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Abstract: A mathematical model is presented to simulate how the popu-
lation dynamics of a predator-prey system depends on the prey outlivability
distribution due to age difference. The prey population is described by a Lotka-
Volterra equation govering the time evolution of the age density; the equation
is so formulated as to take account of the age-dependent divergence in the
birth/death potential and in the level of predation by the predator. The time
evolution of the predator population is modelled by a logistic equation. Nu-
merical simulation reveals that the system given an initial condition far from
the equilibrium (EQ) arrives at the EQ via two restoration stages; in the one
which finishes almost in a short time approximate to the maximum life span of
the prey species, the density of prey age tends to assume a profile analogous to
that at the EQ though the total population is still greatly distant from the EQ
value, and in the other stage, for both species the total population approaches
its EQ exponentially with a time constant greater than that of the preceding
stage.

1 Introduction

The population dynamics of a predai;or-prey system or a binary competitive ecosystem is
often modelled by combined logistic equations which describe the time evolution of the total
populations in terms of the intrinsic birthrate and two kinds of deathrates, one being inherent to
each species and the other related to the existence of the opponents; the combining coefficients
of these rates are treated as the system constants!l.

In general, however, the childbirth potential of organisms such as animals is lower and the
deathrate is higher for younger and older. The predation pressure, the rate at which an animal
is predated by the predator depends on its age. The competitive potential also differs with ages.
These should affect how the system behaves when perturbed from its equilibrium and then left
free. But, any analysis considering such problems seems so far not to have been reported.

We discuss here the population dynamics of a predator-prey system introducing the age
distribution of the prey animals as well as the dependency of the prey ecological parameters on

age. Our analysis will point out that the system given any prey age-construction approaches fi-
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nally the equilibrium via two distinguishable stages; in the earlier stage, the prey age-distribution
restores fast its equilibrium constitution and, in the later stage, the total population restores

slowly its equilibrium both for the prey and for the predator.

2 Underlying Equations

Suppose a system of two animal species one of which may be a food source for the other,
and name the species to be predated the prey and the other the predator. Let the age of a prey
be denoted by z, and the time variable by t. Other major variables used here are listed below:

ni(z,t) : the number density of z-aged prey.
Ni(t) : the prey (total) population.
Ny(t) : the predator (total) population.
B(xz) : the rate of childbirth by an z-aged prey.

B2 : the mean predator birthrate.
6(z) : the deathrate of an z-aged prey.
p(z) : the predation pressure to an z-aged prey.
Ty ¢ the maximum life span of the prey. ‘

We assume the time evolution of the density n;(z,t) to be governed by

T =2 5+ pNa)m 1
for £ > 0, where the first term in the right-hand expression is the change rate of n; due to
ageing!!l and the second due to death. The death rate comprises 6n; intrinsic to the prey and
pNany caused by predation. The total population N; of the prey should also obey a usual

multiplication law, so that
1dNy S -
ol B Nob
where 3 is the mean birthrate and § + Ny is the average deathrate; the related notations are

defined as follows:

Ni(t) = /OEM ny(z,t)dz (3)
poy=g [ someods, (4a)
5(t) = Nil /0 ™ @)z, ) (48)
and 1 fom
0= [ peim(e s o)

We have further to consider the boundary condition at £ = 0 as follows:
on .
(%) =B-G+np. )
z=0

To describe how the predator population N; is changed, on the other hand, we assume a

dN, N, ,
@ 2 (1 K0+RN1131>N2. (6)

The logistic term, the second in the brackets above, takes into account two kinds of food sources

logistic equation

for the predator, that is, the prey noted here (kNyp), and other organisms excepting it (Kj).
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The coefficient « represents how the predator life depends on the prey as a food source. If the
prey does not exist, ¢.e., k = 0, then the equilibrium predator population will equal Ko. We call
hence Ky the basic environmental capacity or the basic carrying capacity for the predator.

3 Equilibrium Solutions

The equilibrium solutions of Equations 1, 5, and 6, denoted as n,*(z), Ni*, and Ny*, can
be determined by the following relations:

n1*(z) = ny*(0)v*(z) for >0, (7)

T M
Ny =) [ v (@, ®)
0
3% _ 8* )
No* = Ko+ kN;*p* = 7 9)

where the function v*(z) is defined by

v@ =ew{- [ 1) +N2*P(§)]d§} , (10)

and B*, 6*, and * are the averages of 3, §, and p which are taken with respect to the equilibrium
distribution ny*(z) (see Equation 4).

