0 s (e) Period 2.0 s 

Figure 5-28. Modes 1-2 for recipe cases (4 cases) and all extended cases (48 cases) in SA of FP component. 
 
 

 
 (a) Period 0.1 s (b) Period 0.5 s (c) Period 0.75 s (d) Period 1.0 s (e) Period 2.0 s 

Figure 5-29. Modes 2-3 for recipe cases (4 cases) and all extended cases (48 cases) in SA of FP component. 
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5.5 Evaluation of Diversity Focusing on Ground Motion Intensity 
 
Up to this point, this study has evaluated the diversity of “spatial characteristics” of the ground motion 

distributions represented by the original 600 cases or the recipe cases and the extension cases. In this section, 
I focus on the “ground motion intensity” itself and evaluate how well the recipe and extension cases 
reproduce the original 600-case ground motion. In 5.5.1 and 5.5.2, the ground motion intensity is evaluated 
for selected points and the entire computational area. 

 
 

5.5.1 Ground Motion Intensity at Selected Point 
 
Seven points were selected from the computational area, as shown in Fig. 5-30 (a) (the same points as 

in 2.6.2). The recipe cases (red; 4 cases) have extremely narrower ranges of ground motions than the 
original 600 cases (black) except for Points 3 and 5, which are smaller than the mean of the 60 cases. The 
distribution shape of the recipe cases and the extension cases (blue; recipe: 4 cases, extension: 48 cases) is 
smoother and its range is wider than that of the recipe cases alone (red). Points 2, 3, and 5, which are located 
along and around the strike extension of the fault where the influence of the directivity effect is pronounced 
(strong ground motions are likely to occur), can roughly represent the range of the target 600 cases (black). 
The other points do not fully represent the 600-cases range; however, their SA values are small, except for 
Point 1. For Point 1, which is directly above the fault, it is possible to represent the SA of 600 cases by 
extending the “recipe” setting conditions, such as “set simultaneously large values for magnitude and 
rupture velocity” or “arrange large and small asperities vertically.” 
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 (a) Seven selected points (b) Cumulative relative frequency graph of SA 

Figure 5-30. Cumulative relative frequency of SA (T = 2.0 s, FN component) at selected points.
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5.5.2 Ground Motion Intensity for Entire Area 
 
Figure 5-31 shows the inverse cumulative distribution of the number of SA-exposure points (the number 

of points exposed to the corresponding SA) over the entire computational area. The gray lines represent each 
of the 600 cases. The mean and the standard deviation of the 600 cases for each point are  and , 
respectively (Fig. 2-4 (e)); the black lines represent the SA distribution of  (solid line),  ±  (dashed lines) 
assuming a perfect correlation of the variations. The recipe cases (red; 4 cases) are almost equal (slightly 
smaller) to the mean (solid black line). The extension cases (blue; 48 cases) are located around the recipe 
cases (red), and most of the cases fall between  -  (lower black dashed line) and  (solid black line). The 
above results show that the recipe cases and extended cases cover the ground motion distributions below 
the mean value of the 600 cases. However, the distribution above the mean value is not fully represented. 
This result suggests that it is necessary to assume extended “recipe” setting conditions such that stronger 
ground motions appear. 

 
 
 
 

  

Figure 5-31. Inverse cumulative distribution of the number of SA (T = 2.0 s, FN component) exposure 
points over the entire computational area. 
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5.6 Conclusion 
 
The study in this chapter attempts to diversify the ground motion distribution of scenario earthquakes 

by extending the setting conditions of the source parameters in the “Recipe for Predicting Strong Ground 
Motions” [1, 3, 4]. This study targets a characterized source model for a strike-slip fault consisting of a 
single fault plane [5], and extends the setting conditions for a seismic moment, inner fault parameters and 
extract fault parameters. The major conclusions are listed below. 

 
1) Mode decomposition was applied to the 600 ground motion distributions [5] to obtain the mode shapes 

and the principal component scores; non-hierarchical cluster analysis was applied to the PCSs. By 
arranging the PCSs for Modes 1–3 in two-dimensions, the diversity of the ground motion distributions 
could be visualized. 

 
2) The fault models complied with the “recipe” setting conditions, and the relative relationship between 

the ground motion distributions for recipe cases and the 600 cases were clarified. However, the spatial 
characteristics for the recipe cases were average and limited, and did not cover the diversity of the 600 
cases. 

 
3) The cases with extended the “recipe” setting conditions were set up, and an attempt was made to 

diversify the ground motion distribution using the recipe and extended cases. The source parameters 
with extended setting conditions are “horizontal position of the hypocenter,” “rupture velocity,” 
“seismic moment,” and “asperities arrangement.” In addition to the extended cases in which these 
parameters were varied independently, extended cases in which two parameters were varied 
simultaneously (“hypocenter and rupture velocity” and “hypocenter and seismic moment”) were also 
assumed.  

 
4) Focusing on the “spatial characteristics” and “ground motion intensity” of the ground motion 

distributions, the diversity of the ground motion distributions represented by the recipe case (4 cases) 
and the extended case (48 cases) was evaluated. The spatial characteristics that did not appear in the 
current recipe cases (e.g., differences in ground motion levels and the effects of bilateral rupture 
propagation) could be expressed by adding the extended cases; thus, the recipe and extended cases 
allowed for diversification of the seismic motion distribution. This diversifying effect was greater in 
the case where multiple parameters were combined and extended than in the case where solely a single 
parameter was extended. At the computational points along and around the strike extension of the fault, 
the ground motion (SA) of the recipe and extension case approximately reproduced the range of the 
600 cases. The ground motion distributions over the entire computational area of the recipe cases and 
the extension cases are covered for the distributions below the mean of the 600 cases. However, they 
do not fully represent the larger-than-average cases. 

 
Yamada et al. [12] proposed a setting method using the LHS (Latin Hypercube Sampling) as an efficient 

way to set up various characterized source models considering the “recipe” setting values and their 
variations. Imai et al. [13] proposed a method using copulas to capture the distribution shape of PCSs among 
modes as a probability distribution, sample PCSs according to this probability distribution, and simulate 
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ground motion distribution. The sampling using LHS is an efficient method to cover the diversity of source 
parameters without considering the diversity of spatial characteristics of the ground motion distribution. In 
contrast, the sampling simulation using copulas is an efficient way to cover various spatial characteristics 
without directly considering the source parameter settings. Meanwhile, the extension of the “recipe” in this 
study arbitrarily extends the “recipe” setting conditions, assumes a variety of fault models in a relatively 
small number of cases, and attempts to cover a variety of ground motion distributions. Future studies will 
set up and simulate the fault models and ground motion distributions by sampling and simulation using the 
LHS method [12] and the copula method [13]. Based on these results, the number of cases necessary to 
efficiently cover the diversity of seismic motion distribution will be judged. 
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6  Analysis of Spatial Characteristics of Tsunami Inundation Depth 

Caused by the Nankai Megathrust Earthquakes 
 

  



166 
 

  



167 
 

6.1 Introduction 
 
An earthquake with submarine slip has the potential to cause tsunamis and other disasters simultaneously. 

Therefore, it is important to analyze these multi-hazards and conduct risk assessments from the viewpoint 
of disaster prevention. The studies in Chapters 2–5 have applied the “decomposition, synthesis, 
classification, regression, and prediction” method to the ground motion distributions; then, the studies have 
performed analyses related to seismic risk assessment, such as analysis of the spatial characteristics of 
ground motion distributions and simulation of ground motion distributions. The study in Chapter 6 aims 
to clarify the usefulness of these methods, i.e., their applicability to multi-hazards, as a stepping stone to 
multi-hazard risk assessment. Specifically, the spatial characteristics of the tsunami inundation depth 
distributions are analyzed using the “decomposition” method. 

