窒化リチウムを用いた Ⅲ族窒化物の新規合成法

A Novel Synthetic Route to Preparation of Group III Nitrides by Using Li_3N

馬淵 彰

Akira Mabuchi

2005年

岐阜大学大学院工学研究科

環境エネルギーシステム専攻博士後期課程

第1章 序論	1
1-1 本研究の背景	1
1-1-1 光源の変遷	1
(1) 白熱電球	1
(2) 蛍光ランプ	5
(3) 発光ダイオード	9
1-1-2 青色 LED をめざして	18
1-1-3 白色 LED	25
1-1-4 GaN 系半導体の問題点	28
1-2 窒化物とは	35
1-2-1 イオン性窒化物	37
1-2-2 共有性窒化物	37
1-2-3 金属性窒化物	39
参考文献	41
第2章 Li ₃ Nの反応特性	43
2-1 緒言	43
2-2 実験方法	44
2-2-1 使用した試薬	44
2-2-2 使用した測定装置	44
2-2-3 実験操作	44
2-2-4 生成物の評価	45
2-3 結果と考察	45
2-3-1 Li ₃ Nを空気中に放置した場合の変化	45
2-3-2 Li ₃ NをN2中に保存した場合の変化	45
2-3-3 Li ₃ Nの熱分析	47
2-4 まとめ	51
参考文献	52
第3章 LiGaO2の結晶成長とその結晶評価	53
3-1 緒言	53
3-2 実験方法	55
3-2-1 使用した試薬	55
3-2-2 実験操作	55
3-2-3 使用した測定装置	56

目次

3-2-4 生成物の評価	58
3-3 結果と考察	61
3-3-1 反応温度とモル比の影響	61
3-3-2 熱分析	63
3-3-3 格子定数及び結晶子径	67
3-3-4 SEM による形態観察	69
3-3-5 TEM による構造解析	72
3-3-6 GaN がえられない理由	73
3-4 まとめ	77
3-4-1 GaN の生成	76
3-4-2 るつぼ	77
3-4-3 LiGaO ₂ の新規製造法としての位置づけ	79
参考文献	79
第4章 GaNの合成とその結晶評価	81
4-1 緒言	81
4-2 実験方法	85
4-2-1 使用した試薬	85
4-2-2 使用した測定装置	85
4-2-3 実験操作	85
4-3 結果と考察	87
4-3-1 GaN 合成条件の探索	87
4-3-2 複合酸化物の生成原因と最適合成条件の確立	90
4-3-3 格子定数及び結晶子径	92
4-3-4 SEM による表面形態解析	93
4-3-5 TEM による構造解析	96
4-4 まとめ	97
参考文献	97
第5章 InNの結晶成長とその結晶評価	99
5-1 緒言	99
5-2 実験方法	101
5-2-1 使用した試薬	101
5-2-2 使用した測定装置	101
5-2-3 実験操作	101
5-2-4 生成物の評価	102

5-3 結果と考察	103
5-3-1 加圧反応	103
5-3-2 減圧反応とモル比の影響	105
5-3-3 るつぼの影響	108
5-3-4 熱分析	109
5-3-5 TEM による構造解析	114
5-4 まとめ	115
参考文献	118
第6章 In _x Ga _{1-x} Nの合成とその結晶評価	119
6-1 緒言	119
6-2 実験方法	121
6-2-1 使用した試薬	121
6-2-2 使用した測定装置	121
6-2-3 実験操作	121
6-3 結果と考察	123
6-3-1 InxGa1-xN の合成	123
6-3-2 TEM による構造解析	126
6-4 まとめ	127
参考文献	128
第7章 AlNの結晶成長とその結晶評価	129
7-1 緒言	129
7-2 実験方法	130
7-2-1 使用した試薬	130
7-2-2 使用した装置	130
7-2-3 実験操作	130
7-2-4 生成物の評価	131
7-3 結果と考察	132
7-3-1 熱分析	132
7-3-2 反応温度の影響	133
7-3-3 反応時間の影響	135
7-4 まとめ	136
参考文献	137

8 総括と今後の展望	139
8-1 総括	139
8-2 今後の展望	141
8-2-1 GaN 結晶成長	141
8-2-2 蛍光体	143
8-2-3 光触媒	147
謝辞	151
著者略歴	152

第1章 序論

1-1 本研究の背景

1-1-1 光源の変遷

人間は視覚,聴覚,臭覚,味覚,触覚の五感のうち視覚から最も多くの情報をえ ているが,夜の闇では照明がない限り視覚からは情報をえることができない.そ のため,太古の昔より人間は日の出とともに起き,日暮れとともに寝るという生 活を数十万年送ってきた.

