1 **Title of the article:**

2 In vitro functional analysis of four variants of human asparagine synthetase

4	Authors' names and institutional affiliations:
5	Hideki Matsumoto ¹ , Nana Kawashima ² , Takahiro Yamamoto ^{1,3} , Mina Nakama ⁴ , Hiroki
6	Otsuka ¹ , Yasuhiko Ago ¹ , Hideo Sasai ^{1,4} , Kazuo Kubota ^{1,3,4} , Michio Ozeki ¹ , Norio
7	Kawamoto ¹ , Yukihiro Esaka ² , Hidenori Ohnishi ^{1,3,4}
8	¹ Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
9	² Laboratory of Pharmaceutical Analytical Chemistry, Gifu Pharmaceutical University,
10	Gifu, Japan
11	³ Educational Support Center for Pediatric Home-Based Medical Care, Graduate School
12	of Medicine, Gifu University, Gifu, Japan
13	⁴ Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
14	
15	Name, email address and full postal address, including postal (ZIP) code, of the
16	author who will be dealing with correspondence and proofs: Hideo Sasai,
17	sasai@gifu-u.ac.jp, Department of Pediatrics, Graduate School of Medicine, Gifu
18	University, Yanagido 1-1, Gifu 501-1194, Japan

20	Word count for the text and summary: text 3860words; summary: 219 words
21	Number of figures and tables: figures: 4; tables: 0
22	Supporting Information: figures 2; Supplemental Information text: Additional
23	References
24	
25	Whether a color picture is provided that may be used for the front cover of the issue
26	in which the article appears: Unfortunately, we do not have a suitable picture for the
27	cover of JIMD.

29 Summary

30 The loss-of-function variants of the human asparagine synthetase (ASNS) gene cause 31 asparagine synthetase deficiency (ASNSD). Diagnosis of ASNSD requires genetic tests 32 because a specific biochemical diagnostic for ASNSD is not available. There are a few 33 reports describing the functional evaluation of ASNS variants. Therefore, in vitro 34 methods to evaluate the detected variants in patients are needed. In this report, five types 35 of human ASNS proteins (wild-type and our reported four variants: p.Leu145Ser, 36 p.Leu247Trp, p.Val489Asp, p.Trp541Cysfs*5) were expressed in silkworm using a 37 baculoviral expression system. An enzymatic activity assay of ASNS was performed, and 38 the concentration of asparagine by ninhydrin and HPLC methods using the purified 39 recombinant proteins was measured. We established ASNS deficient HEK293 cells using 40 the CRISPR/Cas9 method, and evaluated the growth of cells without asparagine after 41 transduction of ASNS variants with a lentiviral expression system. The four ASNS 42 variants displayed significantly low enzymatic activity. The ASNS deficient HEK293 43 cells transduced with wild-type ASNS grew without asparagine, whereas cells transduced 44 with the variants did not grow or showed significantly slower growth than cells 45 transduced with wild-type ASNS. Herein, we established a method for evaluating the enzymatic activity of the recombinant human ASNS variants. The results of the 46

- 47 cell-based assay corroborated the results of the enzymatic activity. These methods should
- 48 enable the evaluation of the pathogenicity of ASNS variants.
- 49
- 50 Synopsis: We established *in vitro* assays to evaluate the pathogenicity of asparagine
- 51 synthetase (ASNS) gene variants.
- 52

53 Compliance with Ethics Guidelines

54	Conflict of Interest:	The authors	declare no	potential	conflict of interest.
----	------------------------------	-------------	------------	-----------	-----------------------

- 55 Informed Consent: No specimens derived from patients were used.
- 56 Animal rights: We did not use laboratory animals.
- 57 Details of the contributions of individual authors: H.M. performed protein expression,
- 58 enzyme assay experiments and analyzed enzymatic activity by the ninhydrin method.
- 59 N.K. and Y.E. developed and performed the HPLC fluorescence detection method and
- 60 wrote the method part of the HPLC analysis.
- 61 H. S., H.O. and H.M. designed the study.
- 62 M.N. designed primers of the CRISPR/Cas9 method for knock-out of the ASNS gene.
- 63 H.M., T.Y., M.N., H.O., Y.A., H.S., K.K, M.O., N.K. and H.O. wrote the paper.
- 64 The name of the corresponding author: Hideo Sasai
- 65 Details of funding: This research was partially supported by the Practical Research
- 66 Project for Rare/Intractable Diseases from Japan Agency for Medical Research and
- 67 Development (AMED) (JP19ek0109276, JP20ek0109482) to Hideo Sasai; and by the
- 68 Grants-in-Aid from the Japanese Ministry of Education, Culture, Sports, Science, and
- 69 Technology of Japan (16K19637) to Kazuo Kubota.

70 Details of ethics approval: This study was carried out under approval by the ethics
71 review committee of Gifu University Medical Research (Protocol numbers 3–14 and
72 3–30).

A list of approximately six keywords: *ASNS*, asparagine synthetase, asparagine
synthetase deficiency, enzyme assay, HPLC fluorescence detection, lentiviral expression
system.

