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‘§ 0. Introduction

For a real hypersurface of a complex manifold, there exists a system of partial
differential equations, called the tangential Cauchy-Riemann equations. The trace
~of a holomorphic function on the complex manifold satisfies the tangential Cauchy-
Riemann equations, as easily follows from the definition (c.{. Definition 2-1).
Some properties of solutions of the tangential Cauchy Riemann equations are
known, concerning relations with holomorphic functions. We recall some funda-
mental results in §2.

We consider a class of real submanifolds of a complex manifolds, called C—R
submanifolds, (c.f. Definition 1-1). For a real analytic C—R submanifold of cr,
there exists a complex submanifold, not necessarily closed, such that it contains
the C—R submanifold generically (Tomassini (10)).

More generally we define a C—R structure on a real manifold by a complex
distribution which satisfies some integrability condition (c.f. Definition 1-2). H.
Rossi proved that a real analytic C—R manifold can be realised as a real sub-
manifold of a complex manifold (H.Rossi (7)). He also proved that a compact
connected strongly pseudoconvex C—R manifold of C—R codimension 1 can be
realized as a boundary of a strongly pseudoconvex domain of a Stein space with
at most finite singularities, if its C—R dimension is greater than 2.

In this article we consider differentiable? C—R submanifolds of C*, and we
obtain some generalization of H. Rossi’s theorem and Tomassini’s theorem in the
case of C—R codimension 1, using results concerning the tangential Cauchy

Riemann equations and H. Rossi’s Stein completion.
§ 1. C-R structure

In this section we recall the definition of C—R structures. Let N be a complex

manifold of dimension n, and M a real submanifold of N of dimension m. J denotes

1) In this paper, “differentiable” means C*-differentiable.
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the almost complex structure of N and T(N), T(M) denotes the tangent bundle
of N, M, respectively. At each point x of N, J induces a linear automorphism of
T, (N) and T, (N) has a structure of a complex vector space induced by J. C,
denotes the maximal complex subspace containd in T, (M) for a point x of M.
i.e.

C.=T., (M)NJT, (M).

T¢(N), TS (M) denotes the complexified tangent space of N, M at x,
respectively. Put H,={X— /—1JX| XeC,}, H,={X+ /—1JX| XeC, !} and we
call them the holomorphic and antiholomorphic tangent space of M at «x,
respectively.

Definition 1—1.

We will say M be a C—R submanifold of N, if dim.cH, =%dim.xC, is constant
on M. In this case H('M) :HH” H(M) '219417, are subbundles of T¢ (M). We
will say {=rank H(M), the C—R dimension of M, and r=dim.M—2rank H( M) =
m— 24, the C—R codimension of M. 7

We denote #( M), #( M), the sheaf of germs of differentiable cross-sections
of H(M), H(M), respectively. Using the integrability of the almost complex
structure J, we can easily show

(#(M), ,#(M), ]Cx(M),
(Z(M), ,2(M),]JCH(M),.

We note that a real hypcrsureface of N is a C—R submanifold of N of C—R
codimension 1. ‘ . ‘

More generally we define C—R manifolds. Let M be a real manifold. We
consider a complex distribution H( M) T° (M) on M.

Definition 1—2.

We will say that (M, H(M)) defines a C—R manifold of dimension m C—R
dimension ¢, if the following conditions are satisfied.

1. dim.M=m, rank H(M) =1L

2. H(M),NH(M), =0 for every xeM, where H(M), is the conjugate sub-
space of H( M), with respect to T, (M). ‘

3. [#(M), , #(M),]JC#(M); for every xe M, where #( M) denote the sheaf
of germs of differentiable cross-sections of H( M) as before.

We will say r=m—2l, C—R codimension of ( MH( M)).

Let M, N be differentiable manifolds, and f: M—— N a differentiable mapping
M into N. Then f induces the differential of f, f« : T°(M)— T°(N).

Definition 1—3.

Let (M, H(M)), (N, H(N)) be C—R manifolds, and f a differentiable mapping
M into N. We will say fis a C—R mapping if fo (H(M)YCTH(N). If f is a
diffeomorphism and f and f* are C—R mappings, we will say f is a C—R
diffeomorphism.

