1	Title page
2	
3	Clinical Features of Superior Segmental Optic
4	Hypoplasia: Hospital-based Study
5	
6	Ayaka Yagasaki, MD, Akira Sawada, MD, PhD, Yusuke Manabe, MD, Tetsuya Yamamoto,
7	MD, PhD.
8	Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
9	
10	Running head: Clinical features of optic nerve hypoplasia
11	Word count for abstract (255), main text (2930)
12	Number of references (23), figures (0), tables (3)
13	Corresponding author: Ayaka Yagasaki, MD, Department of Ophthalmology, Gifu University
14	Graduate School of Medicine, 1-1 Yanagido, Gifu-shi 501-1194, Japan.
15	TEL: +81-58-230-5287
16	FAX: +81-58-230-6289
17	E-mail: <u>yagasakiayaka@gmail.com</u>

18 The authors have no proprietary or financial interest in any products used in this study.

21Purpose: To determine the clinical features of patients diagnosed with superior segmental 22optic hypoplasia (SSOH) and to compare the anatomical structures of SSOH to that of normal 23subjects quantitatively. 24Methods: We examined the medical charts of 106 eyes of 59 patients with SSOH and 35 eyes 25of 35 normal subjects as controls. All of the eyes had been examined by spectral-domain 26optical coherence tomography (SD-OCT). Eyes with SSOH were classified as the definite 27type or the suspect type as determined by standard automated perimetry (SAP). The definite 28type had inferior visual field (VF) defects, while the suspect type did not have inferior VF 29defects. The findings of the SD-OCT images of 35 eyes with SSOH were compared to that of 30 the 35 normal eyes. 31Results: Of the 106 eyes with SSOH, 56 (52.8%) were classified as the definite type and 50 32eyes (47.2%) were as suspect type. OCT showed that the average of the total retinal nerve 33 fiber layer (RNFL) thickness was significantly thinner in the SSOH group than in the normal 34group (P <0.001; Mann-Whitney U test). Sectorial analysis demonstrated that the RNFL was thinner than controls in all quadrants (all P < 0.001; Mann-Whitney U test). The comparison 3536 of the hourly sectors showed that the RNFL was thinner at 10, 11, 12, 1, 2, 3, 5, and 6 o'clock

- 37 sectors in the SSOH group than controls.
- 38 Conclusions: Approximately one-half of eyes with SSOH had a detectable VF defect. OCT
 39 showed that eyes with SSOH have a thinner RNFL in more expanded areas than controls.
 40
 41 Key words: superior segmental optic hypoplasia; optical coherence tomography; retinal nerve
 42 fiber layer; visual field defect
- 43

44 Introduction

46	Superior segmental optic hypoplasia (SSOH) is a congenital anomaly of the optic nerve head
47	with a relative hypoplasia of the superior part of the optic nerve head and the retinal nerve
48	fiber layer. It is characterized by 4 findings: pallor of the superior optic disc, thinning of the
49	superior retinal nerve fiber layer (RNFL) corresponding to the optic disc pallor, superior
50	entrance of the central retinal vessels, and superior peripapillary scleral halo [1-5]. The
51	prevalence of SSOH in Japan and Korea is estimated to be 0.08 to 0.30% [6-8]. Yamamoto et
52	al. [6] reported that the prevalence of SSOH is 0.3% in the Japanese based on a large-scale
53	screening for eye diseases. This would be equivalent to one-tenth the prevalence of normal
54	tension glaucoma (NTG) in the Japanese [9,10].
55	
56	Although most patients with SSOH have an inferior altitudinal or sector-like visual field (VF)
57	defect connected to the blind spot with relatively good best-corrected visual acuity (BCVA),
58	some patients with optic disc satisfying the requirements of SSOH have atypical VF defects.
59	This can lead to a misdiagnosis of SSOH, and thus it is essential to differentiate patients with
60	SSOH from those with open angle glaucoma (OAG) including NTG. Unoki et al. [11]