76

77 **1. INTRODUCTION**

78 Asparagine synthetase (ASNS) is the only enzyme that biosynthesizes asparagine in 79 humans. ASNS produces asparagine, glutamate and AMP from aspartate, glutamine (or 80 ammonia) and ATP.¹ The ASNS gene (NM 133436.3), which encodes ASNS, is 81 expressed in whole body tissue, and gene expression is particularly strong in neurons.² 82 Asparagine synthetase deficiency (ASNSD) (OMIM: 615574), first described by Ruzzo 83 et al.³ in 2013, is an autosomal recessive disease caused by biallelic variants of the ASNS gene, resulting in congenital microcephaly, intractable seizures and severe psychomotor 84 developmental delays. The specific pathogenesis of ASNSD remains unknown⁴; however, 85 86 ASNSD may reduce proliferation of neural cells in the central nervous system under 87 asparagine-free conditions.

88	Currently, more than 50 cases of ASNSD have been reported (Figure S1), and
89	several crucial problems in the diagnosis and treatment of ASNSD exist. Experiments
90	with fibroblasts established from ASNSD patients ^{3,5,6} and the report of an ASNSD mouse
91	model ³ suggest that a decrease in ASNS expression or reduced enzymatic activity may
92	play a key role in the pathogenesis of ASNSD. However, it is difficult to quantitatively
93	assess the enzymatic activity of ASNS in vivo. The concentrations of amino acids in
94	serum and spinal fluid were not consistently altered in ASNSD patients, ⁴ and there are no
95	biochemical diagnostic methods for ASNSD currently available.
96	ASNSD is generally diagnosed by the detection of biallelic ASNS variants and
97	ASNS enzymatic activity is indirectly assessed by using fibroblasts taken from patients;
98	however, most reported ASNSD cases have been diagnosed based on clinical phenotypes
99	and by genetic variants evaluated using in silico prediction. Furthermore, because most of
100	the genetic variants identified in ASNSD patients are missense variants, it is difficult to
101	confirm the pathogenicity of these variants. Therefore, there are some cases that are
102	difficult to diagnose solely by genetic analysis because of the lack of accumulated
103	information on functional analysis of ASNS variants.
104	In this study, to resolve these issues we established a new method to express
105	recombinant ASNS proteins and quantitative assessment methods to measure the

enzymatic activity of ASNS. In addition, ASNSD model cells and the lentivirus
transduction system were established to confirm the pathogenicity of the *ASNS* gene
variants.

109

110 2. MATERIALS AND METHODS

111 **2.1 Vector preparation**

- 112 The cDNA of the *ASNS* gene (accession number: NM_133436.3, position 507–2192)
- 113 with a 3' terminal 6×His-tag was chemically synthesized and cloned into the pFastBac1
- 114 vector (Invitrogen, Carlsbad, CA, USA). Four different expression constructs were
- 115 created using site-directed mutagenesis (four variants of ASNS: p.Leu145Ser (c.434T>C),

116 p.Leu247Trp (c.740T>G), p.Val489Asp (c.1466T>A), p.Trp541Cysfs*5

- 117 (c.1623_1624del)). For the p.Trp541Cysfs*5 variant expression construct, the 6×His-tag
- 118 was added just before the new termination codon generated by the frameshift mutation.
- 119 The cDNA of the *ASNS* gene was cloned into the pLVSIN-EF1α-AcGFP-N1
- 120 vector (Takara Bio Inc., Otsu, Japan). Vectors of the four ASNS variants were created as
- 121 described above. For the p.Trp541Cysfs*5 variant expression construct, the new
- 122 termination codon generated by the frameshift mutation was skipped.
- 123

2.2 Cell culture

125	All cells were incubated at 37 °C in a humidified atmosphere of 5% CO ₂ . Dulbecco's
126	modified Eagle's medium (DMEM) (FUJIFILM Wako Pure Chemical Corporation,
127	Osaka, Japan; Cat. No. 044–29765) with 10% heat-inactivated fetal bovine serum,
128	penicillin (100 units/mL) and streptomycin (100 μ g/mL) was used. Sterilized asparagine
129	(final concentration of 500 μM) was added to DMEM as needed because DMEM does not
130	contain asparagine.
131	
132	2.3 Visible protein detection
133	Protein samples were loaded onto a 10% XV PANTERA gel (D.R.C. Co., Tokyo, Japan;
134	CAT No. NXV-225P). The gel was stained with Coomassie Brilliant Blue (CBB; final
135	concentration 0.1% CBB-R250, 45% methanol, 10% acetic acid) when required. We used
136	anti-ASNS (Sigma-Aldrich, St. Louis, MO, USA; Cat. No. A6485), anti-His-tag
137	(FUJIFILM Wako Pure Chemical Corporation; Cat. No. 010-23181), anti-GFP (Clontech
138	Laboratories, Inc., Mountain View, CA, USA; Cat. No. 632380) and anti-β-actin
139	(FUJIFILM Wako Pure Chemical Corporation; Cat. No. 010-27841) antibodies, as well
140	as iBlot TM 2 Dry Blotting System (Invitrogen, Waltham, MA, USA; Cat. No. IB21001),
141	iBlot [™] 2 Transfer Stacks and PVDF (Invitrogen; Cat. No. IB24001) for immunoblotting.