A C—R submanifold:of a ¢omplex manifold is a C—R manifold. But the converse

is not true in general. In the real analytic case, the converse is also true (H.
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Rossi (71)).
In the following, we only consider the case of C—R codimension 1. We will

say these C—R manifolds, C—R hypersurfaces.
§ 2. Levi convexity and the tangential Cauchy-Rieemann equations.

Let (M, H(M)) be a C—R hypersurface of dimension n. Let m, be the
projection from T¢< (M) to TS (M), /H(M), ®H(M),. We define a hermitian
form on H( M), by

ho (Xo , Y,)=/=17:(X, V), X, Y. e H(M),

where X , Y are local differentiable cross-sections of H(M) such that X(=x)
=X,, Y(x)=7Y,. Since dim.TS (M) / H(M), ®H(M), =1, we identify T: (M)
/H(M), ®H(M), and C, taking a real bace of T¢ (M), H(M), ® H(M),. We
call the above hermitian form, the Levi form of (M\H(M)) atz. We call
(M\H(M)) is pseudoconvex, strongly pseudoconvex at x, if the Levi form is
semi-definite, definite, respectively. We call ( M,H( M)) is pseudoconvex, strongly
pseudoconvex, if ( M,H(M)) is pseudoconvex, strongly pseudoconvex at each point
of M.

In the case of real hypersurfaces of complex manifolds, we can define the Levi
form by another way. Let M be a realihypersurface of DCC™. There exists a
real valued fuhction ¢ such that

M={xeD| ¢(x)=0} and

de+0 on M.
Let (z, + - +, z,) be a coordinate system of C", we consider the following
hermitian form on H(M),.
_s %9 £

where X:;gia%emmx i.e.Z%j g =o.

The properties of semi-definitness, definiteness of the above hermitian form are
independent of a choice of @ and a coordinate system of D. We call the above
hermitian form, the Levi form of M at x. Two definitions of Levi form. are
essentially the same in this case (c.f. Sommer (8)).

Let (M\JH( M)) be a C—R hypersurface.

Definition 2—1.

We call a differentiable function, say f, satisfies the tangential Cauchy-Riemann
equations at x if Xf=0 for any element X of H(M),. And we will say f, a C—
R function if f satisfies the tangential Cauchy-Riemann equations at each point
of M.

We recall some fundamental results concerning the tangential Cauchy- Riemann
equations.

Let M be a pseudoconvex real hypersurface of a domain DCC" (n>1), and
we take a real valued differentiable function @ on D such that M={xeD| ¢(x)
=0} and dp+0 on M and the Levi form defined by ¢ is positive semi-definite.
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Put D"={xeD| ¢(x)<0} and D*={xeD| o(x)>0}.

Theorem 2—2. (Wells (11), Hérmander (5 ), Andreotti-Hill (1))

Assume the Levi form of M has at least one positive eigen value at each point
of M. Then there exists a domain UC D™ such that MC 89U and U has the
following property. If f is a C—R function on M, then there exists a holomorphic
function }' such that ]7 is differentiable up to M and }[ M=f

We can easily show that the above holomorphic extention f of f is unique.

Next we consider C~R mappings, Let M, N be real hypersurfaces of D, ECC*
respectively. We assume M, N are pseudoconvex, and choose real valued functions
@, ¢ and define D*, E* as above.

Theorem 2—3.

Assume M, N are pseudo-convex and the Levi forms of M, N have at least one
positive eigen wvalue at each point of M, N. Let F: M——> N be a C—R
diffeomorphism. Then there exist domains UC D~, VC E~ and biholomorphic
mapping F: U—> V such that F is differentiable up to M and }7| M=F.

Proof. Let (2, « + +, z,), (wy, = *+ +, w,) be a coordinate system of D, E,
respectively. Then w; (1=<i<n2) is a C—R function on N. Since F is a C—R
diffeomorphism, F* w; is a C—R function on M. We choose a domain U'C D~ such
that the property of theorem 2-2 holds, Let w; be the holomorphic extension of
F*w;,. We define a holomorphic mapping F: U——>C" by

F(p)=(w,(p), - - -, wy,(p)); pel.

