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81. Introduction

One of the most interesting problems in the theory of complex submanifolds in a
complex Euclidean space C" is to study the global behavior of curvature of submani-
folds. A fundumental question is

Question I. Does there exist a complete complex submanifold of C* with holo-
morphic sectional curvature bounded from above by a negative constant ?

T.Sasaki and K.Shiga [2) and P.Yang [3) have already investigated this
problem, and they gave a complete answer in the case of codimension one.

In this short note, we shall study the relationship between the notion of complete-
ness and the notion of closedness. Of course a complete submanifold of C* is not ne-
cessarily a closed submanifold (Example). So we shall consider the following problem
for the present.

Question II. Does there exist a complete submanifold of C" which has a bounded
image ?

This problem is originally raised by S.S.Chern (1] for minimal submanifolds in
R" P.Yang showed that there exists some relation between Question I and Question
II. But Qusetion I is not solved in general, so we shall study Question II directly.
The following is the main theorem of this note.

TiEoREM. Let C be a complete curve in C% and x be the Gaussian curvature of C.
If there exisis a positive constant k such that—k< x=0,C is not bounded.

I have received many suggestions through the conversations from Professor T.
Sasaki and Professor S. Takeuchi. I would like to express my cordial thanks to them.

§2. Proof of the theorem and an example.

By a curve C in C" we will mean a holomorphic immersion &C — C% where C
is an open Riemann surface. Let ds?be the canonical Kghler metric on C. We will
say that C is a complete curve in C™" if the induced metric ¢* ds?is a complete metric
on C. )

We may assume that C is simply connected by considering the uiversal covering
space if necessary. Then C is biholomorphic to C or the unit disk D={zeCllz| <1}.
If C is biholomorphic to C, there exists no immersion of C to C"with bounded image,
since there exists no nontrivial bounded holomorphic function on C.

Then we consider the case that &:D — C"is a holomorphic immersion such that
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£ *ds® is a complete metric with curvature bounded from below by a negative constant.

Put ¢ Us*=h dzdz, then A is a positive real analytic function on D. Since ¢ *ds?
is a complete metric with curvature bounded from below, there exists a positive con-
stant ¢ by Yau’s generalized Schwarz lemma ((4)) such that

{Us* = ¢ ds?y, (1)
where ds?j, is the Poincaré metric on D, ie.,
ds? = dzdz (2)
T (1—12?)2
Then by (1) and (2)
h = c(1—ld?? (3)

We define a C” function 7(z) on D by
A2 =1g(=) — E(p) Il 3 (4)
where p is a fixed point of D and Il « Il is the Euclidean norm in C*"
Let A=1/h=2"be the Laplacian on D. Then 7(2) satisfies A7=1. (5

We will show that ¥z) is not a bounded function on D.
For 0 < r < 1, weput

M) = f Kre' d6 )
Then for 0 < 1',,< r< 1,
M)~ M) = [ M) dr

To

:fz_l,f f”%;{re”’) d6dr by (6))
2'/"2—71”’/‘2”% Are') r dbdr

:f,.',?lTrffD,z ydady

—~ 2
by Green’s formula, where A = 482? and D, ={zeCllz2l<r},

("4
_j:, 27rrffu,h dedy (by (5)).
It means by (3), that

M) — M(r,) ,anr%ffu,u_l‘ﬂ)zdxdy

Calculating the right hand side, we obtain the following inequality

Mr) — M(r,) = C, {log r—% log(1—17) —% log(i+r)} —C,

>

where C, and C, are positive constants independent of r.
The right hand side tends to infinity if 7 tends to 1. It means

lriLn1 M(r) =oo,

This means that y(z) is not bounded, and it completes the proof of the theorem.
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There exists an example that a complete curve in C"is not necessarily closed.

EXAMPLE. Let (2, w) be the linear coordinate system C2 Let S de a closed
curve defined by
R
2Az—1)
Since S is biholomorphic to C — {0, 1}, the universal covering space is the unit disk

D. Then there exists a covering map ¢:D—S. We define an imbedding ¢:D— C®by
£=) =(z, ¥2)).

Since S is a closed submanifold, S is a closed curve. From the construction
£*dst = ¢ *ds?

where ds? in the left hand side and in the right hand side mean the canonical metric of

C* and C2 respectivery. It means that {:D— C* is a complete curve in C3 For a
point p e S, ¢ '(p) is an infinite set then (D) is not a closed submanifold of C3

We are interested in obtaining under what condition a complete submanifold is
a closed submanifold. But it seems to be a very difficult problem.
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