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§1. Introduction

In this article, we consider an algebraic equation whose coefficients have one-
dimensional parameter £ In general, the roots of such an equation, as functions of ¢ have
no differentiability, however smooth the coefficients may be. If we assume, however,
that the equation has only real roots, then we can prove some smoothness with suitable
smoothness assumptions on the coeffients.

Dermvimion. A polynomial of X, P(X)= X"+ b, X" !4+ +by,(b; E R), is called
hyperbolic if the equation P(X) = 0 has only real roots. ‘ » '

M. D. Bronshtein ([1]) proved the following theorem that played an important role
in constructing parametrices of weakly hyperbolic operators with Gevrey coefficients
([2]). (For simplicity, we omit the secondary parameters.)

Tucorem A. Let P (t; X) = X"+ By(t) X™ 1+« -+ Bu(t) be hyperbolic for any t< [
= (a, b). Assume that the multiplicity of its roots does not exceed r and B; = C'(I) (/ =1 -
-, m). Then, the followings hold.

(1) Forany ty< I there exist m roots Atp; t) (G =1,- «-,m) of P(¢t; X)= 0 such that
Alty; t) arve differentiable at t= t,

(2) For any compact set K C I, the set {Ai(by; o) ; b E K, j = 1,++, m} is bounded.

Note that the differentiability of A,(#; t) is assured only at ¢#= #, It is natural to
ask whether we can take roots that is differentiable on I or not. Moreover, we want to
know whether we can take C!-roots or not. The aim of this article is to give some answers
to these questions. ‘ .

In the followings, we use the notation f'(#,%0) =t litorlrlL of'(t) and fi(t) = lim

- g

t— foi 0
ﬂé%@ (right and left derivatives).

§2. Statement of the Results and Remarks

Turorem B.  Assume the same assumptions as Theorem A. Then, the followings hold.

@) I At) € CAI) and P(t;A(t)) = 0 on I then for any t, € I there exist X,(ty).
Further, for any compact set K C I, the set {X.(t); t € K} is bounded. A

(2)  Let the multiplicity of X = Xt) be q.If M) € CUI), At) =At) G =1, ++-,q)
and P(t; X) is divisible by (X—A[t))++-(X—Aq(t)) as a polynomial of X, then the sets
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D.={:(t) ;7= 1 -+, q} are respectively the roots of the same equation a,X 7+ a; X% 1+
s+ taq= 0, where a;= 3i0FP(to; Mt)) ) [ (a—7)1i! G=0,1,-++, q).

@) There exist Ay, +++, An€ CUI) such that P(t; X)=(X—2A,(8))++(X—An(t)) and
Ai (j=1 -+, m) are differentiable on I. :

(4) Assume that B,€C*(I) (j=1, -+, m), furthermore. If A& C%I) is differentiable
on I and ‘P(t;,{(t))zo on I, then 2 C(I).

Remargs. (1) The claims (1) and (2) are another expression of what M. D. Bronshtein
' has really proved in [1]. (Hence, we shall omit the proof.) The most important part is
the boundedness of the set {A.(¢); t& K}. The other part of (1), (2) had essentially been
known before Bronshtein. In fact, the key point of its proof is the fact that if B(t9)+0,
By(t))=0(;>k), then B (t))=0(j >k, i<j—Fk ), and this fact was used, for example, by
L. Hormander ([5]).

(ii) Even if we assume that m=2 and B, C=(]), we can not take C2-roots generally.
In fact, there exists a non-negative C*-function f(¢) on [~1, 1] such that 7(0) =0, £(¢)
>0 for =0 and (/£(#))" is unbounded on (0,1) (G. Glaeser [4]).

(i) When »=1 or 2, we can omit the assumption that B,&C?(I) (j=1, --+, m) in (4).
(When »=1, it is trivial. When =2, the proof is given in §4.) The author does not
know whether we can also omit this assumption or not when »=3.

§3. Proof of Theorem B

We begin with two lemmas, which reduce the proof to a simpler situation. (Lemma
2 is well-known, hence its proof is omitted.)

Lemva 1. Assume the same assumptions as Theorem A. Take cE1 and put I,=(a, c),
L=(c, b). If there exist A5(t)€ C°(I,UL) (j=1, -++, m) such that ; ave differentiable on
LUI, and P(t; X)=(X—27(t))+ -« (X—2A3(t)) on I,U I, then there exist A;& CI) (=1,
-+, m) such that 2; are differentiable on I and P(t; X)=(X—2A,(t)) - (X —An(t)) on
I

Proor. Put I7=(a, cl, I=[c, b). We can extend A7 as ;.= C°(I3) (k=12 ;7=1,
-++, m). By (1) of Theorem B, there exist A;; (c) and A5..(c) (=1 -+, m), By (2) of
Theorem B, these are the roots of the same equations, hence we can renumber these roots
such that A3,/(c)=45.2(c) and 45.,.(c)=45.2(c) (j=1, +--, m). Thus, if we connect these
A at t=c, then we can take A;& C%J) such that A; are differentiable on I

Lemma 2. Comsider P(t; X)=X"+ A ()X 1+ + An(t), where A;&C5(I) (0<s
<o), If p(to; X)=0 has the distinct roots xy, +-+, xx and the multiplicity of x; is m; (G
=1, -+, k), then there exist a positive e and polynomials p(t; X)=X"+ A; () X™ 14 -
ot A (t) G=1, - B) such that A;;€CS(tp—¢, to+e)(I<LiSm;, ISFER), pi(to; X)
=0 has the unique root x; with multiplicity m; and p(t; X)=pt;X) - pu(t; X) on
(to_E, t0+6). :
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First, we prove (3) by the induction on 7. If r= 1, then the result is trivial. (An;
continuous root is Cl) Now, assume that (3) is valid if »<k—17 (k=2) and that the
multiplicity of the roots of P is not larger than £ By Lemma 1, we have only to show
that for any #,E€17, there exists &> 0 such that on (¢,—e, £,+¢), instead of on 1, (3) hold.
By Lemma 2, we may assume £= without loss of generality. Further, we may assume
Bi(t)=0 by the transformation X’= X+ B,(¢)/m.