 
The tsunami caused by the Nankai trough megathrust earthquake has the potential to invade wide areas 

based around the Pacific coast and cause severe damage. For example, many key energy-related facilities, 
such as thermal power plants, nuclear power plants, and liquefied natural gas (LNG) terminals, are located 
in coastal areas; thus, tsunami damage to these facilities could lead to long-term supply disruptions of 
electricity and city gas. Therefore, the key to rational tsunami countermeasures is proper tsunami damage 
estimation and risk assessment. The working group on megathrust earthquake models for the Nankai trough 
[1] established in the central disaster management council has assumed and published the distributions of 
tsunami inundation depth caused by the earthquakes expected to result in the largest tsunami damage. 
However, the occurrence frequency is very infrequent [2]. The tsunami source models for 11 cases were set 
up in this assumption, and the assumed area covers a wide region from Kyushu to Kanto. 

 
As in seismic analysis, handling uncertainty in fault models is an important issue in tsunami analysis, 

and many studies have been carried out as follows. 
- Imamura et al. [3] : Evaluation of the effects of fault length and strike differences on the spatial 

distribution of tsunami water levels and wave heights. 
- Kurita et al. [4] : Quantitative evaluation of the variation of computed water levels in tsunami analysis 

using tsunami trace heights in the Tohoku region. 
- Yasuda et al. [5] : Quantitative evaluation of the uncertainty of tsunami height using the amount of slip 

on the fault plane as a probability quantity. 
- Kotani et al. [6] : Quantifying the maximum tsunami height uncertainty by simulating tsunami heights 

using response surfaces. 
- Kotani et al. [7] : Analysis of site-to-site correlation of tsunami heights by principal component 

analysis. 
 
The study in this chapter applies the decomposition method to the inundation depth distributions and 

the physical implications of the spatial characteristics of inundation depth reflected in the base forms 
obtained from the decomposition by relating it to the tsunami source fault model. Specifically, the spatial 
characteristics are analyzed for the inundation depth distributions of 11 cases published by The working 
group on megathrust earthquake models for the Nankai trough [1]. In addition to the singular value 
decomposition used in Chapter 4 (target: ground motion distribution), a non-negative matrix factorization 
is used as the analysis method. 
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6.2 describes applying singular valued decomposition and non-negative matrix factorization to tsunami 

inundation depth distributions. 6.3 outlines the tsunami inundation depth distributions caused by the Nankai 
megathrust earthquakes. Next, 6.4 shows the results of applying singular value decomposition, and 6.5 and 
6.6 show the results of non-negative matrix factorization. 6.7 compares the results of both methods. Finally, 
6.8 summarizes the conclusions obtained in this chapter. 
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6.2 Singular Value Decomposition and Non-negative Matrix Factorization of Tsunami 
Inundation Depth Distributions 

 
6.2.1 Singular Value Decomposition and Non-negative Matrix Factorization 

 
Table. 6-1 summarizes the contents of singular value decomposition (SVD) and non-negative matrix 

factorization (NMF) [8, 9]. The greatest advantage of SVD is that the orthogonal bases are obtained as 
eigenvectors of mutually uncorrelated modes; this allows the spatial correlation of each mode to be 
represented as an independent component. The feature space (mode shape) of SVD represents the variation 
structure of the entire space. In contrast, NMF is characterized by the approximate representation of a non-
negative matrix using only the addition of non-negative bases; this facilitates interpretation and semantics 
in the decomposition and synthesis of non-negative physical quantities. The NMF feature space (non-
negative basis space) represents the variation structure of the local space. 
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Table 6-1. Singular value decomposition and non-negative matrix factorization. 

Method Singular Value Decomposition (SVD) Non-negative Matrix Factorization (NMF) 

Data Type 
All data, regardless of whether the sign is positive or negative 

(M × N matrix) 
Non-negative data only 

(M × N non-negative matrix) 

Basis Number 
(Factorization Rank) 

N (<<M) 
k k M, N} = N) 
* k is an optional integer 

Decomposed Basis 

Orthonormal basis 
(Each mode is independent) 

 
Basis reflects the variation structure in the entire space 

Non-negative basis 
(Symplectic basis) 

 
Basis reflects the variation structure in the local space 

Synthesis of Bases 

Original matrix is represented by 
addition and subtraction of orthogonal modes 

- Synthesis of all N modes : perfect reproduction 
- Synthesis of low-order modes : low-dimensional approximation 

Original non-negative matrix approximated by  
only addition of non-negative basis 

(k-dimensional low-dimensional approximation) 
* The approximation accuracy generally improves  

as the factorization rank k increases. 

Order of  
Basis Number 

Eigenvalues in ascending order 
- Mode 1 has maximum weight (the greatest importance) 

- Higher-order modes have smaller weights (lower importance) 

Factorization rank is optional 
(No difference in relative importance for each basis) 

Advantage 
Orthogonal modes allow each mode to be evaluated 

independently 
Non-negative bases addition allows  

easy interpretation of decomposition and synthesis results 

Disadvantage 
Negative values in the bases can make  

interpretation of decomposition and synthesis results difficult 
depending on the physical quantity 

- Target data is only non-negative values 
- Need to set appropriate factorization rank k 
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6.2.2 Matrix Representation of Tsunami Inundation Depth Matrix 
 
Let x denote a variable representing the inundation depth, and the inundation depth distribution 

(M: total number of computation sites) is represented by a column vector x = (x1, …, xM)T. The inundation 
depth distributions for N cases with different parameter settings are described by the M × N (M >> N) matrix 
X as follows: 

 
11 1

1

1

, ,
N

N

M MN

x x

x x
X x x  (6-1) 

where xij is the inundation depth at site i in Case j. 
 
 

6.2.3 Singular Value Decomposition of Inundation Depth Distributions 
 
The application of SVD to the inundation depth distributions is the same as the ground motion 

distributions in 3.3; thus, only a brief flow is described here. The matrix X of the inundation depth 
distributions is normalized by using the mean G and standard deviation G of all entries of X, which is 
defined as the matrix X0. Applying SVD to X0 yields three matrices U0, D0, and V0.  

 
01

TT
01 0 01 0

0

0

0
N N

N

d

d
0 0 0 0X U D V u u v v  (6-2) 

The decomposition results of SVD, U0, D0, and V0, are uniquely determined. The computation of U0D0V0
T 

in Eq. (6-2) cancels out the sign arbitrariness in the singular vectors u0 and v0. Please refer to 3.3 for details 
of SVD, including the implications of U0, D0, and V0. It should be noted that in 3.3, it is denoted as X0 = 
UDVT. 

 
In applying SVD to the inundation depth distribution, the lower limit of the inundation depth x [m] is 

set to 0.1 m, and the entry of the matrix X is log10 x, 0.1}. 
 
 

6.2.4 Non-negative Matrix Factorization of Inundation Depth Distributions 
 
The non-negative matrix X is approximately decomposed into the non-negative matrices W and H by 

applying NMF [8, 9]. 

 
11 1 11 1

1 1

k N

M Mk k kN

w w h h

w w h h
X WH  (6-3) 

where k is the number of adopted bases satisfying k M, N} = N, and the number of basis l goes from 
1 to k. W and H in Eq. (6-3) have the following meanings. 

- Matrix W: W is the M × k basis matrix with no negative entries. The basis vector wl = (w1l, …, 
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wil, …, wMl)T, the l-th column of W, represents the basic form that defines the spatial 
characteristics in Basis l. The map of the basis vector visualizes the spatial 
characteristics at grid cells. 

- Matrix H: H is the k × N coefficient matrix with no negative entries. The coefficient vector hj = 
(h1j, …, hlj, …, hkj)T, the j-th column of H, represents the weights of each basis in Case 
j. 

 
The non-negative linear combination WH represents the low-rank approximation of the matrix X. The 

non-negative constraint of NMF tends to make H sparse. NMF bases (W and H) are easy to interpret 
because of the above “addition of non-negative bases” and “sparsity of H.” 

