

Use of blood meals from stable flies to evaluate the bovine leukemia virus infection status in cattle herds: a pilot study

メタデータ	言語: English				
	出版者: SAGE Publications Inc.				
	公開日: 2024-11-21				
	キーワード (Ja):				
キーワード (En):					
	作成者: Shimizu, Kaori, Mori, Chikahiro, Okada, Ayaka,				
	Inoshima, Yasuo				
	メールアドレス:				
	所属:				
URL	http://hdl.handle.net/20.500.12099/0002000868				

1	Use of blood meals from stable flies to evaluate the bovine leukemia virus infection
2	status in cattle herds: a pilot study
3	
4	Kaori Shimizu, Chikahiro Mori, Ayaka Okada, Yasuo Inoshima ¹
5	
6	Joint Department of Veterinary Medicine (Shimizu, Okada, Inoshima), Education and
7	Research Center for Food Animal Health (GeFAH; Okada, Inoshima), Joint Graduate School
8	of Veterinary Sciences (Okada, Inoshima), Gifu University, Gifu, Japan; Forensic Science
9	Laboratory, Gifu Prefectural Police Headquarters (Mori), Gifu, Japan.
10	
11	¹ Corresponding author: Yasuo Inoshima, Laboratory of Food and Environmental Hygiene,
12	Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu
13	University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan. inoshima.yasuo.b0@f.gifu-u.ac.jp
14	
15	Running head: Evaluation of bovine leukemia virus using stable flies
16	

17	Abstract. The incidence of enzootic bovine leukosis (EBL), a type of B-cell lymphoma, is
18	increasing in Japan. EBL is caused by bovine leukemia virus (BLV; Retroviridae,
19	Deltaretrovirus bovleu) infection; EBL is diagnosed by detecting antibodies against BLV in
20	milk and blood or BLV DNA in blood. We assessed the feasibility of using stable flies
21	(Stomoxys calcitrans) as a sampling tool to assess BLV infection status in cattle herds. First,
22	we collected blood from 3 cattle herds and, based on the measurement of BLV-PVL by
23	quantitative real-time PCR (qPCR), identified 1) a BLV-free herd, 2) a herd with a low
24	prevalence of BLV-infected cattle and low proviral load (PVL), and 3) a herd wherein half of
25	the cattle were BLV-infected with low-to-high PVLs. Next, we collected stable flies from the
26	3 herds, extracted DNA from their blood meals, analyzed it for BLV DNA, and measured the
27	BLV PVL. Cattle DNA and BLV DNA, but not other mammalian DNA, were successfully
28	detected by digestion of the flies. Based on fly blood meal qPCR, we identified one herd as
29	BLV-free and the other 2 herds as having <50% prevalence of BLV-infected cattle with low
30	PVLs. Our fly results were not consistent with preliminary BLV-PVL measurements on cattle
31	blood. Our pilot study indicated that, to assess the feasibility of a stable fly blood meal test as
32	an alternative technique for evaluating BLV infection status in dairy and beef cattle, additional
33	investigations involving more cattle herds and stable flies are needed.

- **Keywords:** bovine leukemia virus; cattle; enzootic bovine leukosis, feasibility studies.

36	Enzootic bovine leukosis (EBL) is a B-cell lymphoma caused by infection with bovine
37	leukemia virus (BLV; Retroviridae, Deltaretrovirus bovleu). ²⁰ Among BLV-infected cattle,
38	$>50\%$ remain healthy throughout their life; however, $\sim30\%$ develop persistent lymphocytosis,
39	and <5% develop EBL. ⁶ A nationwide serosurvey of BLV infection in Japan from 2009 to
40	2011 revealed that the seroprevalence of BLV infection was 28.7% in 9,722 beef breeding
41	cattle and 40.7% in 11,113 dairy cattle. ¹⁸ The Ministry of Agriculture, Forestry and Fisheries,
42	Japan, reported that the annual number of EBL cattle was 99 in 1998 and this increased
43	gradually to $4,491$ in 2023^{13} (Suppl. Fig. 1).

There are no commercial vaccines or therapeutic drugs for BLV infection; thus, 44 countermeasures against BLV infection and EBL development are urgently required. Most 45 46 western European countries, Australia, and New Zealand have established eradication programs and control measures, which have resulted in negligible BLV infection rates.^{11,20} 47 However, in Japan, the high prevalence of BLV antibodies makes it impractical to cull all 48 49 BLV-infected cattle. Currently, herd management for BLV is performed by detecting 50 antibodies against BLV in milk and blood using ELISAs and/or BLV DNA in blood using PCR testing. High BLV-proviral load (PVL) levels in cattle blood constitute a risk factor for 51 EBL progression⁹; however, milk does not contribute to the measurement of BLV-PVL in 52 cattle, and milk tests are available only for the detection of antibodies against BLV for dairy 53 54 cattle herds, but not for beef cattle herds. Consequently, blood collection is still used for the 55 routine detection of antibodies and BLV DNA, and assessment of BLV-PVL.

Stomoxys calcitrans (Diptera: Muscidae), commonly referred to as a stable fly, is a bloodsucking ectoparasite that is globally considered an economically important pest for the
livestock industry. Its painful bites disrupt the feeding behavior of livestock and cause direct
harm through blood loss, tissue damage, and allergic reactions.^{12,25} Moreover, stable flies are

60	suspected to play a crucial role in the spread of infectious diseases owing to their potential as
61	mechanical pathogen carriers, particularly in livestock. ¹ Stable flies carry pathogens, such as
62	bovine viral diarrhea virus, ⁴ lumpy skin disease virus, ¹⁴ and <i>Anaplasma marginale</i> . ¹⁴ In
63	addition, BLV ³ and BLV genes ²² have been detected in stable flies that feed on BLV-infected
64	cattle. We hypothesized that the BLV infection status of cattle herds would be reflected in the
65	blood meals of stable flies. Furthermore, we aimed to determine the feasibility of using stable
66	files as a sampling tool to assess BLV infection status in cattle herds without the need for
67	blood collection.
68	First, we collected blood from cattle of 3 farms (A-C) in Gifu, Japan, which had ~20, 40,
69	and 80 Holstein cattle, respectively. Hematologic tests, detection of serum antibodies against
70	BLV via ELISA, and measurement of the BLV-PVL (copies/10 ⁵ WBCs) using quantitative
71	real-time PCR (qPCR) were performed by the Gifu Chuo Livestock Hygiene Service Center
72	(Gifu, Japan), as described previously. ²³ Studies havereported that higher activity of serum
73	lactate dehydrogenase (LDH) and/or increased ratios of LDH isozymes 2 and 3 are diagnostic
74	biomarkers for EBL. ^{7,10} Therefore, we had the serum LDH activity and ratio of LDH
75	isozymes analyzed by a clinical testing company (SRL, Tokyo, Japan). Although the
76	percentage of LDH 2+3 from 2 of 33 cattle in 2023 on farm B and 2 of 78 cattle in 2023 on
77	farm C increased 50% or more, these 4 cattle did not develop to EBL during our study period.
78	BLV infection of cattle on each farm was also confirmed using nested PCR detection of the
79	pX ¹⁹ or envelope regions ⁵ of BLV in the blood (GoTaq hot start green master mix; Promega;
80	Suppl. Table 1).
81	We detected no BLV-infected cattle on farm A among the 13 cattle tested in 2021 and 18

