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I. INTRODUCTION 

Quality is an important term in the postharvest chain and consumer. Notably, quality implies 

the character of the product, which is related to the degree of excellence of fresh product or 

absence of the defect started from harvest to consumer. Fresh produce such as fruits and 

vegetables have a high moisture content that occurs the increased metabolic activity. This 

activity continued after harvesting, and it affects short-shelf life due to degradation of quality.  

Lately, the term freshness is most famous on the consumer, and it is a common word 

encountered in daily life. This term is quality criteria that have the optimal condition for 

acceptance by consumers. The freshness also can describe the condition quality of being 

natural and not preserved by a process such as freezing. On the chemist side, the freshness is 

related to oxidative changes, and on the physical side, it is related to changes in appearance or 

structure. The appearance and flavor are easy to perceive by human senses, but the nutritional 

component requires the equipment. 

In daily life, the consumers judge the freshness from their senses such as sight, touch, smell. 

This fact, the consumer can estimate the freshness condition only from optical cues that tend 

subjectively (Péneau et al. 2007). Therefore, producers, distributors, and retailers should take 

into account the freshness of products. However, the assessment from appearance is entirely 

subjective, and the judgment result often varies depending on the evaluators. A freshness 

assessment providing quantitative results should be developed. To date, in the research field of 

post-harvest technology, the effectiveness of developed storage methods and distribution 

framework has been quantitatively evaluated by measuring multiple quality factors that 

decrease with time, such as ascorbic acid, sugar content, moisture content, and texture (Barth 

and Zhuang 1996; Medina et al. 2012; Hasperué et al. 2016). However, since these assessment 

methods are based on relative evaluation to the values at the time of harvest, it is difficult to 
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apply them to the freshness assessment in the actual distribution process, where the values at 

the time of harvest cannot be obtained retrospectively. 

Several trials for developing the freshness assessment method based on physical and 

physiological changes during senescence have been done. For instance, chlorophyll 

fluorescence properties, which reflects the soundness of the photosynthesis system in the 

chloroplast, was related to storage duration and temperature and found to be one of the 

freshness indicators in spinach leaves and broccoli head (Toivonen and Deell 1998; Qiu et al. 

2017). LED-induced fluorescence was also applied for measuring firmness and soluble solid 

content, which decline with aging in apple fruit, and these freshness parameters could be 

predicted by the partial least square regression model obtained from the fluorescence spectra 

excited by an LED light at 375 nm (Gao et al. 2016). Moreover, Raman spectroscopy 

employing a 532 nm laser for excitation was utilized for determining the carotenoids of citrus 

fruits as a freshness parameter (Nekvapil et al. 2018). The distribution characteristics of 

luminance in the image of cabbage and strawberry were used for freshness assessment since it 

is highly correlated with the perceived glossiness and lightness of the visual texture (Wada et 

al. 2010; Arce-Lopera et al. 2012, 2013).  

However, these technologies are available for limited kinds of products, for example, the 

chlorophyll fluorescence method can be applied for fresh produce that contains chlorophyll. 

Also, they are based on the measurement of a specific quality parameter such as firmness, 

pigment, the nutritional value in spite that freshness must represent overall quality. Since 

freshness associates with the progress of senescence characterized by the loss of biomembrane 

integrity, focusing on the soundness of biomembrane would be better for assessing the 

freshness rather than measuring the quality parameters mentioned above. 

Biomembrane is formed by a lipid bilayer that contains amphiphilic molecules. It plays 

essential roles, such as barrier function and membrane trafficking (Van Meer et al. 2008). 
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Furthermore, lipids act as an energy source for membrane biogenesis (Casares et al. 2019) and 

signaling molecules for transmitting information from outside (Xiong et al. 2002). 

Additionally, lipid has a broad diversity in species due to the variety of the number of carbons 

and double bonds in hydrophobic tail parts and structures in hydrophilic head parts (Nakamura 

2017; Harayama and Riezman 2018). It has been reported that more than 10,000 kinds of lipid 

species exist in biomembrane (Sud et al. 2007), and living things maintain homeostasis by 

changing their composition in response to environmental stress (Barrero-Sicilia et al. 2017; 

Agmon and Stockwell 2017). Therefore, lipid profile involves useful information on biological 

status, including senescence. 

Lipidomics is a subset of metabolomics focusing on lipids, and it is beneficial not only for 

understanding the biological mechanism but also for finding out the biomarkers based on the 

comprehensive analysis of lipids. Mass spectrometry-based lipidomics is a powerful technique 

that has a high sensitivity, resolution, and accuracy in measuring thousands of different lipid 

species. It has been utilized to elucidate physiological responses to various environmental stress 

such as chilling and drought in plants (Welti et al. 2002a; Mishra et al. 2006; Gasulla et al. 

2013; Jia et al. 2013). Also, Lipidomics has been applied in food sciences, such as grading 

olives and authentication of almonds (Shen et al. 2013; Alves et al. 2019). Therefore, 

Lipidomics is expected to provide useful information on physiological reactions occurring in 

fresh produce during senescence. Furthermore, it would be able to elucidate the specific lipid 

species that indicate the degrees of freshness. 

This study aimed to investigate the change of lipid profile in whole cabbage during storage 

and identify the freshness marker species utilizing liquid chromatography-tandem mass 

spectrometry (LC-MS/MS)-based Lipidomics. Recently, Lipidomics using analytical 

instrumentation such as LC-MS/MS has introduced a powerful approach to identify 

biomarkers in postharvest sciences because this instrumentation has triple quadrupole and 
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MS/MS to classify specific and quantity of lipid. (Yunping and Reed 2014; Holčapek et al. 

2018). Some studies have used LC-MS/MS for sphingolipids profiling such as sphingosine, 

sphingosylphosphorylcholine, ceramide-1-phosphate, Hexosylceramides, miscellaneous 

(Scherer et al. 2010) and have detected a class of fatty acids, sterols, glycerolipids, sterol in 

grape (Della Corte et al. 2015). 

The whole cabbage was selected as a sample material because it is one of the common 

vegetables in the world, and the freshness is an important attribute due to its short shelf-life. 

Moreover, the quantitative freshness assessment method is strongly desired, especially in the 

fresh-cut fruits and vegetable industry. The raw material cabbage is often stored at low 

temperature for a long period, and its freshness is affected to the quality of the final fresh-cut 

product. For these reasons, the whole cabbage stored at different temperatures and durations 

was used for the widely targeted Lipidomics by LC-MS/MS to discuss the feasibility of the 

freshness assessment by lipid profiling in this study. 
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II. LITERATURE STUDY 

 

2.1 Beneficial fruits and vegetables 

Fruits and vegetables contain a rich source of vitamins, minerals, fibers, and 

phytochemicals that maintain human health. Phytochemical or plant chemical is the main actor 

to protect the cells from damage which strongly associated with chronic diseases such as 

diabetes, stroke, cardiovascular diseases, hypertension, and cancer. Many kinds of 

phytochemicals contain fruits and vegetables, i.e., flavonoids, antioxidants, carotenoids, 

anthocyanins, phenolics, alkaloids, terpenoids, glycosylates, saponins, and sulfides 

(Wargovich 2000; Zhang et al. 2015). Vitamin and minerals are important for the human diet, 

essential in biological activities for normal cellular functions. The classification of vitamins 

and minerals contained in fruit and vegetables show in Figure 1.   

 

Fig. 1.  Classification of micronutrients in fruit and vegetables. 

Health authorities worldwide, such as the World Health Organization (WHO), promote to 

consume the high portion of fruits and vegetables. The overall daily consumption of fruit and 
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vegetables is 100 g underneath recommended intake (Amine et al. 2003). To fulfill the 

micronutrient and phytochemicals in the human body can be obtained from the high quality of 

fresh produce because their abundance differs in each product. Its abundance relates to the 

developmental stage of the product, which is influenced during pre-harvest and postharvest 

stages (Weston and Barth 1997; Parr and Bolwell 2000). The preharvest stage influences the 

quality changes in the postharvest stage because the quality of fresh produce during postharvest 

depends on the time of harvest. In addition, the external factor from preharvest, such as climate 

condition, cultivar variation, and cultural practices, can also affect the profile of produce. 

Therefore, an integrated approach is required to sustain the suitable level of micronutrient and 

phytochemicals in fresh produce from production, harvest, and postharvest until consumption. 

2.2 Quality component to assess the freshness 

Quality is the attribute that implies the degree of excellence of a product for a particular 

use. Generally, quality has some attributes such as sensory attributes (appearance, color, texture, 

flavor, and aroma), nutritive (primary metabolites, i.e., carbohydrates, amino acids, vitamin B 

complex, organic acids, fatty acids), and functional properties (secondary metabolites-

phytochemical, i.e., flavonoids, phenolic acids, lignans, carotenoids, tocopherols, quinones, 

sterols, alkaloids, glucosinolates) (Hounsome, Hounsome, Tomos, & Edwards-Jones, 2008). 

Quality also interprets the human construct to comprise the properties or characteristics. 

Quality will interpret the product without defects that show a degree of excellence. The quality 

of fresh produce will change after harvesting because activities biology continues. The changes 

will affect the price and acceptance of consumers.  

In judging the quality of attributes, Shewfelt (1999) divides into two perspectives, i.e., 

product-oriented quality and consumer-oriented quality. In the product-oriented quality views, 

quality is determined by the accuracy and precision of the measurement, and the alteration of 

quality also correlates with time and physiological changes. Researchers used this perspective 
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as a reference in evaluating postharvest technology, such as the effect of storage condition, 

handling system, quarantine treatment, and another postharvest variable. Consumer-oriented 

quality is needed to predict product performance in the marketplace. Understanding consumer 

behavior is utilized for assessing this performance. Consumers use all of their senses to evaluate 

quality, such as sight, smell, taste, touch, and even hearing. In a final judgment of fresh 

produce's acceptability, the consumer integrates all of those sensory in appearance, texture, 

aroma, and flavor of produce. From the perspective mentioned above, we can conclude that the 

combination of characteristics of the product itself be termed quality, and the consumer's 

perception and response to those characteristics be referred to as acceptability (Abbott 1999).  

Freshness is an important term to describe the quality of fresh produce which no signs of 

withering or aging and have not deteriorated. Freshness becomes the main aesthetic factor that 

influences the consumer to decide on purchasing fresh produce. Freshness also reflects the 

nutritive value and phytochemical content in produce. Although, the degradation of freshness 

in fruits and vegetables, especially appearance attributes, gave the side effect to the appetite of 

consumers for purchasing. Péneau et al. (2007) suggest that appearance has a high impression 

at first sight of consumers and the most important component to acceptance and purchase 

decision. Péneau, Hoehn, Roth, Escher, & Nuessli (2006) described that the freshness 

assessment was determined from time after harvesting to the marketplace and finally consumed 

by the consumer. The freshness can represent all quality attributes and assesses the high-quality 

category. The common quality attribute to assess freshness is sensory attributes such as 

appearance, flavor, and taste. The easy observation is appearance because visual appearance 

can be observed by everyone in the distribution stage and marketplace (Figure 2). 
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Fig. 2. The quality attribute of fruits and vegetables and consumer perception about 
freshness. 

 

2.3 Application of mass spectrometry-based metabolomics for agricultural products 
 

Metabolomics studies biological systems, focusing on metabolites, a broad range of small 

molecules (Johnson et al. 2016). This study can provide information about the cellular state of 

living things. Generally, metabolomics elucidates chemical processes in biological samples and 

discovers biomarkers through profiling metabolites. Recently, agricultural research has utilized 

metabolomics to understand the physiological and biochemical changes under stress conditions 

such as temperature (Kaplan et al. 2004; Johnson et al. 2016), drought (Gundaraniya et al. 

2020), salinity (Shelden et al. 2016), etc. Food research also uses it to assure food quality (Guo 

et al. 2012), safety (Parlapani et al. 2015), and traceability (Garrett et al. 2013). 

“Postharvest” is the handling of agricultural products such as fruits, vegetables, legumes, 

spices, and nuts after they are separated from the parent plant. During this stage, they continue 

metabolic activity associated with physiological and biochemical changes. To evaluate these 
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changes, respiration, ethylene production, transpiration, total soluble solids, soluble sugars, 

starch, and pigments have been measured. However, a conventional analysis provides little 

information on the physiological status of postharvest agricultural products because it covers 

only limited, specific parameters. 

Alternatively, metabolomics produces multitudes of data regarding the physiological and 

biochemical changes during the lifespan of agricultural products. Understanding postharvest 

physiological changes leads to improved postharvest technology such as maintaining and 

assuring the quality of agricultural products (Malheiro et al. 2013; Corpas Iguarán et al. 2018). 

Additionally, discrimination of species, cultivar, and geographic origin verified via metabolic 

biomarkers will detect counterfeit products and certify quality (Lamanna et al. 2011; Kim et al. 

2020). In recent years, several researchers have tried to apply the metabolomics approach to 

clarify the mechanism of ripening, senescence, and disorders (Aizat et al. 2014; Xu et al. 