 
In NMF, the approximation accuracy of the matrix X generally improves as the factorization rank k 

increases. However, it is necessary to exploratively decide an appropriate factorization rank k to extract and 
evaluate spatial characteristics of X. 

 
The NMF algorithms are described below. First, W0 and H0, the initial matrices of W and H, are defined 

by non-negative values. Then, W and H in Eq. (6-3) that approximate X are obtained by repeatedly applying 
the NMF update equations. The update equations are defined as an optimization problem to minimize 
Kullback-Leibler (KL) divergence D as follows [10]:  
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D KL x xX WH WH
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 (6-6) 

 
The approximation accuracy of NMF also depends on the initial values of W and H, i.e., the initial 

matrix W0 and H0. Therefore, two NMF initialization methods are used in this study: the standard method 
using uniform random numbers and the method using non-negative double singular value decomposition 
(NNDSVD) [11]. 
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6.2.5 NMF: The Initialization Method Using Uniform Random Numbers 
 
In the initialization method using uniform random numbers, each entry of W0 and H0 is given a 

uniform random number which is X X} is the 
maximum value of all entries of X). Since W0 and H0 are given different values for each trial, their 
convergence result, W and H, are also not uniquely determined. Therefore, selecting the optimal W and 
H from multiple trials is generally adopted in uniform random initialization. However, the selection result 
is also one of the decomposition results, and it is necessary to note that the characteristics of the 
decomposition result possibly differ depending on a set of uniform random numbers. 

 
 

6.2.6 NMF: The Initialization Method Using Non-negative Double Singular Value 
Decomposition 

 
The initialization method using NNDSVD [11] is described below. First, SVD is applied to the matrix 

X. It should be noted that the SVD technique (6.2.2, Eq. (6-2))applies SVD to the standardized matrix X0, 
while NNDSVD applies SVD to X. 
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TT
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d
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X UDV u u v v  (6-7) 

 
Next, the singular value vectors ul and vl, the l-th column vectors in the matrices U and V, are separated 

into positive entries u+l and v+l, and negative entries u–l and v–l.  

 l l+u u 0 ,   l lu u 0  (6-8) 

 l l+v v 0 ,   l lv v 0  (6-9) 

Where u+l and u–l are M-dimensional, and v+l and v–l are N-dimensional. 0 is a zero vector (M-dimensional 
in Eq. (6-8) and N-dimensional in Eq. (6-9)).  shall be applied to each vector entry. The 
products of the norm in the singular vector by sign are denoted by +l and –l. 

 l l l+ +u v  (6-10) 

 l l lu v  (6-11) 

 
The matrices W and H consist of non-negative bases; thus, NNDSVD extracts non-negative bases 

(diagonal basis) u’l and v’l from the singular vectors (orthonormal bases) ul and vl. u’l and v’l are defined 
as follows:  

 ( , , )
( , , )

( , , )
l l l

l l l
l l l

+ + +

- - -

u v
u' v' '

u v
   if 

otherwise
l l  (6-12) 

The l-th column vector of the initial matrix W0 is denoted by w0l, and the l-th row vector of the initial matrix 
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H0 is denoted by h0(l); then, these are defined by using u’l and v’l as follows:  

 ''
'
l

l l l
l

d0
uw
u

 (6-13) 
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d0
vh
v
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where the basis number of NNDSVD corresponds to the mode number of SVD. 
 
The initial matrices W0 and H0 are set up through the above computational procedure. As mentioned 

above, the decomposition result of SVD is essentially uniquely determined (except for the arbitrariness of 
the sign); hence, unlike the initialization using uniform random numbers in 6.2.5, the NNDSVD initial 
matrices W0 and H0 and its convergence results W and H are also uniquely determined. In addition, the 
zero entries in W0 and H0 that are defined in Eqs. (6-8) and (6-9) are also retained as zero entries in the 
convergence results W and H after applying the update equations (Eqs. (6-4) and (6-5)). Therefore, 
NNDSVD has the potential to produce higher sparsity of decomposition results than uniform random 
numbers. 
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6.3 Tsunami Inundation Depth Distributions Cased by the Nankai Megathrust Earthquakes 
 
This study uses data from the second report published by the working group report on megathrust 

earthquake models for the Nankai trough [2]. 
 
 

6.3.1 Tsunami Source Model 
 
The working group report on megathrust earthquake models for the Nankai trough [1] examined 11 

cases (N = 11) of tsunami source models that cause the largest class of tsunamis among the MW = 9 class 
megathrust earthquakes (Fig. 6-1 and Table. 6-2) [2]. The five cases (Cases 1–5) are the base cases, and the 
other six cases (Cases 6–11) are the derived cases. The base cases have one large slip zone (LSZ) and one 
super large slip zone (SLSZ) in the tsunami source model, respectively; all five base cases cover the entire 
Nankai Trough. The hypocenters are set up at 20 km depth near the center of the LSZ. In Case 2, the 
hypocenter is set off the Shionomisaki in the Kii Peninsula based on the past earthquakes (the 1944 
Tonankai earthquake and the 1946 Syowa Nankai earthquake). The derived cases include two cases (Case 
6, 7) with splay faults in the slip zone and four cases (Case 8 – 11) with two LSZ and two SLSZ. The 
hypocenters are set at the same locations as in the base cases that are the target of derivation. 

 
 

6.3.2 Inundation Depth Distribution 
 
The inundation depth is evaluated on a 10 m mesh scale in the coastal and upland areas, and the value 

is computed in units of 0.01 m. The tsunami source model is a model in which the rupture propagates from 
the hypocenter. The tide level is set as the high tide level, and obstacles such as houses are expressed as 
roughness coefficients. For sites with levees (including sluice gates), two conditions are considered: 
“conditions under which levees cease to function due to ground motion” and “conditions under which the 
levees cease to function due to tsunami overtopping the levees.” This study uses the inundation depth 
distributions under the latter condition.  

 
The target area is from Kyusyu to Kanto, and the number of meshes with which inundation depths are 

commonly evaluated in all 11 cases (N = 11) is about 6.64 million. This study analyzed M = 6644 meshes 
(NMF: M = 6641, excluding the three meshes evaluated as 0.00 m in all 11 cases), from which one mesh 
was selected for every 1000 meshes. 

 
Figure. 6-2 shows the inundation depth distributions for 11 cases. The inundation depths are larger along 

the Pacific coast, mainly in the vicinity of LSZ, including SLSZ (hereafter collectively referred to as “LSZ”). 
Fig. 6-3 shows the mean and standard deviation of inundation depth distribution. The mean and standard 
deviation show large values along the Pacific coast and smaller values toward the inland seas. 
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Figure 6-1. Tsunami source models for the Nankai megathrust earthquakes. (Note: Adapted from [2] and partially edited) 
 

 
Figure 6-2. Tsunami inundation depth distributions caused by the Nankai megathrust earthquakes. (Source data: [1])  

Case 6 Case 7 Case 8 Case 9 Case 10 Case 11

Case 1 Case 2 Case 3 Case 4 Case 5 Slip [m]

Hypocenter

Case 3Case 1

Case 11Case 10

Case 2 Case 5Case 4

Case 8Case 6 Case 7 Case 9



177 
 

 
Table 6-2. Parameter of tsunami source model for the Nankai megathrust earthquakes. (Source data: [2]) 

Type Case 
Large slip zone (LSZ), Super Large slip zone (SLSZ) 

M0 [Nm] MW 
Average 

Slip 
[m] 

