A remark on a complete curve in complex Euclidean space.

Kiyoshi Shiga

Dept. of Math., Fac. of Gen. Educ., Gifu Univ.

(Received Oct. 15, 1977)

§1. Introduction

One of the most interesting problems in the theory of complex submanifolds in a complex Euclidean space C^n is to study the global behavior of curvature of submanifolds. A fundumental question is

Question I. Does there exist a complete complex submanifold of C^n with holomorphic sectional curvature bounded from above by a negative constant ?

T. Sasaki and K. Shiga [2] and P. Yang [3] have already investigated this problem, and they gave a complete answer in the case of codimension one.

In this short note, we shall study the relationship between the notion of completeness and the notion of closedness. Of course a complete submanifold of C^n is not necessarily a closed submanifold (Example). So we shall consider the following problem for the present.

Question II. Does there exist a complete submanifold of C^n which has a bounded image ?

This problem is originally raised by S. S. Chern [1] for minimal submanifolds in \mathbb{R}^n . P. Yang showed that there exists some relation between Question I and Question II. But Question I is not solved in general, so we shall study Question II directly. The following is the main theorem of this note.

THEOREM. Let C be a complete curve in \mathbb{C}^n , and x be the Gaussian curvature of C. If there exists a positive constant k such that $-k < x \leq 0, C$ is not bounded.

I have received many suggestions through the conversations from Professor T. Sasaki and Professor S. Takeuchi. I would like to express my cordial thanks to them.

§ 2. Proof of the theorem and an example.

By a curve C in C^n we will mean a holomorphic immersion $\xi: C \to C^n$, where C is an open Riemann surface. Let ds^2 be the canonical Kähler metric on C^n . We will say that C is a complete curve in C^n if the induced metric $\xi^* ds^2$ is a complete metric on C.

We may assume that C is simply connected by considering the uiversal covering space if necessary. Then C is biholomorphic to C or the unit disk $D = \{z \in C || z | < 1\}$. If C is biholomorphic to C, there exists no immersion of C to C^n with bounded image, since there exists no nontrivial bounded holomorphic function on C.

Then we consider the case that $\zeta: D \to C^n$ is a holomorphic immersion such that

Kiyoshi Shiga

 $\zeta^* ds^2$ is a complete metric with curvature bounded from below by a negative constant.

Put $\zeta \, ds^2 = h \, dz d\bar{z}$, then h is a positive real analytic function on D. Since $\zeta \, ds^2$ is a complete metric with curvature bounded from below, there exists a positive constant c by Yau's generalized Schwarz lemma ([4]) such that

$$\zeta^* ds^2 \ge c \ ds^2_{\ D},\tag{1}$$

where ds_D^2 is the Poincaré metric on *D*, i.e.,

$$ds^{2}{}_{D} = \frac{dz d\bar{z}}{(1 - |z|^{2})^{2}}$$
(2)

Then by (1) and (2)

$$h \ge c (1 - |z|^2)^{-2} \tag{3}$$

We define a C^{∞} function $\gamma(z)$ on D by

$$\gamma(z) = \|\zeta(z) - \zeta(p)\|^2,$$
(4)

where p is a fixed point of D and $\|\cdot\|$ is the Euclidean norm in C^n .

Let
$$\Delta = 1/h \frac{\partial^2}{\partial z \partial \bar{z}}$$
 be the Laplacian on *D*. Then $\gamma(z)$ satisfies $\Delta \gamma = 1$. (5)

We will show that $\gamma(z)$ is not a bounded function on D. For 0 < r < 1, we put

$$M(r) = \frac{1}{2\pi} \int_{o}^{2\pi} \gamma(re^{i\theta}) d\theta$$
(6)

Then for $0 < r_o < r < 1$,

$$M(r) - M(r_o) = \int_{r_o}^{r} \frac{d}{dr} M(r) dr$$

$$= \int_{r_o}^{r} \frac{1}{2\pi} \int_{o}^{2\pi} \frac{d}{dr} \gamma(re^{i\theta}) d\theta dr \qquad (by (6))$$

$$= \int_{r_o}^{r} \frac{1}{2\pi r} \int_{o}^{2\pi} \frac{d}{dr} \gamma(re^{i\theta}) r d\theta dr$$

$$= \int_{r_o}^{r} \frac{1}{2\pi r} \iint_{D_o} \widetilde{\Delta} \gamma dx dy$$
formula, where $\widetilde{\Delta} = 4 \frac{\partial^2}{\partial x \partial \overline{z}}$ and $D_r = \{z \in C | |z| < r\},$

by Green's дzдź

$$= \int_{r_*}^{r} \frac{4}{2\pi r} \iint_{D_r} h \, dxdy \qquad (by (5)).$$

It means by (3), that

$$M(r) - M(r_o) \ge \int_{r_o}^{r} \frac{2}{\pi r} \iint_{D_r} \frac{1}{(1-r^2)^2} dx dy$$

Calculating the right hand side, we obtain the following inequality

$$M(r) - M(r_o) \ge C_1 \{ \log r - \frac{1}{2} \log(1-r) - \frac{1}{2} \log(1+r) \} - C_2$$

where C_1 and C_2 are positive constants independent of r. The right hand side tends to infinity if r tends to 1. It means

$$\lim_{r \to 1} M(r) = \infty.$$

This means that $\gamma(z)$ is not bounded, and it completes the proof of the theorem.

192

There exists an example that a complete curve in C^n is not necessarily closed.

EXAMPLE. Let (z, w) be the linear coordinate system C^2 . Let S de a closed curve defined by

$$w = \frac{1}{z(z-1)}$$

Since S is biholomorphic to $C - \{0, 1\}$, the universal covering space is the unit disk D. Then there exists a covering map $\psi: D \to S$. We define an imbedding $\psi: D \to C^3$ by

$$\zeta(z) = (z, \ \psi(z)).$$

Since S is a closed submanifold, S is a closed curve. From the construction

$$\zeta^* ds^2 \ge \psi^* ds^2,$$

where ds^2 in the left hand side and in the right hand side mean the canonical metric of C^3 and C^2 respectivery. It means that $\zeta: D \to C^3$ is a complete curve in C^3 . For a point $p \in S$, $\psi^{-1}(p)$ is an infinite set then $\zeta(D)$ is not a closed submanifold of C^3 .

We are interested in obtaining under what condition a complete submanifold is a closed submanifold. But it seems to be a very difficult problem.

References

[1] Chern, S,S. The geometry of G-structures, Bull. A.M.S. 72(1966), 167-219.

[2] Sasaki, T. and Shiga, K. Remarks on the curvature of hypersurfaces in C^n , (to appear).

[3] Yang, P. Curvature of complex submanifolds of C^n , J. Diff. Geom. (to appear).

[4] Yau, S.T. A general Schwarz lemma for Kähler manifolds, (preprint).