2018b). Moreover, it has been used to discern species or cultivars (Malheiro et al. 2013) and 

the geographic origin of the product (Oh et al. 2019; Khakimov et al. 2022).  

2.3.1 Metabolomics for understanding on physiological alterations 

After harvesting, fruits and vegetables continue a biological activity. These metabolic 

changes affect their quality. Especially in climacteric fruits, ripening is important to achieve 

optimum quality. Because fruits are not of optimum quality at harvesting time, ripening 

continues in postharvest until fruits are ready to eat. In ripening, drastic metabolic changes 

occur, leading to quality improvement. Senescence is also an important physiological 

phenomenon affecting quality. Complex metabolic shifting occurs in this stage. Understanding 

ripening and senescence mechanisms is needed for maintaining and assuring the quality of 

fresh produce. Metabolomics is one solution and has recently become popular for 

understanding physiological changes and disorders during ripening and senescence in fresh 

produce as shown in Table 1. 
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Uneven ripening at harvest causes delivery of inconsistent quality to consumers. 

Uniformity attracts consumers and guarantees high quality. To address this problem, 

researchers have applied metabolomics to understand the ripening mechanism in fruits. Parijadi, 

et al. (Parijadi et al. 2018) found that psicose, fructose, xylose, and other 13 compounds 

become metabolic markers enabling description of the degree of mangosteen ripening by using 

GC-MS metabolomics. Similarly, Pedreschi, et al. (Pedreschi et al. 2014) applied untargeted 

multiplatform metabolomics using both LC-MS and GC-MS to reveal the heterogeneity of 

ripening stages of “Hass” avocado. In their experiment, avocado samples were separated into 

five clusters based on time to ripeness (9 days, 13 days, 17 days, 20 days, and >22 days). Amino 

acids such as glutamic acids, aspartic acids, alanine, and galacturonic acid contributed to the 

ripening of “Hass” avocado. Particularly, glutamic acids, aspartic acids, and alanine were 

detected between fast and slow ripening clusters while galacturonic acid was only detected in 

the fastest ripening clusters. This observation indicates that metabolic profiling can elucidate 

the heterogeneity of “Hass” avocado ripening stages. 

In kiwifruit, exogenous ethylene treatment is commonly used as artificial ripening to 

accelerate the process because these fruits need a longer ripening time. Qualitative metabolite 

analysis is needed to investigate the differences of quality between normal ripening (NR) and 

exogenous ripening (ER). This work noted that concentrations of sucrose, myo-inosistol, citric 

acid, and malic acid were higher in NR than ER fruits and fructose, glucose, and quinic acid 

were higher in ER fruits. This observation indicated that ethylene treatment in kiwifruit during 

storage can help the ripening and result in good quality (Lim et al. 2017). The potential of 

metabolomics has also been exhibited in non-climacteric products such as capsicum (Aizat et 

al. 2014), pineapple (Ikram et al. 2020), and cherry (Karagiannis et al. 2018). The common 

non-climacteric fruits are not ripe after harvesting, but several commodities such as capsicum 

have a unique ripening behavior. For instance, the field ripening stages of capsicum are 
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classified into seven groups, i.e., green, deep green, breaker, breaker red, bright red, deep red, 

and deep red + dried. Harvesting at the green and deep green stages results in failure of full 

ripening. Breaker red stages are the best time to harvest. Capsicum fruits harvested in this stage 

can develop to the fully red stages during storage (Krajayklang et al. 2000). In this regard, 

Aizat, et al., (Aizat et al. 2014) utilized GC-MS and LC-MS to elucidate the unique ripening 

mechanism in capsicum. GC-MS was used for screening potential markers among the ripening 

stages, and then, LC-MS was applied to enhance the characterization of selected metabolites. 

From the metabolic profiling in capsicum, the modification of sugar, amino acids, organic acids, 

and polyamines was found during ripening. These results highlighted the fundamental role of 

metabolites in renewing the grading method in non-climacteric products. 

Flavor is an essential attribute to evaluate senescence and is a combination of aroma and 

taste. The shifting of flavor depends on fruit type. Sugars, acids, and volatiles produce and alter 

fruit flavor (Gonçalves et al. 2018; Pott et al. 2020). Iguaran, et al. (Corpas Iguarán et al. 2018) 

conducted a comprehensive volatile analysis to clarify the causes of off flavor during 

senescence in lulo fruits. In this study, headspace-solid phase microextraction–gas 

chromatography–mass spectrometry (HS-SPME-GC-MS) was applied, and 15 volatile 

compounds were found to be potential markers of off flavor. Particularly, methyl ester was 

dominant in lulo fruit senescence. In citrus fruits, flavor is also used as a reference to assess 

senescence. Sun, et al. (Sun et al. 2013) applied metabolomic profiling using GC-MS to 

understand the metabolic role in organic acid changes. Profiling highlighted that succinic acids, 

γ-aminobutyric acid (GABA), and glutamine increased, whereas 2-oxoglutaric acid decreased 

during orange senescence. The postharvest phenomenon from ripening to senescence in pear 

was captured via metabolic profiling. The degradation of 18 species of sugars such as D-

fructose-6-phosphate, arabinose, and trehalose 6-phosphate did not affect pear softening during 

senescence, whereas glycerophospholipids did (Xu et al. 2018a). 
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Storage temperature affects enzyme activity, which induces metabolite changes in fresh 

produce. Inadequate postharvest storage conditions not only influence ripening and senescence 

but also result in physiological disorders. Chilling injury (CI) occurs in chilling sensitive 

products under low temperatures. CI is caused by membrane damage due to lipid peroxidation. 

The imbalance of respiratory and other metabolic processes accelerates the occurrence of lipid 

peroxidation (Repetto et al. 2012; Saltveit 2019). The common symptoms of CI are pitting, 

failure of ripening, internal discoloration, water soaking, and browning (Wang 2010). 

Metabolomics gave a satisfying result for investigating the metabolic alteration caused by CI. 

Cozzolino, et al. (Cozzolino et al. 2016) used GC-MS with HS-SPME to investigate the profile 

of volatile compounds in basil leaves and found 1,8-cineole was a volatile marker to diagnose 

the early symptoms of CI. Identification of metabolomic changes also provided an 

understanding of the CI tolerances in mangoes. This understanding provided knowledge about 

the function of antioxidant and phenolic levels in suppressing cell damage by attacking reactive 

oxygen species (Vega-Alvarez et al. 2020). Apple (var. domestica Borkh. Mansf.) is 

susceptible to necrosis characterized by superficial scald. This physiological disorder is 

induced by cold storage. A metabolomics approach identified phytosterol metabolism as 

responsible when superficial scald occurred (Rudell et al. 2011). 

2.3.2 Metabolomics for agricultural products authentication 

Food adulteration is illegal worldwide but continues even now. Adulteration occurs when 

the authentic substance is replaced with a cheaper one to increase the volume and weight of the 

product for financial gain (Danezis et al. 2016). Because it threatens food reliability, 

researchers have worked to develop methods to detect food adulteration, especially for 

expensive products like honey and meat. Honey is popular among consumers because of its 

health benefits but is expensive, making it a prime target for adulteration. Adding a cheaper 

sweetener like corn syrup or inverted sugar syrup is a common trick to increase profits (Xue et 
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al. 2013). Similarly, minced beef adulterated with other meat, like pork, is often found in the 

market because of high beef demand (Trivedi et al. 2016). In this case, metabolomics has been 

used to identify food adulteration (Xue et al. 2013; Trivedi et al. 2016). 

Additionally, the metabolomics method efficiently verifies the true composition from 

different species, varieties, and origins. It is essential to certify authenticity to protect economic 

value (Lamanna et al. 2011; Ikram et al. 2021). Nowadays, metabolomics authentication has 

been utilized in agricultural products to ensure quality, establish the brand, and avoid false 

claims of origin, species, and variety. Tables 2 and 3 show representative examples of 

metabolomics used to discriminate or distinguish the agricultural product of different species, 

varieties, and origins.  

2.3.2.1 Discriminant of species, varieties and cultivar 

Discrimination by appearance among different species of agricultural products like tea 

leaves, coffee, and some fruits and vegetables is often challenging. This difficulty leads to 

adulteration and threatens the validity of a quality guarantee. The quality of several products is 

characterized by their unique aroma and taste. Commonly, these aromas and tastes are assessed 

by sensory evaluation (Abbott 1999). However, this evaluation is inefficient because evaluator 

training is costly and an untrained organoleptic evaluator produces subjective results. 

Metabolomics can overcome this problem by detection and quantification of specific biomarker 

metabolites that accurately discriminate between species and varieties. Moreover, the 

metabolic profile aids understanding of product characteristics that are useful to enhance the 

product brand. 

For instance, mushroom is a multipurpose fresh product used for food and pharmaceuticals. 

Aroma is an essential attribute in mushrooms as each cultivar has a unique aroma correlated 

with quality. Malheiro, et al. (Malheiro et al. 2013) used HS-SPME-GC-MS metabolomics to 

define six species of wild mushrooms on the basis of their volatile compounds. Untargeted 
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analysis was followed by targeting 46 volatiles to discover the discriminant markers. From this 

report, the volatile profile accurately described each species on the basis of their unique aroma. 

Eleven volatile compounds were fundamental to distinguish mushroom species. For example, 

3-octanol and 1-octanol were important for L.nuda species, linalool for T.fracticum, and 3-

octanone for H.crustuliniforme. 

In tea, taste is an essential attribute for consumers. Taste differences are characterized not 

only by varieties but also by subtypes. Metabolite diversity affects the specific taste of tea. 

Yang, et al. (Yang et al. 2018) utilized ultrahigh performance liquid chromatography–time of 

flight/mass spectrometry (UHPLCQ-TOF/MS) to characterize the taste of different Chinese 

white tea subtypes, namely, Silver Needle, White Peony, and Shou Mei. Metabolomics 

identified 99 non-volatiles, and clarified that theanine, aspartic acid, asparagin, and AMP were 

responsible for the umami taste. Additionally, they found that flavan-3-ols, theasinensins, 

procyanidin B3, and theobromine were responsible for bitterness and astringency. Monti, et al. 

(Monti et al. 2016) conducted metabolic profiling to elucidate the chemical biodiversity of 15 

peach varieties at different ripening stages. This study demonstrated that specific metabolites 

involving the organoleptic and nutritional properties depended on peach variety. Six varieties 

were characterized by fructose and glucose, and two varieties were characterized by malic and 

citric acid. 

To several consumers, mango has an exotic taste. Worldwide, there are approximately 350 

commercial cultivars, each with a unique taste. Sato, et al. (Sato et al. 2021) investigated 

metabolites in mango characterizing the taste of five cultivars from Indonesia. In this report, 

GC-MS identified 95 metabolites of interest. Orthogonal projection to latent structure-

discriminant analysis (OPLS-DA) separated these metabolites into three groups in the five 

cultivars. Nicotinic acid, glutamic acid, aspartic acid, glycine, and ribose contributed to the 

identification. These results highlighted the potential role of biomarker metabolites that could 
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be commercially useful for sorting mango varieties. Similarly, taste is crucial in pineapple, and 

metabolic profiling by GC-MS revealed that GABA, valine, and alanine defined the ‘Red 

Spanish’ cultivar, sucrose, threonic acid, and 5-hydroxytryptamine (serotonine) defined 

‘Smooth Cayenne’, and threonine, serine, and methionine defined ‘Queen’ (Ikram et al. 2021). 

Honey is produced by honeybees from flower nectar. In New Zealand, Manuka honey from 

the species Leptospermum scoparium J.R is popular among consumers because of its health 

benefits but is costly. The cost makes Manuka honey a target for adulteration. Mixing Manuka 

honey and Kanuka honey is a common way to increase profits. Metabolic profiling of honey 

using UHPLC-PDA-MS/MS for non-volatile and HS-SPME-GC/MS for volatiles 

discriminated clearly among Manuka, Kanuka, and Jelly Bush honey. Leptosin, acetyl-2-

hydroxy-4-2-(2-methoxyphenyl)-4-oxobutanate, 3-hydroxy-1-(2-methoxyphenyl)-penta-1,4,-

dione, kojic acid, and 5-methyl-3furancaerboxylic acid were found to be biomarkers in Manuka 

honey (Beitlich et al. 2014). Additionally, the utilization of biomarkers elucidated by 

metabolomics using GC-MS distinguished wine produced from four grape varieties. In this 

study, 120 commercial brands representing four varieties from six different countries were used 

for analysis. Organic acids and sugar are dominant metabolites in all wine; however, serine, 

phenylalanine, L-homoserine, and glutamic acid were the best biomarkers in discriminating 

between the four varieties (Khakimov et al. 2022). 

2.3.2.2 Discrimination of geographical origin 

Consumers’ concern over quality certification of agricultural products regarding the 

geographical origin is increasingly common for coffee and tea (Diboun et al. 2015; Kim et al. 