Basic case  
targeted for derivation  

(Location of hypocenter) 
Location Arrangement pattern 

Basis 

1 The Suruga Bay – Off the Kii Peninsula LSZ + SLSZ 6.1 × 1022 9.1 10.3  

2 Off the Kii Peninsula LSZ + SLSZ 6.3 × 1022 9.1 10.7  

3 Off the Kii Peninsula – Off Shikoku LSZ + SLSZ 6.4 × 1022 9.1 10.9  

4 Off Shikoku LSZ + SLSZ 6.4 × 1022 9.1 10.8  

5 Off Shikoku – Off Kyushu LSZ + SLSZ 6.3 × 1022 9.1 10.7  

Derivation 

6 The Suruga Bay – Off the Kii Peninsula 
LSZ + 

(SLSZ, Splay fault) 
5.4 × 1022 9.1 9.0 Case 1 (Case 1) 

7 Off the Kii Peninsula 
LSZ + 

(SLSZ, Splay fault) 
5.3 × 1022 9.1 8.8 Case 2 (Case 2) 

8 
The Suruga Bay – Off the east coast of Aichi 
Off the south coast of Mie – Off Tokushima 

LSZ + SLSZ 
LSZ + SLSZ 

6.2 × 1022 9.1 10.4 Case 1, 2 (Case2) 

9 
Off Aichi – Off Mie 
Off the Muroto cape 

LSZ + SLSZ 
LSZ + SLSZ 

6.7 × 1022 9.1 11.3 Case 1, 3 (Case 2) 

10 
Off the south coast of Mie – Off Tokushima 

Off the Ashizuri cape 
LSZ + SLSZ 
LSZ + SLSZ 

6.4 × 1022 9.1 10.8 Case 2, 4 (Case 2) 

11 
Off the Muroto cape 

Sea of Hyuga 
LSZ + SLSZ 
LSZ + SLSZ 

6.6 × 1022 9.1 11.2 Case 4, 5 (Case 4) 
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(a) Mean 
 

 

(b) Standard deviation 
Figure 6-3. Distribution maps of mean and standard deviation of tsunami inundation depth for 11 cases. 
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6.4 Analysis of Spatial Characteristics of Inundation Depth Using SVD
 
This section presents the results of applying SVD to the 11 cases of inundation depth distributions. 
 
 

6.4.1 Contribution Ratio of Mode
 
Figure. 6-4–Fig. 6-6 show the singular value, contribution ratio, and cumulative contribution ratio, 

respectively. Mode 1 is the most significant, with a contribution ratio of 84.62 %. Mode 2 and higher modes 
have smaller but constant contributions than Mode 1, with the cumulative contribution ratio exceeding 98% 
for Mode 6. 

 
 

 

Figure 6-4. Singular value. 
 

 

Figure 6-5. Contribution ratio. 
 

 

Figure 6-6. Cumulative contribution ratio.  
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6.4.2 Mode Shape and Spatial Characteristics 
 
Figure. 6-7 shows the left singular vector u that represents the mode shape of inundation depth, and Fig. 

6-8 shows the right singular vector v that represents the case-specific weight for each mode (only Modes 
1–6 are shown). The relationship between the characteristics of each mode and the inundation depth 
distributions is discussed below, relating to Figs. 6-8, 6-9 to the tsunami source model (Fig. 6-1). The results 
are summarized in Table. 6-3 below. 

 
 

a) Mode 1 
The left singular vector has positive values along the Pacific coast and negative values toward the inland 

seas, similar to the mean inundation depth distribution (Fig. 6-3 (a)). The right singular vector has almost 
the same for all cases (mean: 0.3014, standard deviation: 0.0070). Thus, Mode 1 represents the average 
characteristics of the inundation depth distribution for the 11 cases. 

 
 

b) Mode 2 
The left singular vector has positive values in the east of the Kii Peninsula and negative values in the 

west. The right singular vector has positive values in Cases 1 and 2 (basis cases) and their derivatives cases 
where the LSZ is located east of the Kii Peninsula. Therefore, Mode 2 reflects the arrangement condition 
of LSZ in the east and west, with the Kii Peninsula as the boundary. 

 
 

c) Modes 3–11 
Modes 3 and 4 also reflect the arrangement condition of LSZ. Modes 5–11 also seem to have spatial 

characteristics that reflect the arrangement condition of LSZ; however, the higher-order modes have more 
complicated mode shapes, which may play a role as a tuning term for the details of each case. 
 
 
 



181 
 

 
 
 

 
Figure 6-7. Distribution of left singular vector (mode shape). 

 
 
 

 
Figure 6-8. Right singular vector (weight coefficient). 

 
 
 

Mode 6Mode 5Mode 3Mode 1 Mode 2 Mode 4
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6.5 Analysis of Spatial Characteristics of Inundation Depth Using NMF (Initialization Method: 
Uniform Random Numbers) 

 
This section presents the results of applying NMF using uniform random numbers as the initialization 

method (hereafter referred to as “NMF-R”). 
 
 

6.5.1 NMF (Initialization Method: Uniform Random Numbers): Variation in Approximation 
Accuracy with Different Initial Values and Factorization Ranks  

 
In NMF, the approximation accuracy of the matrix WH to the matrix X varies with the factorization 

rank. In NMF-R, the initial matrices W0 and H0 are different in every trial, so the convergence result WH 
is not uniquely determined; the approximation accuracy in NMF-R also varies in every trial. The 
factorization rank k is k N), and convergence calculation was performed with 20 different 
uniform random numbers in each k. Fig. 6-9 shows the variation of the approximation accuracy in terms of 
KL divergence of WH to X; the red point and numbers represent the mean of the KL divergence in 20 trials. 
The KL divergence depends on each factorization rank. The effect of improvement in approximation 
accuracy with increasing factorization rank k (hereafter referred to as “accuracy improvement effect”) 
becomes smaller between k = 6 and 7 (decrease in the KL divergence between k = 4–5–6–7–8: 775, 668, 
293, and 221, respectively). 

 
 
 

 
Figure 6-9. Boxplot of KL divergence with different initial values for each factorization rank in NMF-R. 

(Number of trials for each factorization rank: 20, red point and number: mean of 20 trials) 
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6.5.2 NMF (Initialization Method: Uniform Random Numbers): Basis Space and Spatial 
Characteristics 

 
The results of NMF-R for the factorization rank k = 5–7 (k = 6 just before the accuracy improvement 

effect becomes small, and before and after k = 6) were compared (figures are omitted). Focusing on the 
base cases (Cases 1–5), k = 6 can be approximated with two bases, while k = 5 and 7 require three; therefore, 
the simpler k = 6 was adopted in this study. 

 
Figure. 6-10 shows the distributions of the basis vector w in NMF-R, and Fig. 6-11 shows the coefficient 

vector h. The dominant factors in the spatial distribution of the basis vectors are discussed below, relating 
the coefficient vectors to the tsunami source models(Fig. 6-1). Finally, the results are summarized in Tab. 
6-3, together with the SVD results. 

 
 

a) Basis 1 
The basis vector has large values along the pacific coast from Aichi prefecture to Shizuoka prefecture. 

The coefficients of Basis 1 have relatively large values in Case 1 (base case) and some of its derivatives 
(Cases 6 and 8) where the LSZ is located in the vicinity of such areas. Therefore, Basis 1 reflects the 
arrangement condition of LSZ in Aichi–Shizuoka. 

 
 

b) Basis 2 
The basis vector has large values along the pacific coast from Mie prefecture to Aichi prefecture. The 

coefficients of Basis 2 have relatively large values in Cases 1 and 2 (base cases) and some of their derivative 
(Cases 6, 7, and 9) where the LSZ is located in the vicinity of such areas. Therefore, Basis 1 reflects the 
arrangement condition of LSZ in Mie–Aichi. 

 
 

c) Bases 3–6 
Bases 3–6 also reflect the spatial characteristics related to the arrangement condition of LSZ.  
 
 
From the coefficient vectors, it can be read that Cases 1–5 (base case) are approximated mainly by two 

bases, and Cases 6–11 (derived case) are approximated by the bases that constitute the derived base cases. 
However, the number of zero entries in the matrix H is not large, and the sparsity of H, a feature of NMF, 
is not fully demonstrated. In other words, the approximate model WH in NMF-R is complicated by many 
bases, and the semantics of the decomposition and synthesis is unclear. 
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Figure 6-10. Distribution of basis vector in NMF-R (k = 4). 
 