4 Models for Calculation 5‘2 [ ' ' "]
To simplify numerical analysis, we scale = 451 ]
time t by zas, the maximum life span of the a 4 )
prey, i.e., put xp = 1. E:T 35r ]
We take the following model for the birth- é 3r )
rate 8(z) (Fig. 1) to express how the childbirth & 2°[ ]
potential depends on age: A 2r )}
) E 1.5 [ -
8 =Buew [-C2BE L ay B ]
0.5 I .j

where zp is the age of the maximum birthrate, ok z . o B 2

By and s, are positive constants; giving sp a AGE, x

smaller (greater) value will make the age range - - :
. . . . Fig. 1 Model birthrate function.
having appreciable potential narrower (wider).

To simulate the age-dependent deathrate §(z), we take the expréssion

6
1+d0(”dx "’) } if 0<z<zy
d

6
1+d1(u—‘5) ] if z4<z<1;
4 1—2z4

Dr,

6(z) = (12)

D,

where do, di, 24, and Dy, are all positive free parameters. This model can consider higher
deathrates for preys infant and aged, as illustrated in Fig. 2.
We also postulate the age-dependent predation pressure p(z) as
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Fig. 2 Model deathrate function. Fig. 3 Equilibrium age distribution.
z,—z\*
P, 1+po<p > if 0<z<my
Tp
plz) = \ (13)
T -z, .
P, 1+pl<1 )} if z,<2z<1;
—%p

where pg, p1, Zp, and P, are all positive free parameters. The profile of p(z) curve is similar to
that of §(z) illustrated in Fig. 2. Fig. 3 shows equilibrium solutions, v*(z), which were calculated

based on these models with differently specified parameters.

30F 4

5 Constitution Restoration "\.‘

Fig. 4 depicts the time evolution of prey %
density n; in an early stage up tot = 1 (= ::“20 - .
Zpr, the maximum life span of the prey) for 3
a given initial age construction. They suggest ‘5
that the density assumes a profile analogous to E
the equilibrium one in a short time. To ascer- ? tor 1
tain this quantitatively, we introduce a mea- UQJ
sure to express how distant the density profile
at an instant is from the equilibrium: or h

0.5 ' 1
B M Ini(z,t)  ni*(z) 2 AGE OF PREY, x

At) = - dz . . A .

0 Ny (%) Np* Fig. 4 Prey age density in an early time.
(14)

Function A(t), named constitution deviation, approaches zero if the normalized densities of age

come close, even though the total populations N;(t) is far from the equilibrium value N;*.
Fig. 5 depicts log A versus t; the dependency on the birthrate (a), on the death rate (b),
and on the predation pressure (c). These figures confirm the conjecture stated above and further

o

suggest that the constitution deviation A decays roughly exponentially in the range of ¢ ~ 0.2
to 1.2 though weak kink appears near ¢t ~ 0.5 and 0.8, and the decay time constant seems to
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depend little on any of the averages of p, 8, and 4. Let this early process of decay in constitution

deviation A be called the stage of constitution restoration.

0.22 ¢.13 0.04
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TIME, ¢
(a) Dependency on birthrate.

6 Total Restoration

Fig. 6 depicts temporal changes in n,,
Ny, and N; for a given starting age distribu-
tion. This suggests that the total populations
N; and N, approach their equilibrium values
N1* and No* keeping almost the same prey-
age-density profile. Let this process be called
the stage of total restoration. In this stage,
the density ni(z,t) may be factorized into the
product of the equilibrium solution n1*(z) and
a function only of time ¢. Using this, we can
examine how the system behaves when weak
perturbation is given to the equilibrium state,

as follows.

6.1 Linear Stability
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(b) Dependency on deathrate.
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(c) Dependency on predation pressure.

Fig. 5 Constitution restoration.

For the reason stated just above, we may approximately factorize n;(z,t) near the equilib-

rium state, into

where €;(t) is a small perturbation. Integrating this with respect to z leads to

For the predator population disturbed infinitesimally, we assume

ni(z,t) = ni*(2)[1 + e(t)] (15)
Nl(t) = Nl*[l + 61(t)] . (16)
Ng(t) = Ng*[l + Gg(t)] . (17)
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(a) Prey age density in the later stage. (b) Total population.

Fig. 6 Time evolution of the total population.