2020; Rivera-Pérez et al. 2021). Traceability of geographical origin is usually used to protect 

the product from fraud. Recently, the European Union and the United Kingdom introduced 

protected designation of origin (PDO) and protected geographical indication (PGI) 

classifications. PDO or PGI aims to protect the original product from adulteration. PDO and 



16 
 

PGI products are registered in a list of quality products to trace their specifications (Florkowski, 

Wojciech et al. 2014; Mahajan et al. 2017). Because of this trend, researchers are motivated to 

develop advanced technology for discerning geographical origins. The metabolomics approach 

using MS and NMR is a powerful tool for authenticating several agricultural commodities. 

Coffee is a popular beverage brewed from roasted coffee beans. The most common coffee 

beans used all over the world are C. arabica and C. robusta. Recently, the global coffee market 

is more concerned with aroma and taste. Different coffee origins produce specific aromas and 

tastes. In this context, HS-SPME-GC-MS comprehensively detected metabolites from samples 

of different origins, namely, Ethiopia, Tanzania, and Guatemala. The metabolic profiles from 

different origins were successfully separated using principal component analysis (PCA). 

Ethiopian coffee aroma was characterized mainly by 4-(4′-hydroxyphenyl)-2-butanone 

(Akiyama et al. 2008). In Indonesia, coffee production is spread over islands such as Java, 

Sumatra, Sulawesi, Bali, and Papua. Every island has several coffee production areas. 

Particularly, Mandheling is famous in Sumatera, Toraja in Sulawesi Island, and Kintamani in 

Bali. They are well known in the global market. Different coffee bean origins result in unique 

metabolites. The metabolomics approach is a valuable method to distinguish the origin of 

coffee beans. For instance, a comprehensive analysis for metabolic profiling of primary 

metabolites using non-targeted GC/MS successfully identified 64 compounds in coffee beans 

from nine areas in Indonesia. PCA separated the metabolic profiles of each coffee bean into 

three groups, i.e., western, central, and eastern Indonesia. Glycerol, glucan-1,5-lactone, 

gluconic acid, sorbitol, galactitol, and galactinol were potential markers distinguishing 

different regions. As mentioned above, exhaustive profiling and specific biomarkers are more 

valuable in authenticating coffee bean origin than utilization of conventional analyses like the 

cupping test (Putri et al. 2019). 
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Similarly, Mi, et al. (Mi et al. 2021) demonstrated the ability of metabolomics to distinguish 

the origin of garlic. They applied HS-SPME-GC-MS and UHPLCQ-TOF/MS to identify both 

volatile and non-volatile compounds. GC-MS identified 68 volatile compounds and LC/MS 

detected 854 non-volatile compounds. Two ketones, one alkane, mequinol, and 2-

Methoxyphenol contributed to the garlic origin discrimination. 

Adzuki bean is usually used as an ingredient for traditional desserts in East Asia, such as 

Japan, Korea, and China. This bean is also famous in the global market and has become an 

export product. Metabolomics analysis is performed to discern the geographical origin of the 

adzuki bean to certify authenticity. GC-TOF/MS and OPLS-DA was utilized to investigate 

metabolite profile in adzuki beans from Korea and China. Malic acid and citric acid were 

important markers to distinguish adzuki bean production areas (Kim et al. 2020). In black 

pepper, using high-resolution mass spectrometry (HRMS) using orbitrap mass analyzer, fatty 

acid derivatives like 10,16-dihydroxyhexadecanoic acid were found to be a strong marker to 

distinguish black pepper from Brazil, Vietnam, and Sri Lanka (Rivera-Pérez et al. 2021). 

2.4 Application of mass spectrometry-based lipidomics for agricultural products 
 

The common quality attribute to assess freshness is sensory attributes such as appearance, 

flavor, and taste. The easy observation is appearance because everyone in distribution stage 

and marketplace can observe visual appearance. However, the comprehensive evaluation from 

sensory attributes, especially appearance, is challenging to get the precision result because the 

interpretation of freshness from this side is dependent on the evaluator. Since freshness 

associates with the progress of senescence characterized by the loss of biomembrane integrity, 

focusing on the soundness of biomembrane would be better for assessing the freshness rather 

than measuring the quality parameters. Biomembrane is formed by a lipid bilayer that contains 

amphiphilic molecules. It plays essential roles, such as barrier function, membrane trafficking, 

signalling, and energy source for membrane biogenesis. So that focusing on membrane lipid 
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serve the valuable information not only for understanding the biological mechanism but also 

for finding out the biomarkers based on the comprehensive analysis of lipids.   

To date, the rapid development of different analytical techniques has made it possible to 

obtain a proper consideration of these lipids, and MS has been by far the dominating instrument 

for lipid analysis. The MS-based analysis is cardinal from all these procedures as datasets for 

lipid qualification and quantitation are generated in this segment. However, it cannot be 

neglected that suitable sample preparation and optimal parameter settings for data analysis are 

also prerequisites to ensure the quality of acquired data and final results. Due to the chemical 

complexity and wide concentration range of lipids found in biological samples, it is daunting 

to identify and quantify all lipids simultaneously with a single analytical strategy. Therefore, 

depending on the purpose of analysis, MS-based Lipidomics can be performed using target or 

untargeted approaches, each with its distinctive features, inherent advantages, and limitations. 

Typically, targeted MS-based lipidomics approaches are employed when defined lipids or lipid 

classes of interest needed to be characterized. In this regard, triple quadrupole (QqQ) MS with 

selective MS scanning modes such as neutral loss scanning (NLS), product ion scanning (PIS), 

and multiple reaction monitoring (MRM) is the most often used platform. It is characterized 

by high detection sensitivity, selectivity, and quantitative accuracy with good linearity and 

reproducibility. Under these scanning modes, specific lipid fragmentation ions can be screened 

to identify and quantify defined lipid species. For example, product ion at m/z 184 and NLS of 

m/z 141 in the positive-ion mode are often used to assign phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE), respectively (Shen et al. 2012). As a result, targeted MS-based 

Lipidomics has been considered as the gold standard for lipid quantitation and is tailored for 

analyses of lipids in low concentrations or with specific structures, such as lipid oxidation 

products generated in Arabidopsis (Ito et al., 2017; Leung, Galano, Durand, & Lee, 2018). The 
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main drawback of this strategy is the limited lipid coverage, and targeted lipidomics approaches 

cannot be applied to pin down unknown lipids. 

By contrast, untargeted MS-based Lipidomics is a newly emerged strategy for lipid analysis 

and enables coverage of most lipid classes in an unbiased way, making it an ideal platform to 

screen lipid markers for food authentication at a global level. For this purpose, high-resolution 

MS (HRMS) such as time-of-flight (TOF), orbitrap, or Fourier transform ion cyclotron 

resonance (FTICR) is often employed due to its high mass resolution (>10, 000) and mass 

accuracy (<2–5 ppm). In recent years, quite a lot of untargeted lipidomics approaches based on 

HRMS, especially the TOF-MS and orbitrap, have been developed and applied for untargeted 

lipid analysis in different food matrices, including fish (Zhang et al., 2018), meat (Mi et al., 

2019) and nuts (Song et al., 2018). In the untargeted MS-based lipidomics analyses, two main 

MS/MS data acquisition modes are data-dependent acquisition (DDA) and data-independent 

acquisition (DIA). In DDA, only precursor ions from a full MS scan that meets specific 

requirements, usually exceeding specified intensity thresholds, are selected for fragmentation. 

An obvious limitation of this mode is the incomplete lipid coverage. As an alternative to DDA, 

DIA has been recently developed for untargeted Lipidomics and uses defined windows to 

acquire MS/MS spectra of all precursor ions simultaneously. One of the most widely applied 

techniques for DIA is the sequential window acquisition of all theoretical fragment ion spectra 

(SWATH) introduced by Gillet et al. in 2012.
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Table 1 Applications of metabolomics approaches for understanding the physiological changes and disorders 

  

Purpose Fresh 
produce Analytical platform Multivariate 

Analysis Biomarkers References 

Ripening 
stages 

Mangosteen  GC-Q PCA, PLS, HCA 

Psicose, fructose, xylose, galacturonic acid, and glucose are markers from the 
pericarp part. 
Xylose, xylulose, ribulose, glucuronate, 2-aminoisobutyric, and tryptophan are 
markers from the flesh part. 
Phenylalanine, valine, isoleucine, serine, tyrosine are markers from seeds part 

(Parijadi et 
al. 2018) 

 

Avocado LC-QTOF 
GC-TOF PCA Glutamic acids, aspartic acids, alanine, and galacturonic acid 

(Pedreschi 
et al. 
2014) 

Kiwifruits GC-Q PCA, PLS-DA Sucrose, myo-inositol, citric acid, malic acid, fructose, glucose, and quinic 
acid  

(Lim et al. 
2017) 

Pineapple  GC-Q PCA,OPLS-DA, 
PLSR 

Melezitose, inositol, xylonic acid, gluconic acid, raffinose are markers from 
flesh part. 
Inositol, mannose, galactose, sucrose, aspartic acid are markers from the peel 
part.

(Ikram et 
al. 2020) 

Senescence 
stages 

Pear LC-QqQ PLS-DA 
LysoPC, 16:0, 18:1, 18:2, 18:3, lysoPE 16:0, 18:2, MAG 18:2, 18:3, 18:4, 
punicic acid, 9-hydroxy-(10E, 12Z, 15Z)-octadecatrienoic acid, and 4-
hydroxysphinganine 

(Xu et al. 
2018a) 

Lulo  GC-Q PLS-DA 

Methyl (E)-2-butenoate, 4-heptanone, o-xylene, (Z)-3-hexenyl acetate, hexyl 
acetate, 3,7-dimethyl-1,6-octadien-3-ol, the alcohols 1-penten-3-ol, (E)-3-
hexen-1-ol, pentanal aldehyde, and 1,7,7-trumethyl-bicyclo[2.1.1]-heptan-2-
one ketone 

(Corpas 
Iguarán et 
al. 2018) 
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Table 1 (continued) 

GC-Q: gas chromatography-quadrupole; LC-Q: liquid chromatography-quadrupole; LC-QTOF: liquid chromatography-quadrupole time-of-flight; 

GC-TOF: gas chromatography time-of-flight; LC-QqQ: liquid chromatography-triple quadrupole; PCA: principal component analysis; PLS: partial 

least square; PLS-DA: partial least squares-discriminant analysis; OPLS-DA: orthogonal projections to latent structures modelling discriminant 

analysis; PLSR: partial least-square regression.  

Purpose Fresh 
produce Analytical platform Statistical 

Analysis Biomarkers References 

Disorders 
during storage 

Mango  LC-Q 
GC-QqQ PCA Galloylquinic acid, gallic acid esters, gallotannins, malic acid, citric acid, 

glucose, myo-inositol, and linoleic acid 

(Vega-
Alvarez 

et al. 
2020) 

Basil  GC-Q  PCA, PLS 1,8-cineole, (Z)-β-ocimene, 1-hexanol, (E)-3-hexen-1-ol, 1-octanol, α-guaiene, 
α-Terpineol, bicyclogermacrene, hexanal, and (E)-2-hexanal  

(Cozzolino 
et al. 
2016) 
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Table 2 Representative applications of metabolomics approaches for differentiation of species, varieties, and cultivars  

GC-IT: gas chromatography-ion-trap; GC-TOF: gas chromatography time-of-flight; LC-Q-TOF: liquid chromatography-quadrupole time-of-

flight; GC-Q: gas chromatography-quadrupole; LC-QqQ: liquid chromatography-triple quadrupole; PCA: principal component analysis; PLS: 

partial least square; PLS-DA: partial least squares-discriminant analysis; OPLS-DA: orthogonal projections to latent structures modelling 

discriminant analysis; HCA: hierarchical cluster analysis.  

Fresh produce Analytical platform Multivariate Analysis Biomarkers References 

Wild mushrooms  GC-IT  PCA 3-octanol, 3-octanone, linalool, 1-octanol, 1-pentanol, (E)-2-octenal, and 
ρ-anisaldehyde. 