82 cattle in 2023 (Fig. 1; Suppl. Table 2). The prevalence of BLV-positive cattle on farm B was 9

83 of 36 (25%) in 2022 and 6 of 36 (17%) in 2023; on farm C, the prevalence was 51 of 74

84	(69%) in 2022 and 39 of 78 (50%) in 2023 (Fig. 1A; Suppl. Tables 3,4). On farm B, most of
85	the BLV-positive cattle were in the lower PVL category ($< 25,000$ copies/10 ⁵ WBCs),
86	according to a classification described previously,9 and the cattle with the highest PVL were
87	included in the second PVL category (25,000–50,000 copies/10 ⁵ WBCs). On farm C, most
88	BLV-positive cattle were in the first PVL category ($< 25,000$ copies/10 ⁵ WBCs), but some
89	were in the 4 other PVL categories, including the highest PVL category ($\geq 100,000$ copies/10 ⁵
90	WBCs). Based on the PCR results, each cattle herd was characterized as follows: farm A was
91	BLV-free, farm B had a low prevalence of BLV-infected cattle and low PVL, and on farm C,
92	>50% of the cattle were BLV-infected with low-to-high PVLs (Fig. 1B).
93	Next, we captured stable flies (Table 1) on the bodies of the cattle and inside the barns of
94	each farm using a butterfly net. To avoid viral contamination, new butterfly nets were used for
95	each farm and sampling period. The flies were transferred to our laboratory on the same day,
96	and precautions were taken to prevent secondary viral pollution during sample delivery or
97	preparation. All flies collected in plastic bags were killed by placing them in a -80°C freezer,
98	followed by subsequent storage at -30°C. Captured flies were pooled and placed into 15-mL
99	tubes, and the body surfaces of the flies were rinsed with 2 mL of PBS by gently rotating the
100	tube for 10 min without crushing or releasing their bodily fluids. Then, the flies were crushed
101	using sterile cotton swabs. The crushed liquid was filtered using 1.0- and 0.45- μ m pore filters
102	(Merck Millipore), and the filtrate was centrifuged at 20,400 \times g for 1 h at 25°C. Total DNA
103	was extracted from 200 μ L of the lower layer after centrifugation (DNeasy blood & tissue kit;
104	Qiagen), according to the manufacturer's instructions.
105	To determine the origin of the stable fly blood meals, a multiplex PCR assay was
106	performed, as described previously. ¹⁷ Briefly, the mitochondrial DNA (mtDNA) copy number

107 of each extracted DNA sample was quantified using a universal primer set that amplified a

108	conserved region of the 16S rRNA gene in vertebrates (SmartCycler II system; Cepheid).
109	Multiplex PCR was performed (Multiplex PCR assay kit v.2; Takara Bio) in a 25-µL reaction
110	mixture containing 5,000 copies of sample DNA in an iCycler (Bio-Rad; Suppl. Table 5).
111	Multiplex PCR products were analyzed (3500xL Genetic Analyzer with a 36-cm array and
112	POP-4 polymer; Thermo Fisher), and the results were analyzed with GeneMapper ID-X
113	Software v.1.4 (Thermo Fisher) with a peak amplitude threshold of 175 RFU and customized
114	panel and bin sets. The origin of the blood meal in all DNA samples was successfully
115	determined (Table 1; Suppl. Table 6); for all farms, we tested for 21 other mammalian species,
116	and only cattle DNA was detected in the stable fly blood meals. The distance between the
117	capture location and the target animal intended for evaluation is crucial when using stable fly
118	blood meals. Studies have shown that when stable flies are captured near locations with
119	different types of livestock ²¹ or in zoos, ¹⁵ genes from various animal species are detected in
120	their blood meal. We had captured stable flies inside barns extremely close to the cattle,
121	leading to the detection of only cattle genes in their blood meals.
122	We captured 140 stable flies in 2021 and 112 in 2023 on farm A, 52 in 2022 and 71 in 2023
123	on farm B, and 38 in 2022 and 27 in 2023 on farm C (Table 1). To verify the feasibility of
124	using stable flies for the detection of cattle and BLV DNA, blood meal DNA was extracted
125	from pooled flies, as described above, or from a single fly. For single-fly samples, 1 mL of
126	PBS was added to the fly before crushing with sterile toothpicks. After removing the fly body,
127	the blood color of the crushed liquid was confirmed (Suppl. Table 7). Preliminary tests
128	examined for BoLA-DRA, the bovine internal control DNA, in blood meal DNA extracted
129	from pooled flies (1, 5, or 10 flies) captured at farm A. Using qPCR analysis, both pooled and
130	single samples had detectable levels of BoLA-DRA in the blood meals, indicating that they
131	could be used for BLV DNA detection. BoLA-DRA was detected in DNA extracted from

132 crushed liquid samples with visible blood color, but not from colorless samples (Suppl. Table 133 7), indicating successful extraction of cattle DNA only from visibly colored blood meal 134 samples. In preliminary experiments, pooled samples containing both visible and colorless 135 blood tended to contain low amounts of BoLA-DRA (Suppl. Table 7). BoLA-DRA was 136 detected ~8.8-fold more often in single samples with visible blood color than in pooled 137 samples (Suppl. Fig. 2). Therefore, only blood meal liquid samples with visible blood color 138 were selected, and their extracted DNA was used to detect the origin of the blood meal source 139 and to measure BLV-PVL. As a result, of 140 flies captured in 2021 and 112 flies in 2023 on 140 farm A, 50 flies in 5 pools (10 flies per pool) and 5 flies were tested, respectively (Table 1). For farm B, of 52 flies captured in 2022 and 71 flies in 2023, all 52 flies in 5 pools (10-12 141 142 flies per pool) and 21 flies were tested (Table 1). For farm C, of 38 flies captured in 2022 and 143 27 flies in 2023, all 38 flies in 5 pools (4-10 flies per pool), and 19 of 27 flies were tested 144 (Table 1). 145 Blood color was confirmed in all 15 pooled samples (5 pooled samples for each farm). For

single samples, 5 flies with deep blood color among the 112 flies captured at farm A were

147 used for PCR and qPCR. Blood color was confirmed in 21 of the 71 flies at farm B and 19 of

148 the 27 flies at farm C, and these samples were selected for PCR. BLV-PVL was measured

149 using a 5-µL template DNA sample from the fly blood meal via qPCR (StepOne Plus

150 analytical thermal cycler; Applied Biosystems), according to the manufacturer's instructions.