61	examined 7 of 10 eyes with SSOH with time-domain optical coherence tomography (TD-
62	OCT), and reported that the TD-OCT images revealed mild segmental hypoplasia that was
63	not previously detected. Thereafter, investigators attempted to differentiate the SSOH of
64	normal subjects [12,13] from that of glaucoma patients [14] by TD-OCT.
65	
66	The introduction of spectral-domain OCT (SD-OCT), an OCT instrument with higher
67	resolution and better imaging speed [15,16], has made it possible for clinicians to examine
68	the retina and optic disc in greater detail. However, to the best of our knowledge, there are
69	only a few reports comparing the circumpapillary retinal nerve fiber layer (RNFL) thickness
70	of eyes with SSOH to that of normal controls by SD-OCT [17,18].
71	
72	Thus, the purpose of this study was to classify patients diagnosed with SSOH based on the
73	VF defects determined by standard automated perimetry (SAP) and to assess their structural
74	characteristics quantitatively in the SD-OCT images.
75	
76	Materials and methods
77	

78	We examined the medical records of 106 eyes of 59 patients diagnosed with SSOH and 35
79	eyes of 35 healthy volunteers. All were examined between 2004 and 2015 in the Department
80	of Ophthalmology, Gifu University Hospital, Japan. The procedures used conformed to the
81	tenets of the Declaration of Helsinki, and they were approved by the Ethics Committee of
82	Gifu University Graduate School of Medicine.
83	
84	All of the patients underwent a routine ophthalmological examinations including
85	measurements of the best-corrected visual acuity (BCVA), subjective refraction with a
86	refractometer (KP-8100PA, Topcon, Tokyo, Japan), slit-lamp biomicroscopy, intraocular
87	pressure (IOP) measurements with a Goldmann applanation tonometer (Haag-Streit AG,
88	Köniz, Switzerland), ophthalmoscopy, and optic nerve imaging with a SD-OCT device (SD-
89	OCT; Carl Zeiss Meditec, Dublin, CA, USA). If glaucoma or optic nerve hypoplasia was
90	suspected, perimetry with a Humphrey Field Analyzer (Humphrey Instruments, Dublin, CA,
91	USA) was performed with the central 30-2 Swedish Interactive Threshold Algorithm (SITA)
92	standard program.
93	

We used the same diagnostic criteria of SSOH as those of the Tajimi Health Care Project [6]; 94

95	a thinning of the optic nerve head rim most prominent in the superior nasal region with
96	corresponding nerve fiber layer defects (NFLD) in the superior nasal region. All eyes
97	diagnosed with SSOH were rated as definite SSOH type that had inferior visual field (VF)
98	defects or suspect SSOH type that did not have inferior VF defects,.
99	
100	After the introduction of SD-OCT in our department in 2008, the optic discs were assessed in
101	44 patients by the SD-OCT images. Thirty-five eyes of 35 patients with SSOH and 35 age-,
102	sex-, refractive error-matched normal controls were studied in the same way. The exclusion
103	criteria were: prior intraocular surgeries including laser treatment, other ocular diseases,
104	disorders of the central nervous system, decimal BCVA ≤ 0.9 , myopia of \geq -6 diopters or
105	astigmatism \ge 3 D, and age \le 18 years. One eye of each subject was chosen for the analyses,
106	and in patients with bilateral SSOH the eye with the poorer mean deviation (MD) was
107	selected.
108	
109	The optic disc cube scan image of the optic disc region in an area of 6 x 6 mm^2 (200 x 200
110	pixels) was analyzed. A circumpapillary RNFL thickness map was generated. A 3.46 mm
111	diameter circle consisting of 256 A-scans, was then automatically centered around the optic