Linearizing Equation 2 upon these suppositions leads to

de
—d_tl = @1€; — Q2€2, (18)
where a7 and a2 are defined by
a3 =4 = (6*+ N*p*) and oy = Np*p . (19)
Equation 6 is linearized into
de
_Etg = Qp1€1 — Q2€2 , (20)
where as; and agp are defined by
kN;*5*
o LP 5, and ap=p. (21)

2= Ko+ kN B
Let the symbol D be further introduced for the later use, by

D = (aq1 — @22)? — 4(a11022 — a1201) - (22)

We can check the stability of the equilibrium state by examining the eigen values of the
coefficient matrix [a;;], and present here the results explicitly only for two stable cases:
If D < 0 and aj; < a2 (case 1), then ¢; falls to zero with oscillating; the decay time

constant 7 and the vibrating period T are given by

2
r=—2  and T= T

Qa2 — 011 v .

If D> 0 and ag —aj; > VD (case 2), then ¢; decreases exponentially in two modes; the

(23)

decay time constants are given by
_ 2
(@22 — a11) % VD

The system is unstable under any other condition; that is, one or two modes diverging

(24)

T+

exponentially are excited however weak disturbance may be. We will discuss elsewhere as to
such cases and here restrict our interest to the stable ones.
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6.2 Numerical Check

Fig. 7 gives two examples of the numerical solutions of V; in the total restoration stage; the

solid curve corresponds to case 1 and the dashed one to case 2. We can expect from the analysis

above that the late stage behaviors of N; are expressed as follows:

For case 1,
t
.N,;(t) ~ a,'e't/r cOs (27“? + Ci> + N;* (i =1, 2) s (25)
where a;, 7, and T are positive constants, and ¢; is a constant.
For case 2,
Ni(t) = aipe ™ +a;_e”/™- + N (i=1, 2), (26)

where a;4 are constants and 74 are positive
constants.

Fig. 8a depicts the maxima of log | N1 (¢) —
N1*| plotted against the corresponding ¢ for
a few examples of case 1, which shows the
dependency being nearly linear except early
time. Table 1a lists a few examples of the de-
cay time 7 and oscillation period T'; T was es-
- timated from the least-squares-mean slope of
each plot, and T from the time intervals be-
tween adjacent peaks of Ny(t). They seem to
agree well with their evaluations by Equation
23, listed in the same table.

To check the validity of the linear stability
analysis above for damped modes without os-

cillation, we have to determine four unknown
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TIME, ¢

Fig. 7 Modes of the total restoration.

quantities a;+ and 74 in Equation 24 from the calculated N;(t). We may however expect that
the mode having greater one of two decay constants 74, i.e., 7—, becomes dominant in the later
stage, since the mode with the smaller decay constant will die out faster and finally contributes
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Fig. 8 Evaluating the total-restoration time constant for the prey.

40

-0.5

*

IOE(IN1(‘)' N, |/N1 )

*

-2

=

10

(b) Case 2.

TIME, ¢



8 T. Komori, K. Hirata, D. Satoh, and M. Itoh

Table 1 Total-restoration time constant.
(a) Casel
B* 5* P* N1 * 1\,2 * 7 rlsa T TLsAa
a 233 105 223 169 0.576 399 4.00 | 11.2 105
b | 214 0434 227 242 0749 | 3.99 4.00 | 8.96 8.39
c 216 0950 222 154 0.543 |3.99 4.00 | 11.8 11.1

(b) Case 2

B* S* I—)* Ny* Ny* T TLsa
a|216 107 520 0195 0210 | 16.7 16.1
b {218 1.63 217 249 0.254 | 5.39 5.15
c| 165 116 218 114 0.225]16.2 15.9

Note: 7, T, and 7— were estimated based on the calculated values of V.

TUSA TUSA and 7X5% were calculated by the linear stability analysis,

see Equations 23 and 24. The ecological parameters were set for all
cases as Ko = 0.2, k = 0.01, and 8; = 0.5.

little. So, we compare 7_ evaluated by Equation 24 with the decay time which is estimated from
the final gradient of log |N1(t) — N1*|-t dependence as illustrated in Fig. 8b, and give the results
in Table 1b. The linear stability analysis is seen to work well also for case 2.

7 Conclusion

We have simulated using a mathematical model how the population dynamics of a predator-
prey system is affected by the prey outlivability distribution due to age difference. The results
suggest that the system perturbed far from the equilibrium and then left free follows two restora-
tion stages before arrives at the final state; in the one (named the constitution restoration) which
finishes almost in a time approximate to the maximum life span of the prey species, the prey
restores nearly the same relative age constitution as that at the equilibrium, and in the other
stage (named the total restoration) which lasts for ten or more times the former period, the total
populations of the two species restore slowly their equilibrium values. It was also found that
the speed of constitution restoration has only weak dependency on the ecological parameters
such as childbirth rate, deathrate, and predation pressure but the total restoration process is
significantly influenced by these parameters. As to the latter fact, however, further systematic
case study is necessary for clarifying the details.
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