(Malheiro et 
al. 2013) 

Grape  GC-TOF PCA, PLS-DA,  Serine, phenylalanine, L-homoserine, and glutamic acid (Khakimov et 
al. 2022) 

White tea  LC-Q-TOF  PCA, PLS-DA, HCA 
Theanine, aspartic acid, asparagine, AMP, flavan-3-ols, theasinensisns, 
procyanidin B3, theobromine, epigallocatechin gallate, epicatechin, 
gallate, theogallin, and GABA 

(Yang et al. 
2018) 

Peach  GC-Q PCA Fructose, glucose, malic acid, and citric acid (Monti et al. 
2016) 

Mango  GC-Q PCA, OPLS-DA Nicotinic acid, glutamic acid, aspartic acid, glycine, ribose (Sato et al. 
2021) 

Honey GC-Q 
LC-QqQ PCA, HCA 

Leptosin, acetyl-2-hydroxy-4-2-(2-methoxyphenyl)-4-oxobutanate, 3-
hydroxy-1-(2-methoxyphenyl)-penta-1,4,-dione, kojic acid, and 5-methyl-
3furancaerboxylic acid 

(Beitlich et al. 
2014) 
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Table 3 Representative applications of metabolomics approaches for distinguishing the geographical origin 

GC-TOF: gas chromatography time-of-flight; LC-Q-Orbitrap: liquid chromatography couple-quadrupole-Orbitrap; LC-FT: liquid 

chromatography-Fourier transform; GC-TOF: gas chromatography-time-of-flight; GC-Q: gas chromatography-quadrupole; LC-Q-TOF: liquid 

Fresh produce Analytical platform Multivariate Analysis Biomarkers References 

Adzuki beans  GC-TOF OPLS-DA citric acid and malic acid (Kim et al. 
2020) 

Black pepper  LC-Q-Orbitrap PCA, OPLS-DA 
Reynosin, artabsinolide D, tatridin B, (12E)-9,10-Dihydroxy-12-
octadecenoic, sitostenone, 9-hydroperoxy-10E-octadecenoic acid, 10,16-
dihydroxyhexadecanoic acid, and 9,10-dihydroxystearic acid  

(Rivera-Pérez 
et al. 2021) 

Dates fruit  LC-FT 
GC-TOF PCA, OPLS-DA 

Ethanolamine, GABA, serotonin, tyramine, tryptamine,  phenethylamine, 
serine, glutamate, tyrosine, tryptophan, phenylalanine, riboflavin, niacin, 
pyridoxine, and nicotinate 

(Diboun et al. 
2015) 

Brewed Arabica  
coffee GC-Q PCA (4´-hydroxyphenyl)-2-butanone (Akiyama et 

al. 2008) 

Coffee beans GC-Q PCA 

Alanine, 4-aminobutyric acid, glycolic acid, quinic acid, lactic acid, 
pyroglutamic acid, malic acid, and caffein are Arabica coffee bean 
markers. 
Glycerol, glucono-1,5-lactone, gluconic acid, sorbitol, galactitol, and 
galactinol are markers from Robusta coffee beans. 

(Putri et al. 
2019) 

Garlic  GC-Q 
LC-Q-TOF PCA, PLS-DA 

Benzene, 1,2-dimethoxy, ethenone, 1-(2-methyl-1-cyclopenten-1yl), 
mequinol, phenol, 2-methoxy, heptafluorobutyric acid, and n-tetradecyl 
ester 

(Mi et al. 
2021) 

Asian palm 
civet coffee  GC-Q PCA, OPLS-DA Citric acid, malic acid, and inositol (Jumhawan et 

al. 2013) 

Hazelnut  LC-QqQ PCA-LDA 

PC 18:2/18:2, 16:0/18:2, 18:1/18:2, 16:0/18:3, 18:2/18:2, PE 18:2/18:2, 
16:0/18:2, 18:1/18:1, DG 18:1/18:1, 18:2/18:2, 16:0/18:1, 16:0/16:1, TG 
14:0/16:0/18:1, 15:0/16:0/18:1, 16:0/16:1/18:1, 17:1/18:1/18:2, and 
18:2/18:2/18:3 

(Klockmann et 
al. 2017) 



24 
 

chromatography-quadrupole time-of-flight; LC-QqQ: liquid chromatography-triple quadrupole; PCA: principal component analysis; PCA-LDA: 

linear discriminant analysis based on PCA scores; PLS-DA: partial least squares-discriminant analysis; OPLS-DA: orthogonal projections to latent 

structures modelling discriminant analysis. 
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Table 4 Application Of MS-based Lipidomics in agriculture 

Application Lipid Source Result Literature 

Geographical origin 

Almonds 
The method serves excellent promise for the selective separation of phospholipids from non-
phospholipids, especially glycerides, and excels in rapid screening and characterization of 
phospholipids in almond samples. 

Shen et al. (2013) 

Arabica Coffee Success characterizes pure roasted coffee samples and coffee blends with 10% Robusta coffee 
added to Arabica coffee. 

Cossignani, Montesano, 
Simonetti, & Blasi 
(2016) 

Tobacco leaves Distinguishing fresh tobacco leaves based on geographical origin L. Li et al. (2015) 

 Banana  Comparing banana lipidomes by origin Sun et al. (2020) 

Adulteration 

Goat milk, 
soymilk, bovine 
milk 

A total of 14 lipids were identified as biological markers for milk type differentiation, thus 
providing the basis for milk authentication and adulteration detection. Q. Li et al. (2017) 

Extract virgin 
olive oil, 
hazelnut oil 

The method could separate adulterated extra virgin olive oil with hazelnut oil to the level of 
1%. 

Calvano, De Ceglie, 
D’Accolti, & Zambonin 
(2012) 

Wheat Distinguishing between pure and blended durum wheat Righetti et al. (2018) 

Goat, Sheep, 
Cow, Camel 
milk 

Milk adulteration detection Piras et al. (2021) 
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Table 4 Continue 

Application Lipid Source Result Literature 

Processing and 
storage 

African walnut  Impact of  postharvest process on the fatty acid profile of African walnut Nkwonta, Alamar, 
Landahl, & Terry (2016) 

Peanut oil Differentiating the nutrition of 10 types of vegetable oil after optimal cooking optimal Cui, Hao, Liu, & Meng 
(2017) 

Varieties dan 
cultivar 

Coconut oils differentiating varieties of coconut oil Ferreira et al. (2019) 

Cereal Distinguishing seven types of cereals  Hammann et al. (2019) 

Chilling stress 

Paprika Understanding the mechanism of cell damage during chilling injury Kong et al. (2018) 

Banana  Understanding the mechanism of deterioration of membrane lipid during chilling injury Liu, Li, Chen, & Jiang 
(2020) 

Freezing stress Arabidopsis Understanding the response of lipid membranes under freezing stress 
Welti et al. (2002) 

Heat stress Arabidopsis Understanding the process of membrane damage under heat stress Higashi et al. (2015), 
Shiva et al. (2020) 
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III. MATERIAL AND METHOD 

3.1 Plant material and storage condition 

The cabbage (cv. 'Asashiho') was harvested at the farmer's orchard in Ibaraki, Japan, in July 

2020 and transported to the laboratory by the refrigerated delivery service in a day. 

Immediately after delivery, the cabbages were selected based on size uniformity and the lack 

of wound symptoms. The selected cabbages were put in a foamed polystyrene box and stored 

at 5 °C, 10 °C, and 20 °C in an incubator for 8, 4, and 3 weeks, respectively. Samples for the 

lipid analysis were collected individually from 5 different cabbage heads every one week. In 

sampling, the first and second outer leaf was removed, and the sample leaf disk was excised 

from the third outer leaf using a cork-borer with 3 mm in diameter. Subsequently, 

approximately 100 mg of disks were put into a 2 ml cryotube with two pieces of zirconia ball 

with 5 mm in diameter. Then, it was rapidly frozen by liquid nitrogen and stored at -80 °C until 

lipid analysis. 

3.2 Measurement of respiration rate 

The respiration rate of cabbage was measured by a flow-through method using gas 

chromatography (GC) as described in Fahmy and Nakano (2014) with some modifications. 

First, approximately 500 grams of cabbage were placed into an acrylic chamber (4.8L) with a 

gas inlet and outlets tube. The chamber was placed in an incubator which set at 5 °C, 10 °C, 

and 20°C, and the fresh air was flowed into the chamber using an air compressor through the 

inlet tube at a flow rate of 100 ml min-1. The gas flow rate was controlled using a mass flow 

controller (SEF-E40, Horiba, Japan). Then, the inlet and outlet gas sample were injected 

automatically into GC (GC-14A Shimadzu, Kyoto, Japan) via 0.5 ml sampling loop attached 

to a rotating valve. CO2 in the sample gas was separated using a Porapak Q column, and O2 

and N2 were separated using the Molecular Sieve-5A column. Subsequently, these gaseous 

were detected by a thermal conductivity detector and analyzed using GC-Solution software 
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(Shimadzu, Kyoto, Japan) based on a calibration curve. The rate of CO2 production was 

calculated based on differences between the outlet and inlet using equation (1) as described 

by (Fonseca et al. 2002). 

 

Where , is the respiration from CO2 production of the sample (mmol kg-1 h-1),  is 

volumetric concentration in inlet and outlet (%), W is the weight of the sample (kg), F is the 

flow rate (ml h-1), P is the atmospheric pressure (= 101.3 kPa), R is the universal gas constant 

(= 8.3141 J K-1 mol-1) and T is the absolute temperature (°K). 

3.3 Ascorbic Acid Analysis 

Ascorbic acid (AsA) was measured using liquid chromatography method as described by 

Thammawong et al. (2019) with some modifications. Firstly, the frozen sample leaves were 

cryogenically ground in a bead crusher (ShakeMaster® NEO, Biomedical Science, Tokyo, 

Japan) using three of 5 mm diameter zirconia balls for 3 min at 1,500 rpm. Then, 100 mg of 

sample powder was put into 2 ml Eppendorf tube with 1.5 ml of 5% metaphosphoric acids. The 

mixture was vortexed for 1 minute and subsequently centrifuged at 20,000 × g and 4 °C for 15 

minutes (Model 1720, Kubota Corp., Tokyo, Japan). Afterward, 500 μl of supernatant was 

collected and 50 μl of Tris (2-carboxyethyl) phosphine hydrochloride was added to reduce 

dehydroascorbate to L-AsA. The mixture was continuously shaken using a block bath shaker 

(MyBL-100SC, As One, Osaka, Japan) set at 2500 rpm and 25 °C for 25 minutes in  a dark 

place.  

A HPLC system (UltiMate 3000, Thermo Fisher Scientific, Massachusetts, USA) equipped 

with a polymer amino column (Asahipak NH2P-50 4E, 250 × 4.6 mm i.d., 5 μm in particle 

size, Shodex, Tokyo, Japan) was utilized to determine AsA concentration. Before 

measurement, the column was equilibrated by flowing 60 mM phosphoric acid at 0.5 ml min–

1 for 2 hours. A mixture of acetonitrile / 20 mM NaH2PO4O6 + 30 mM H3PO4 (80/20, v/v) was 
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used as a mobile phase and flowed at 1.0 ml min–1. Just prior to injection, AsA extraction was 

diluted 10 times by Milli-Q water automatically using an in-needle mixing function of the 

autosampler, and then 10 μl of diluted sample was injected into the system. The column 

temperature was kept constant at 35 °C. The chromatograms were recorded at 244 nm using 

the UV detector. From the equation of the calibration curve plotted for the standard solutions, 

the concentration of AsA was estimated. 

3.4 Lipid analysis by LC-MS/MS 

3.3.1 Reagents 

LC-MS/MS grade methyl-tert-butyl ether (MTBE), isopropanol, acetonitrile, chloroform, 

methanol and acetic acid were obtained from Fujifilm Wako Pure Chemical Corporation 

(Osaka, Japan). LC-MS/MS grade ammonium acetate was purchased from Sigma-Aldrich (St. 

Louis, MO, USA). Phosphatidylcholine (PC) 17:0/17:0 and phosphatidylethanolamine (PE) 

17:0/17:0 were purchased from Avanti Polar Lipid, INC (USA) and used as internal standards. 

3.3.2 Lipid extraction 

Lipid was extracted using an MTBE method described by Matyash et al. (2008) with some 

modifications. Frozen sample leaf disks were cryogenically ground in a bead crusher 

(ShakeMaster® NEO, Biomedical Science, Tokyo, Japan) for 1 min at 1,500 rpm. 

Approximately Fifty milligrams weighed sample powder was put into 2 ml Eppendorf tube 

with 1000 μl of MTBE, 300 μl of methanol, and 50 μl of internal standard (20 μg ml−1 of each 

of PC 17:0/17:0 and PE 17:0/17:0 dissolved in a mixture of chloroform, methanol, and H2O 

(6/4/0.5, v/v/v) and mixed thoroughly by a vortex mixer for 1 min). In dark conditions, the 

homogenates were shaken in a water bath set at 25 °C for 1 h at 100 rpm. Afterward, 250 μl of 

H2O was added to induce phase separation and vortexed and then centrifuged for 5 min at 

20,000 × g. Subsequently, 1000 μl of the upper layer was collected into a different tube and 

evaporated to dryness with a centrifugal evaporator for approximately 3 h at 30 °C. The residue 
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was dissolved again in 500 μl of mobile phase B used for high-performance liquid 

chromatography (HPLC) separation (described below). The concentrate was filtrated through 

a 0.2 μm pore size membrane syringe filter (Minisart RC-4, Sartorius, Germany) and used for 

LC-MS/MS analysis. 

3.3.3 Lipid separation and detection 

Lipid analysis was conducted by the liquid chromatography–mass spectrometry system 

consisted of an HPLC system (Prominence, Shimadzu, Kyoto, Japan) and a linear ion trap 

triple–quadrupole mass spectrometer (QTRAP 4500, AB-Sciex, Framingham, MA, USA). 