今から約 2000 年前の縄文時代に木の枝や枯れ草を燃やすことにより人間の 手によって生まれた光はあかりとして誕生し,燃焼光源時代が始まった.やがて 動物油や植物油を石器,土器,貝殻などに入れ,その油に灯芯を浸して点火するオ イルランプが出現した.このオイルランプは長年にわたり使われたが,アメリカ の B.シリアンが石油ランプを考案したことによりオイルランプは次第に消え 去っていった.その後,電気エネルギーが発見されるといよいよ電灯,電球時代が 到来したのである.

(1) 白熱電球

①歴史

1808年頃,イギリスのド・ラ・リュは白金のフィラメントを使った白熱電球を 作ったが,寿命が短いわりに高価で実用に至らなかった.次に 1840年,イギリス の科学者 W.R.グローブは白金フィラメントの白熱電球を発明し実用化の道を 開いた.1879年2月,イギリスのスワンはフィラメントとして紙を炭化させたり 綿糸を硫酸で処理した炭素電極を用いた白熱電球を発明したが,すぐにフィラ メントが蒸発してしまうためその寿命は短いものであった.

1879年10月,エジソンは木綿糸に煤とタールを混ぜあわせ炭化させたフィラ メントにより,ついに現代の白熱電球の基盤ともいえる白熱電球を完成させた. しかし,その寿命は45時間程度であり,白熱電球を広く家庭に普及させるには, 長寿命かつ安価であることが必要であった.

そこで,フィラメントの改良のため様々な素材の探索を行った結果,京都八幡 産の竹をフィラメントとして使用すると寿命が 2450 時間に延びることがわか った.こうして八幡の竹は 1894 年までエジソン電灯会社に輸出され,何百万個の 白熱電球が製造されたのである.

その後,フィラメント素材については引き続き研究が続けられ,1910 年頃には 竹より長寿命なタングステンフィラメントが開発されたことにより電球の寿命 はさらに伸びたのである.

②発光原理と構造

白熱電球はフィラメントに電流を流して,その熱放射を利用した光源である. その構造を図 1-1 に示す¹⁾.

口金を取り付けたガラス球内にステムに封着された導入線とアンカで支持さ れたフィラメントが不活性ガスとともに封入されている.

口金はソケット(受金)と組み合わせて電球を接続する端子部である.導入線 のうち,ステムガラスの封じ部の封着線はジュメット(ニッケル鋼線に銅被覆) を用いて気密が保たれている.外部の導入線のうち1本はフィラメント焼断時 に起きるアーク放電を防止するため,コンスタンタンなどのヒューズ線を用い る場合が多い.

フィラメントは電球の発光部として熱放射させるので,高融点で蒸気圧が低 く,適当な電気抵抗を有し,可視光域での分光放射率が大きく,線引き加工でき, 機械的強度が大きいことが要求される.材料としては,エジソンによって発明さ れた初期には,炭素(竹など)などが使用されたが,現在はタングステンが使用 され,要求される性能,用途により単コイルや二重コイルが用いられている.タン グステンフィラメントの温度を高くすると電球の効率は高くなるが,タングス テンの蒸発速度が大きくなるため寿命は短くなる.

真空電球はタングステンの蒸発速度が大きいため,蒸発を抑制するため不活 性ガスを封入したガス入り電球が作られた.しかし,ガスを封入すると伝導と対 流による熱損失が増大するため,窒素,アルゴン,クリプトンが用いられる.封入 ガスの特性としてはクリプトンが最も優れているが,高価であるため通常は窒

 $\mathbf{2}$

素とアルゴンの混合ガスが用いられている.

ガラス球は一般に軟質のソーダガラスを用いているが,大容量の電球や屋外 用の電球には用途によって硬質のホウケイ酸ガラスが使用されている.ガラス 球には,無色透明なもの,白色塗装をしたもの,反射鏡をつけたもの,着色を施し たものなどがある.一般照明用電球は白色塗装のものが主で,ガラス球内面に屈 折率が大きいシリカ(SiO₂)やジルコニア(ZrO₂)などの白色粉末を塗布して光の 拡散性を良くして輝度を下げる工夫がされている.