142 The signals were visualized using a light capture system (ATTO, Tokyo, Japan; Cat. No.143 AE6970CP).

145	2.4 Expression of recombinant human ASNS proteins by silkworms
146	We used modified methods based on previous reports. ^{7,8} The donor plasmids of the
147	pFastBac1 vectors containing the human ASNS gene were transformed into Escherichia
148	coli BmDH10Bac. BmNPV bacmid DNA was purified from BmDH10Bac cells by using
149	the Qiagen Plasmid Maxi Kit (Qiagen, Hilden, Germany; Cat. No. 12163). Then, One
150	microgram BmNPV bacmid DNA and 1 μ L Cellfectin II reagent (Invitrogen; Cat. No.
151	10362100) suspended in Grace insect cell medium were injected into 5th instars <i>Bombyx</i>
152	<i>mori</i> silkworm larvae. The silkworms were reared in a 25 °C incubator with food changed
153	every 24 h. After 6 to 8 days following BmNPV bacmid DNA injection, the fatty body
154	was recovered from the recombinant BmNPV-infected larvae and phosphate-buffered
155	saline (PBS) and sodium thiosulfate (final concentration 0.5% w/v) were added
156	immediately. Fluid and fatty body recovered from the larvae were centrifuged at 4 °C and
157	20,000 × g for 10 min. The supernatant was discarded and the precipitant dissolved in 2
158	mL lysis buffer (50 mM HEPES, 150 mM NaCl, 10 mM imidazole, 10 mM aspartate, 15
159	mM glutamine, 1 mM DTT, 5 mM ATP·nH2O, cOmplete TM Protease Inhibitor Cocktail,

160	pH 8.0) and homogenized sufficiently by using a Dounce tissue grinder. After
161	centrifugation at 4 °C and 20,000 ×g for 60 min, the supernatant was passed through 1.2,
162	0.45 and 0.22 μm filters, placed in dialysis tubing (MWCO 50,000) and dialyzed against
163	1 L lysis buffer for 8 to 12 h. The dialysis step was carried out twice. After dialysis, the
164	recombinant ASNS protein was separated from other cellular proteins and material by
165	Ni-NTA affinity chromatography (GE Healthcare Bio-Sciences AB., Uppsala, Sweden;
166	Cat. No. 17–5318–02) using a lysis buffer and elute buffer (50 mM HEPES, 150 mM
167	NaCl, 500 mM imidazole, 10 mM aspartate, 15 mM glutamine, 1 mM DTT, 5 mM
168	ATP·nH ₂ O, cOmplete TM Protease Inhibitor Cocktail, pH 8.0). Ten milliliters of the elute
169	buffer containing the purified recombinant ASNS protein was centrifuged and
170	concentrated at 4 °C and 3000 ×g for 40 min using Amicon TM Ultra-15 Centrifugal Filter
171	Units (30,000 MWCO) (Millipore, Billerica, MA, USA; Cat. No. UFC903024). The
172	concentration of recombinant ASNS was measured by the Lowry protein assay. Protein
173	expression was performed at least three times each for the five ASNS constructs (i.e.,
174	wild-type and four variants).
175	

2.5 Quantitative evaluation of ASNS enzymatic activity

177	We prepared four samples per protein. Sixty-four micrograms of recombinant ASNS was
178	added to 150 μ L ASNS enzyme assay mix A (100 mM EPPS, 150 mM NaCl, 10 mM
179	MgCl ₂ ·6H ₂ O, 1 mM DTT, 10 mM glutamine, 10 mM aspartate, 5 mM ATP·nH ₂ O, pH
180	8.0) or ASNS enzyme assay mix B (100 mM EPPS, 150 mM NaCl, 10 mM MgCl ₂ ·6H ₂ O,
181	1 mM DTT, 50 mM ammonium acetate, 10 mM aspartate, 5 mM ATP·nH2O, pH 8.0).
182	After adding the protein, one sample was boiled immediately for 5 min (inactivated
183	protein sample), and another sample was incubated at 37 °C for 60 min and then boiled
184	for 5 min (activated protein sample). The samples were examined by the following two
185	methods.
186	The asparagine concentration was measured by the modified method established
187	by Sheng et al. ⁹ The samples were centrifuged and 110 μ L of the supernatant was added
188	to 990 μ L of 0.05 % ninhydrin (dissolved in 100% ethanol). This sample was incubated at
189	37 °C for 180 min. The absorbance at 340 nm was measured by using an Hitachi U-2910
190	spectrophotometer (Hitachi High-Technologies Corp. Tokyo, Japan).
191	The asparagine and glutamate concentrations were also measured by the
192	modified HPLC fluorescence detection method. ¹⁰ After the enzyme reaction, samples
193	were centrifuged at 4 °C and 20,000 $\times g$ for 60 min with a 3 K molecular weight cut-off
194	filter. The filtered liquid was diluted to an appropriate concentration and 140 μL of the

•

195	diluted solution was mixed with 10 μL 50 mM KCN (dissolved in borate buffer, pH 9.5)
196	and 50 μL 4 mM NDA (dissolved in 100% methanol) and manually injected into the
197	HPLC system. The HPLC system consisted of two PU-980 pumps (JASCO Corp., Tokyo,
198	Japan), a FP-2025 Plus fluorescence detector (JASCO Corp.), a CO-965 column oven
199	(JASCO Corp.) equipped with a Model 7125 syringe-loading sample indicator (Reodyne,
200	Berkeley, CA, USA) and a reversed-phase TSKgel ODS-100V column (Tosoh
201	Corporation Tokyo, Japan, 3 $\mu m,$ 4.6 \times 150 mm). The column oven was 40 °C, the flow
202	rate was 0.4 mL per min, the excitation wavelength was 420 nm, the fluorescence
203	wavelength was 490 nm and the measurement was performed using an eluent of 0.2 M
204	acetate buffer (pH 4.6)/Acetonitrile -Plus- (KANTO CHEMICAL CO., INC., Tokyo,
205	Japan; Cat. No. 01031-1B) at a ratio of 70/30. Next, 140 μ L of various amino acid
206	solutions (glutamine, glutamate, asparagine, aspartate) of known concentrations were
207	mixed with 10 μL 50 mM KCN and 50 μL 0.4 mM NDA, derivatized for 20 min and 20
208	μL of the mixture was taken and measured using the same HPLC method described above
209	to measure the concentration of each amino acid in the sample using the absolute
210	calibration curve method. The calibration curves were linear across the examined
211	dynamic range of 3.5 to 600 nM ($n = 6$, $r^2 = 0.998$) for asparagine and 15 to 600 nM ($n =$
212	6, $r^2 = 0.990$) for glutamate.