 

 
Figure 6-11. Coefficient vector in NMF-R (k = 4). 
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6.6 Analysis of Spatial Characteristics of Inundation Depth Using NMF (Initialization Method: 
NNDSVD) 

 
This section presents the results of applying NMF using NNDSVD as the initialization method (hereafter 

referred to as “NMF-NNDSVD”). 
 
 

6.6.1 Orthonormal Basis of Inundation Depth Distribution based on SVD 
 
Figure. 6-12 shows the distributions of the left singular vector obtained by applying SVD to the 

inundation depth distributions X, and Fig. 6-13 shows the right singular vectors (only Modes 1–6 are 
shown). In MNF-NNDSVD, the matrix W0 is constructed based on the left singular vectors (Fig. 6-12) 
according to Eq. (6-13), and the matrix H0 is constructed based on the right singular vectors (Fig. 6-13) 
according to Eq. (6-14). 

 
In 6.4, SVD was applied to the log-transformed and standardized inundation depth distributions. 

However, NMF-NNDSVD does not perform these transformations because the non-negative value 
condition is no longer satisfied by these transformations. Therefore, the singular vector of NMF-NNDSVD 
(Fig. 6-12 and Fig. 6-13) differs from the singular vectors of SVD (Fig. 6-7 and Fig. 6-8), but the general 
trends are similar. 
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Figure 6-12. Distribution of left singular vector in SVD for NMD-NNDSVD. 

 
 
 

 
Figure 6-13. Right singular vector in SVD for NMD-NNDSVD. 
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6.6.2 NMF (Initialization Method: NNDSVD): Variation in Approximation Accuracy with 
Different Initial Values and Factorization Ranks 

 
NMF-NNDSVD with the factorization rank k k the inundation depth 

distributions, respectively; Fig. 6-14 shows the approximation accuracy of WH in NMF-NNDSVD. 
Compared with the approximation accuracy of NMF-R (black dashed line in Fig. 6-9 and Fig. 6-14), NMF-
R has higher approximation accuracy, and this trend becomes more pronounced as the number of bases 
increases. This trend is discussed in 6.7, based on the characteristics of the bases. 

 
 
 
 

 
Figure 6-14. KL divergence for each factorization rank in NMF-NNDSVD. (Blue points, line, and number: 

NMF-NNDSVD, black points, dashed line, and number: NMF-R) 
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6.6.3 NMF (Initialization Method: NNDSVD): Basis Space and Spatial Characteristics 
 
The factorization rank k = 6 was adopted in NMF-NNDSVD for comparison with NMF-R. Fig. 6-15 

shows the distributions of the basis vector w in NMF-NNDSVD, and Fig. 6-16 shows the coefficient vector 
h. The dominant factors in the spatial characteristics of the inundation depth are analyzed from the basis 
and coefficient vectors. The results are summarized in Tab. 6-3, together with the SVD and NMF-R. 

 
 

a) Basis 1 
The basis vector has large values on almost the Pacific coast, especially in and around Shikoku (mainly 

in Kochi Prefecture), and the values become smaller toward the inland seas. This distribution trend is also 
observed in the mean inundation depth distribution in Fig. 6-2. The coefficient vectors indicate that Basis 
1 contributes to all 11 cases. In particular, the coefficients for Cases 4 and 5 (bases cases) and their 
derivatives (Cases 10 and 11), where the LSZ is located in the vicinity of Kochi Prefecture, are larger than 
those for the other cases. Therefore, Basis 1 reflects the scale of inundation depth in the whole area 
(especially in western Shikoku). 

 
Basis 1 contributes to all cases, whereas Bases 2–6 contribute to different cases depending on the basis. 

That difference suggests that Basis 1 covers the entire area, while Bases 2–6 represents each case’s local 
space. 

 
 

b) Basis 2 
The basis vector has large values in the eastern Kii Peninsula and to the east of it. The coefficients of 

Basis 1 contribute to Cases 1 and 2 (base cases) and their cases (Cases 6–9) where the LSZ is located in the 
vicinity of such areas. Thus, Basis 2 reflects the arrangement condition of LSZ in the eastern Kii Peninsula 
and to the east. 

 
 

c) Bases 3–6 
Basis 3 – 6 also reflect the arrangement condition of LSZ. 
 
 
Each case is approximated by Basis 1 and other bases. The coefficient value in Basis 1 expresses the 

level of inundation depth over the entire area; Bases 2–6 express the local spatial characteristics of the 
inundation depth for each case (the local areas with particularly large inundation depth values in the whole 
area). The coefficient vectors of the matrix H contain 2–4 zero entries each, which improves the sparsity. 
Thus, it can be read that a small number of bases approximates each case. 
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Figure 6-15. Distribution of basis vector in NMF-NNDSVD (k = 4). 

 
 

 
Figure 6-16. Coefficient vector in NMF-NNDSVD (k = 4).
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6.7 Comparison of Decomposition Results in SVD and NMF 
 
Table. 6-3 summarizes the analysis results of the influencing factors on the spatial characteristics of the 

inundation depth using SVD and NMF (NMF-R and NMF-NNDSVD). The order of modes in SVD and the 
order of bases in NMF-NNDSVD correspond to the scale of singular values, as shown in Eqs. (6-2) and (6-
7). In contrast, the bases of NMF-R yield different results depending on the trials, and the order of the bases 
is arbitrary. 

 
First, comparisons are made for decomposition bases. For SVD, the lower-order modes are highly 

important and closely related to the arrangement of LSZ in the tsunami source models. The mode shapes 
reflect the distinctive spatial characteristics of the entire inundation depth distributions. However, the 
weight of a mode decreases in importance with higher-order modes, and the mode shapes become more 
complex and difficult to interpret. For NMF, the weight of a basis represented by the coefficient vector 
characterizes each case; there is no relative difference in their importance. For NMF-R, both bases are 
related to the arrangement of LSZ, and their base spaces represent the local spatial characteristics. For 
NMF-NNDSVD, in contrast, Basis 1 represents a spatial distribution covering the entire area, contributing 
to all cases. Bases 2–6 reflect the local spatial characteristics associated with the arrangement of LSZ in the 
tsunami source model. Furthermore, NMF-NNDSVD has a high sparsity of the coefficient matrix H due to 
Basis 1 covering the entire area and Bases 2–6 characterizing each case, which facilitates the interpretation 
of the decomposition results. NMF-R does not have a basis that covers the entire area and contributes to all 
cases, such as Mode 1 for SVD and Basis 1 for NMF-NNDSVD.  

 
Next, the stability of the decomposition results is compared. Since the SVD result is uniquely determined, 

the NMF-NNDSVD result using it as the initial values is also uniquely determined; thus, these techniques 
give stable results. In contrast, NMF-R results differ from trial to trial because uniform random numbers 
set the initial values. 

 
Finally, the accuracy of the low-dimensional approximations by NMF are compared. As shown in Fig. 