図 1-1 白熱電球の構造^{1),2)}

③白熱電球の特性

一般照明用電球の分光分布を図 1-2 に示す.この分光分布から白熱電球は緑か ら青色が少なく赤みのかかった色であることがわかる.

一般照明用のガス入り電球 100W(二重コイル)のエネルギー変換特性は,入 力に対し可視放射 10%,赤外放射 72%である.残り 18%がガラスや口金の吸収, 封入ガスや端子の熱伝導による消費である.

白熱電球の寿命は、フィラメントの断線など不点灯までの点灯時間と光束維持率で規定される点灯時間の短いほうの時間で決定される.JIS によれば、電力 30W以上では750時間に達したときの光束維持率が85%以上と規定されている.

図 1-3 に示すガス入り電球の残存率曲線によれば,白熱電球の寿命は約 800 時間 と推定できる.電気サインのように点滅回数が多い場合には寿命が 2~8%短くな る.これは常温ではフィラメントの抵抗値が低いので,電圧印加時に瞬間的に電 流が定格の 7~10 倍程度流れることやフィラメントに熱応力が加わるためであ る.白熱電球は可視光放射率が 10%と低く必ずしも効率が良い光源ではないが, その演色性がよいため発明から1世紀以上にわたり今日まで使われている.

図 1-3 ガス入り電球の残存率曲線 1)

(2) 蛍光ランプ

①歴史

放電灯はアーク灯に始まり,1895年にドイツのガイスラーがガイスラー管を発明したが,白熱電球の目覚しい発達の影に隠れあまり注目を集めなかったようである.しかし,その後1893年にムーアのムーア灯,1914年にネオン管,1938年にはアメリカのインマンよって蛍光ランプが発明された.

②発光原理と構造

蛍光ランプは光を励起源とするフォトルミネッセンスを利用した光源である. ルミネッセンスとは,図1-4に示すように物質中の電子が外部からのエネルギー により基底状態から励起状態に遷移し,ふたたび基底状態に戻る(緩和する)と きに光を放出する現象をいう.

光子のエネルギーは通常熱エネルギーよりかなり大きいので,ルミネッセン スを生じさせるには熱以外の方法でエネルギーを与えることにより電子を基底 状態から励起状態に遷移させる必要がある.光,電子,電流,放射線を励起源とす るルミネッセンスとその応用例を表1に示す.

図 1-4 ルミネッセンスの原理

表-1 主なルミネッセンス³⁾

励起源	名称	応用例
光	フォトルミネッセンス	固体レーザ, 蛍光灯
加速電子:真空中	カソードルミネッセンス	CRT の 蛍光 面
気体中	ガス放電	プラズマディスプレー
固体中	真性エレクトロルミネッセ	EL ディスプレー
	ンス	
電流	注入型エレクトロルミネッ	発光ダイオード、半導体レ
	センス	ーザ
放射線(X線,α線,β	放射線ルミネッセンス	シンチレーション検出器
線, γ線)		

蛍光ランプは低圧水銀蒸気放電ランプの一種であり,放電によって発生する 253.7nmを主体とする水銀スペクトル中の紫外放射により,ガラス管内壁に塗布 された蛍光体を励起して可視光に変換する光源である.

図 1-5 に示す直管型ランプではガラス管の両端にタングステン二重コイルま たは三重コイル電極があり,Ba, Sr, Ca, Zr などの酸化物からなる電子放射性 物質(エミッタという)が塗布されている.エミッタはランプ始動時のイオン衝 撃や点灯中の電子衝撃・加熱により飛散蒸発するため,これが消耗しつくされ たときがランプの寿命となる.ガラス管は軟質ガラス(ソーダ石灰または鉛ガラ ス)が用いられる.ガラス管内には通常数百 Pa のアルゴンなどの希ガスととも に少量の水銀が封入されている.口金の両端に電圧が加えられると,電極からの 熱電子が加速されて水銀や希ガスの気体原子と衝突・電離し放電する.蛍光ラン プは管内壁に塗布する蛍光体の種類を変えることにより白色~赤色までの光を えることができる.