Briefly, an autosampler injected 10 μl of sample extract into the system. Then, liquid 

chromatography separation was performed at 40 ℃ using a reverse-phase column (Cadenza 

CD-C18, 100 × 2.0 mm i.d., 3 μm in particle size, Imtakt, Kyoto, Japan) at a flow rate of 0.35 

ml min−1. Next, gradient elution was applied for preliminary separation via HPLC using the 

mobile phases of 20 mM ammonium acetate, isopropanol, and methanol (7/1/3, v/v/v) 

containing 0.01% acetic acid for A, and 20 mM ammonium acetate, isopropanol, and 

acetonitrile (1/7/3, v/v/v) containing 0.01% acetic acid for B. In the gradient program, the ratio 

of the mobile phase B was started at 40% for 1 min, increased to 80% B in 3 min, and then to 

95% B in 4 min, followed by a linear gradient to 100% B in 4 min, maintained at 100% B for 

14 min, and then decreased to 40% B and kept constant for 2 min to equilibrate the column for 

next injection. 

The eluent from liquid chromatography was introduced to the mass spectrometer for further 

mass separation and detection. First, an electrospray ionization using a Turbo-VTM ion source 

was conducted at 300 °C with −4.5 and 5.0 kV of spray voltage for negative and positive 

ionization mode, respectively. Other conditions were set as follows: ion source gas 1 (sheath 

gas), 50 psi, and ion source gas 2 (drying gas), 80 psi. Mass separation and detection were 

performed using multiple reaction monitoring (MRM) mode, where the transition from 
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precursor ion (Q1) and product ion (Q3) of each target lipid, were set on the basis of the 

predicted fragmentation pattern (Tarazona et al. 2015). In this study, 1,347 lipid species were 

targeted. To obtain enough number of data points in the MRM chromatogram and a high signal-

to-noise ratio for accurate quantification, the mass spectrometry analysis was conducted 

separately in six batches containing approximately 200 transitions per batch. Each transition 

was performed with a dwell time of 5 and 4 ms for the positive and negative modes, 

respectively. The MRM transitions and setting parameters, such as the collision energy applied 

for each species are shown in Table S1–S6. 

The mass spectrometry analysis was conducted in five replicates from five different cabbage 

samples, and two injections were performed for each sample. The sequence of testing sample 

injection was randomized so as not to be biased by the sensitivity fluctuation of the mass 

spectrometer. Additionally, the pooled quality control (QC) sample, prepared by mixing a small 

aliquot of each testing sample, was injected every five samples for monitoring and correcting 

the drift of the sensitivity of the mass spectrometer. 

3.3.4 Structural confirmation of selected lipid species by product ion scanning 

For each lipid species selected as an important molecule by the multivariate analysis 

described later, MRM information-dependent acquisition-enhanced product ion scan (MRM-

IDA-EPI) was applied to get more structural information, increasing annotation accuracy. The 

MRM-IDA-EPI is a kind of auto MS/MS, where the product ion scanning is triggered when 

the signal intensity exceeds the setting level. In this study, 2,000 cps was set as a triggering 

criterion, and the product ion spectra were acquired from 50 to 900 Da with dynamic fill time 

and a scan rate of 10,000 Da s−1. The collision energy to get the fragment was appropriately 

adjusted depending on the analyte. The values of declustering potential (DP) and entrance 

potential (EP) were set at 120 and 10 V, respectively. The condition of the ion source was the 

same as the MRM acquisition mentioned above. Subsequently, the product ion spectra at the 
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retention time corresponding to the target analyte were compared with the predicted spectra 

recorded in online databases, such as Human Metabolome Database (www.hmdb.ca) and Lipid 

Maps (www.lipidmaps.org). The specific m/z signals characterizing the target analyte in 

product ion spectra were annotated to validate structural matching. 

3.5 Pre-data processing 

The peak picking from the MRM chromatogram and the integration of the peak area were 

performed using MarkerView software (AB-Sciex, Framingham, MA, USA). The parameter 

settings for processing were as follows: Gaussian smoothing of five points, a baseline 

subtraction window of 1 min, noise percentage of 50%, a peak splitting factor of four points, a 

minimum required intensity of 1,500 cps, a minimum peak width of four points, and a minimal 

signal/noise of 300. Each peak area in tested samples was normalized by that of internal 

standards and sample weight after applying the QC-based-robust locally estimated scatterplot 

smoothing (LOESS) signal correction (QC-RLSC) using pooled QC sample data (Dunn et al., 

2011). Normalization and QC-RLSC were conducted using in-house R scripts (Ver. 3.6.2, R 

Foundation for Statistical Computing).  

Statistical analysis was conducted to evaluate the lipidome alteration depending on 

cumulative CO2 production. First, a regression analysis was performed to investigate the 

linearity between the abundance of each detected lipid species and the cumulative CO2 

production. Then, the hypothesis test for the regression coefficient was done using R (Ver 3.6.2, 

The R Foundation for Statistical Computing) to pick out the lipid species for further 

multivariate analysis. The screened lipid data were served to hierarchical cluster analysis 

(HCA) with metric Pearson correlation and Ward linkage, and their profiles were visualized on 

MetaboAnalyst 5.0 (www.metaboanalyst.ca). 

Subsequently, PLSR was applied to elucidate the important lipid species that strongly relate 

to the increment or decrement of cumulative CO2 productions using SOLO (Ver.8.9, 
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Eigenvector Research Inc., Manson, USA). In PLSR, each normalized peak area of lipid 

species and the cumulative CO2 productions were set as explanatory (X) and objective variables 

(Y), respectively. A total of 64 datasets, collected from three levels of storage temperatures for 

six levels of storage durations in five replications, were used in PLSR splitting into a training 

(38 datasets) and a test set (26 datasets). Prior to the model development, both explanatory and 

objective variables were standardized by autoscaling (mean-centering and scaled to unit 

variance). Venetian blinds cross-validation was applied in building a PLSR model, where the 

maximum number of latent variables (LVs) and the number of data splits were set as 20 and 

10, respectively. Then, the number of LVs was chosen on the basis of the lowest root-mean-

square error of calibration (RMSEC). Afterward, the root-mean-square error of cross-

validation (RMSECV), R2Y, and Q2Y were utilized to evaluate model performance. A 

permutation test (n = 100) was also conducted to confirm model robustness. Finally, on the 

basis of the developed model, important lipid species were selected according to both variable 

importance in projection (VIP) scores and the p-value of the significance test of the correlation 

coefficient in univariate analysis. 
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IV. RESULT AND DISCUSSION 

4.1 Change of CO2 production rate of cabbage during storage 

Figure 1 presents the changes in CO2 production rate in cabbage during storage at 5 °C, 

10 °C, and 20 °C. The CO2 production rate was suppressed more when cabbage was stored at 

lower temperatures. The changes at 5 °C and 10 °C were almost stable throughout the storage 

period. In the case of storage at 20 °C, the CO2 production rate decreased drastically in the first 

100 h and then became steady. Since the respiration rate strongly correlates with quality 

degradation, it has been used as a benchmark of the perishability or storability of fresh produce 

after harvesting in postharvest technology studies. According to Kader (2002), the respiration 

rate of fresh produce is classified into six levels, and cabbage is categorized in the moderate 

level of respiration rate. Brash et al. (1995) revealed that the cumulative respiratory CO2 

production after harvest of asparagus stored at various temperatures had a strong negative 

correlation with residual shelf-life at 20 °C and is suggested to be the same in other crops. The 

loss of ascorbic acid in broccoli, which is an important quality attribute, could also be predicted 

by the model as a function of the cumulative reparatory CO2 production after harvest 

(Techavuthiporn et al. 2008). On this basis, Syukri et al. (2018) utilized the cumulative CO2 

production as a reference of the freshness degree and succeeded in identifying the freshness 

maker of soybean sprouts by the comprehensive analysis of carbonyl compounds using LC-

MS/MS. Li et al. (2021) also demonstrated the capability of visible and near-infrared (Vis-

NIR) spectroscopy in estimating the freshness of Japanese mustard spinach by using it as a 

reference of freshness. Thus, cumulative CO2 production from the beginning of the storage to 

sample collection was applied as a reference of the freshness degree of cabbage in later analysis 

and discussion in the present study. 
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Fig. 3. Changes in the CO2 production rate of stored cabbage at various temperature 
conditions. 

4.2 Lipid profile in cabbage stored at different cumulative CO2 productions 

Lipids in cabbage samples stored at different temperatures and durations were 

comprehensively analyzed using LC-MS/MS. In total, approximately 600 peaks were detected. 

Only signals having less than 20% relative standard deviation (RSD) in peak area 

reproducibility across the QC sample were screened. Approximately 170 peaks fulfilled the 

above criteria and were then subjected to simple regression analysis to examine the linearity 

against the cumulative CO2 production. According to the regression coefficient, a total of 74 

lipid species including 13 species of PC, 17 species of PE, three species phosphatidylglycerol 

(PG), three species of phosphatidylinositol (PI), two species of lysoglycerophospholipid 

(LGPL), seven species of monogalactosyldiacylglycerol (MGDG), three species of 

digalactosyldiacylglycerol (DGDG), eight species of sulfoquinovosyldiacylglycerol (SQDG), 

three species of sphingomyelin (SPM), three species of acylated steryl glycosides (ASG), three 

species of diacylglycerols (DAG), and nine species of triacylglycerols (TAG) were significant. 

Significantly different species were subsequently analyzed further via multivariate analysis. 
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The profiles of screened lipid species were visualized as a heatmap and a dendrogram 

obtained by HCA shown in Fig. 4. According to the HCA, lipid species are clustered into three 

main groups. The first group had an upward trend, and the second and the third groups had a 

downward trend. Furthermore, the decreasing rate of the second group was faster than that of 

the third one. 

The first group comprised the lipid molecules belonging to TAG and ASG classes except 

for DAG 18:3_18:3. TAG is well known as a storage lipid and coalesces into lipid droplets in 

the cytoplasm. Generally, TAG maintains homeostasis in the cell membrane. Considering the 

lipid metabolism pathway, the increment of TAG observed in this study was implied that DAG 

and/or other phospholipids and glycolipids converted into TAG during senescence. An increase 

in TAG was also observed in Arabidopsis leaves during the aging process. Research suggests 

that it is caused by the detachment of FAs from glyceroglycolipid in the thylakoid membrane 

followed by TAG formation in plastoglobuli (Kaup et al. 2002; Watanabe et al. 2013). Mueller 

et al. (2017) revealed that TAG accumulation occurred when Arabidopsis leaves were exposed 

to heat stress; also, they suggested that the accumulation of TAG could be a way to improve 

heat tolerance in plants. By contrast, Lin and Oliver (2008) mentioned that the conversion of 

galactolipids to TAG caused metabolic disruption in crabapple leaves during senescence. 

Sterols are natural organic compounds that have an essential function in all eukaryote cell 

membranes. They are also a membrane reinforcer in lipid rafts that contribute to maintaining 

membrane fluidity and permeability. Sterols interact with sphingolipids to influence membrane 

properties to aid in adapting to environmental changes (Dufourc 2008). Sterols divide into free 

sterols, namely, steryl esters (SEs), steryl glycosides (SGs), and acyl steryl glycosides (ASGs). 

SGs and ASGs are secondary metabolites that are widely distributed in plants. SG is a hydroxyl 

group of C3 from sterol bound to sugar, synthesized by sterol glucosyltransferase (SGT). The 

sugar moiety from SGs is acylated with FA in the C6 hydroxyl group to form ASGs (Ferrer et 
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al. 2017). In this study, several ASGs were detected in stored cabbage and increased with 

cumulative CO2 production. Li et al. (2016) also reported that ASGs increased, but SEs 

decreased during senescence in tobacco leaves. Takahashi et al. (2016) observed changes in 

ASGs during cold acclimation in two types of plants: ASG content increased from 68.2% to 

71.7% in oat, whereas it decreased from 14.7% to 7.7% in rye. Although different behavior 

was observed between them, these facts implied that cold acclimation and senescence were 

caused by alterations in physiological functions of the microdomains in the cell membrane. 

The molecular species in the second group were mainly from the glyceroglycolipid class 

such as MGDG, DGDG, and SQDG. The third group was dominated by species from the 

glycerophospholipid class such as PC and PE. These classes are abundant in plants, mainly 

located in the biomembrane. MGDG, DGDG, and PC decreased during senescence in barley 

leaves (Wanner et al. 1991). Decreasing of MGDG was caused by the conversion to DAG by 

galactolipid–galactolipid galactosyltransferase, followed by the conversion to PC. Then, PC 

enters the glycolysis pathway or it is hydrolyzed to PA (Wanner et al. 1991; Jia et al. 2013). 

This journey is almost in accordance with Li et al. (2016), showing MGDG, DGDG, SQDG, 

and several lipids in the PC and PE classes decreased in the early senescence of tobacco leaves. 

Watanabe et al. (2013) also stated that decreasing MGDG, DGDG, SQDG, and PG in thylakoid 

occurred during senescence in rosette leaves, and their alteration correlated with the 

degradation of chlorophyll. 

Interestingly, in this work, the rate of decline in MGDG, DGDG, and SQDG was faster than 

in PC and PE classes. Previous research showed that phospholipase activity such as 

phospholipase D (PLD), PA phosphatase, and lipolytic acyl-hydrolase trigger the breakdown 

of membrane phospholipids (Brown et al. 1987). Particularly, Jia et al. (2013) mentioned that 

an increase of PLDδ activity stimulated the degradation of PC, MGDG, and DGDG during 

ABA-promoted senescence in Arabidopsis. MGDG and DGDG decreased more than PC under 
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the increase in PLDδ activity. The plastidic lipids such as MGDG, DGDG, and SQDG 

degraded rapidly during ethylene-promoted senescence when compared with extraplastidic 

lipids such as PC, PE, and PI (Jia and Li 2015).  