213	The enzymatic activity of each protein was calculated by subtracting the value of
214	the amino acid concentration of the inactivated protein sample from the activated protein
215	sample. All measurements were performed three times for each sample and the average
216	value was recorded. Evaluation of enzymatic activity was performed at least three times
217	for each of the five ASNS proteins.
218	
219	2.6 Generation of an ASNS deficient HEK293 cell line
220	We created the ASNS deficient HEK293 cell line by using the CRISPR/Cas9 method.
221	Initially, pX330-U6-Chimeric_BB-CBH-hSpCas9 plasmid (Addgene, Cambridge, MA,
222	USA; Cat No. 42230) with the target sequence (5'-GGATATTTCTTCACTCGAAT-3')
223	was prepared. A double-strand DNA break point (DSB) was placed between c.187 and
224	c.188, which is located in ASNS exon 4. HEK293 cells (Japanese Collection of Research
225	Bioresources, Osaka, Japan) processed after the plasmid nucleofection with
226	Nucleofector TM II (Lonza Biosciences, Cologne, Germany; Cat. No. AAD-1001N) and
227	Nucleofector TM kit V (Amaxa, Cologne, Germany; Cat. No. VCA-1003) were performed
228	limited dilution, and then selected ASNS deficient cells. The loss of ASNS protein
229	expression for these cells was confirmed by immunoblotting analysis.
230	

231 2.7 Gene transduction of human ASNS into the ASNS deficient HEK293 cell line 232 using lentiviruses Using the Lenti-X 293T cell line (Takara Bio Inc.; Cat. No. Z2180N) and the 233 234 pLVSIN-EF1a-AcGFP-N1 vector (five types of ASNS vectors and the empty pLVSIN-EF1a-AcGFP-N1 vector), we transduced various ASNS vectors into ASNS 235 236 deficient HEK293 cells. The Lenti-X 293T cell line was spread on 9 cm plates in diameter 237 with 5.0×10^6 cells per plate and cultured in DMEM for 24 h. The 238 pLVSIN-EF1a-AcGFP-N1 vector (5.5 µg) was added to 7 µL Lentiviral Mix High Titer 239 Packaging Mix (Takara Bio Inc.; Cat. No. 6194), 1500 µL serum free DMEM and 45 µL 240 Trans IT-293 Transfection Reagent (Takara Bio Inc.; Cat. No. MIR2704). After 15 min, 241 this mixture was added to Lenti-X 293T cells and incubated at 37 °C. After 24 h, the 242 medium was exchanged to DMEM. After a further 48 h, the culture medium was 243 collected and passed through a 0.45 µm filter (this solution contains recombinant 244 lentiviruses). Six different recombinant lentiviral solutions were prepared using the five 245 types of ASNS vectors and the pLVSIN-EF1a-AcGFP-N1 vector. ASNS deficient 246 HEK293 cells were spread into 6-well plates with 2.0×10^5 cells per well. The 247 recombinant lentiviral solution was diluted with DMEM to give solutions with initial 248 concentrations of 1/2, 1/4, 1/8, 1/16, 1/32 and 1/64. The medium was discarded from each

249	well, and 2 mL of the recombinant lentiviral solutions were added to each well. Polybrene
250	was added to the medium to a final concentration of 4 μ g/mL. After 48 h, puromycin was
251	added to a final concentration of 2.5 μ g/mL. To select stably GFP-only or C-terminal
252	GFP-fused ASNS expressing cells, repeated exchange of the medium and the addition of
253	puromycin (final concentration of 2.5 $\mu g/mL)$ were performed every 48 h. ASNS
254	expression in these cells was evaluated by immunoblotting using whole cell lysates.
255	
256	2.8 Cell proliferation assay
257	HEK293 cells were spread into 6-well plates with 1.0×10^5 cells per well. Twenty-four
258	hours after spreading, the medium was exchanged to DMEM (asparagine free) (day 0).
259	The medium was exchanged every 24 h and cell counts were measured 24, 48 and 72 h
260	after the first medium change. Next, the same cell proliferation assay was performed
261	using DMEM (with asparagine). These measurements were performed three times for
262	each cell line.
263	
264	2.9 Statistical analysis
265	Statistical analysis was performed by using Prism 9 (GraphPad Software, LLC., San
266	Diego, CA, USA). The statistical significance of the differences was determined by

267 one-way ANOVA, Welch's t-test or Student's t-test. Statistical significance was assigned 268 to be P < 0.05.