図 1-5 蛍光ランプの構造 1),2)

③蛍光ランプの特性

白色蛍光ランプの分光分布を図 1-6 に示す.図 1-2 に示す白熱電球の分光分布 に比べ赤みの少ないスペクトルを有するところに特徴がある.

蛍光ランプのエネルギー変換特性は,入力に対して可視放射が 25%,赤外放射が 30%,紫外放射が 0.5%以下で残り 45%が放電および電極による損失である.

蛍光ランプの寿命は光束維持率が 70%に低下するまでの時間かランプ不点 灯までの時間のいずれか短いほうで決められる.図1-7に示す蛍光ランプの光束 維持率曲線から寿命を推定すると約 10,000 時間と考えられる.

このように蛍光ランプは白熱電球に比べ可視放射率が 25%と高く,寿命も長いため,現在,照明器具の主流として広く使用されている.しかし,40W蛍光灯1本 あたり約 10mgの水銀が含まれており,そのまま廃棄すると環境汚染につながる. そのため,最近では廃蛍光灯リサイクル処理プラントが建設され水銀の回収が 行われている.

図 1-6 白色蛍光ランプの分光分布1)

図 1-7 蛍光ランプの光束維持率曲線1)

(3)発光ダイオード

①歴史

発光ダイオード(LED: Light Emitting Diode)の歴史は古く,基本原理は 20 世紀 初頭までさかのぼることができる.1923 年,Lossew がシリコンカーバイド(SiC) を使って,電子と正孔の再結合に伴う発光現象を見出したのが始まりである.

1960 年代に入って研究が進展し,まず赤色 LED と黄緑色 LED が開発された.1970 年代に入ると黄色 LED,赤色 LED,黄緑色 LED,黄色 LED が次々と開発され実用化された.

しかし,青色 LED の開発は難しく,実用化はまだ先と考えられていたが,1993 年日亜化学工業,ついで豊田合成により青色発光 LED が開発,実用化され た.1996 年には青色 LED と蛍光体の組み合わせにより白色 LED も開発,実用化 され現在に至っている.

②発光原理

LED は表 1-1 に示すエレクトロルミネッセンスのうち,電流を励起源とする注入型エレクトロルミネッセンスを利用した光源である.その発光原理を図 1-8 に示す.図 1-8(a)に示すように LED は空乏層を介して n 型結晶と p 型結晶が接合され pn 接合が形成されている.

図 1-8(b)はLEDに電圧を印加しない状態のバンド構造である.まず,n型とp型 の半導体を接合させると,n型中の多数キャリアである電子はp型領域へ,p型中 の多数キャリアである正孔はn型領域へそれぞれ拡散する.その結果,n型領域に は電子を失ってイオン化したドナーによる正の空間電荷が,p領域には正孔を失 ってイオン化したアクセプタによる負の空間電荷がそれぞれ作られる.この正 負の空間電荷による電気二重層は,これ以上のn型領域から電子およびp型領域 からの正孔の拡散を抑える電位障壁(拡散電位あるいはビルトイン電EV_{bi})を 形成する.その結果,正味の拡散電流は0となり熱平衡が達成される.このときフ ェルミ順位E_Fはn型およびp型領域を通して同じレベルとなる.このp - nの接合 部にできる空間電荷領域は、電子や正孔がほとんど存在しないので空乏層とよ ばれる. このように形成された LED に順方向電圧を加えると,図 1-8(c)のように電位 障壁は印加電圧分だけ低くなり,n型領域からp型領域に電子が流れ,p型領域か ら n 型領域に正孔が流れる.これを少数キャリアとの注入という.これら注入さ れた少数キャリアがそれぞれの領域の多数キャリアと再結合するときに光子と してエネルギーを放出する.これが発光 LED の発光原理である.

図 1-8 LEDの発光原理 ³⁾

③発光遷移

半導体結晶のエネルギー構造は,結晶固有のもので直接遷移型(Direct transition)と間接遷移型(Indirect transition)に分類することができる.

直接遷移型半導体結晶では,図 1-9 に示すように伝導帯にある電子がE-κ曲線 に垂直に落下して価電子帯に入りそこの正孔と再結合するとき光子が放射され る.電子によって失われるエネルギーEgは光子のエネルギーhvgとして表れEg= hvgとなる.このように直接遷移型では伝導帯に励起された電子がフォノン(格 子振動)の放出・吸収に関与することなしに価電子に遷移(バンド間遷移)するの で極めて高い発光効率が得られる.