6-14, the residuals based on the KL divergence for NMF-R (black in the figure) were smaller than that for 
NMF-NNDSVD (blue in the figure). This trend is due to the complex contribution of the basis to each case 
in NMF-R, as shown in Fig. 6-11; this indicates that approximation accuracy is a trade-off for sparsity. 
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Table 6-3. Analysis results of factors influencing the inundation depth distribution using SVD and NMF 

 Singular Value Decomposition 

 

 

Non-negative Matrix Factorization (Factorization rank k = 6) 

 
NMF-R  

(Initialization method:  
Uniform random) 

NMF-NNDSVD  
(Initialization method: Non-negative 
double singular value decomposition) 

Mode 1 
Average inundation depth distribution 
* This mode contributes to all cases 

 Basis 1 
Arrangement condition of large slip zone 
in Aichi – Shizuoka 

The scale of inundation depth 
distribution over the entire target area 
* This basis contributes to all cases 

Mode 2 
Arrangement condition of large slip zone 
in east and west, with the Kii peninsula 
as the boundary 

 Basis 2 
Arrangement condition of large slip zone 
in Mie – Aichi 

Arrangement condition of large slip zone 
in the eastern part of the Kii Peninsula 
and east of it 

Mode 3 
Arrangement condition of large slip zone 
on the Kii peninsula and both sides 

 Basis 3 
Arrangement condition of large slip zone 
in western Shikoku 

Arrangement condition of large slip zone 
on the Kii peninsula 

Mode 4 

Arrangement condition of large slip zone 
in the four-part split target areas 
(Off Kyushu, off Shikoku,  

off the Kii peninsula, off Aichi – Shizuoka) 

 Basis 4 
Arrangement condition of large slip zone 
in eastern Shikoku 

Arrangement condition of large slip zone 
in eastern Shikoku 

Mode 5 
 – Mode 11 

Arrangement condition of large slip zone 
in the split target areas 
* Left singular vector: Split by mode order 

in the strike direction of the fault 

* Higher-order mode: Fine adjustment 
term for each case 

 Basis 5 
Arrangement condition of large slip zone 
in Kyushu – western Shikoku 

Arrangement condition of large slip zone 
in Kyushu – western Shikoku 

 Basis 6 
Arrangement condition of large slip zone 
in the Kii peninsula 

Arrangement condition of large slip zone 
in the western part of the Kii peninsula 
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6.8 Conclusions 
 
In this chapter, “data mining” and “machine learning” methods for analyzing ground motion distribution 

are applied to the tsunami inundation depth distributions; the usefulness of their methods for multi-hazards 
was clarified. Specifically, the spatial characteristics of the inundation depth distributions were analyzed 
using singular value decomposition and non-negative matrix factorization. As a numerical example, the 
tsunami inundation depth distributions for 11 cases caused by the Nankai trough megathrust earthquake 
were used. The major conclusions are listed below. 

 
1) In SVD, the mode shapes represent the variation structure of the entire area. Mode 1 reflects the 

average characteristics of the inundation depth distribution. Mode 2 and higher modes reflect the 
arrangement condition of large slip zone, including super large one. 
 

2) In NMF using uniform random numbers as the initialization method, the bases represent the local 
area’s variation structure. The bases reflect the arrangement condition of a large slip zone. Each base 
contributes to a case where the arrangement is closely related. 
 

3) In NMF using NNDSVD as the initialization method, Basis 1 contributes to all cases, and its 
distribution of the basis vector represents the spatial distribution that covers the entire area. Bases 2–6 
reflect the local spatial characteristics associated with the arrangement condition of a large slip zone. 

 
This study used the tsunami inundation distributions for only 11 cases. For future developments, the 

analysis will be performed for many inundation depth distributions with more diversity in terms of setting 
conditions of slip angle and slip amount. The Tsunami Hazard Station (J-THIS) [12] established by the 
national research institute for earth science and disaster prevention has provided the tsunami inundation 
depth distributions for 2720 cases of the characterized fault models with different combinations of 
earthquake area and slip amount. These data will be used to analyze the spatial characteristics of inundation 
depth. Furthermore, we plan to construct a prediction model of tsunami inundation depth distribution based 
on “decomposition and synthesis” and “machine learning modeling.” 
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7  Conclusions 
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7.1 Results and Future Developments of each Chapter 
 
This study examined “Diversification of Ground Motion Distributions,” which aims to cover various 

earthquakes, including the future earthquake in the Scenario Earthquake Shaking Maps (SESMs) [1], and 
“Simulation of Ground Motion Distribution,” which is a part of advanced use of SESMs (or already 
computed ground motion distribution data). In particular, the former aims to achieve the above objective 
by diversifying the set values of source parameters in the “strong ground motion prediction method for 
earthquakes with specified source faults (“recipe”)” [2], which is the standard setting criterion for scenario 
earthquakes. The following is a list of results and future developments in Chapters 2–6. 
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7.1.1 Chapter 2: Simulation of Strong Ground Motion Distributions of Two Horizontal 
Components Base on Singular Value Decomposition Analysis 

 
- Objective: Simulation of ground motion distributions 
 
a) Results of Chapter 2 

The study in Chapter 2 extends the simulation method for single-component ground motion 
distributions proposed in the previous study [3] to two horizontal components ground motion distributions. 
The simulation methods in the previous study [3] and Chapter 2 can generate many ground motion 
distributions that preserve the spatial variation structure of the original ground motion distribution.  

 
By applying singular value decomposition analysis to the ground motion distributions of two horizontal 

components by period, the modal forms that reflect the mutual spatial variability structure of two 
components and the principal component scores that represent the case-dependent modal weights were 
extracted for each mode. Next, the matrices of principal component scores for the two components are 
replaced by matrices that reproduce the cross-covariance structure between the two components; the ground 
motion distributions of the two components are generated. Four simulation methods were used: “Method 
A: treating the two components independently as uncorrelated,” “Method B: considering correlation by 
correlation simulation,” “Method C: making the two components perfectly correlated,” and “Method D: 
randomly giving the difference between the two components.” The results showed that Method B 
adequately reproduced the ground motion distribution of two components and their interactive spatial 
variation structure. 
 
 
b) Future Developments of Chapter 2 

The simulation method proposed in Chapter 2 can simultaneously simulate the spatial distribution of 
two physical indicators. For future developments, this method should be applied to the simultaneous 
simulation of ground motion distributions in different periodic bands caused by the same earthquake is the 
subject of future work. 
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7.1.2 Chapter 3: Development of Simplified Prediction Model for Ground Motion Distribution 
 

- Objective: Simulation of ground motion distributions 
 
a) Results of Chapter 3 

The study in Chapter 3 proposed a simplified prediction model of ground motion distribution based on 
mode decomposition and machine learning as a surrogate model for a detailed based on strong ground 
motion simulation. As a numerical example, a prediction model was constructed for the distribution of 
absolute acceleration response spectrum (SA, periods 0.1–2.0 s, FN- and FP-component) [4, 5] for a strike-
slip fault calculated by the stochastic Green’s function method [6]. 

 
The mode decomposition was applied to the distributions of SA by period and component, then modal 

form, singular value and weight coefficients were obtained. Next, a weight coefficient predictor was 
constructed using the source parameters as explanatory variables. The modeling used “multiple linear 
regression,” “support vector regression,” “random forest,” and “gradient boosting decision trees (GBDT),” 
respectively. Finally, the ground motion distribution for any fault rupture scenario was predicted by mode 
synthesis of the predicted weight coefficients, modal forms, and singular values.  

 
The predicted distribution shows spatial characteristics of ground motion corresponding to the fault 

rupture scenario, which roughly reproduces the ground motion distribution calculated by the detailed 
method. The differences in prediction accuracy among the four models were not seen in period 0.1 s, where 
the effect of distance attenuation was dominant. However, they were seen at long periods, where the 
directivity effect and radiation pattern were more significant than at short periods. The models with the 
highest prediction accuracy among the four models were GBDT. 

 
 

b) Future Developments of Chapter 3 
The prediction model of ground motion distribution developed in Chapter 3 is based on a single event 

caused by a single strike-slip fault. Therefore, the future study will construct a prediction model for 
earthquakes on various fault types, including reverse fault. Furthermore, applying this prediction model to 
seismic risk assessment will be the subject of future developments. 
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7.1.3 Chapter 4: Analysis of Period and Component Dependent Spatial Characteristics of 
Ground Motion Distributions Using Mode Decomposition and Machine Learning  

 
- Objective: Diversification of ground motion distributions 
 
a) Results of Chapter 4 

The study in Chapter 4 analyzed the period and component dependent spatial characteristics of ground 
motion distributions. This chapter revealed the combined effects of multiple source parameter settings on 
the ground motion distributions. Specifically, “explainable AI,” some machine learning model’s 
interpretation methods, was applied to the weight coefficient predictor of each mode (Chapter 3); the 
relationship between the weight coefficients and the source parameters was comprehensively analyzed. 