151 The reaction mixture contained 10 µL of Thunderbird Probe qPCR Mix (Toyobo), 0.3 µL of

152 CoCoMo-BLV Primer/Probe (Nippon Gene), 5 µL of a template DNA sample, and PCR-grade

153 water to make the volume up to 20 μ L. PVL was calculated using the following formula:

154 (number of BLV LTR copies/number of BoLA-DRA copies) \times 10⁵ WBCs. The data were

155	analyzed for significance using the Mann–Whitney U test and Kruskal–Wallis H -test (p
156	\leq 0.05). All statistical analyses were performed using EZR software (v.1.64). ⁸
157	The prevalence of BLV DNA in blood meals, as determined using PCR, varied for each
158	farm (Table 1). The BLV-positive blood meals in farms A, B, and C were 0 of 5, 2 of 5, and 2
159	of 5 for pooled samples, respectively, and 0 of 5, 6 of 21, and 1 of 19 for single samples,
160	respectively (Fig. 2A). For farm C, the BLV-positive cattle were 51 of 74 cattle (69%) in 2022
161	and 39 of 78 cattle (50%) in 2023, as determined by PCR using cattle blood (Fig. 1A),
162	whereas that of BLV-positive blood meals was low at 2 of 5 pooled samples and 1 of 19 single
163	samples. Moreover, based on the results of the BLV-PVL blood meal tests, each herd was
164	characterized as follows: farm A was a BLV-free herd, and farms B and C were herds with a
165	prevalence of less than half of BLV-infected cattle, 6 of 21 and 1 of 19 single samples in
166	farms B and C (Fig. 2A), respectively, and low PVL (Fig. 2B), which was inconsistent with
167	the BLV infection statuses determined using the cattle blood tests. This discrepancy in the
168	BLV infection status in cattle herds between cattle blood tests and blood meal tests could be
169	caused by DNA degradation in flies.
170	Comparing the detected amounts of BoLA-DRA among farms, farm A had significantly
171	higher amounts, ~8.5- and 14.3-fold, than farms B and C, respectively (Suppl. Fig. 3). It has
172	been difficult to discern the stage of the digestive cycle when using blood meals from field-
173	captured flies. ²¹ Farm A was on the university campus; farms B and C were 15 and 35 km
174	distant, respectively. These results indicate that the delayed processing for farms B and C may
175	have led to DNA degradation in the blood meals via fly digestion. In addition, stable flies
176	have been reported to fly 29 km in 24 h. ² Others ²⁴ indicated that 50% of adult stable flies
177	dispersed beyond 1.6 km from their natal sites on farms, suggesting that stable flies could fly
178	to neighboring farms. However, it is considered that, once stable flies find hosts, most tend to

179	remain close to the hosts for several days. ^{2,24} Moreover, phylogenetic analysis of BLV using
180	1,823 cattle from 117 farms in 2 adjacent districts demonstrated that genetically distinct BLV
181	strains were spread on each farm. ¹⁶ Therefore, horizontal transmission of BLV between
182	neighboring farms by stable flies that fly between farms should occur only rarely. Further
183	study is needed to determine whether blood meals from captured flies are derived only from
184	cattle on the sampled farm.
185	Acknowledgments
186	We thank the staff of Yanagido Farm (Gifu University), Esaki Farm, Yamagoe Farm, and the
187	Gifu Chuo Livestock Hygiene Service Center for providing samples and technical support.
188	We thank Editage (www.editage.jp) for English language editing.
189	Declaration of conflicting interests
190	The authors declare no potential conflicts of interest with respect to the research, authorship,
191	and/or publication of this article.
192	Funding
193	This study was partly supported in part by JSPS KAKENHI (21H02357, 22F22097,
194	22KF0161, 23K21269), Morinaga Foundation for Health and Nutrition, and Kobayashi
195	Foundation.
196	Supplemental material
197	Supplemental materials for this article are available online.
198	References
199	1. Baldacchino F, et al. Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): a
200	review. Parasite 2013;20:26.
201	2. Bailey DL et al. Flight and dispersal of the stable fly. J Econ Entomol 1973;66:410-411.

202	3. Buxton BA, et al. Role of insects in the transmission of bovine leukosis virus: potential for
203	transmission by stable flies, horn flies, and tabanids. Am J Vet Res 1985;46:123-126.
204	4. Carlson JM, et al. Detection of bovine viral diarrhea virus in stable flies following
205	consumption of blood from persistently infected cattle. J Vet Diagn Invest 2020;32:108-
206	111.
207	5. Fechner H, et al. Provirus variants of the bovine leukemia virus and their relation to the
208	serological status of naturally infected cattle. Virology 1997;237:261-269.
209	6. Florins A, et al. Emphasis on cell turnover in two hosts infected by bovine leukemia virus:
210	a rationale for host susceptibility to disease. Vet Immunol Immunopathol 2008;125:1-7.
211	7. Ishihara K, et al. Clinical studies on bovine leukemia in Japanese black cattle: III. Serum
212	lactate dehydrogenase activity and its isoenzyme pattern in groups of leukemic cattle and
213	those negative or positive for antibody against bovine leukemia virus. Jpn J Vet Sci
214	1980;42:285-295.
215	8. Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for medical
216	statistics. Bone Marrow Transplant 2013;48:452-458.
217	9. Kobayashi T, et al. Increasing bovine leukemia virus (BLV) proviral load is a risk factor
218	for progression of enzootic bovine leucosis: a prospective study in Japan. Prev Vet Med
219	2020;178,104680.
220	10. Konishi M, et al. Simultaneous evaluation of diagnostic marker utility for enzootic
221	bovine leukosis. BMC Vet Res 2019;15:406.
222	11. Kuczewski A, et al. Invited review: bovine leukemia virus -transmission, control, and
223	eradication. J Dairy Sci 2021;104:6358-6375.
224	12. Machtinger ET, et al. Filth fly impacts to animal production in the United States and
225	associated research and extension needs. J Integr Pest Manag 2021;12:1-13.
	10

226	13.	MAFF Annual Statistics of Notifiable Diseases. Accessed on 2024 April 19:
227		https://www.maff.go.jp/j/syouan/douei/kansi_densen/kansi_densen.html. (in Japanese)

- 14. Makhahlela NB, et al. Detection of pathogens of veterinary importance harboured by 228
- 229 Stomoxys calcitrans in South African feedlots. Sci Afr 2022;15:e01112.
- 230 15. Matsuda T, et al. Estimation of flight range by DNA analysis of blood meals of stable flies

231 in a zoo. Anim Behav Manag 2021; 57: 88-89. (in Japanese)

16. Mekata H, et al. Horizontal transmission and phylogenetic analysis of bovine leukemia 232 233 virus in two districts of Miyazaki, Japan. J Vet Med Sci 2015;77:1115-1120.

234 17. Mori C, Matsumura S. Development and validation of simultaneous identification of 26

235 mammalian and poultry species by a multiplex assay. Int J Legal Med 2022;136:1-12.

236 Japanese.

18. Murakami K, et al. Nationwide survey of bovine leukemia virus infection among dairy and 237 beef breeding cattle in Japan from 2009–2011. J Vet Med Sci 2013;75:1123-1126. 238

239 19. Murakami K, et al. Bovine leukemia virus induces CD5-B cell lymphoma in sheep despite

240 temporarily increasing CD5+B cells in asymptomatic stage. Virology 1994;202:458-465.

20. OIE Enzootic bovine leucosis. Chapter 2.4.10 in Manual of Diagnostic Tests and Vaccines 241

for Terrestrial Animals. 7th ed. World Organisation for Animal Health (OIE), 2012. 242

http://www.oie.int/fileadmin/Home/eng/Health standards/tahm/2.04.10 EBL.pdf 243

21. Pitzer JB, et al. Host blood meal identification by multiplex polymerase chain reaction for 244

245 dispersal evidence of stable flies (Diptera:Muscidae) between livestock facilities. J Med

Entomol 2011;48:53-60. 246

22. Shimizu K, et al. Measures to control adult houseflies (Musca domestica) and stable flies 247

248 (Stomoxys calicitrans) to prevent the spread of viral diseases. J Jpn Vet Med Assoc

2023;76:e149-e156. Japanese. 249

- 250 23. Takada A, et al. Exploration of microRNA biomarkers in blood small extracellular vesicles
- for enzootic bovine leukosis. Microorganisms 2023;11:2173.
- 252 24. Taylor DB, et al. Dispersal of stable flies (Diptera: Muscidae) from larval development
- sites in a Nebraska Landscape. Environ Entomol 2010;39:1101-1110.
- 254 25. Taylor DB, et al. Economic impact of stable flies (Diptera: Muscidae) on dairy and beef
- cattle production. J Med Entomol 2012;49:198-209.