112	disc. The global, four-quadrants, and 12 hourly circumpapillary thicknesses of the RNFL
113	were determined. The scanned images with signal strength $\geq 7/10$ were used for the analyses,
114	and values obtained from left eyes were converted into the right eye format.
115	
116	Unpaired t-tests were used to determine the significance of the differences in the
117	demographic data between patients with SSOH and normal subjects. The sex distribution in
118	the two groups was evaluated with the chi-square test. Mann-Whitney U tests were used to
119	compare the data between SSOH and control eyes. A P value of <0.05 was taken to be
120	statistically significant. All of the statistical analyses were performed with the SPSS software
121	(IBM SPSS statistics, version 23).
122	
123	Results
124	
125	The demographics and clinical findings of the 27 men and 32 women with SSOH are shown
126	in Table 1. The mean age was 35.7 ± 15.7 (mean \pm standard deviation) years with a range of 7
127	to 71 years. The mean IOP was 14.9 ± 3.4 mmHg with a range of 7 to 26 mmHg. The mean
128	refraction error (spherical equivalent) was -3.63 ± 3.38 D with a range of -13.38 to $+1.25$ D.

129	The averaged MD was -2.51 \pm 4.00 decibels (dB) with a range of -22.24 to +3.14 dB.
130	
131	Six of the SSOH cases were diagnosed with open angle glaucoma including normal tension
132	glaucoma. There were 2 cases that had a family history of diabetes mellitus, however both
133	were limited to their mothers and were type I diabetes mellitus [2,5]. None of the patients had
134	a family history of optic nerve hypoplasia.
135	
136	Forty-two cases were the definite type in at least one eye, and the remaining 17 cases were
137	the suspect type. Of the 42 definite cases, 14 cases were bilateral, and 20 cases were definite
138	in one eye and suspect type in the contralateral eye, and the remaining 8 cases were
139	unilateral. Of the 17 suspect cases, 13 were bilateral and 4 cases were unilateral.
140	
141	The demographics data of 35 eyes with SSOH and 35 eyes of the normal controls are shown
142	in Table 2. Among the 35 eyes with SSOH, 22 cases were the definite type and 15 cases were
143	the suspect type. There were no significant differences in age, sex distribution, refractive
144	error, and MDs between the eyes with SSOH and normal controls.
145	

146	The average total RNFL thickness was significantly thinner in the SSOH patients than that of
147	the control group (P < 0.001; Mann-Whitney U test). The RNFL thickness in the superior,
148	nasal, and inferior sectors were significantly thinner in the SSOH eyes than in the normal
149	control eyes (all except the nasal sector $P < 0.001$; Mann-Whitney U test; Table 3). In the
150	hourly analyses, the RNFL was significantly thinner at the 10, 11, 12, 1, 2, 3, 5, and 6 o'clock
151	sectors than in the normal controls (all P <0.001; Mann-Whitney U tests; Table 3).
152	
153	Discussion
154	
155	Our results showed that approximately one-half of the 106 SSOH eyes were the definite type
156	(56 eyes, 52.8%) and one-half the suspect type (50 eyes, 47.2%). Twenty-two of the SSOH
157	cases (37.3%) were only the definite type, 17 cases (28.8%) were only the suspect type, and
158	20 cases (33.9%) had both types in their two eyes. Forty-two cases (71.2%) had definite type
159	in at least one eye. Although none of our cases had reduced BCVA, the severity of the VF
160	defects varied among the definite type of SSOH eyes.
161	

162 Yamamoto et al. [6] estimated that the prevalence of SSOH was about 0.3% in the Japanese

163	population, and approximately two-thirds of the SSOH patients were the definite type. They
164	found 54 eyes of 37 cases with SSOH. Their results showed that approximately one-half of
165	the 54 SSOH eyes were the definite type (28 eyes, 51.9%) and one-half the suspect type (26
166	eyes, 48.1%). Eighteen of the SSOH cases (48.6%) were only the definite type, 14 cases
167	(37.8%) were only the suspect type, and 5 cases (13.5%) had both types in their two eyes.
168	Twenty-three cases (62.2%) had definite type in at least one eye. Although the subjects were
169	from a large-scale eye disease screening study, and the participant's age was limited to those
170	>40 years [6], the proportion of definite SSOH type is comparable to our findings.
171	
172	Comparisons of the RNFL thicknesses measured by OCT between eyes with SSOH and
173	normal controls showed a thinning of the superior RNFL sectors, and this thinning may be
174	useful in differentiating cases with SSOH from normal controls [11-13,16,17]. Unoki et al.
175	[11] reported that the RNFL thickness in 7 eyes with SSOH was reduced significantly in only
176	the 12 and 1 o'clock sectors compared to 13 normal eyes as determined by analyzing the TD-
177	OCT images. The RNFL thinning, however was reported to expand into wider areas in SSOH
178	eyes by other subsequent studies using both TD- and SD-OCT instruments. Lee et al. [12]
179	reported a decrease in the RNFL thickness in all segments except the 8-9 o'clock sector in