269

```
270 3. RESULTS
```

- 271 **3.1 Expression of recombinant human ASNS**
- 272 The purified recombinant ASNS proteins were visualized by a CBB-stained SDS-PAGE
- 273 gel (Figure 1A). The predicted molecular weights of the C-terminal 6×His-tagged ASNS

wild-type and p.Trp541Cysfs*5 variant were approximately 64.8 and 63.3 kDa,

- 275 respectively. Compared with wild-type ASNS, the p.Leu145Ser and p.Val489Asp
- 276 variants gave weaker bands in the SDS-PAGE analysis, suggesting that these ASNS
- 277 proteins were less stable. The results of immunoblot analysis with the anti-ASNS and
- anti-His-tag antibodies are shown in Figures 1B and 1C, respectively. Recombinant
- 279 His-tagged ASNS were expressed as designed.
- 280

281 **3.2** Quantitative evaluation of ASNS enzymatic activity

282 Using the recombinant ASNS proteins and glutamine as an amino group donor, the

- 283 concentration of asparagine produced by the enzymatic reaction and measured by the
- 284 ninhydrin method is shown in Figure 2A. The four variants showed significantly low

285	enzymatic activity when compared with that of the wild-type protein. All variants except
286	for the p.Trp541Cysfs*5 variant showed slight residual activity. The results using
287	ammonium acetate as an amino group donor are shown in Figure 2B. A clear difference in
288	enzymatic activity between the wild-type ASNS and the four variants was observed;
289	however, the p.Leu247Trp variant yielded a slightly different result (the residual activity
290	was stronger if using ammonium acetate as an amino group donor) when compared with
291	the results in Figure 2A.
292	The asparagine and glutamate concentrations of the same specimens used in
293	Figure 2A measured by the HPLC fluorescence detection method are presented in Figures
294	2C and 2D, respectively. The results are similar to those of Figure 2A. The same amount
295	of asparagine and glutamate were produced by the enzymatic reaction of recombinant
296	ASNS proteins.
297	Notably, the enzymatic activity of all recombinant ASNS proteins decreased
298	rapidly after purification and was essentially absent 3 to 4 days after purification (Figure
299	S2A,B,C). Therefore, all recombinant proteins were used for enzymatic activity assays
300	one day after purification.
301	

3.3 Generation and cell proliferation assay of the *ASNS* deficient HEK293 cell line

303	The immunoblot analysis of whole cell lysates extracted from HEK293 cells and ASNS
304	deficient HEK293 cells with the anti-ASNS and anti- β actin antibodies are shown in
305	Figures 3A and 3B, respectively. The DNA sequence derived from the ASNS deficient
306	HEK293 cells showed termination just after the designed DSB, or termination 15 amino
307	acids after the DSB (data not shown), and the subcloned sequences did not reveal the
308	normal ASNS sequence. The results of the cell proliferation assay (with or without
309	asparagine) of ASNS deficient HEK293 cells are shown in Figure 3C. The ASNS deficient
310	HEK293 cells did not grow in medium without asparagine and did not survive.
311	
312	3.4 Gene transduction of human ASNS variants into the ASNS deficient HEK293
312313	3.4 Gene transduction of human ASNS variants into the <i>ASNS</i> deficient HEK293 cell line with lentiviruses and cell proliferation assay of transduced cells
312313314	3.4 Gene transduction of human ASNS variants into the <i>ASNS</i> deficient HEK293 cell line with lentiviruses and cell proliferation assay of transduced cells Immunoblot analysis of the ASNS deficient HEK293 cells transduced with empty
312313314315	3.4 Gene transduction of human ASNS variants into the ASNS deficient HEK293 cell line with lentiviruses and cell proliferation assay of transduced cells Immunoblot analysis of the ASNS deficient HEK293 cells transduced with empty (isolated AcGFP protein expression), ASNS wild-type or variants with AcGFP proteins
 312 313 314 315 316 	 3.4 Gene transduction of human ASNS variants into the ASNS deficient HEK293 cell line with lentiviruses and cell proliferation assay of transduced cells Immunoblot analysis of the ASNS deficient HEK293 cells transduced with empty (isolated AcGFP protein expression), ASNS wild-type or variants with AcGFP proteins expressing lentiviruses with anti-GFP antibodies and anti-β actin antibodies are shown in
 312 313 314 315 316 317 	 3.4 Gene transduction of human ASNS variants into the ASNS deficient HEK293 cell line with lentiviruses and cell proliferation assay of transduced cells Immunoblot analysis of the ASNS deficient HEK293 cells transduced with empty (isolated AcGFP protein expression), ASNS wild-type or variants with AcGFP proteins expressing lentiviruses with anti-GFP antibodies and anti-β actin antibodies are shown in Figure 4A and 4B, respectively. The predicted molecular weight of AcGFP is 26.9 kDa.
 312 313 314 315 316 317 318 	3.4 Gene transduction of human ASNS variants into the ASNS deficient HEK293cell line with lentiviruses and cell proliferation assay of transduced cellsImmunoblot analysis of the ASNS deficient HEK293 cells transduced with empty(isolated AcGFP protein expression), ASNS wild-type or variants with AcGFP proteinsexpressing lentiviruses with anti-GFP antibodies and anti-β actin antibodies are shown inFigure 4A and 4B, respectively. The predicted molecular weight of AcGFP is 26.9 kDa.Recombinant AcGFP-fused ASNS were expressed as designed.
 312 313 314 315 316 317 318 319 	3.4 Gene transduction of human ASNS variants into the ASNS deficient HEK293cell line with lentiviruses and cell proliferation assay of transduced cellsImmunoblot analysis of the ASNS deficient HEK293 cells transduced with empty(isolated AcGFP protein expression), ASNS wild-type or variants with AcGFP proteinsexpressing lentiviruses with anti-GFP antibodies and anti-β actin antibodies are shown inFigure 4A and 4B, respectively. The predicted molecular weight of AcGFP is 26.9 kDa.Recombinant AcGFP-fused ASNS were expressed as designed.The results of the cell proliferation assay (with or without asparagine) using