To date, lipid class-based analysis has been mainly conducted to investigate the behavior of 

lipid alteration in stress response. However, as shown in Fig. 4, a molecular-based analysis 

revealed that lipid molecules belonging to the same class grouped into different clusters. For 

example, DAG 18:3_18:3 had an upward trend (group 1), whereas DAG 18:0_18:3 and 

18:1_18:3 had a downward trend (group 3). These results indicated that even in the same class 

of lipids, the hydrophobic tail has a significant impact on the stress response. However, there 

are few studies examining stress response and aging of plants at the lipid molecular level. The 

findings presented here by the lipidomics approach will provide useful information to elucidate 

the mechanism of lipid dynamics associated with plant senescence. 



39 
 

 

 

Fig. 4 Heatmap of average autoscaled lipid abundance changes in stored cabbage with 

the progress of the cumulative CO2 production; 74 significant species are presented (p < 

0.05 in the slop test of the simple regression analysis). The different colors at the top of 

the heatmap show the level of cumulative CO2 production. A000 to K160 indicate the 

cumulative CO2 production from 0 to 160 mmol kg−1. 
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4.3 PLSR analysis of lipids in cabbage during storage at different temperatures  

PLSR is a multivariate machine learning algorithm that allows datasets with more variables 

than samples to be modeled without resorting to prefiltering variables. Moreover, once 

optimized, a PLS model can be reduced to the form of a standard linear regression, from which 

inference about the importance of variables can be made (Mendez et al. 2019). For these 

reasons, PLSR has become the gold standard in metabolomics where a large member of 

metabolites interacting with each other in a biological system is simultaneously analyzed. It 

has been used for metabolic fingerprinting, profiling (Gao et al. 2020), and screening of 

biomarkers (Zhou et al. 2021). We performed PLSR to determine the relative response of 74 

selected species and cumulative CO2 production as explanatory (X) and predictor (Y) variables, 

respectively. As a result of the model development by internal cross-validation, the model with 

four LVs had the minimum RMSECV. Figure 5 shows the scatter plot of measured versus 

predicted cumulative CO2 production using the developed model. The fraction of the sum of 

the square of all the Y’s explained by the PLS model (R2Y) and that of the total variation of 

the Y’s that can be predicted by the PLS model (Q2Y) were 0.94 and 0.84, respectively. These 

results demonstrate the strong explanation and prediction capabilities of the model. The 

permutation test showed that the unpermuted model was significantly different (p < 0.05) from 

the model created with randomly permuted samples. These results indicate that the developed 

PLS model was not overfitted and was reliable for predicting the cumulative CO2 production 

using lipidome data. Additionally, the determination coefficient (R2) in the external validation 

using the test dataset, which was not used for the model development, was 0.88. In other words, 

the fact that a highly accurate PLS model could be created successfully implies the existence 

of the specific lipid molecule that expresses the freshness of cabbage.  
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Fig. 5 PLSR plot for predicting the cumulative CO2 production using 74 species with four 

latent variables.  

Since the VIP scores can rank variables in terms of their importance in the projection of the 

PLS model, it has often been used to elucidate the potential markers in metabolomics studies 

(Li et al., 2020; Parijadi, Putri, Ridwani, Dwivany, & Fukusaki, 2018). Thus, we used the VIP 

score for marker selection in this study. Additionally, to achieve a more reliable marker 

selection, the p-value of a hypothesis test for the regression coefficient in simple linear 

regression was considered. The potential freshness markers were selected based on the criteria 

both >1.4 in VIP score and ≥7 in -log10 (p-value). As a result, four lipid molecules were selected 

as indicated in Fig. 6. 

All selected lipids were validated their annotation by matching the MS/MS spectrum 

obtained by post-hoc MRM-IDA-EPI scans with putative fragment daughter ions of each lipid 

molecule (Fig. 7). Particularly, the annotation of TAGs, which have three acyl chains, is 

impossible in MRM because it detects a target analyte on the basis of the combination of one 

parent ion (Q1) and one daughter ion (Q3), so it cannot cover the information on the third acyl 

chain in TAG. However, due to the post-hoc MRM-IDA-EPI scanning, TAG 18:3/36:6 could 
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be annotated as TAG 18:3/18:3/18/3 because only daughter ions resulting from linolenic acyl 

chain (18:3) was found in the MS/MS spectrum (Fig. 7 (A)). In the case of TAG 18:3/36:5, 

because only the signals resulting from linolenic (18:3) and linoleic (18:2) acyl chains were 

found, it was annotated as TAG 18:3/18:2/18/3 (Fig. 7 (B)). In the case of DAG 18:0/18:3 and 

ASG-sitosterol 18:3, specific daughter ions characterizing those compounds could be observed 

in each MS/MS spectrum as shown in Fig. 7 (C) and (D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Selection of the potential freshness marker based on the VIP scores and p-value 

of the test for correlation coefficient in a simple regression. 
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Fig. 7 Confirmation of potential freshness markers by product ion spectra 

 

4.4 Performance of Potential Freshness Markers in Predicting Cumulative CO2 

Production 

In this study, we observed the alteration trend of lipid species to evaluate the freshness in 

whole cabbage. DAG 18:0_18:3, ASG-sitosterol 18:3, TAG 18:3_18:3_18:3, and TAG 

18:3_18:2_18:3 were selected to be potential freshness markers in stored cabbage. The 

coefficient determinant (R2) of the relationship between the cumulative CO2 production during 

storage and each potential freshness marker ranged from 0.46 to 0.57 (Fig. 8). Based on the R2 

values, it is difficult to accurately evaluate the cabbage freshness by using a single marker. 

Hence, the PLSR model was rebuilt using the four selected potential markers, and its 

performance was evaluated. Figure 9 shows the measured and predicted cumulative CO2 

production by the PLSR model using four potential markers with two latent valuables. R2Y and 

Q2Y values were 0.74 and 0.71, respectively, indicating moderate predictability and high 

robustness of the model. The root-mean-square error of prediction (RMSEP) of this model was 

29.9 mg CO2 kg−1, which corresponded with 10, 6, and 3.5 days of storage at 5 °C, 10 °C, and 

20 °C, respectively. The determinant coefficient of prediction (R2
pred) was 0.69. Considering 
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that cabbage is stored at low temperature for a maximum of 4 months in the fresh-cut vegetable 

industry, this level of model error is considered to be acceptable in practical use. 

 

 

  

  

Fig. 8 Relationship between the relative response of potential marker and cumulative 
CO2 production of stored cabbage 
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Fig. 9 PLSR plot for predicting cumulative CO2 production. The PLSR plot was 
developed using four potential markers with two latent variables 

AsA is one of the major quality attributes of fruits and vegetables after harvesting. Since 

AsA declines depending on the storage duration and temperature, it has been employed to 

quantify the quality degradation of fruits and vegetables during storage (Saito et al. 2000; 

Yamauchi and Kusabe 2001; del Aguila et al. 2006; Galani et al. 2017). Hence, we compared 

the performance of selected four lipids and AsA in predicting the cumulative CO2 production. 

AsA in stored cabbage decreased with an increase of the cumulative CO2 production as shown 

in Fig. 10a. Using the same method describe earlier, PLSR was performed to build the 

predictive model using AsA as an explanatory value. Figure 10b shows the relationship 

between measured and predicted cumulative CO2 production using the developed PLSR model 

by AsA. The RMSEP and R2
pred was 33.0 mg CO2 kg−1 and 0.58, respectively. This result 

indicates that the model with four important lipid molecules can express the degree of freshness 

of cabbage more accurately than AsA which has been used in freshness assessment 

conventionally. 
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In this study, we succeeded in identifying four important lipid molecules that express the 

degree of freshness of cabbage. To verify the effectiveness of freshness assessment by 

lipidomic profiling, tests using other kinds of vegetables and considering stress factors other 

than temperature that fresh produce endure during distribution such as gas modification, 

vibration, and impact should be conducted in future research. 
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Fig. 10 The changes of AsA in stored cabbage with an increasing of cumulative CO2 production 

(a), and the performance of PLSR model using AsA for predicting the cumulative 

CO2 production (b) 
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V. CONCLUSION 

Agricultural products such as fruits, vegetables, legume, species, and nuts are important in 

developing civilization and economies because it has become the complementary nutritional 

for the life span of a human. The nutritional compound is essential for human health, such as 

diets and the prevention of chronic diseases. Due to this benefit, agricultural products, 

especially fruits and vegetables, have become popular among consumers. Despite this 

popularity, fruits and vegetables have unique phenomena after harvesting. This fresh produce 

continues its metabolic activity, affecting nutrition losses and short shelf life. 

Recently, the term freshness is most famous on the consumer, and it is a common word 

encountered in daily life. Freshness can describe the quality of fresh produce that have optimal 

conditions for consumer acceptance. Because freshness represents all quality attribute such as 

appearance, flavor,  nutritional compounds, and phytochemical. In practical, freshness 

evaluation often using the conventional method that measures the specific quality attribute. 

This is the great challenge for researcher to develop the new method that can improve the 

common method.  

In this dissertation, we investigated the lipidome alteration in whole cabbage during storage 

to identify the freshness markers using liquid chromatography-tandem mass spectrometry (LC-

MS/MS)-based lipidomics. Lipidomics is a subset of metabolomics focusing on lipids. Lipids 

are essential metabolites that have crucial cellular functions. Focusing on lipid can provide the 

information about cellular metabolic status. It helps understand the biological mechanism and 

find out the biomarkers based on the comprehensive analysis of lipids.  

The whole cabbage was selected as a sample material because it is one of the common 

vegetables in the world, and the freshness is an important attribute due to its short shelf-life. 

Moreover, the quantitative freshness assessment method is strongly desired, especially in the 

fresh-cut fruits and vegetable industry. The raw material cabbage is often stored at low 
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temperature for a long period, and its freshness is affected to the quality of the final fresh-cut 

product. For these reasons, the whole cabbage stored at different temperatures and durations 

was used/ to discuss the feasibility of the freshness assessment by lipidomic profiling in this 

study.  

Wide target lipidomics using a triple–quadrupole mass spectrometer were conducted to 

understand changes in the lipid profile alteration of cabbage during storage and to find out the 

specific lipid species that indicate the degree of freshness. Among a large number of detected 

lipid species, 74 molecules were found to have a significant correlation with the cumulative 

respiratory CO2 production during storage. The transition of lipid profile with senescence could 

be visualized. Moreover, the PLSR model as a function of these lipid molecules could predict 

cumulative respiratory CO2 production accurately. Based on the VIP score in PLSR and the p-

value of the test for correlation coefficient in a simple regression, we succeeded in elucidating 

the four potential freshness markers that express the degree of freshness of cabbage. Moreover, 

the prediction model with these potential markers gave a more accurate result than conventional 

AsA method in freshness assessment. To the best of our knowledge, this is the first attempt 

using the lipidomics approach for developing the freshness assessment method of vegetables. 

To the best of our knowledge, this is the first attempt using the lipidomics approach for 

developing the freshness assessment method of vegetables. 

Additionally, we could clarify the feasibility of the freshness evaluation of cabbage by 

lipidomic profiling. Further research is needed to verify the availability of selected potential 

markers by testing the effect of not only temperature but also other stress factors such as 

controlled atmosphere and vibration/impact. Furthermore, the quantitative analysis of the 

selected potential freshness markers should be undertaken to develop a robust freshness 

measurement model. Then, it should be combined with non-destructive technology for the 



51 
 

practical use of freshness assessment. Nevertheless, we believe that these preliminary findings 

will be a primary reference in postharvest science to explore freshness assessment further. 

  



52 
 

PUBLICATIONS 

Zainal, P. W, Aurum, F. S, Imaizumi, T., Thammawong, M., Nakano, K. 2022. Application 

of mass spectrometry-based metabolomics in postharvest research. Reviews in Agricultural 

Sciences. 10, 56-67. 

Zainal, P. W, Syukri, D., Fahmy, K., Imaizumi, T., Thammawong, M., Tsuta, M., Nagata, 

M., Nakano, K. 2022. Lipidomic Profiling to Assess the Freshness of Stored Cabbage. Food 

Analytical Methods. (Submitted) 

  



53 
 

ACKNOWLEDGEMENTS 

 

First and foremost, I want to express gratitude to Almighty Allah for blessing me with good 

health and bestowing upon me the patience and determination to reach my goal. I should like 

to express my sincere gratitude to my supervisor, Professor Kohei Nakano, Ph.D., for accepting 

me as one of his students, for his insights, guidance, encouragement, and invaluable aids in 

teaching me the various facets of study. My gratitude to Assistant Professor Teppei Imaizumi, 

Manasikan Thammawong, Professor Masayasu Nagata, Professor Mizuki Tsuta for their 

assistances, useful comments, suggestions, and insights throughout the development of this 

thesis.  