180	eyes with SSOH compared to normal subjects using TD-OCT. Fuse et al. [13] reported that
181	the thinning of the RNFL in eyes with SSOH was present in all sectors except at the 7 to 10
182	o'clock segments, i.e., the inferotemporal to temporal segments using TD-OCT. Hayashi et
183	al. [17] reported that the RNFL in eyes with SSOH was significantly thinner than that of
184	normal subjects in the superotemporal to nasal region, 41 to 230 degrees, using SD-OCT.
185	Recently, Han et al. [18] compared the RNFL thickness in 31 SSOH eyes, 33 NTG eyes, and
186	49 normal eyes using SD-OCT. They also found thinner RNFL in a wider area, e.g., all
187	except at 6 to 9 o'clock segment, in SSOH eyes compared to normal eyes. We showed that
188	not only the superior sectors, i.e., 11-12-1-2 o'clock, but also the 3, 5, and 6 o'clock sectors
189	were thinner. This is in agreement with the results from previous studies.[11-13, 17,18]
190	However, the slight differences among reports might result from the difference in the OCT
191	device used and the SSOH patients studied. Frisen et al. [19] reported that the degree of optic
192	nerve hypoplasia varied considerably ranging from severe to a minimal hypoplasia.
193	
194	There are limitations in this study including the relatively small sample size, a hospital-based
195	cohort, and a cross-sectional study. Because our diagnosis was based on the ocular finding at

196 the initial visit, a future development of glaucoma cannot be ruled out. The incidence of

197	SSOH eyes accompanied by open angle glaucoma was 10.6% (6/59). Lee et al. [20] reported
198	that it was 19.7%. The estimated incidence of SSOH eyes coexisting in eyes with OAG was
199	nearly 2 to 5 times higher than that the prevalence of OAG observed in the Tajimi Health
200	Care Project [9] although our study and that of Lee et al [20] were not epidemiologic studies.
201	
202	In conclusion, SD-OCT examinations showed that the RNFL in eyes with SSOH is
203	significantly thinner than that of normal controls except in the temporal segment. Evaluation
204	of the RNFL thicknesses especially the 11, 12, and 1 o'clock segments was useful for
205	differentiating normal from SSOH eyes. Although the hypoplasia in SSOH eyes is generally
206	thought to be non-progressive [21,22], care should be taken not to overlook coexisting
207	glaucoma and the future development of NTG [23]. Further large-scaled population-based
208	investigations will be required to address this issue because of the variations in the degree of
209	RNFL thickness in SSOH eyes.