Sample	No. of stable flies in a pool	Blood origin	Nested- PCR for BLV	qPCR			
				BoLA-DRA	BLV-LTR	BLV-PVL	
				(Copies/100 ng DNA)		(Copies/10 ⁵ WBCs)	
2021 Sept., 50 of 140 flies were tested in 5 pools (10 flies per pool)							
Pools							
1	10	Cattle	-	54.6	ND	ND	
2	10	Cattle	-	143	ND	ND	
3	10	Cattle	-	273	ND	ND	
4	10	Cattle	-	787	ND	ND	
5	10	Cattle	-	150	ND	ND	
2023 Sept., 5	of 112 flies	were test	ed				
1	1	NT	-	685	ND	ND	
2	1	NT	-	1,140	ND	ND	
3	1	NT	-	1,210	ND	ND	
4	1	NT	-	2,230	ND	ND	
	Sample 2021 Sept., 50 Pools 1 2 3 4 5 2023 Sept., 5 4 1 2 3 4 4	Sample No. of stable flies in a pool 2021 Sept., 50 of 140 flies Pools 1 10 2 10 3 10 4 10 5 10 2023 Sept., 5 of 112 flies 1 1 2 1 3 1 4 1	SampleNo. of stable flies in a poolBlood origin flies in a pool2021 Sept., 50 of 140 flies were testPools1102102103104101NT211NT311NT3131313141	SampleNo. of stable flies in a poolBlood origin PCR for BLV2021 Sept., $50 ext{ 140 flies were tested in 5 pools}$ 2021 Sept., $50 ext{ 140 flies were tested in 5 pools}$ 1102102103104105102023 Sept., $5 ext{ 112 flies were tested}$ 111NT211NT211NT311NT411NT311NT411NT	SampleNo. of stable flies in a poolBlood originNested- PCR for BLV $qPCR$ 2021 Sept., $50 \circ f 140$ flies were tested in 5 pools(Copies/100 r2021 Sept., $50 \circ f 140$ flies were tested in 5 pools(10 flies per pPools10Cattle-54.6210Cattle-143310Cattle-273410Cattle-787510Cattle-1502023 Sept., $5 \circ f 112$ flies were tested-68521NT-1,14031NT-1,21041NT-2,230	SampleNo. of stable flies in a poolBlood origin PCR for BLV $qPCR$ $qPCR$ BoLA-DRABLV-LTRBoLA-DRABLV-LTRCopies/100 rg DNA)2021 Sept., 50 $+ 140$ flies were tested in 5 pool $(Copies/100 rg$ DNA)2021 Sept., 50 $+ 140$ flies were tested in 5 pool $(10 flies per pool)$ Pools10Cattle $- 10$ 110Cattle $- 143$ 210Cattle $- 143$ 310Cattle $- 273$ 410Cattle $- 787$ 510Cattle $- 150$ 2023 Sept., $- 112$ flies were tested $- 150$ 21NT31NT41NT41NT31NT41NT31NT31NT41NT41NT51NT31NT41NT51NT31NT41NT51NT41NT51NT41NT5116117181181191911919191	

Table 1. Blood origin, nested-PCR, and qPCR analyses of stable fly blood meals.

	5	1	NT	-	582	ND	ND
В	2022 Sept., 52	flies were	tested in t	5 pools			
	Pools						
	1	12	Cattle	+	4.8	0.3	6,670
	2	10	Cattle	-	11.1	ND	ND
	3	10	Cattle	-	15.3	ND	ND
	4	10	Cattle	+	48.8	3.5	7,240
	5	10	Cattle	-	9.7	ND	ND
	2023 Oct., 21	of 71 flies v	vere teste	d			
	1	1	NT	+	431	18.9	4,380
	2	1	NT	+	282	28.9	10,200
	3	1	NT	+	776	253	32,700
	4	1	NT	+	111	20.3	18,300
	5	1	NT	+	116	25.4	21,900
	6	1	NT	+	447	140	31,400
	7	1	NT	-	76.1	ND	ND
	8	1	NT	-	14.0	ND	ND

	9	1	NT	-	74.8	ND	ND
	10	1	NT	-	12.5	ND	ND
	11	1	NT	-	58.5	ND	ND
	12	1	NT	-	252	ND	ND
_	13 to 21	9	NT	-	NT	NT	NT
С	2022 Oct., 38	flies were te	ested in 5	pools			
	Pools						
	1	10	Cattle	-	5.3	ND	ND
	2	8	Cattle	+	32.4	4.8	14,700
	3	6	Cattle	+	44.3	7.2	16,200
	4	4	Cattle	-	12.2	ND	ND
	5	10	Cattle	-	5.3	ND	ND
	2023 Oct., 19	of 27 flies w	vere teste	d			
	1	1	NT	+	1,190	79.8	6,720
	2	1	NT	-	121	ND	ND
	3	1	NT	-	505	ND	ND
	4	1	NT	-	391	ND	ND

5	1	NT -	1.6	ND	ND
6	1	NT -	262	ND	ND
7 to 19	1	NT -	NT	NT	NT

BLV = bovine leukemia virus; + = positive; - = negative; ND = not detected; NT = not tested; PVL = proviral load.

259	Figure 1. Bovine leukemia virus (BLV) infection status in cattle herds on farms A-C using
260	cattle blood tests. Percentages and absolute numbers of A) BLV infection detected in cattle
261	blood, and B) BLV-proviral load (PVL). BLV-PVL categories were classified according to a
262	previous study. ⁸
263	Figure 2. Detection of bovine leukemia virus (BLV) DNA and the measurement of BLV-
264	proviral load (PVL) in the blood meals of flies. Percentages and absolute numbers of A) BLV
265	DNA, and B) BLV-PVL detected in stable fly blood meals. The BLV-PVL categories were

266 classified based on a previous study.⁸

JVDI: Supplemental material

Shimizu K, et al. Use of blood meals from stable flies to evaluate bovine leukemia virus infection status in cattle herds: a pilot study

Target	Prime	ers	Sequence (5'-3')	PCR conditions		References		
				Denaturation	Annealing	Extension	Cycles	-
рХ	1st	AF	CAGACACCAGGGGGGGGCCATA	94°C, 45 s	62°C, 30 s	72°C, 30 s	25	19
		BR	CTGCTAGCAACCAATTCGGA	CAATTCGGA				
	2nd	CF	AGCCATACGTTATCTCTCCA	94°C, 45 s	62 °C, 30 s	72°C, 30 s	25	
		DR	CAGGTTAGCGTAGGGTCATG					
envelope	1st	5032F	TCTGTGCCAAGTCTCCCAGATA	95°C, 30 s	62°C, 30 s	72°C, 60 s	40	5
		5608R	AACAACAACCTCTGGGAAGGGT					
	2nd	5099F	CCCACAAGGGCGGCGCCGGTTT	95°C, 30 s	70°C, 30 s	72°C, 60 s	40	-
		5521R	GCGAGGCCGGGTCCAGAGCTGG					

Supplemental Table 1. Primers and conditions used in nested PCR for the detection of pX and envelope regions of bovine leukemia virus.