This doctoral study was financed by Japanese Government within the Monbukagakusho: 

MEXT Scholarship. I gratefully acknowledge The Ministry of Education, Culture, Sports, 

Science, and Technology of Japan. Finally, I also gratefully The Dean of Faculty Agricultural 

Technology and Rector of Andalas University, and The Indonesian Ministry of Education 

Directorate General of Higher Education (DIKTI) for granting permission to pursue this 

doctoral study. 

My deepest appreciation goes to my lab mates , Fawzan Sigma, Cicih Sugianti, Anupama 

Shomodder, Nabila for  their help and pleasant company and who supported me immensely 

during my time of crisis. I am also thankful to all students in Postharvest Engineering 

laboratory especially Matsuo and Kohei Kuni for their interest, constant support, and positivity 

towards my work. 

I am so grateful for Gifu University Day Care; I cannot thank you enough for all teacher  

for taking care my son while I am pursuing my doctor degree. They help me to teach my  son 

when I cannot. Thank you for taking care and loving my son. 



54 
 

My sincere thanks also go to the staff of The United Graduate School of Agricultural 

Sciences, Gifu University,  all colleagues in Gifu University including Indonesian Student 

Association (PPI-Gifu), all colleagues in Andalas University especially at Faculty of 

Agricultural Technology for moral support.  

I am deeply thanks to my family, especially to my mom, my brother and sister for the 

nurture and prayers. Your encouragement and unconditional support will always stay in my 

heart. Last, but never least, I dedicate this thesis to my husband Agung Prawiro Sadmo and my 

Son M. Zeeshan Hideaki Agung. I do not know how to begin with saying thank you to my 

unbelievably supportive husband for his continued and unfailing love, support and 

understanding during my pursuit of Ph.D. degree that made the completion of thesis possible. 

You were always around at times I thought that it is impossible to continue, you helped me to 

keep things in perspective. I greatly value his contribution and deeply appreciate his belief in 

me. I also would like to thank to our Son M. Zeeshan Hideaki Agung for giving me unlimited 

happiness and pleasure. Words would never say how grateful I am to both of you. I consider 

myself the luckiest in the world to have such a lovely and caring family, standing beside me 

with their love and unconditional support. 

I wish to thank many other people whose names are not mentioned here but this does not 

mean that I have forgotten their help.



55 
 

REFERENCES 

Abbott JA (1999) Quality measurement of fruits and vegetables. Postharvest Biol Technol 

15:207–225. https://doi.org/10.1016/S0925-5214(98)00086-6 

Agmon E, Stockwell BR (2017) Lipid homeostasis and regulated cell death. Curr Opin Chem 

Biol 39:83–89. https://doi.org/10.1016/j.cbpa.2017.06.002 

Aizat WM, Dias DA, Stangoulis JCR, et al (2014) Metabolomics of capsicum ripening 

reveals modification of the ethylene related-pathway and carbon metabolism. 

Postharvest Biol Technol 89:19–31. https://doi.org/10.1016/j.postharvbio.2013.11.004 

Akiyama M, Murakami K, Hirano Y, et al (2008) Characterization of Headspace Aroma 

Compounds of Freshly Brewed Arabica Coffees and Studies on a Characteristic Aroma 

Compound of Ethiopian Coffee. J Food Sci 73:C335–C346. 

https://doi.org/10.1111/j.1750-3841.2008.00752.x 

Alves E, Melo T, Barros MP, et al (2019) Lipidomic Profiling of the Olive (Olea europaea 

L.) Fruit towards Its Valorisation as a Functional Food: In-depth identification of 

triacylglycerols and polar lipids in Portuguese olives. Molecules 24:. 

https://doi.org/10.3390/molecules24142555 

Amine EK, Baba NH, Belhadj M, et al (2003) Diet, nutrition and the prevention of chronic 

diseases. World Heal Organ - Tech Rep Ser. https://doi.org/10.1093/ajcn/60.4.644a 

Arce-Lopera C, Masuda T, Kimura A, et al (2013) Luminance distribution as a determinant 

for visual freshness perception: Evidence from image analysis of a cabbage leaf. Food 

Qual Prefer 27:202–207. https://doi.org/10.1016/j.foodqual.2012.03.005 

Arce-Lopera C, Masuda T, Kimura A, et al (2012) Luminance distribution modifies the 

perceived freshness of strawberries. Iperception 3:338–355. 

https://doi.org/10.1068/i0471 

Barrero-Sicilia C, Silvestre S, Haslam RP, Michaelson L V. (2017) Lipid remodelling: 



56 
 

Unravelling the response to cold stress in Arabidopsis and its extremophile relative 

Eutrema salsugineum. Plant Sci 263:194–200. 

https://doi.org/10.1016/j.plantsci.2017.07.017 

Beitlich N, Koelling-Speer I, Oelschlaegel S, Speer K (2014) Differentiation of manuka 

honey from kanuka honey and from jelly bush honey using HS-SPME-GC/MS and 

UHPLC-PDA-MS/MS. J Agric Food Chem 62:6435–6444. 

https://doi.org/10.1021/jf501818f 

Casares D, Escribá P V., Rosselló CA (2019) Membrane lipid composition: Effect on 

membrane and organelle structure, function and compartmentalization and therapeutic 

avenues. Int J Mol Sci 20:2167. https://doi.org/10.3390/ijms20092167 

Corpas Iguarán E, Taborda Ocampo G, Tapasco Alzate O (2018) Identification of volatile 

compound markers during the ripening and senescence of lulo (Solanum quitoense 

Lam.). J Food Sci Technol 55:437–442. https://doi.org/10.1007/s13197-017-2924-x 

Cozzolino R, Pace B, Cefola M, et al (2016) Assessment of volatile profile as potential 

marker of chilling injury of basil leaves during postharvest storage. Food Chem 

213:361–368. https://doi.org/10.1016/j.foodchem.2016.06.109 

Danezis GP, Tsagkaris AS, Camin F, et al (2016) Food authentication: Techniques, trends & 

emerging approaches. TrAC - Trends Anal Chem 85:123–132. 

https://doi.org/10.1016/j.trac.2016.02.026 

Della Corte A, Chitarrini G, Di Gangi IM, et al (2015) A rapid LC-MS/MS method for 

quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and 

sphingolipids in grapes. Talanta 140:52–61. 

https://doi.org/10.1016/j.talanta.2015.03.003 

Diboun I, Mathew S, Al-Rayyashi M, et al (2015) Metabolomics of dates (Phoenix 

dactylifera) reveals a highly dynamic ripening process accounting for major variation in 



57 
 

fruit composition. BMC Plant Biol 15:1–22. https://doi.org/10.1186/s12870-015-0672-5 

Florkowski, Wojciech J, Shewfelt RL, Prussia SE (2014) Postharvest Handling: A systems 

Approach, 3rd edn. Elsevier, USA 

Fonseca SC, Oliveira FAR, Brecht JK (2002) Modelling respiration rate of fresh fruits and 

vegetables for modified atmosphere packages: A review. J Food Eng 52:99–119. 

https://doi.org/10.1016/S0260-8774(01)00106-6 

Gao F, Dong Y, Xiao W, et al (2016) LED-induced fluorescence spectroscopy technique for 

apple freshness and quality detection. Postharvest Biol Technol 119:27–32. 

https://doi.org/10.1016/j.postharvbio.2016.04.020 

Garrett R, Schmidt EM, Pereira LFP, et al (2013) Discrimination of arabica coffee cultivars 

by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry 

and chemometrics. LWT - Food Sci Technol 50:496–502. 

https://doi.org/10.1016/j.lwt.2012.08.016 

Gasulla F, Vom Dorp K, Dombrink I, et al (2013) The role of lipid metabolism in the 

acquisition of desiccation tolerance in Craterostigma plantagineum: A comparative 

approach. Plant J 75:726–741. https://doi.org/10.1111/tpj.12241 

Gonçalves B, Oliveira I, Bacelar E, et al (2018) Aromas and Flavours of Fruits. In: 

Generation of Aromas and Flavours. InTech, p 13 

Gundaraniya SA, Ambalam PS, Tomar RS (2020) Metabolomic Profiling of Drought-

Tolerant and Susceptible Peanut (Arachis hypogaea L.) Genotypes in Response to 

Drought Stress. ACS Omega 5:31209–31219. 

https://doi.org/10.1021/acsomega.0c04601 

Guo J, Yue T, Yuan Y (2012) Feature Selection and Recognition from Nonspecific Volatile 

Profiles for Discrimination of Apple Juices According to Variety and Geographical 

Origin. J Food Sci 77:1090–1097. https://doi.org/10.1111/j.1750-3841.2012.02914.x 



58 
 

Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. 

Nat Rev Mol Cell Biol 19:281–296. https://doi.org/10.1038/nrm.2017.138 

Higashi Y, Okazaki Y, Myouga F, et al (2015) Landscape of the lipidome and transcriptome 

under heat stress in Arabidopsis thaliana. Sci Rep 5:1–7. 

https://doi.org/10.1038/srep10533 

Holčapek M, Liebisch G, Ekroos K (2018) Lipidomic Analysis. Anal Chem 90:4249–4257. 

https://doi.org/10.1021/acs.analchem.7b05395 

Ikram MMM, Mizuno R, Putri SP, Fukusaki E (2021) Comparative metabolomics and 

sensory evaluation of pineapple (Ananas comosus) reveal the importance of ripening 

stage compared to cultivar. J Biosci Bioeng 132:592–598. 

https://doi.org/10.1016/j.jbiosc.2021.08.008 

Ikram MMM, Ridwani S, Putri SP, Fukusaki E (2020) GC-MS based metabolite profiling to 

monitor ripening-specific metabolites in pineapple (Ananas comosus). Metabolites 

10:1–15. https://doi.org/10.3390/metabo10040134 

Jia Y, Tao F, Li W (2013) Lipid Profiling Demonstrates That Suppressing Arabidopsis 

Phospholipase Dδ Retards ABA-Promoted Leaf Senescence by Attenuating Lipid 

Degradation. PLoS One 8:e65687. https://doi.org/10.1371/journal.pone.0065687 

Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards 

mechanisms. Nat Rev Mol Cell Biol 17:451–459. https://doi.org/10.1038/nrm.2016.25 

Jumhawan U, Putri SP, Yusianto, et al (2013) Selection of discriminant markers for 

authentication of asian palm civet coffee (Kopi Luwak): A metabolomics approach. J 

Agric Food Chem 61:7994–8001. https://doi.org/10.1021/jf401819s 

Kaplan F, Kopka J, Haskell DW, et al (2004) Exploring the Temperature-Stress Metabolome 

of Arabidopsis. Plant Physiol 136:4159–4168. https://doi.org/10.1104/pp.104.052142 

Karagiannis E, Michailidis M, Karamanoli K, et al (2018) Postharvest responses of sweet 



59 
 

cherry fruit and stem tissues revealed by metabolomic profiling. Plant Physiol Biochem 

127:478–484. https://doi.org/10.1016/j.plaphy.2018.04.029 

Khakimov B, Bakhytkyzy I, Fauhl-Hassek C, Engelsen SB (2022) Non-volatile molecular 

composition and discrimination of single grape white of chardonnay, riesling, sauvignon 

blanc and silvaner using untargeted GC–MS analysis. Food Chem 369:130878. 

https://doi.org/10.1016/j.foodchem.2021.130878 

Kim TJ, Park JG, Ahn SK, et al (2020) Discrimination of Adzuki Bean (Vigna angularis) 

Geographical Origin by Targeted and Non-Targeted Metabolite Profiling with Gas 

Chromatography Time-of-Flight Mass Spectrometry. Metabolites 10:112. 

https://doi.org/10.3390/metabo10030112 

Klockmann S, Reiner E, Cain N, Fischer M (2017) Food Targeting: Geographical Origin 

Determination of Hazelnuts (Corylus avellana) by LC-QqQ-MS/MS-Based Targeted 

Metabolomics Application. J Agric Food Chem 65:1456–1466. 

https://doi.org/10.1021/acs.jafc.6b05007 

Kong X, Wei B, Gao Z, et al (2018) Changes in Membrane Lipid Composition and Function 

Accompanying Chilling Injury in Bell Peppers. Plant Cell Physiol 59:167–178. 

https://doi.org/10.1093/pcp/pcx171 

Krajayklang M, Klieber A, Dry PR (2000) Colour at harvest and post-harvest behaviour 

influence paprika and chilli spice quality. Postharvest Biol Technol 20:269–278. 

https://doi.org/10.1016/S0925-5214(00)00141-1 

Lamanna R, Cattivelli L, Miglietta ML, Troccoli A (2011) Geographical origin of durum 

wheat studied by 1H-NMR profiling. Magn Reson Chem 49:1–5. 

https://doi.org/10.1002/mrc.2695 

Li L, Lu X, Zhao J, et al (2015) Lipidome and metabolome analysis of fresh tobacco leaves in 

different geographical regions using liquid chromatography-mass spectrometry 



60 
 

Lipidomics. Anal Bioanal Chem 407:5009–5020. https://doi.org/10.1007/s00216-015-

8522-8 

Lim S, Lee JG, Lee EJ (2017) Comparison of fruit quality and GC–MS-based metabolite 

profiling of kiwifruit ‘Jecy green’: Natural and exogenous ethylene-induced ripening. 