Put J={t€I ; P(¢; X)=0 has the unique root ( (with the multiplicity »:)} and I, .

=I\J. Note that Jis closed and I, is open. Since [,= U I where I™ are disjoint
I ,

nz
open intervals, by the assumption of the induction, we can take the roots of P(t:; X)=0
as A;(t)€C%I;) (=1, - -+, m) which are differentiable on I,. Put J,={t<J:¢ is isolated
in J}, J;=J\J; and I,=1;U ], Note that J; is at most countable. By Lemma 1, we can
take the roots of P(¢; X)=0 as 1,& C%I,) which are differentiable on I,. Put A;(¢)=0
if t€J,. We shall show that these A; are also differentiable at ¢, for any toE Jo. Assume
that there exist t,&/ (=1, 2,-++) such that ¢,># and #,~#, (n—c0). Since A;(¢) is right
differentiable at #, and A;(¢,)=0, we have A,,{(t,)=0 (j=1, -+, m). By (2) of Theorem
B, we have A;(¢9)=0 (j=1, -+, m), hence A; are differentiable at #, and A;(to)%ﬂ. The
same arguments go well if there exist #,&€J such that #,< ¢, and t,- f, (n— ). Thus,
A; are differentiable on .

Next, we prove (4) also by the induction on 7. By a similar (and simpler) arguments
as above, we may assume that (4) is valid if »<k—1 (k=2) and that k=m, B,(¢)=0.
Put J and I; as above. By the assumption of the induction, we have A,EC ) (G=1 ---,
m). Take an arbitrary ¢ty=J. Note that A;(t))=0 (j=1, ---, m) and Bi(t)=(t—to)’B; (¢),
where By € C™(I) (see Remarks (i)). By the transformation X=(¢— #,)X", the eqilation
P(t; X)=0 is transformed into (¢—t,)"Q(¢; X")=0, where Q(¢; X)=X""+ B3(¢)X'™2
+++++B;(t). Hence, u(t)=A;t)/(t—t,) (j=1, -+, m) are the roots of Q(¢; X)=0 (2#1y).
By (1) of Theorem B, the set {x;(t); j=1, -+, m} is bounded near #=t¢,, that is, there
exist £>0 and M >0 such that | i(z) | <M if 0< |t—¢9| < e. Since ()= (t—to)
— A}/ (¢ —to)? (t=+1t0), we have | () —A(t) (t—to) 1| SM | t—t, | if 0< |t —to | <e.
Hence, there holds lim A3(¢)=A7(t,). Thus, we have A, CI(I).

t— to
§4. Proof of Remarks (iii)

By the same argument in §3, we may assume that » =, that is, we have only to
prove the following proposition.

Prorosirion.  Consider P(t; X)=X?—A(t)X—B(t)=0, where A, BEC(I) and A(t)?
+4B(t)=0. If A= C%I) is differentiable on I and P(t; X(¢))=0 on I, then A= CX(I).

Proor. By the transformation X’=X— A(¢)/2, we may assume that A(z)=0 and
B(t)z0 on I Put J={t<I; B(¢)=0} and I,=I\J. Note that AECXIp), A(t)=0 on J
and B(¢)=B'(t)=0 on J. Take an arbitrary #y=J. Since B(ty)=B'(tp)=0, we can write
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B8(t)=(t—t9)’B~(¢t) where B~€C%I) and B~(ty)=B"(¢,)/2. Hence X(t;)== JB~ (%)
=+ /B"(f,)/2. We may assume that A'(t,)=+B~(#,). We have only to prove that A'(t)—

A(to) (- to)-
Case 1. Assume that B~(t,) +0. There exists a positive ¢ such that B~(¢) >0 if

[t—1ty| < e Hence, by X(¢,)=+B(t,), we have A(¢t)=(t—to)yB~(f) if | t—ty | <e. Since
JB~(%) is differentiable if 0< |t—1ty]|<e, we have Y(¢)=vB~(£)+(t—ts) B~ (¢)/2/B~(}).
On the other hand, by B(¢)=2(t—to)B~(¢)+(t—ts)?B~(¢), we have (t—t,)B~'(t)=
B'(t)/(t—to)—2B~(t)~> B"(to)— 2B~ (tp)=0 (¢ > tp). Thus, X ()~ VB~{s)=X(ty) (t~ t,).

Case 2. Assume that B~(¢,)=0. Since vB~(¢#) -0 (¢ - #,), the above argument is
violated. We use the following well-known lemma. (See, for example, J. Dieudonné [3].)
Lemua 3. Assume that f& C*(—2¢, 2¢) (€>0), f(x)=0 on (—2¢, 2¢) and F(0)

sup |f/"(x) I)f(x) flx|se.
|<2e

=£(0)=5"(0)=0. There holds | f'(x) |2§2(
[x|<

We have already known that X({)==*/B"(#)/2 on J and X(:)=xB'(¢)/2/B{) on I,.

By Lemma 3, we have |1(¢) |2< sulp |B”(t)|/2 if |t—t, )< e. Since B"(¢y) =0, we

[t—tp|< 2e
have X(¢)—0 (¢~ ¢£o).
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