 
The spatial characteristics that contributed significantly to the ground motion distributions were “the 

attenuation characteristics,” “the spatial structure with a uniform variation of ground motion intensity and 
positive correlation over the entire area,” and “the spatial structure with a negative correlation which 
represents the difference of ground motion intensity between the north and south of the map.” The 
attenuation characteristics were related to the vertical arrangement of hypocenter and asperities. The spatial 
structure represents a positive correlation in the whole area was dominated by the effect of the seismic 
moment in the short periods and by the effect of rupture velocity in the long periods. The spatial structure 
representing two divided areas was dominated by the effect of the horizontal center of gravity of asperities 
in the short periods and by the effect of the horizontal position of the hypocenter in the long periods. The 
bilateral and unilateral directivity effects and the radiation patterns strongly affect the spatial characteristics 
for long periods. 

 
 

b) Future Developments of Chapter 4 
The results of Chapter 4 relate to the spatial characteristics represented by the inner fault parameters 

and the extra fault parameters (e.g., rupture velocity and location of hypocenter) under relatively simple 
conditions. However, actual earthquakes rarely occur according to the assumed scenario and may be caused 
by the rupture of a part of the assumed source fault or in conjunction with the surrounding active faults. 
Therefore, in addition to the inner and extra fault parameters, it is necessary to consider the influence of the 
outer fault parameters (e.g., geometry and location of the fault) on spatial characteristics in the future. 
Specifically, we plan to analyze the spatial characteristic of the ground motions for multi-segment 
earthquakes caused by the coupling of multiple faults for future development. 
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7.1.4 Chapter 5: Diversification of Source Parameters in Recipe for Predicting Strong Ground 
Motions 

 
- Objective: Diversification of ground motion distributions 
 
a) Results of Chapter 5 

The study in Chapter 5 tried to cover the diversity of ground motion distribution efficiently and 
examines the “Recipe for Predicting Strong Ground Motions [2],” which is the standard setting criterion 
for the characterized source model for SESMs in Japan. Specifically, the spatial characteristics of SESMs 
are diversified by the “recipe cases” with the fault models set up in accordance with the “recipe” and the 
“extended cases” with fault models set up by extending the “recipe” setting conditions. Here, the target 
“diversity of spatial characteristics” refers to the spatial characteristics represented by the ground motion 
distributions for 600 cases, which were set by Kagawa [5, 6] with variations in the standard values of the 
“recipe.”  

 
Non-hierarchical cluster analysis was applied to the PCSs of the 600 ground motion distributions; by 

arranging the PCSs for Modes 1–3 in two-dimensions, the diversity of the ground motion distributions 
could be visualized. After plotting the recipe cases on a two-dimensional distribution of PCSs for the 600 
cases, the spatial characteristics for the recipe cases were average and limited, and did not cover the 
diversity of the 600 cases. The combination of the recipe cases and the extended cases allowed the 
representation of a wide diversity of ground motion distributions, including spatial characteristics that do 
not appear in the recipe cases alone. This diversifying effect was greater for the extended case with multiple 
parameters extended simultaneously than for the extended case with solely a single parameter extended. At 
the computational points along and around the strike extension of the fault, the ground motion (SA) of the 
recipe cases and the extension case approximately reproduced the range of the 600 cases. The ground 
motion distributions over the entire computational area of the recipe cases and the extension cases were 
covered for the distributions below the mean of the 600 cases, but did not fully represent the larger-than-
average cases. 

 
 

b) Future Developments of Chapter 5 
Yamada et al. [7–9] proposed a setting method using the LHS (Latin Hypercube Sampling) as an 

efficient way to set up various characterized source models considering the "recipe" setting values and their 
variations. Imai et al. [10] proposed a method using copulas to capture the distribution shape of PCSs among 
modes as a probability distribution, sample PCSs according to this probability distribution, and simulate 
ground motion distribution. The sampling using LHS is an efficient method to cover the diversity of source 
parameters without considering the diversity of spatial characteristics of the ground motion distribution. In 
contrast, the sampling simulation using copulas is an efficient way to cover various spatial characteristics 
without directly considering the source parameter settings. Future studies will set up and simulate the fault 
models and ground motion distributions by sampling and simulation using the LHS method [7–9] and the 
copula method [10]. Based on these results, the number of cases necessary to efficiently cover the diversity 
of seismic motion distribution will be judged. 
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7.1.5 Chapter 6: Analysis of Spatial Characteristics of Tsunami Inundation Depth Caused by 
the Nankai Megathrust Earthquakes 

 
- Objective: Identifying the applicability and usefulness of data mining and machine learning 

methods used in this study to multi-hazards 
 

a) Results of Chapter 6 
The study in Chapter 6 clarifies the applicability and usefulness of data mining and machine learning 

methods used in this study to multi-hazards. Specifically, the spatial characteristics of the tsunami 
inundation depth distributions are analyzed using the “decomposition” method (SVD: Singular Value 
Decomposition, NMF: Non-negative Matrix Factorization). As a numerical example, the tsunami 
inundation depth distributions for 11 cases caused by the Nankai trough megathrust earthquake [11] were 
used. 

 
In SVD, the modal forms represent the variation structure of the entire area. Mode 1 reflects the average 

characteristics of the inundation depth distribution. Mode 2 and higher modes reflect the arrangement 
condition of large slip zone, including super large one. In NMF using uniform random numbers as the 
initialization method, the bases represent the local area’s variation structure. The bases reflect the 
arrangement condition of a large slip zone. Each base contributes to a case where the arrangement is closely 
related. In NMF using NNDSVD as the initialization method, Basis 1 contributes to all cases, and its 
distribution of the basis vector represents the spatial distribution that covers the entire area. Basis 2–6 reflect 
the local spatial characteristics associated with the arrangement condition of a large slip zone. 

 
The results of these analyses reveal the applicability of multi-hazard in the analytical methods proposed 

in this study. 
 
 

b) Future Developments of Chapter 6 
The study in Chapter 6 used the tsunami inundation distributions for only 11 cases. For future 

developments, the analysis will be performed for many inundation depth distributions with more diversity 
in terms of setting conditions of slip angle and slip amount. The Tsunami Hazard Station (J-THIS) [12] 
established by the national research institute for earth science and disaster prevention has provided the 
tsunami inundation depth distributions for 2720 cases of the characterized fault models with different 
combinations of earthquake area and slip amount. These data will be used to analyze the spatial 
characteristics of inundation depth. Furthermore, we plan to construct a prediction model of tsunami 
inundation depth distribution based on “decomposition and synthesis” and “machine learning modeling.” 
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7.2 Reach and Advantages/Disadvantages of This Study 
 
I repeated the research summary and issues in each chapter. Next, I summarize how far these results 

have reached the ultimate goal of this study. In addition, the advantages and disadvantages of the research 
and the proposed method are summarized. 

 
First, the proposed method's overall advantage is that it can generate ground motion distributions and 

evaluate spatial characteristics in relation to physical interpretations by using “data mining and machine 
learning.” As new methods are developed in the future, various analyses are expected to be possible. In the 
following, I describe the degree of achievement and advantages and disadvantages of the two major themes, 
“simulation of ground motion distributions” and “diversification of ground motion distributions,” for the 
ultimate research goals. 

 
 

7.2.1 Simulation of Ground Motion Distributions 
 
The “simulation methods for ground motion distribution using computed data” in Chapters 2 and 3 

have fully achieved the research goal of showing examples of the effective use of computed data. Various 
ground motion distribution (or tsunami inundation depth distribution) data have been simulated with the 
remarkable development of computer resources in recent years. With the method proposed in this study, 
these data can be efficiently used for practical purposes such as risk assessment. 