Food Chem 234:81–92. https://doi.org/10.1016/j.foodchem.2017.04.163 

Liu J, Li Q, Chen J, Jiang Y (2020) Revealing Further Insights on Chilling Injury of 

Postharvest Bananas by Untargeted Lipidomics. Foods 9:894. 

https://doi.org/10.3390/foods9070894 

Mahajan P V., Caleb OJ, Gil MI, et al (2017) Quality and safety of fresh horticultural 

commodities: Recent advances and future perspectives. Food Packag Shelf Life 14:2–

11. https://doi.org/10.1016/j.fpsl.2017.08.001 

Malheiro R, Guedes de Pinho P, Soares S, et al (2013) Volatile biomarkers for wild 

mushrooms species discrimination. Food Res Int 54:186–194. 

https://doi.org/10.1016/j.foodres.2013.06.010 

Mi S, Zhang X, Wang Y, et al (2021) Geographical discrimination and authentication of 

Chinese garlic based on multi-element, volatile and metabolomics profiling combined 

with chemometrics. Food Control 130:108328. 

https://doi.org/10.1016/j.foodcont.2021.108328 

Mishra S, Tyagi A, Singh I V., Sangwan RS (2006) Changes in lipid profile during growth 

and senescence of Catharanthus roseus leaf. Brazilian J Plant Physiol 18:447–454. 

https://doi.org/10.1590/S1677-04202006000400002 

Monti LL, Bustamante CA, Osorio S, et al (2016) Metabolic profiling of a range of peach 

fruit varieties reveals high metabolic diversity and commonalities and differences during 

ripening. Food Chem 190:879–888. https://doi.org/10.1016/j.foodchem.2015.06.043 

Nakamura Y (2017) Plant Phospholipid Diversity: Emerging Functions in Metabolism and 



61 
 

Protein–Lipid Interactions. Trends Plant Sci 22:1027–1040. 

https://doi.org/10.1016/j.tplants.2017.09.002 

Nekvapil F, Brezestean I, Barchewitz D, et al (2018) Citrus fruits freshness assessment using 

Raman spectroscopy. Food Chem 242:560–567. 

https://doi.org/10.1016/j.foodchem.2017.09.105 

Oh J, Yoon DH, Shrestha B, et al (2019) Metabolomic profiling reveals enrichment of 

cordycepin in senescence process of Cordyceps militaris fruit bodies. J Microbiol 57:54–

63. https://doi.org/10.1007/s12275-019-8486-z 

Parijadi AAR, Putri SP, Ridwani S, et al (2018) Metabolic profiling of Garcinia mangostana 

(mangosteen) based on ripening stages. J Biosci Bioeng 125:238–244. 

https://doi.org/10.1016/j.jbiosc.2017.08.013 

Parlapani FF, Haroutounian SA, Nychas GJE, Boziaris IS (2015) Microbiological spoilage 

and volatiles production of gutted European sea bass stored under air and commercial 

modified atmosphere package at 2°C. Food Microbiol 50:44–53. 

https://doi.org/10.1016/j.fm.2015.03.006 

Parr AJ, Bolwell GP (2000) Phenols in the plant and in man. The potential for possible 

nutritional enhancement of the diet by modifying the phenols content or profile. J Sci 

Food Agric 80:985–1012. https://doi.org/10.1002/(SICI)1097-

0010(20000515)80:7<985::AID-JSFA572>3.0.CO;2-7 

Pedreschi R, Muñoz P, Robledo P, et al (2014) Metabolomics analysis of postharvest 

ripening heterogeneity of “Hass” avocadoes. Postharvest Biol Technol 92:172–179. 

https://doi.org/10.1016/j.postharvbio.2014.01.024 

Péneau S, Brockhoff PB, Escher F, Nuessli J (2007) A comprehensive approach to evaluate 

the freshness of strawberries and carrots. Postharvest Biol Technol 45:20–29. 

https://doi.org/10.1016/j.postharvbio.2007.02.001 



62 
 

Péneau S, Hoehn E, Roth HR, et al (2006) Importance and consumer perception of freshness 

of apples. Food Qual Prefer 17:9–19. https://doi.org/10.1016/j.foodqual.2005.05.002 

Piras C, Hale OJ, Reynolds CK, et al (2021) Speciation and milk adulteration analysis by 

rapid ambient liquid MALDI mass spectrometry profiling using machine learning. Sci 

Rep 11:. https://doi.org/10.1038/s41598-021-82846-5 

Pott DM, Vallarino JG, Osorio S (2020) Metabolite Changes during Postharvest Storage: 

Effects on Fruit Quality Traits. Metabolites 10:187. 

https://doi.org/10.3390/metabo10050187 

Putri SP, Irifune T, Yusianto, Fukusaki E (2019) GC/MS based metabolite profiling of 

Indonesian specialty coffee from different species and geographical origin. 

Metabolomics 15:1–11. https://doi.org/10.1007/s11306-019-1591-5 

Qiu Y, Zhao Y, Liu J, Guo Y (2017) A statistical analysis of the freshness of postharvest 

leafy vegetables with application of water based on chlorophyll fluorescence 

measurement. Inf Process Agric 4:269–274. https://doi.org/10.1016/j.inpa.2017.08.001 

Repetto M, Semprine J, Boveris A (2012) Lipid Peroxidation: Chemical Mechanism, 

Biological Implications and Analytical Determination. In: Lipid Peroxidation. InTech 

Rivera-Pérez A, Romero-González R, Garrido Frenich A (2021) Application of an 

innaovative metabolomics approach to discriminate geographical origin and processing 

of black pepper by untargeted UHPLC-Q-Orbitrap-HRMS analysis and mid-level data 

fusion. Food Res Int 150:110722. https://doi.org/10.1016/j.foodres.2021.110722 

Rudell DR, Buchanan DA, Leisso RS, et al (2011) Ripening, storage temperature, ethylene 

action, and oxidative stress alter apple peel phytosterol metabolism. Phytochemistry 

72:1328–1340. https://doi.org/10.1016/j.phytochem.2011.04.018 

Saltveit ME (2019) Respiratory Metabolism. In: Postharvest Physiology and Biochemistry of 

Fruits and Vegetables. Elsevier, pp 73–91 



63 
 

Sato M, Ikram MMM, Pranamuda H, et al (2021) Characterization of five Indonesian 

mangoes using gas chromatography–mass spectrometry-based metabolic profiling and 

sensory evaluation. J Biosci Bioeng 132:613–620. 

https://doi.org/10.1016/j.jbiosc.2021.09.006 

Scherer M, Leuthäuser-Jaschinski K, Ecker J, et al (2010) A rapid and quantitative LC-

MS/MS method to profile sphingolipids. J Lipid Res 51:2001–2011. 

https://doi.org/10.1194/jlr.D005322 

Shelden MC, Dias DA, Jayasinghe NS, et al (2016) Root spatial metabolite profiling of two 

genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term 

salt stress. J Exp Bot 67:3731–3745. https://doi.org/10.1093/jxb/erw059 

Shen Q, Dong W, Yang M, et al (2013) Lipidomic fingerprint of almonds (prunus dulcis L. 

cv nonpareil) using TiO2 nanoparticle based matrix solid-phase dispersion and MALDI-

TOF/MS and its potential in geographical origin verification. J Agric Food Chem 

61:7739–7748. https://doi.org/10.1021/jf4016448 

Shen Q, Wang Y, Gong L, et al (2012) Shotgun lipidomics strategy for fast analysis of 

phospholipids in fisheries waste and its potential in species differentiation. J Agric Food 

Chem 60:9384–9393. https://doi.org/10.1021/jf303181s 

Shiva S, Samarakoon T, Lowe KA, et al (2020) Leaf lipid alterations in response to heat 

stress of Arabidopsis thaliana. Plants 9:1–22. https://doi.org/10.3390/plants9070845 

Sud M, Fahy E, Cotter D, et al (2007) LMSD: LIPID MAPS structure database. Nucleic 

Acids Res 35:527–532. https://doi.org/10.1093/nar/gkl838 

Sun F, Chen H, Chen D, et al (2020) Lipidomic Changes in Banana ( Musa cavendish ) 

during Ripening and Comparison of Extraction by Folch and Bligh–Dyer Methods. J 

Agric Food Chem 68:11309–11316. https://doi.org/10.1021/acs.jafc.0c04236 

Sun X, Zhu A, Liu S, et al (2013) Integration of Metabolomics and Subcellular Organelle 



64 
 

Expression Microarray to Increase Understanding the Organic Acid Changes in Post-

harvest Citrus Fruit. J Integr Plant Biol 55:1038–1053. 

https://doi.org/10.1111/jipb.12083 

Tarazona P, Feussner K, Feussner I (2015) An enhanced plant lipidomics method based on 

multiplexed liquid chromatography-mass spectrometry reveals additional insights into 

cold- and drought-induced membrane remodeling. Plant J 84:621–633. 

https://doi.org/10.1111/tpj.13013 

Toivonen PM a., Deell JR (1998) Differences in chlorophyll fluorescence and chlorophyll 

content of broccoli associated with maturity and sampling section. Postharvest Biol 

Technol 14:61–64. https://doi.org/10.1016/S0925-5214(98)00022-2 

Trivedi DK, Hollywood KA, Rattray NJW, et al (2016) Meat, the metabolites: An integrated 

metabolite profiling and lipidomics approach for the detection of the adulteration of beef 

with pork. Analyst 141:2155–2164. https://doi.org/10.1039/c6an00108d 

Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: Where they are and how 

they behave. Nat Rev Mol Cell Biol 9:112–124. https://doi.org/10.1038/nrm2330 

Vega-Alvarez M, Salazar-Salas NY, López-Angulo G, et al (2020) Metabolomic Changes in 

Mango Fruit Peel Associated with Chilling Injury Tolerance Induced by Quarantine Hot 

Water Treatment. Postharvest Biol Technol 169:111299. 

https://doi.org/10.1016/j.postharvbio.2020.111299 

Wada Y, Arce-Lopera C, Masuda T, et al (2010) Influence of luminance distribution on the 

appetizingly fresh appearance of cabbage. Appetite 54:363–368. 

https://doi.org/10.1016/j.appet.2010.01.002 

Wang CY (2010) Alleviation of chilling injury in tropical and subtropical fruits. Acta Hortic 

864:267–274. https://doi.org/10.17660/actahortic.2010.864.35 

Wargovich MJ (2000) Anticancer properties of fruits and vegetables. HortScience 35:573–



65 
 

575. https://doi.org/10.21273/hortsci.35.4.573 

Welti R, Li W, Li M, et al (2002a) Profiling membrane lipids in plant stress responses: Role 

of phospholipase Dα in freezing-induced lipid changes in arabidopsis. J Biol Chem 

277:31994–32002. https://doi.org/10.1074/jbc.M205375200 

Welti R, Li W, Li M, et al (2002b) Profiling membrane lipids in plant stress responses: Role 

of phospholipase Dα in freezing-induced lipid changes in arabidopsis. J Biol Chem 

277:31994–32002. https://doi.org/10.1074/jbc.M205375200 

Weston LA, Barth MM (1997) Preharvest Factors Affecting Postharvest Quality of 

Vegetables. HortScience 32:812–816. https://doi.org/10.21273/HORTSCI.32.5.812 

Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. 

Plant Cell 14:S165–S183. https://doi.org/10.1007/978-81-322-1542-4-11 

Xu J, Zhang Y, Qi D, et al (2018a) Postharvest metabolomic changes in Pyrus ussuriensis 

Maxim. wild accession ‘Zaoshu Shanli.’ J Sep Sci 41:4001–4013. 

https://doi.org/10.1002/jssc.201800543 

Xu J, Zhang Y, Qi D, et al (2018b) Postharvest metabolomic changes in Pyrus ussuriensis 

Maxim. wild accession ‘Zaoshu Shanli.’ J Sep Sci 41:4001–4013. 

https://doi.org/10.1002/jssc.201800543 

Xue X, Wang Q, Li Y, et al (2013) 2-Acetylfuran-3-Glucopyranoside As a Novel Marker for 

the Detection of Honey Adulterated With Rice Syrup. J Agric Food Chem 61:7488–

7493. https://doi.org/10.1021/jf401912u 

Yang C, Hu Z, Lu M, et al (2018) Application of metabolomics profiling in the analysis of 

metabolites and taste quality in different subtypes of white tea. Food Res Int 106:909–

919. https://doi.org/10.1016/j.foodres.2018.01.069 

Yunping Q, Reed D (2014) Gas Chromatography in Metabolomics Study Chapter. Adv Gas 

Chromatogr IntechOpen 267–322 



66 
 

Zhang YJ, Gan RY, Li S, et al (2015) Antioxidant phytochemicals for the prevention and 

treatment of chronic diseases. Molecules 20:21138–21156. 

https://doi.org/10.3390/molecules201219753 

 