Age, ELISA*		ELISA*	Nested	WBC,	Lymphocyte,	LDH [‡] ,	, LDH isozymes [§] , %					
Cattle	mo	antibody	PCR^{\dagger}	×10 ⁹ /L	×10 ⁹ /L	µkat/L	1	2	3	2+3	4	5
2021 Ju	une (<i>n</i> =	= 13)										
1	41	-	-	5.4	28	22	64	20	11	31	4	1
2	66	-	-	4.8	20	21	68	18	10	27	3	1
3	93	-	-	5.4	28	22	66	18	10	29	4	2
4	57	-	-	5.4	27	20	73	15	7	22	2	3
5	34	-	-	4.8	21	22	70	17	9	27	2	2
6	56	-	-	10.4	61	16	65	20	11	31	3	2
7	33	-	-	9.1	44	18	62	22	12	33	4	1
8	26	-	-	8.2	43	25	67	19	9	29	3	2
9	31	-	-	6.1	32	22	71	16	7	23	4	2
10	78	-	-	7.1	35	21	69	18	8	26	2	3
11	81	-	-	6.0	31	20	61	22	12	34	4	2
12	46	-	-	8.6	42	20	67	19	10	29	3	1
13	17	-	-	7.4	41	22	62	21	11	32	4	2
2023 N	lovemb	er $(n = 18)$										
1	49	-	-	7.4	29	15	49	28	15	43	5	3
2	49	-	-	7.2	31	15	50	27	14	41	5	4
3	29	-	-	5.5	23	17	48	28	16	44	5	3
4	18	-	-	7.6	43	17	50	27	13	40	6	4
5	82	-	-	5.7	20	17	48	27	15	42	6	4
6	26	-	-	6.6	23	16	50	26	15	41	5	4
7	34	-	-	5.3	27	17	47	27	16	43	6	4
8	58	-	-	7.9	26	14	48	28	16	44	5	3
9	109	-	-	6.1	21	13	46	28	16	44	6	4
10	49	-	-	5.4	29	21	45	27	15	42	6	7
11	21	-	-	6.4	35	18	48	29	15	44	5	3
12	44	-	-	3.0	13	21	38	27	21	48	8	6
13	9	-	-	11.7	65	19	36	25	14	39	8	17
14	37	-	-	6.3	33	14	50	29	14	43	4	3
15	40	-	-	6.0	30	13	52	28	14	42	4	2
16	4	-	-	9.2	57	15	42	31	17	48	6	4
17	8	-	-	12.0	72	15	41	31	18	49	6	4
18	4	-	-	13.4	63	20	49	28	15	43	5	3

Supplemental Table 2. Assessment of bovine leukemia virus infection and the clinical status of cattle on farm	ηA.
---	-----

LDH = lactate dehydrogenase, - = negative.

* Using anti-bovine leukemia virus (BLV) antibody ELISA kit (JNC, Tokyo, Japan).

† Using primers for the envelope or pX region of BLV.

‡ Using an auto analyzer JCS-BM6050 (JEOL) and an enzymatic method (L-Type Wako LD IF or L-Type Wako J, Fujifilm Wako Pure Chemical). § Using a Hydrasys 2 Scan (Sebia) and Hydragel 7 ISO-LDH (Sebia).

Cattla	Age,	ELISA*	Nested	BLV- PVL [‡] ,	WBC,	Lymphocyte, LDH§,			LDH isozymes ¹ , %						
Cattle	mo	antibody	PCR [†]	copies/ 10 ⁵ WBCs	×10 ⁹ /L	×10 ⁹ /L	µkat/L	1	2	3	2+3	4	5		
2022 N	May (n	= 36)													
1	23	+	+	332	14.4	8.9	20	57	25	14	39	4	1		
2	26	-	-	NT	10.6	3.9	23	66	20	12	31	2	1		
3	27	-	-	NT	6.4	3.9	20	49	24	20	44	5	2		
4	26	-	-	NT	18.3	4.1	28	69	17	10	28	3	1		
5	77	-	-	NT	9.6	2.5	20	60	21	12	33	4	3		
6	28	-	-	NT	21.3	4.2	32	69	17	11	27	3	1		
7	61	-	-	NT	8.5	2.7	21	57	21	14	35	5	3		
8	33	-	-	NT	10.0	3.9	26	70	15	8	23	5	3		
9	31	-	-	NT	10.0	2.5	23	64	16	13	30	5	2		
10	69	-	-	NT	7.7	3.9	24	63	17	10	27	5	5		
11	24	-	-	NT	12.0	7.4	29	49	18	14	32	9	11		
12	22	-	-	NT	11.2	5.2	25	61	21	12	33	4	2		
13	22	+	+	14,238	13.1	6.6	23	56	22	14	36	5	4		
14	21	-	-	NT	9.3	5.3	20	58	23	13	35	4	3		
15	33	-	-	NT	7.2	3.6	23	62	17	12	30	5	4		
16	39	-	-	NT	10.1	3.8	23	64	15	11	26	5	5		
17	46	-	-	NT	9.6	3.9	21	62	18	13	30	5	3		
18	44	-	-	NT	8.0	4.8	19	65	15	11	26	5	4		
19	67	-	-	NT	7.5	2.3	26	66	18	9	28	4	3		
20	37	-	-	NT	8.7	4.9	21	62	18	10	28	6	5		
21	45	-	-	NT	7.9	4.4	22	58	22	13	35	5	2		
22	45	-	-	NT	7.8	3.2	21	56	22	13	35	6	4		
23	76	-	-	NT	7.6	3.1	24	20	5	18	23	18	4		
24	27	-	-	NT	12.2	4.8	22	65	18	10	28	4	3		
25	86	-	-	NT	6.1	2.1	19	57	17	14	30	9	4		
26	47	-	-	NT	8.8	3.6	22	60	21	13	33	4	3		
27	32	-	-	NT	10.6	4.6	27	75	10	9	19	4	3		
28	48	-	-	NT	9.0	3.2	24	75	12	8	20	3	2		
29	32	-	-	NT	11.5	3.8	23	66	14	13	26	5	3		
30	71	NT	+	102	8.8	1.8	19	72	11	9	20	5	4		
31	80	NT	+	6,010	8.6	4.7	22	63	12	11	22	7	8		
32	66	NT	+	17,357	10.6	3.6	18	66	13	11	24	5	5		
33	109	NT	+	46,458	16.5	9.7	21	69	17	10	27	3	2		
34	42	NT	+	41,186	18.3	10.2	21	69	15	9	24	4	3		
35	46	NT	+	36,185	15.8	6.8	25	76	13	7	20	2	2		

Supplemental Table 3. Assessment of bovine leukemia virus infection and the clinical status of cattle on farm B.