 
In contrast to these advantages, a disadvantage is that the proposed method’s simulation results (or 

accuracy) depend on the quality and quantity of the original computed data. Thus, the original dataW’s 
diversity is the key to solving this problem. Suppose I can propose an “extended recipe version” that covers 
the diversity of ground motion distributions by completing the “diversification of ground motion 
distributions (extension of “recipe” setting conditions)” in this study. In that case, this problem can be 
solved to some extent. 

 
Another disadvantage is that the simulation results are results within the diversity (or variability) of the 

original data (i.e., interpolation concerning the original data), not completely unknown results (i.e., 
extrapolation). In particular, the “ground motion distribution prediction model” in Chapter 3, due to the 
nature of its prediction algorithm (machine learning), cannot predict data outside the range of the training 
data (more precisely, the accuracy of the prediction results cannot be guaranteed). 

 
 

7.2.2 Diversification of Ground Motion Distributions 
 
In Chapter 4, a method is proposed to evaluate “spatial characteristics of ground motion distributions,” 

which is important when considering “diversification of ground motion distributions.” Previous methods 
for evaluating spatial characteristics have only applied mode decomposition to ground motion distributions 
[3]. In this paper, the method is developed by modeling the weight coefficients obtained from the mode 
decomposition by the source parameters using machine learning, and evaluating the characteristics of the 
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mode based on an explainable AI (XAI). The advantage of this method is that it can consider the interaction 
of source parameters in the evaluation. However, the evaluation results are based on visualizing and 
quantifying the input-output relationship of the model and do not explain the weight coefficients themselves. 
Therefore, the evaluation results depend on various factors involved in model construction, such as the 
accuracy of the model’s predictions and the appropriateness of the explanatory variables. Furthermore, 
the above characteristics are disadvantages of this evaluation method itself. Therefore, when using this 
method, it is important to consider the above drawbacks and interpret the results based on the mechanical 
characteristics of the model. 

 
Chapter 5, “diversification of ground motion distributions (extension of “recipe” setting conditions),” 

is a basic study of this theme. The content of this paper was consistently focused on the 600 ground motion 
distributions caused by “the strike-slip fault consisting of a single fault plane” located in “uniform 
horizontally stratified ground” [4, 5]. An attempt was made to reproduce the diversity of the 600 cases using 
the recipe cases and the extended cases. In this paper, while the diversity of spatial characteristics of the 
ground motion distributions (absolute acceleration response spectrum (period 2.0 s, fault-normal 
component)) for the 600 cases can be roughly reproduced; however, there is still room for reconsideration 
regarding the setting of the expansion conditions. Note that this is based on only the 600 cases of strike-
slip fault; additional studies for a wide variety of faults are needed to complete the study. In addition, further 
analysis and consideration of complex ground structures and other conditions that more closely resemble 
real-world conditions should be conducted in the future. Finally, it is necessary to demonstrate the 
usefulness of the "extended version of the recipe" by performing analyses on the active fault that actually 
caused the earthquake and its ground motion distribution. After these analyses and discussions, this study 
is complete. 

 
The completion of this study is expected to encourage the export of scenario seismic hazard maps (or 

“recipe”) to other countries (or the introduction of such systems in other countries). As described in 
Chapter 1, many countries, including the U.S., have published only the predicted ground motion 
distribution based on a GMPE as a hazard map for a scenario earthquake. In contrast, there were no 
examples, such as Japan’s SESMs, where source fault models that can consider the detailed rupture process 
scenarios of the fault are assumed, and the ground motion distributions are predicted using a detailed 
method. As a reason for this, the United States Geological Survey (USGS) [13] stated the following. 

“our approach is to generally show the average effect because it is difficult to justify a particular choice of 
hypocenter or to show the results for every possible hypocentral location.” [14] 

The completion of this study will lead to the creation of scenario ground motion distribution maps that 
efficiently cover the uncertainties in the source parameters, and is expected to provide a clue to solving this 
problem.  



205 
 

 References in Chapter 7 
 

[1] The National Research Institute for Earth Science and Disaster Resilience. “Japan seismic hazard information 
station (J-HIS).” https://www.j-shis.bosai.go.jp/en/ 

[2] The Earthquake Research Committee, the Headquarters for Earthquake Research Promotion. (2020) Strong 
ground motion prediction method for earthquakes with specified source faults (“Recipe”). 
https://www.jishin.go.jp/main/chousa/20_yosokuchizu/recipe.pdf (in Japanese) 

[3] Nojima, N. Kuse, M. and Duc, L. Q. (2018) Mode decomposition and simulation of strong ground motion 
distribution using singular value decomposition. Journal of JAEE, 18 (2): pp. 95–114. 
https://doi.org/10.5610/jaee.18.2_95 (in Japanese with English abstract) 

[4] Kagawa, T. (2015) A study on spatial and temporal variabilities of strong ground motions based on multiple fault 
rupture scenarios. Journal of JSCE A1, 71 (4): pp. I_191–I_197. https://doi.org/10.2208/jscejseee.71.I_191 (in 
Japanese with English abstract) 

[5] Kagawa, T. (2015) Spatial variability of periodic characteristics among strong ground motions derived from 
multiple fault rupture scenarios. Journal of JAEE, 15 (7): pp. 90–99. https://doi.org/10.5610/jaee.15.7_90 (in 
Japanese with English abstract) 

[6] Kagawa, T. (2004) Developing a Stochastic Green’s function method having more accuracy in long period range 
to be used in the Hybrid Method. Journal of JAEE, 4 (2): pp. 21–32. https://doi.org/10.5610/jaee.4.2_21 (in 
Japanese with English abstract) 

[7] Yamada, M., Senna, S. and Fujiwara, H. (2007) Statistical analysis of predicted ground motions on the basis of 
a recipe for strong-motion prediction. Journal of JAEE, 7 (1): pp. 43–60. https://doi.org/10.5610/jaee.7.43 (in 
Japanese with English abstract) 

[8] Yamada, M., Senna, S. and Fujiwara, H. (2007) statistical analysis of predicted ground motions on the basis of 
a recipe for strong-motion prediction for -dip-slip fault and strike slip fault-. JSCE Journal of Earthquake 
Engineering, 29: pp. 104–113. https://doi.org/10.11532/proee2005a.29.104 (in Japanese with English 
abstract) 

[9] Yamada, M., Senna, S. and Fujiwara, H. (2011) Statistical analysis of ground motions estimated on the basis of 
a recipe for strong-motion prediction: approach to quantitative evaluation of average and standard deviation of 
ground motion distribution. Pure Appl. Geophys., 168: pp. 141–153. https://doi.org/10.1007/s00024-010-0159-
0 

[10] Imai, R., Kasui, N., Iwaki, A. and Fujiwara, H. (2020) A sample generation of scenario earthquake shaking maps 
via modal decomposition and empirical copula. JAEE Annual Meeting 2020. (in Japanese) 

[11] The central disaster management council (2012) Working group report on megathrust earthquake models for the 
Nankai trough (second report). https://www.bousai.go.jp/jishin/nankai/taisaku/pdf/20120829_2nd_report01.pdf 
(in Japanese) 

[12] The National Research Institute for Earth Science and Disaster Resilience. “Japan tsunami hazard information 
station (J-THIS).” https://www.j-this.bosai.go.jp/ (in Japanese) 

[13] The United States Geological Survey. https://www.usgs.gov/ 
[14] Worden, C. B., Thompson, E. M., Hearne, M. G., and Wald, D. J. (2020) ShakeMap Manual Online: technical 

manual, user’s guide, and software guide. U. S. Geological Survey. https://doi.org/10.5066/F7D21VPQ.  