これに対して,間接遷移型半導体結晶では,図 1-10 に示すように E-κ曲線の極 小が起る波数ベクトルκの値は伝導帯と価電子帯とで異なっている.こうした場 合は光放射を伴う再結合は極めて起りにくい.それは電子のエネルギー変化だ けでなく運動量の変化も同時に考慮せざるをえない過程だからである.すなわ ち,間接遷移型では伝導帯に励起された電子がフォノンの放出・吸収過程を伴っ て価電子帯に遷移するので発光が弱い.このため特別の不純物を導入し,励起さ れた電子をいったんこの不純物に束縛し,その後価電子帯に遷移する過程で発 光させるという,不純物-バンド間遷移が利用されている.

図 1-10 間接遷移型

④半導体材料の成長法

半導体材料の各エピタキシャル成長法の特徴を表 1-2 に示す.

液相エピタキシャル成長法(Liquid Phase Epitaxy:LPE)は,低融点の金属を液体 にし,それを溶媒として成長させるべき半導体を構成する物質をその中に溶解 させて溶液をつくり,溶液を冷却させて基板上に半導体結晶の薄膜を析出させ るものである.この方法の特徴は,いずれの方式においても共通するのは,基板上 への半導体の析出がそれ自身の拡散によることである.そのため,液相エピタキ シーにおける結晶成長は,各種結晶成長法のなかで最も熱平衡に近い状態で起 こる.したがって,得られる結晶は構造欠陥の少ない完全性の高いものである.

気相エピタキシャル成長法であるハイドライド法(Hydride Vapor Phase Epitaxy, HVPE)は気相成長法(VPE)の一種で,ハロゲン系気相成長法(Halide, Halogen Vapor Phase Epitaxy: HVPE)ともよばれる.Ⅲ族元素を含む気相原料を得るため HVPE では金属のハロゲン化物を用いる.HVPE の特徴は成長速度がきわめて速いことと,原料に炭素を含まないことから高純度結晶が容易に得られることである.

有機金属気相成長法(Metal Organic Vapor Phase Epitxy: MOVPE)はⅢ族元素を 含む気相原料を得るため有機金属化合物を用いる.膜厚の均一性,制御性が良好 であるが,装置が高価なため特殊な高輝度 LED 用のエピタキシャル成長に使用 されているのみである.

分子線エピタキシャル成長法(Molecular Beam Epitaxy:MBE)は原子レベルの 膜厚制御が可能であるが,装置が高価なため大量生産に適さず試験研究用にの み使用されている.

			成長速度	成 長	膜 厚
成 長 法	長 所	短所	[µm/min]	温度	制 御
				[°C]	[nm]
液相エピタキシ	・成長装置	·大面積、大			
ャル成長法(LPE)	が簡単	量生産に	~1	850	50
	・高純度	不向き			
	 化学量論 	・メルトバッ			
	組成が一	ク存在			
	定	・組成,膜厚均			
		一性不良			
気相エピタキシ	・熟成され	・ある種の混			
ャル成長法	た技術	晶系が成	~0.1	750	25
ハライド法	・表面平坦	長困難			
ハイドライド法	性良	(AlGaAs)			
(VPE)					
有機金属気相工	・大面積、	・原料の純度			
ピタキシャル成	大量生産	に依存			
長法 (MOVPE)	向き	・装置が高価	~ 0.1	650~	5
	・均一性、			750	
	膜 厚 制 御				

表 1-2 各エピタキシャル成長法の特徴 5)

	良好				
	• 化 学 量 論				
	組 成 制 御				
	可能				
分子線エピタキ	・膜厚制御	·装置高価			
シャル成長法	最良	・大量生産に			
(MBE)	・超薄膜多	不向き			
	層 構 造 の	・リンを含む	~0.01	550	0.5
	作製可	化合物の			
	・低温成長	成長に工			
	可能	夫必要			
		・V族元素の			
		制御性悪			

⑤LED ランプの種類

LED ランプの種類は多岐にわたり発光色により用いられる半導体材料が異なる.表 1-3 に LED の発光波長と使用される半導体材料を示す.なお,半導体材料のかっこ内はドーパントである.赤外領域については直接遷移型の GaAs,AlGaAs 混晶が多いが,可視光領域については間接遷移型の GaAsP 混晶,GaP が多い.赤の 660nm のみ直接遷移型の AlGaAs 混晶が用いられる.