Clealy F is the holomorphic extension of F. Since F is a C—R diffeomc_)rphisrri,
and F is a holomorphic mapping, we can show F is maximal rank on a
neighbourhood U of M in MU', by the same method in (9). For peM there
exists a neighbourhood U, of p such that U,(1 D C U and F| UMD is a
diffeomorphism. Since F(M)=N, F(U, D )CE or F(U, N D )CE" We
shall show F( U, V1D )C E". We consider F* ¢ F* ¢ is differentiable on U, D,
so we can extend it differentiaBly on Up, and we denote it ¢. We may assume
MNU,=1{xelUp | ¢(x)=0}. Put UF ={xelU, | &(x)zO} Since d¢+0 on
M U,, because of the invariance of the Levi form we conclude U,C D~. This
means F(U,N D YCE".

Then replacing U by a smaller neighbourhood if necessary, we may conclude
F(U)CE", and F| U is a diffeomorphism. Put F(U)=V. Then F: U— V has
the disiered property. gq.e.d.

§ 3. C—R submanifolds of C"

In this section we prove our main theorem. Let M be a compact C—R sub-
manifold of C* of C—R dimension m(m=1) and C—R codimension 1. ( M,H( M))
be the C—R structure induced from the complex structure of C". For a point
peM, Cp, is a 2m dimensional subspace of Tp, (M) and dim.Tp, (M) =2m +1, then
we can take a global coordinate system (z,, « * -, 2z, ) of C® such that (a—zl)p,

2 9 Oy Dy oL (2
Sty (azm)P span H(M)P and (axl )P’ ’ (axm)P) (ay‘ )P> ’ (ay )P

m+1
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span Tp (M), where z; =x; +y;. First we show that we can locally realize
(M\H(M)) as a real hypersurface of C™*!.

Lemma 3—1.

For any point peM, there exists a neighbourhood U of p such that U is C—R
diffeomorphic to a real hypersurface of a domain of C™!'.

Proof, We take a global coordinate system of C” as above. z; (1< i< m+1),
as a function on M, is a C—R function. We define a mapping f from M into cm1
defined by

) =(2(q) - 2n1 (q)), geM.
Since z(1<i=m+1) is a C—R function, f is a C—R mapping. f, Tp (M) is

a | - a 0 7 . .
Spanned by (axl )P) R (a—xm)}’i (‘é;/?)l’:" T T (a )! then f 1S maximum

Ym+1 P
rank at p, so on sufficiently small neighbourhood of p. We take U, a neighbourhood
of p, such that f is a immbedding on U. If we take U sufficiently small, U is
diffeomorphic to a real hypersurface of a domain of C™ Since f is a diffeomorph-
ism and M is C—R codimension 1, f is a C—R diffeomorphism. gq.e.d.

Now we assume (M,H(M)) is strongly pseudoconvex. We cover M by finite
open sets U,, + « -, U,, each U; can be realized as a real hypefsurface S; of
a domain D; of C™1. Now we construct a complex manifold with boundary such
that a compornent of boundaries is C—R diffeomorphic to ( M,H( M)).

We take a real valued differentiable function @; on D;, such that S; ={zeD; |
@; (%) =0}, dp; #0 on S; and the Levi form of S; defined by ¢, is positive
definite on S;. Put D*={xeD| ¢ (x) 20}. Let o; : Uy —>S; be the C—R
diffeomorphism. We assume U, U, +¢. o 1iq (U, NU,)—— (U, NU,) is
a C—R diffeomorphism, there exists a domain .V, C Dy , V, C D; such that
oV, DU, 9V, DU, and o &~' induces a holomorphic diffeomorphism a, : V; —>
V., ( Theorem 2-3).

We take U;,"CC U, and U,"CC U, such that U,’, U,", Uy, + - -, U, cover M.
Let g be a Riemannian metric on D,, then o, g, is a Riemannian metric on V,.
There exists a Riemannian metric g on D, such that g, agrees o, g on a
neighbourhood of mw Using g, g, we construct differentiable mappings
B 1 U; X[0, €)== D;; i=1, 2, for sufficiently small €>0, by the usual method.
Taking € sufficiently small, we may assume 8, (U,"[) U," X [0, ¢))C V;; i=1,2,
then @, =& on U,' YU, X[ 0, €), we can show it easily from the construction
of Riemannian metrics g, &.