321	wild-type or variants of ASNS are shown in Figure 4C. Expression of wild-type ASNS
322	gave good cell proliferation with or without asparagine in the medium. However, when
323	the p.Leu145Ser, p.Val489Asp or p.Trp541Cysfs*5 variants were expressed, cell
324	proliferation was similar to ASNS deficient HEK293 cells. In contrast, when the
325	p.Leu247Trp variant was expressed, the cell proliferation pattern was similar to the
326	proliferation profile of HEK293 cells expressing wild-type ASNS, except proliferation
327	was slightly slower.
328	
329	4. DISCUSSION
330	ASNSD is a rare and intractable inborn error of metabolism. A diagnostic method and
331	effective therapy for this disease are not available. To overcome these issues, we showed
332	three important findings in this study: 1) we established a novel expression method of
333	biologically active recombinant ASNS; 2) all variants found in Japanese ASNSD patients
334	showed reduced ASNS enzymatic activity; and 3) the proliferation of ASNS deficient
335	cells was recovered without the addition of asparagine by transducing wild-type ASNS
336	into cells using lentiviruses.
337	We established an expression protocol by using silkworms to produce
338	recombinant ASNS. Although human ASNS has been produced previously by using

339	Escherichia coli, ¹¹ yeast, ¹² and Sf9 insect cells, ¹³ it has proven difficult to synthesize a
340	large amount of recombinant ASNS that retains enzymatic activity. We established a
341	simple and easy method to express active recombinant ASNS. Therefore, this method
342	may be suitable for use in future enzyme replacement therapy of ASNSD if a method to
343	maintain the stability of the produced recombinant ASNS can be found. Furthermore, as
344	we also expressed ASNS variants successfully, this method should facilitate the
345	evaluation of newly identified genetic variants of ASNS.
346	In previous reports, all Japanese ASNSD patients are compound heterozygote
347	cases, and all variants found in ASNSD patients reported from Japan ¹⁴ show reduced
348	ASNS activity; however, none of the variants in both alleles resulted in a complete loss of
349	enzymatic activity. The p.Leu145Ser and p.Val489Asp variants displayed reduced
350	enzyme stability and activity, and the protein expression level of these variants was low.
351	The p.Leu247Trp and p.Trp541Cysfs*5 variants showed significantly lower enzymatic
352	activity when compared with that of wild-type ASNS, although the p.Leu247Trp variant
353	had a relatively high residual activity. These results suggest that cells from ASNSD
354	patients have residual ASNS activity. Currently, most reported variants of the ASNS gene
355	are missense variants (Figure S1), with only a large deletion reported in one case, ¹⁵
356	indicating that the complete loss of enzymatic activity on both alleles of ASNS may cause

357	embryonic lethality. The genotype-phenotype correlation of ASNSD had not been
358	elucidated. Our method should facilitate the evaluation of how residual activity of ASNS
359	produces different clinical manifestations. There are potential limitations with
360	interpretation of data for the recombinant ASNS proteins used in this study. Recombinant
361	ASNS proteins were expressed with a C-terminal His-tag. This affinity tag facilitates easy
362	and rapid purification of the protein to avoid inactivation of the enzyme when lengthy
363	purification protocols are required for ASNS purification without affinity tags. However,
364	the His-tag may affect enzymatic activity when compared with the activity of the enzyme
365	without this tag, i.e., native state. Nonetheless, to compare the enzymatic activity of
366	wild-type ASNS and variants these His-tagged ASNS proteins were suitable for
367	straightforward determination of the pathogenicity of the variants.
368	Although the p.Leu247Trp variant had relatively high residual activity,
369	especially in the cell proliferation assay, ASNSD patients with this variant had typical
370	ASNSD symptoms. ¹⁴ Human ASNS is hypothesized to exist as a homodimer <i>in vivo</i> . ^{13,16}
371	The formation of heterodimers is possible in compound heterozygous patients. Dominant
372	positive or negative effects of a variant monomer(s) forming a heterooligomer over the
373	other monomer(s) have been described in other inborn errors of metabolism. ¹⁷⁻¹⁹
374	Consequently, the total amount of ASNS activity in vivo may be affected by the

375	combination of variants in compound heterozygous patients. Clarification of this issue
376	requires a novel co-expression method to evaluate the pathogenicity of compound
377	heterozygous patients and is a subject for future study.
378	The crystal structure of human ASNS (PDB ID: 6GQ3) was elucidated by Zhu et
379	al. in 2019. ¹³ ASNS comprises two major domains: residues 1–203 form the glutaminase
380	domain, whereas the synthetase domain consists of residues 204-561. The synthetase
381	domain is highly conserved in among species. ¹³ Structural changes or changes in activity
382	to the four variants analyzed in this study have been discussed in our previous report
383	based on the crystal structure of <i>Escherichia coli</i> asparagine synthetase B (PDB ID:
384	1CT9). ¹⁴ Leu145 is part of a hydrophobic cluster located in the sandwich-like $\alpha/\beta/\beta/\alpha$
385	N-terminal domain and is part of the second β -sheet. ^{13,14} Leu247 is in close proximity to
386	the AMP- and aspartate-binding sites of the C-terminal domain. ^{13,14} Val489 is part of a
387	hydrophobic core in the C-terminal domain. ^{13,14} Trp541 is located at the distal end of the
388	C-terminal domain (residues 536–561). Residues 536–561 of ASNS are absolutely
389	conserved among many species but the function of these residues is unknown. ^{13,14} The
390	Leu145Ser mutation changed the side chain from a hydrophobic to a hydrophilic side
391	chain. This change may disrupt packing between the β -sheets. The conformation of the
392	first β -sheet in relation to the second β -sheet is postulated to be important and plays a key