210	References	

211	1.	Kim RY, Hoyt WF, Lessell S, Narahara MH. Superior segmental optic hypoplasia.
212	A sign of	f maternal diabetes mellitus. Am J Ophthalmol. 1989;107:1312-5.
213	2.	Landau K, Djahanshahi-Bajka J, Kirchschläger BM. Topless optic disks in children
214	of mothe	ers with type I diabetes mellitus. Am J Ophthalmol. 1998;125:605-11.
215	3.	Petersen RA, Walton DS. Optic nerve hypoplasia with good visual acuity and
216	visual fie	eld defects. Arch Ophthalmol. 1997;95:254-8.
217	4.	Bjork A, Laurell CG, Laurell U. Bilateral optic nerve hypoplasia with good visual
218	acuity. A	am J Ophthalmol. 1978;86:524-9.
219	5.	Nelson M, Lessell S, Sadun AA. Optic nerve hypoplasia and maternal diabetes
220	mellitus.	Arch Neurol. 1986;43:20-5.
221	6.	Yamamoto T, Sato M, Iwase A. Superior segmental optic hypoplasia found in
222	Tajimi E	ye Health Care Project participants. Jpn J Ophthalmol. 2004;48:578-83.
223	7.	Han SB, Park KH, Kim DM, Kim TW. Prevalence of superior segmental optic
224	nerve hy	poplasia in Korea. Jpn J Ophthalmol. 2009;53:225-8.
225	8.	Seo S, Lee CE, Kim DW, Kim YK, Jeoung JW, Kim CY, et al. Prevalence and risk
226	factors o	f superior segmental optic hypoplasia in a Korean population: the Korea National

227	Health and Nutrition Examination Survey. BMC Ophthalmol. 2014;14:157.
228	9. Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, et al. The prevalence
229	of primary open-angle glaucoma in Japanese. The Tajimi study. Ophthalmology.
230	2004;111:1641-8.
231	10. Shiose Y, Kitazawa Y, Tsukahara S, Akamatsu T, Mizokami K, Katsushima H, et al.
232	Epidemiology of glaucoma in Japan. A nationwide glaucoma survey. Jpn J Ophthalmol.
233	1991;35:133-55.
234	11. Unoki K, Ohba N, Hoyt WF. Optical coherence tomography of superior segmental
235	optic hypoplasia. Br J Ophthalmol. 2002;86:910-4.
236	12. Lee HJ, Kee C. Optical coherence tomography and Heidelberg retina tomography
237	for superior segmental optic hypoplasia. Br J Ophthalmol. 2009;93:1468-73.
238	13. Fuse N, Aizawa N, Yokoyama Y, Nakamura M, Omodaka K, Sado K, et al.
239	Analysis of retinal fiber layer thickness in superior segmental optic hypoplasia (SSOH).
240	Nippon Ganka Gakkai Zasshi. 2012;116:575-80.
241	14. Yamada M, Ohkubo S, Higashide T, Nitta K, Takeda H, Sugiyama K.
242	Differentiation by imaging superior segmental optic hypoplasia and normal-tension glaucoma
243	with inferior visual field defects only. Jpn J Ophthalmol. 2013;57:25-33.

244	15.	Wojtkowski M, Bajraszewski T, Targowski P, Kowalczyk A. Real-time in vivo
245	imaging	by high-speed spectral optical coherence tomography. Opt Lett. 2003;28:1745-7.
246	16.	Nassif N, Cense B, Park BH, Yun SH, Chen TC, Bouma BE, et al. In vivo human
247	retinal in	maging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett.
248	2004;29	:480-2.
249	17.	Hayashi K, Tomidokoro A, Konno S, Mayama C, Aihara M, Araie M. Evaluation of
250	optic net	rve head configurations of super segmental optic hypoplasia by spectral-domain
251	optical c	coherence tomography. Br J Ophthalmol. 2010;94:768-72.
252	18.	Han JC, Choi DY, Kee C. The Different Characteristics of Cirrus Optical
253	Coheren	ce Tomography between Superior Segmental Optic Hypoplasia and Normal Tension
254	Glaucon	na with Superior Retinal Nerve Fiber Defect. J Ophthalmol. 2015;2015:641204.
255	19.	Frisen L, Holmegaard L. Spectrum of optic nerve hypoplasia. Br J Ophthalmol.
256	1987;62	:7-15.
257	20.	Lee HJ, Ozaki M, Okano M, Kee C. Coexistence and development of an open-
258	angle gl	aucoma in eyes with superior segmental optic hypoplasia. J Glaucoma. 2015;24:207-
259	13.	
260	21.	Hayashi K, Tomidokoro A, Aihara M, Tsuji H, Shirato S, Araie M. Long-term