36	32	NT	+	3	7.5	3.0	24	71	15	10	24	4	1
2023	June ((<i>n</i> = 33)											
1	35	NT	+	8,434	12.8	5.7	17	44	29	17	46	6	4
2	36	NT	+	22,164	21.9	13.9	20	46	28	16	44	6	4
3	84	NT	-	16	6.2	2.3	15	48	27	15	42	6	4
4	40	+	-	69	11.8	3.7	17	46	29	17	46	5	3
5	33	+	+	2,972	8.6	4.6	19	50	27	15	42	5	3
6	40	-	-	NT	8.8	4.5	23	45	33	16	49	4	2
7	39	+	+	6,893	13.3	7.8	15	45	29	17	46	6	3
8	35	-	-	NT	10.1	5.0	20	45	30	16	46	6	3
9	37	-	-	NT	7.7	3.2	20	49	28	15	43	5	3
10	44	-	-	NT	5.7	1.7	19	44	28	17	45	7	4
11	74	-	-	NT	6.4	2.9	18	41	28	18	46	8	5
12	27	-	NT	NT	4.8	1.5	25	50	28	13	41	5	4
13	90	-	-	NT	8.3	3.6	16	44	28	16	44	7	5
14	29	-	-	NT	8.6	4.7	20	52	23	14	37	7	4
15	22	-	-	NT	8.4	3.6	16	43	31	17	48	6	3
16	24	-	-	NT	12.0	5.4	19	43	32	18	50	5	2
17	45	-	-	NT	2.1	1.0	16	41	30	18	48	7	4
18	61	-	-	NT	8.9	4.5	15	50	29	15	44	4	2
19	45	-	-	NT	5.7	2.5	18	45	29	16	45	6	4
20	28	-	-	NT	7.9	2.3	18	40	27	20	47	9	4
21	99	-	-	NT	10.4	6.0	17	43	29	17	46	7	4
22	32	-	-	NT	7.0	4.1	18	46	27	15	42	7	5
23	30	-	-	NT	6.8	2.4	19	41	30	18	48	6	5
24	58	-	-	NT	7.2	3.7	16	49	27	14	41	6	4
25	34	-	-	NT	6.6	3.2	20	47	28	16	44	5	4
26	50	-	-	NT	7.9	4.3	18	49	28	15	43	5	3
27	39	-	-	NT	10.0	5.2	18	43	28	16	44	8	5
28	57	-	-	NT	10.8	5.4	18	47	29	15	44	6	3
29	28	-	-	NT	6.0	2.8	16	49	26	15	41	7	3
30	52	-	-	NT	3.8	1.5	15	44	28	17	45	7	4
31	32	-	-	NT	8.2	3.7	18	48	26	15	41	6	5
32	27	-	-	NT	7.4	3.6	18	53	27	14	41	4	2
33	21	-	-	NT	6.8	3.1	22	42	32	18	50	5	3

BLV = bovine leukemia virus, LDH = lactate dehydrogenase, NT = not tested, PVL = proviral load, + = positive, - = negative.

* Using anti-BLV antibody ELISA kit (JNC, Tokyo, Japan).

† Using primers for the envelope or pX region of BLV.

‡ Using a CoCoMo-BLV primer/probe (A803, Riken Genesis).

§ Using an auto analyzer JCS-BM6050 (JEOL) and an enzymatic method (L-Type Wako LD IF or L-Type Wako J, Fujifilm Wako Pure Chemical).

Using a Hydrasys 2 Scan (Sebia) and Hydragel 7 ISO-LDH (Sebia).

	Age,	ELISA [*]	Nested	BLV- PVL [‡] ,	WBC, Lymphocyte, I			LDH isozymes', %					
Cattle	mo	antibody	PCR [†]	copies/ 10 ⁵ WBCs	×10 ⁹ /L	×10 ⁹ /L	µkat/L	1	2	3	2+3	4	5
2022 A	April ((n = 74)											
1	35	+	+	2	10.6	3.7	21	54	21	14	35	7	5
2	49	-	-	NT	9.2	4.1	18	52	20	16	36	6	6
3	49	-	-	NT	9.5	4.9	20	58	20	13	33	5	4
4	39	-	-	NT	10.4	5.8	24	58	20	13	33	6	4
5	39	+	+	6,821	9.3	5.3	22	51	23	14	37	7	5
6	48	+	+	ND	5.2	2.8	23	61	21	12	33	4	3
7	70	-	-	NT	6.1	2.0	21	54	22	14	35	7	4
8	67	NT	+	61,116	18.4	13.3	21	62	21	11	33	4	2
9	61	NT	-	ND	7.0	2.5	19	58	20	13	32	6	4
10	51	+	+	24,114	10.1	5.0	27	67	17	9	26	4	3
11	25	-	-	NT	7.7	4.1	24	60	20	13	33	4	3
12	74	-	-	NT	12.7	3.3	28	38	18	18	36	12	15
13	32	-	-	NT	8.4	4.0	20	61	19	11	30	5	3
14	43	+	+	10,403	7.2	4.3	23	51	20	12	32	6	11
15	131	NT	+	29,977	12.5	7.2	16	51	25	14	38	6	4
16	100	+	+	1,367	11.9	3.1	20	56	23	13	35	5	3
17	109	NT	+	1,063	6.5	2.2	19	47	20	22	42	6	6
18	100	-	-	NT	4.0	1.6	17	59	20	12	32	6	4
19	110	NT	+	353	5.9	2.6	18	50	19	19	39	8	4
20	46	+	+	807	9.4	3.3	22	64	20	11	30	3	2
21	44	+	+	368	11.5	4.0	20	59	21	12	33	5	3
22	44	+	+	11,467	14.2	3.9	39	31	11	7	18	7	4
23	40	+	+	25,524	11.2	5.2	17	48	24	17	41	6	5
24	87	-	-	NT	7.2	2.4	21	58	23	13	37	4	1
25	42	+	+	8,751	12.4	2.3	20	51	23	14	37	7	5
26	50	+	-	ND	4.4	3.0	24	59	20	11	31	6	5
27	32	-	-	NT	7.8	3.1	22	56	22	14	36	5	3
28	33	-	-	NT	7.8	3.2	22	53	24	15	39	5	3
29	64	+	+	2,402	5.3	2.9	20	57	21	14	35	5	3
30	121	NT	+	121,600	7.8	5.0	20	61	18	11	29	5	5
31	84	+	+	0	9.6	3.1	17	61	20	12	32	4	3
32	78	+	+	20,045	7.3	4.1	25	65	21	10	31	3	1
33	66	-	-	NT	4.8	2.3	20	54	23	14	37	6	4
34	39	-	-	NT	11.7	5.7	18	58	22	15	36	5	2

Supplemental Table 4. Assessment of	of bovine	leukemia virus	s infection and	the clinical st	atus of cattle on farm C
-------------------------------------	-----------	----------------	-----------------	-----------------	--------------------------