393	role in folding. The Leu247Trp exchange alters the side chain volume and thus possibly
394	affects a hydrophobic interaction with adjacent residue Phe362, which is near the
395	catalytically crucial residue Glu365. The Val489Asp exchange also changes the side
396	chain type from hydrophobic to hydrophilic. This amino acid exchange may facilitate an
397	interaction with the unstructured C-terminal tail region that disrupts the structure of
398	ASNS. Therefore, Leu145Ser and Val489Asp variants of ASNS may destabilize the
399	native conformation, whereas the Leu247Trp variant of ASNS may reduce enzyme
400	activity.
401	Finally, we successfully established a cell disease model of ASNSD (ASNS
402	deficient HEK293 cells) by using the CRISPR/Cas9 method, and recovered the
403	expression of ASNS and cell growth using the lentiviral expression system. Because cells
404	without ASNS activity cannot survive in asparagine-free medium, the results herein
405	suggest that future gene therapy of ASNSD is feasible. Studies have examined the
406	practical application of gene therapy for unsettled inborn errors of metabolism. ^{20,21} For
407	example, gene therapy using adeno-associated viral vectors for aromatic L-amino acid
408	decarboxylase deficiency that causes severe damage of the central nervous system from a
409	very early stage of life similar to ASNSD have been reported to have dramatic effects. ²⁰
410	Thus, the practical application of gene therapy to treat ASNSD is also anticipated in the

411	future. In addition, ASNSD already shows symptoms such as microcephaly at birth, ⁴ and
412	cases of fetal diagnosis have been reported. ²² Early diagnosis, early intervention and fetal
413	treatment may be necessary. We evaluated the enzymatic activity of reported variants of
414	ASNS using a lentivirus, ASNS deficient HEK293 cells and recombinant ASNS
415	expressed in silkworms. Our experiments succeeded in doubly confirming the evaluation
416	of the enzymatic activity of ASNS variants.
417	
418	5. CONCLUSION
419	We established a method for evaluating the enzymatic activity of human ASNS variants
420	with purified recombinant ASNS produced by silkworms. The results of the cell-based
421	assay were congruous with the enzymatic activity results. These methods should enable
422	the evaluation of the pathogenicity of ASNS variants.
423	
424	ACKNOWLEDGMENTS
425	We thank the late Professor Toshiyuki Fukao (Department of Pediatrics, Graduate
426	School of Medicine, Gifu University, Gifu) for his significant contribution to this study.
427	We thank T. Kimura, N. Sakaguchi, M. Yamamoto and S. Hori (Gifu University) for
428	their technical help. We thank Professor K. Maenaka (Hokkaido University) for kindly

429	providing BmDH10Bac cells during the initial stages of this study. This research was
430	partially supported by the Practical Research Project for Rare/Intractable Diseases from
431	Japan Agency for Medical Research and Development (AMED) (JP19ek0109276,
432	JP20ek0109482) to H. Sasai; and by the Grants-in-Aid from the Japanese Ministry of
433	Education, Culture, Sports, Science, and Technology of Japan (16K19637) to Kazuo
434	Kubota. We thank Edanz Group (https://en-author-services.edanz.com/ac) for editing a
435	draft of this manuscript.
436	
437	CONFLICT OF INTEREST
438	The authors declare no potential conflicts of interest with respect to the research,
439	authorship and/or publication of this article.
440	
441	ORCID
442	Hideki Matsumoto: https://orcid.org/0000-0002-5538-0739
443	
444	REFERENCES
445	1. Hongo S, Sato T. Kinetic studies of asparagine synthetase from rat liver: role of Mg2+
446	in enzyme catalysis. Arch Biochem Biophys. 1985;238(2):410-417.

447	2. Fagerberg L, Hallström BM, Oksvold P, et al. Analysis of the human tissue-specific
448	expression by genome-wide integration of transcriptomics and antibody-based
449	proteomics. Mol Cell Proteomics. 2014;13(2):397-406.
450	3. Ruzzo EK, Capo-Chichi JM, Ben-Zeev B, et al. Deficiency of asparagine synthetase
451	causes congenital microcephaly and a progressive form of encephalopathy. Neuron.
452	2013;80(2):429-441.
453	4. Lomelino CL, Andring JT, McKenna R, Kilberg MS. Asparagine synthetase: Function,
454	structure, and role in disease. J Biol Chem. 2017;292(49):19952-19958.
455	5. Palmer EE, Hayner J, Sachdev R, et al. Asparagine Synthetase Deficiency causes
456	reduced proliferation of cells under conditions of limited asparagine. Mol Genet Metab.
457	2015;116(3):178-186.
458	6. Sacharow SJ, Dudenhausen EE, Lomelino CL, et al. Characterization of a novel variant
459	in siblings with Asparagine Synthetase Deficiency. Mol Genet Metab.
460	2018;123(3):317-325.
461	7. Motohashi T, Shimojima T, Fukagawa T, Maenaka K, Park EY. Efficient large-scale
462	protein production of larvae and pupae of silkworm by Bombyx mori nuclear
463	polyhedrosis virus bacmid system. Biochem Biophys Res Commun.
464	2005;326(3):564-569.