261	follow-u	p of superior segmental optic hypoplasia. Jpn J Ophthalmol. 2008;52:412-4.
262	22.	Takagi M, Abe H, Hatase T, Yaoeda K, Miki A, Shirakashi M. Superior segmental
263	optic ner	ve hypoplasia in youth. Jpn J Ophthalmol. 2008;52:468-74.
264	23.	Fujimoto N. Differentiation and combination of optic nerve hypoplasia and
265	glaucom	a. Neuroophthalmol Jpn 2007;24:426-32.
266		

All patients	106 eyes of 59 cases				
			Def. – Def.	14	
	Definite type	42	Def – Susp	20	
Type of SSOH	(Def.)	72	Dell. Susp.	20	
				8	
(number of cases)	G		a a	10	
	Suspect type		Susp. – Susp.	13	
	(Sups.)		Susp. – (-)	4	
Sex (men/women)	27/32				
Age (years)	35.7 ± 15.7 (7 to 71)				
IOP (mmHg)	14.9 ± 3.4 (7 to 26)				
Refractive error (diopters)	-3.63 ± 3.38 (-13.38 to +1.25).				
Mean deviation (decibels)	-2.51 ± 4.00 (-22.24 to +3.14)				

267 Table 1. Demographics and Clinical Findings of SSOH Patients

268 SSOH, superior segmental optic hypoplasia; IOP, intraocular pressure; Def, definite type;

269 Susp, suspect type.

270 Values are mean \pm standard deviation (range).

	SSOH eyes	Control	P value	
	(n=35)	(n=35)		
Age (years)	45.8±15.3 (19 to 71)	43.5±11.6 (26 to 64)	0.476	
Sex (men/women)	14/21	15/20	0.808	
Refractive error (diopters)	-2.11 ± 2.20	-1.60 ± 1.25	0.290	
	(-5.88 to +2.25)	(-5.25 to +1.85)		
IOP (mmHg)	14.3 ± 3.3 (7 to 21)	13.5 ± 2.0 (10-17)	0.242	

272 SSOH, superior segmental optic hypoplasia; IOP, intraocular pressure.

273 Values are the means \pm standard deviations (range).

Table 3. Comparison of the Retinal Nerve Fiber Layer Thickness Measured by OCT among

OCT Parameters Total average		SSOH eyes		Control		P value
		70.3	± 11.3	94.7	± 7.1	< 0.001
Quadrant	Superior	65.8	± 15.7	120.7	± 13.1	< 0.001
	Nasal	57.4	± 11.3	69.9	± 12.0	< 0.001
	Inferior	99.2	± 25.7	119.3	± 14.6	< 0.001
	Temporal	58.6	± 13.9	68.7	± 10.7	< 0.001
Clock-hour	1	53.0	± 14.3	107.3	± 19.4	< 0.001
	2	53.9	± 15.7	80.7	± 15.8	< 0.001
	3	46.9	± 11.0	56.9	± 7.8	< 0.001
	4	53.7	± 9.3	60.2	± 10.3	0.014
	5	71.4	± 21.2	92.2	± 24.5	0.001
	6	99.3	\pm 30.9	123.6	± 22.3	0.001
	7	127.6	± 39.5	141.2	± 19.7	0.137
	8	75.7	± 19.2	78.7	± 17.4	0.496
	9	51.5	± 7.8	55.3	± 8.2	0.076

276 Subjects with SSOH and Normal Controls

10	0	66.6	± 18.7	84.0	± 16.1	< 0.001
11	1	83.6	± 24.9	136.8	± 19.5	< 0.001
12	2	60.5	± 20.1	118.0	± 21.9	< 0.001

277 OCT: Optical coherence tomography; SSOH: superior segmental optic hypoplasia

- 278 Values are mean \pm standard deviation (range).
- 279 Quadrant sectors: Mann-Whitney U test and Bonferroni correction P < 0.0125, Clock-hour
- 280 sectors: Mann-Whitney U test and Bonferroni correction P < 0.0042