35	62	+	+	384	8.7	4.7	24	63	22	12	33	3	1
36	39	+	+	51,781	14.8	8.9	21	54	23	12	35	4	7
37	63	-	-	NT	7.0	3.0	18	65	19	11	30	3	2
38	21	+	+	34,742	10.2	3.9	19	62	18	12	31	5	2
39	39	+	+	3,062	7.9	2.5	18	68	11	12	23	6	4
40	42	-	-	NT	20.4	2.9	18	72	12	10	23	3	2
41	117	NT	+	1,407	6.7	2.5	16	77	10	7	17	3	3
42	112	NT	+	41,123	9.3	3.9	22	70	16	9	25	3	1
43	66	NT	+	56,204	27.1	17.9	25	76	11	8	19	3	2
44	57	-	-	NT	8.5	3.7	24	64	14	11	25	5	6
45	98	-	-	NT	6.2	2.3	20	66	10	11	21	7	5
46	44	+	+	53,633	16.4	6.4	20	75	9	9	17	5	4
47	26	-	-	NT	9.0	4.2	18	75	10	9	19	4	2
48	37	+	+	68,140	15.2	10.9	22	73	12	9	21	4	2
49	40	+	+	4,383	9.0	4.4	16	80	9	7	16	2	2
50	26	-	-	NT	7.7	4.7	25	81	6	6	13	3	3
51	60	+	+	72,825	17.0	3.8	20	69	15	9	24	4	3
52	65	+	+	142	10.2	2.5	19	62	15	14	29	7	2
53	126	+	+	32,805	10.6	5.6	25	47	28	16	44	5	3
54	44	+	+	35,298	20.5	9.2	24	69	12	7	19	4	9
55	38	-	-	NT	9.4	3.7	21	70	14	10	24	4	3
56	88	NT	+	103,534	27.7	22.2	22	74	14	9	22	2	2
57	91	NT	+	297	18.3	2.9	25	74	13	8	20	3	2
58	103	NT	+	65,468	14.0	10.4	20	67	16	11	27	4	3
59	151	NT	+	76,287	16.3	6.9	19	68	9	12	21	7	5
60	72	+	+	25,154	18.3	6.7	19	77	9	9	18	3	2
61	29	-	-	NT	8.8	4.1	22	78	6	8	14	4	4
62	93	NT	+	51,893	8.8	4.8	17	78	4	9	12	5	5
63	67	+	+	65	12.2	4.2	22	74	6	12	18	5	3
64	65	+	+	8,294	10.3	4.1	18	77	10	10	20	3	1
65	52	+	+	113,639	24.4	12.6	20	74	11	9	19	4	3
66	40	+	+	266	3.7	1.9	25	74	11	8	18	3	5
67	42	+	+	5,495	26.3	3.5	21	73	12	9	21	4	2
68	32	-	-	NT	10.0	4.6	22	65	11	12	22	7	6
69	65	NT	+	45,748	8.9	5.2	18	67	14	10	24	5	4
70	31	+	+	2,476	30.1	4.8	18	69	12	11	23	5	4
71	42	-	-	NT	16.0	2.6	20	73	9	9	18	5	5
72	41	+	+	303	10.1	4.5	19	75	8	9	16	5	4
73	52	+	+	1,037	13.7	2.8	23	73	10	9	19	5	3
74	44	+	+	42,515	17.1	3.3	18	70	11	10	21	5	5

2023 August (*n* = 78)

1	34	-	+	NT	9.0	3.7	17	51	27	14	41	5	3
2	83	+	+	62,368	14.7	9.7	17	48	28	15	43	6	3
3	37	+	+	16,699	11.1	4.9	15	47	28	15	43	6	4
4	29	-	-	NT	9.8	5.3	17	46	28	15	43	7	4
5	48	-	-	NT	7.3	2.7	20	52	25	14	39	6	4
6	33	-	-	NT	8.1	3.1	20	51	26	14	40	6	3
7	67	+	+	67,262	25.1	20.0	16	47	29	15	44	6	3
8	48	-	-	NT	14.4	8.0	15	45	28	16	44	7	4
9	41	-	-	NT	7.7	3.0	18	52	26	14	40	5	3
10	104	+	+	3,458	9.9	2.7	14	47	28	15	43	6	4
11	31	+	+	ND	11.2	4.3	15	44	29	16	45	7	4
12	34	-	-	NT	11.1	5.6	18	51	26	14	40	6	3
13	65	-	-	NT	5.2	2.9	14	48	27	15	42	6	4
14	60	+	+	8,020	8.3	4.2	13	45	27	15	42	8	5
15	24	-	-	NT	9.0	4.3	14	43	29	16	45	8	4
16	103	-	-	NT	6.6	3.7	20	50	28	14	42	5	3
17	39	-	-	NT	8.2	4.2	15	47	29	15	44	6	3
18	71	-	-	NT	6.1	2.2	17	44	26	16	42	7	7
19	56	+	+	218	11.8	6.6	15	47	28	15	43	6	4
20	29	-	-	NT	6.9	3.2	17	45	27	15	42	7	5
21	61	+	+	25,003	10.4	6.2	15	48	27	14	41	6	5
22	32	-	-	NT	5.0	1.9	21	51	25	14	39	6	4
23	30	-	-	NT	7.7	4.3	13	46	29	16	45	6	3
24	78	+	+	358	5.2	2.1	14	48	27	14	41	7	4
25	52	-	-	NT	9.4	4.6	17	46	28	16	44	6	4
26	45	+	+	66	6.1	2.6	17	52	24	14	38	6	4
27	66	+	-	9	3.9	1.2	19	46	25	15	40	8	6
28	77	+	+	ND	5.1	2.7	15	47	27	14	41	7	5
29	49	-	-	NT	4.4	1.5	15	45	28	15	43	7	5
30	80	+	+	3,235	7.6	4.8	15	47	26	15	41	7	5
31	125	+	+	ND	5.2	2.3	12	45	27	17	44	7	4
32	48	-	-	NT	4.8	2.4	13	47	27	15	42	7	4
33	65	-	-	NT	7.0	2.9	14	50	27	15	42	5	3
34	55	+	+	1,561	6.5	1.9	17	42	25	17	42	8	8
35	86	-	-	NT	4.9	1.9	14	44	29	16	45	7	4
36	82	-	-	NT	6.3	2.6	14	44	28	18	46	7	3
37	41	+	+	18,777	11.6	6.7	19	40	28	17	45	7	8
38	79	-	-	NT	4.4	1.2	14	45	26	15	41	6	8
39	47	+	+	3,213	7.4	3.7	11	45	29	17	46	6	3
40	81	+	+	60,403	10.4	6.9	21	40	31	19	50	7	3
41	55	-	-	NT	7.5	2.4	13	46	28	17	45	6	3