We paste U, X [0, €) and U," X[0. €) by a,, and obtain a complex manifold
Vi. with boundary such that U,"J U," is C—R diffeomorfpic to a part of 9V,,.
Repeat the above construction finite time, we obtain

Lemma 3 — 2. .

Let (M\(H(M)) be a strongly pseudoconvex compact C—R submanifold of C* of
C—R codimension 1. Then there exists a complex manifold V with boundary such
that (M,H(M)) is C—R diffeomorphic to a compornent of 8V,
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Now we assume the C—R dimension of (M,H(M)) is greater than 2. Since
(M\H(M)) is strongly pseudoconvex, there exists a strongly plurisubharmonic
function @ on V such that M={xeV| ¢(x) =0} and »=<0 (Gunning-Rossi (4)).
Put Ve={zeV ]| —e< <0} for sufficiently small €>0. Then by the theorem of
H. Rossi (H.Rossi (6), Andreotti-Siu (2)), Ve has the Stein completion N, i.e.
N is a normal Stein space and Ve is biholomorphic to an open subset of N whose
complement is relatively compact in N. Hence we have

Lemma 3 — 3.

Let (M,H(M)) be a strongly psudoconvex compact C—R submanifold of C—R
dimension m=2 and‘C—R codimension 1. Then there exists a normal Stein space
N with boundary with at most finite singularities such that (M\H(M)) is C—R
diffeomorphic to the boundary of N.

Since (MH(M)) is strongly pseudoconvex and N is a normal Stein space,
C—R functions on M can be continued to holomorphic functions on N by theorem
2—2 and Hartogs-Osgoods theorem. Let (z;,---, z,) be a linear coordinate system
of C*. The trace of z; (léiSn) on M is a C—R function on M, there exists
a holomorphic function 2; on N, differentiable up to the boundary M and %; | M=
z;.

Now we consider a mapping "F' : N—>C" defined by

F(p)=(z(p),--+, z,(p)), peN.
It is clear that F is holomorphic on N and C—R diffeomorphic on the boundary.

Lemma 3 —4.

F is a holomorphic one to one mapping from N into C™.

Proof. Since F is C—R diffeomorphic on the boundary and holomorphic on N\,
F is an immedding from a neighbourhood of the boundary into C”. Then the
analytic relation defined by F is proper. By H. Cartan’s theorem (H. Cartan (3)),
the factor space by the equivalence relation, we denote it by N, has a structure
of an analytic space such that the projection o' : N—— N’ is holomorphic. Since
the analytic relation sepalates the neighbourhood of the boundary, : N— N
is biholomorphic on a neighbourhood of the boundary. We denote the Remmert
reduction of N' by N and the canonical projection by »" ! N—— N. Since 7’ and
7" are biholomorphic on the neighbourhood of the boundary and N, N’ are normal
Stein spaces, 7o : N—> N'a is holomorphic diffeomorphism. So ' : N—N' s
one to one, it means F is a one to one mapping. g.e.d.

Main theorem.

Let (M\H(M)) be a C—R submanifold of C* of C—R dimension m and C—R
codimension 1. We asuume M is compact connected strongly pseudoconvex and m
= 2. Then there exists a Stein subspace of C" (not closed), whose boundary is
M. '

Proof. We shall prove V= F(N) is an analytic space of C” (not closed),
then V has disiered properties. F is maximal rank on a neighbourhood of the

boundary and one to one on N. We take a neighbourhood U of M in C" such that
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F is an immedding from F-1 (U) into C*. Then F: N—F1 (U)—C"—U is a
proper holomorphic mapping, so F(N— F- (U)) is an analytic subspace of C”
— U. It is continued to F(F-*(U)) analytically, we can show it by taking U

sufficiently small, so V=F(N) is an analytic subspace of C*. q.e.d.
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