- 465 8. Kimura T, Tsutsumi N, Arita K, et al. Purification, crystallization and preliminary
- 466 X-ray crystallographic analysis of human IL-18 and its extracellular complexes. Acta
- 467 Crystallogr F Struct Biol Commun. 2014;70:1351-1356.
- 468 9. Sheng S, Kraft JJ, Schuster SM. A specific quantitative colorimetric assay for
- 469 L-asparagine. Anal Biochem. 1993;211(2):242-249.
- 470 10. Yamamoto T, Sakamoto K, Esaka Y, Uno B. Highly Sensitive Fluorescence
- 471 Detection of Daptomycin in Murine Samples through Derivatization with
- 472 2,3-Naphthalenedialdehyde. Anal Sci. 2020;36(10):1285-1288.
- 473 11. Van Heeke G, Schuster SM. Expression of human asparagine synthetase in
- 474 Escherichia coli. J Biol Chem. 1989;264(10):5503-5509.
- 475 12. Sheng S, Moraga DA, Van Heeke G, Schuster SM. High-level expression of human
- 476 asparagine synthetase and production of monoclonal antibodies for enzyme purification.
- 477 Protein Expr Purif. 1992;3(4):337-346.
- 478 13. Zhu W, Radadiya A, Bisson C, et al. High-resolution crystal structure of human
- 479 asparagine synthetase enables analysis of inhibitor binding and selectivity. Commun Biol.
- 480 2019;2:345.
- 481 14. Yamamoto T, Endo W, Ohnishi H, et al. The first report of Japanese patients with
- 482 asparagine synthetase deficiency. Brain Dev. 2017;39(3):236-242.

483	15. Faoucher M, Poulat AL, Chatron N, et al. Asparagine synthetase deficiency: A novel
484	case with an unusual molecular mechanism. Mol Genet Metab Rep. 2019;21:100509.
485	16. Larsen TM, Boehlein SK, Schuster SM, et al. Three-dimensional structure of
486	Escherichia coli asparagine synthetase B: a short journey from substrate to product.
487	Biochemistry. 1999;38:16146-16157.
488	17. Leandro J, Nascimento C, de Almeida IT, Leandro P. Co-expression of different
489	subunits of human phenylalanine hydroxylase: evidence of negative interallelic
490	complementation. Biochim Biophys Acta. 2006;1762:544-550.
491	18. Montioli R, Roncador A, Oppici E, et al. S81L and G170R mutations causing Primary
492	Hyperoxaluria type I in homozygosis and heterozygosis: an example of positive
493	interallelic complementation. Hum Mol Genet. 2014;23:5998-6007.
494	19. Richards DY, Winn SR, Dudley S, et al. A novel Pah-exon1 deleted murine model of
495	phenylalanine hydroxylase (PAH) deficiency. Mol Genet Metab. 2020;131:306-315.
496	20. Kojima K, Nakajima T, Taga N, et al. Gene therapy improves motor and mental
497	function of aromatic l-amino acid decarboxylase deficiency. Brain.
498	2019;142(2):322-333.
499	21. Eichler F, Duncan C, Musolino PL, et al. Hematopoietic Stem-Cell Gene Therapy for
500	Cerebral Adrenoleukodystrophy. N Engl J Med. 2017;377(17):1630-1638.

- 501 22. Churchill LE, Delk PR, Wilson TE, et al. Fetal MRI and ultrasound findings of a
- 502 confirmed asparagine synthetase deficiency case. Prenat Diagn. 2020;40(10):1343-1347.

504 Figure legends

FIGURE 1 Protein expression of recombinant human ASNS. A, SDS-PAGE analysis of
recombinant human ASNS. B, Immunoblot of recombinant human ASNS with the
anti-ASNS antibody. C, Immunoblot of recombinant human ASNS with the anti-His-tag
antibody

509

521	FIGURE 3 Generation and cell proliferation assay of ASNS deficient HEK293 cells. A,
522	Immunoblot of whole cell lysates of HEK293 cells and ASNS deficient HEK293 cells
523	with the anti-ASNS antibody. B, Immunoblot of whole cell lysates of HEK293 cells and
524	ASNS deficient HEK293 cells with the anti- β actin antibody. C, Cell counts of ASNS
525	deficient HEK293 cells after incubation with or without asparagine. The bars in the
526	graphs are standard errors
527	
528	FIGURE 4 Transduction of AcGFP-fused ASNS to ASNS deficient HEK293 cells using
529	the lentiviral expression system. A, Immunoblot of whole cell lysates of ASNS deficient
530	HEK293 cells transduced with AcGFP or AcGFP-fused wild-type or variants of ASNS
531	with the anti-GFP antibody. B, Immunoblot of whole cell lysates of ASNS deficient
532	HEK293 cells transduced with AcGFP or AcGFP-fused wild-type or variants of ASNS
533	with the anti- β actin antibody. C, Cell counts of ASNS deficient HEK293 cells transduced
534	with AcGFP or AcGFP-fused wild-type or variants of ASNS after incubation with or
535	without asparagine. The bars in the graphs are standard errors
536	

537 Supporting Information:

538 Additional supporting information may be found online in the Supplemental

539 Information section at the end of this article.