42	24	-	-	NT	12.0	2.7	14	46	29	14	43	6	5
43	58	+	+	4,520	7.9	3.3	15	42	27	18	45	8	5
44	25	-	-	NT	9.3	4.4	15	42	31	18	49	6	3
45	56	+	-	ND	1.4	0.7	16	46	28	15	43	6	5
46	56	+	+	65,694	11.5	6.8	15	37	25	17	42	9	12
47	114	-	-	NT	5.7	1.1	15	46	26	16	42	7	5
48	62	+	+	891	7.8	3.6	14	46	27	15	42	7	5
49	128	+	+	18,512	10.0	5.9	22	38	31	21	52	7	3
50	56	+	+	251	3.8	1.7	15	46	25	14	39	8	7
51	58	-	-	NT	6.6	2.9	15	45	28	16	44	7	4
52	45	+	+	4,560	1.8	0.9	19	50	26	13	39	6	5
53	53	+	+	40,400	12.0	8.7	18	44	30	17	47	6	3
54	46	+	+	39,596	13.1	8.8	16	49	26	14	40	7	4
55	60	+	+	60,763	14.7	10.1	22	35	20	14	34	10	21
56	42	-	-	NT	7.7	3.7	15	47	27	15	42	7	4
57	33	-	-	NT	8.2	5.2	21	49	27	14	41	6	4
58	25	-	-	NT	8.0	3.9	16	43	30	16	46	7	4
59	57	+	+	706	6.9	2.8	13	50	26	14	40	6	4
60	58	-	-	NT	7.6	3.4	14	50	26	14	40	6	4
61	54	-	+	NT	8.8	3.3	15	47	28	16	44	6	3
62	55	+	+	70,098	15.2	9.4	33	29	19	16	35	11	25
63	88	+	+	17,667	11.6	6.2	12	48	27	14	41	7	4
64	36	-	-	NT	10.1	4.3	16	47	26	15	41	6	6
65	55	+	+	2,016	9.4	4.5	19	41	24	15	39	8	12
66	27	-	-	NT	6.1	2.8	16	49	29	15	44	5	2
67	28	-	-	NT	10.1	5.5	19	49	27	15	42	6	3
68	69	+	+	124,524	22.9	16.5	16	52	27	13	40	5	3
69	32	-	+	NT	13.1	7.2	20	50	26	14	40	6	4
70	31	+	+	5,425	9.6	4.2	20	47	29	15	44	6	3
71	58	+	+	12,773	8.6	4.0	16	47	27	15	42	6	5
72	30	-	-	NT	6.9	4.5	17	50	28	14	42	5	3
73	35	-	+	NT	9.2	4.4	18	49	27	14	41	6	4
74	64	+	-	ND	5.3	2.4	19	54	24	13	37	6	3
75	31	+	+	13,147	15.8	9.3	17	46	28	15	43	7	4
76	42	-	-	NT	9.9	4.6	14	45	28	16	44	7	4
77	31	+	-	23	13.4	5.4	20	50	26	15	41	6	3
78	60	+	+	45,365	13.9	8.8	14	46	29	16	45	6	3

BLV = bovine leukemia virus, LDH = lactate dehydrogenase, NT = not tested, PVL = proviral load, + = positive, - = negative.

* Using anti-BLV antibody ELISA kit (JNC).

† Using primers for the envelope or pX region of BLV.

‡ Using a CoCoMo-BLV Primer/Probe (A803, Riken Genesis).

§ Using an auto analyzer JCS-BM6050 (JEOL) and an enzymatic method (L-Type Wako LD IF or L-Type Wako J, Fujifilm Wako Pure Chemical).

Using a Hydrasys 2 Scan (Sebia) and Hydragel 7 ISO-LDH (Sebia).

Target	Primers (species)	Sequence (5'-3')	PCR conditions	Cycles	References
16S rRNA	Forward	TACGACCTCGATGTTGGATCA	95°C, 5 s	40	17
	Reverse	AGATAGAAACCGACCTGGATT	60°C, 20 s		
Multiplex	CYTB_UniF	GACCAATGATATGAAAAATCATCGTTGT	94°C, 30 s	27	17
PCR	CYTB_CattleR	GGCTGGAAGGTCGATGAATGTA	58°C, 30 s 72°C, 30 s		
	CYTB_RabbitR	GTGAAAATTTGAATTATAAGGCACAG			
	CYTB_HumanR	ATAGTCCTGTGGTGATTTGGAGGATC			
	CYTB_SheepR	TGCTAGGAATAGGTCTGTTGGAATC			
	CYTB_PigR	GTCTGATGTGTAATGTATTGCTAAGAAC			
	CYTB_HorseR	ACGGATGAGAAGGCAGTTGTC			
	CYTB_GoatR	CGACAAATGTGAGTTACAGAGGGA			
	CYTB_CatR	TGATTCAGCCATAATTAACGTCG			
	CYTB_CamelR	GTAGGAGCCGTAGTAAAGCCCA			
	CYTB_SikaR	GCTGTGGCTATAACTGTAAATAGGACA			
	DL_UniF	CACCATCAGCACCCAAAGCT			
	DL_UniR	ATGGGCCCGGAGCGAGAAGAG			
	DL_Bird_UniF	TCGTGCATACATTTATATTCCACATA			
	DL_Bird_UniR	GTGTACGATTAATAAATCCATCTGGTAC			
	DL_Bird_UniR2	GTGGACGATCAATAAATCCATCTGATAC			

Supplemental Table 5. Primers and conditions used in PCR for 16S rRNA gene and multiplex PCR for origin identification.

Farm	Sample number	No. of stable flies in a pool	DNA, ng/µL	A260/280	Vertebrate mtDNA, copies/µL	Origin
А	1	10	438	2.15	1,670,800	Cattle
	2	10	326	2.10	907,500	Cattle
	3	10	255	2.12	914,300	Cattle
	4	10	406	2.13	1,465,100	Cattle
	5	10	357	2.14	1,409,900	Cattle
В	6	12	365	2.15	152,300	Cattle
	7	10	514	2.13	396,100	Cattle
	8	10	288	2.13	68,000	Cattle
	9	10	161	2.10	275,500	Cattle
	10	10	266	2.11	115,300	Cattle
С	11	10	213	2.12	130,400	Cattle
	12	8	168	2.11	30,060	Cattle
	13	6	166	2.18	26,870	Cattle
	14	4	23	2.09	5,532	Cattle
	15	10	239	2.13	145,300	Cattle

Supplemental Table 6. Vertebrate mtDNA concentration and the origin identification in stable fly blood meals.

Samula	No.of stable		qPCR [†]				
Sample	flies	Blood color intensity*	BoLA-DRA				
number	in a pool		Ct	Copies/100 ng DNA			
1	1	++	26.0	4,250			
2	1	++	29.1	562			
3	1	++	25.5	6,040			
4	1	+	30.9	178			
5	1	+	30.0	329			
6	1	±	33.3	37			
7	1	±	ND	ND			
8	1	±	39.2	1			
9	1	-	ND	ND			
10	1	-	ND	ND			
11	1	-	ND	ND			
12	1	-	ND	ND			
13	1	-	ND	ND			
14	5	-, -, -, -, -	ND	ND			
15	5	-, -, -, -, -	ND	ND			
16	5	+, +, +, +, +	27.7	1,470			
17	5	+, +, +, +, +	28.4	932			
18	10	+, +, +, +, +, -, -, -, -, -, -	30.4	247			
19	10	+, +, +, +, +, -, -, -, -, -, -	30.9	179			

Supplemental Table 7. Detection of bovine BoLA-DRA gene in stable fly blood meals.

ND = not detected.

* Blood color intensity. Individuals before pooling in sample nos. 14-19.

† Using a CoCoMo-BLV Primer/Probe (A803, Riken Genesis).

Supplemental Figure 1. Number of enzootic bovine leukosis cattle in Japan. Data from the Surveillance of Infectious Diseases, the Ministry of Agriculture, Forestry and Fisheries, Japan. (in Japanese) Accessed on April 18, 2024.

https://www.maff.go.jp/j/syouan/douei/kansi_densen/kansi_densen.html.

Supplemental Figure 2. Comparison of BoLA-DRA detection amounts in stable fly blood meals. Whiskers show minimum and maximum values, boxes represent 25%–75% data ranges, and horizontal lines within boxes are medians. The statistical significance was calculated by Mann–Whitney U test (**p < 0.01).

Supplemental Figure 3. Comparison of the BoLA-DRA detection amounts in stable fly blood meals among farms. Whiskers show minimum and maximum values, boxes represent 25%–75% data ranges, and horizontal lines within boxes are medians. The statistical significance was calculated by the Kruskal– Wallis *H*-test (* = p < 0.05; ** = p < 0.01). ns = not significant.

4,492