表 1-3 LEDの発光波長と結晶成長法⁴⁾

発光色	波 長	半導体材料	基板	遷移型	結晶成長法
	(nm)				
赤外	850	$A1_{0.03}Ga_{0.97}As$	GaAs	直接	LPE
赤外	780	$Al_{0.15}Ga_{0.85}As$	GaAs	直接	LPE
赤	700	GaP [Zn,O]	GaP	間接	LPE

	660	$GaAs_{0.6}P_{0.4}$	GaAs	間接	VPE
	660	$Al_{0.35}Ga_{0.65}As$	GaAs	直接	LPE
橙	630	GaAs _{0.35} P _{0.65} [N]	GaP	間接	VPE
橙	610	GaAs _{0.25} P _{0.75} [N]	GaP	間接	VPE
黄	583	$GaAs_{0.1}P_{0.9}$ [N]	GaP	間接	VPE
	570	GaP [N]	GaP	間接	LPE
緑	565	GaP [N]	GaP	間接	LPE
	555	GaP	GaP	間接	LPE

⑥LED の構造と作製方法

GaPを用いた赤色 LED の基本構造を図 1-11 に示す.S を添加した n-GaP 基板 上に Te を添加した n-GaP,その上に Zn,O を添加した p-GaP を形成させた発光チ ップが使用されている.発光チップのサイズは通常 0.5mm 前後の大きさであ り,n-GaP 基板にマイナス電極,p-GaP にプラス電極がそれぞれ設けられている.

図 1-11 赤色LED発光チッ プの基本構造³⁾

図 1-11 に示す発光チップをリードフレームに搭載した砲弾型 LED の構造を 図 1-12 に示す. ディスペンサーにより銀ペーストを塗布されたリードフレーム カップ中央部にダイボンダーにより発光チップが搭載される.銀ペーストを加 熱硬化し固定された発光チップ上のp電極とリードフレームのプラス電極が金 ワイヤーにより接続される.続いてエポキシ樹脂が注入された円形または楕円 形状を有するプラスチックの型に,発光チップを搭載したリードフレームが挿 入される.エポキシ樹脂を加熱硬化させた後,プラスチック型からリードフレー ムを引き抜き個々の LED が分離され (タイバーカットという) LED が完成す る.なお,リードフレームの防錆のためハンダディップ工程が設けられている.

図 1-12 赤色 LED の構造

発光チップをエポキシ樹脂で封止する理由は,光の取り出し効率をあげるため、臨界角を大きくするためである.図 1-13 はスネルの法則(Snell's law)を示している.光が等方性媒質から他の等方性の媒質に入って屈折する場合,入射波の方向(波面の法線)と境界面の法線を含む面(入射面)は,屈折光の方向と境界面の法線とを含む面(入射面)は,入射光の方向と境界面の法線とを含む面(屈折面)と一致し,入射角をθ₁,屈折角をθ₂とすれば,n₁sinθ₁=n₂sinθ₂という関係が成り立つ.なおn₁,n₂は媒質の屈折率である.

GaP結晶は屈折率が3.5と大きいため,発光チップから出た光が直接空気(屈折率 n=1)中へ出ると,臨界角が16°と小さくなり,結晶と空気の界面で光が全反射

し光の取り出し効率が低下する.

そこで,空気と結晶の中間の屈折率をもつエポキシ樹脂(n=1.5)で発光チップ を封止すると,臨界角が 25°と大きくなり全反射が減少し光の取り出し効率が向 上するのである.現在では屈折率 1.5 以上の液状熱硬化樹脂は存在しないため, 今後屈折率の大きな樹脂の開発が待たれる.

図 1-13 スネルの法則

⑦LED の用途

このように LED は安価で,電流を流せば簡単に発光することからもっとも多 く使われている光デバイスである.LED の用途は赤外光領域と可視光領域に分 かれ,赤外領域は通信,可視光領域は LED ランプ,LED ディスプレイ,ドットマト リックスディスプレーなどの製品に使われている.LED ランプとしては, AV 機 器,家電製品,制御装置などのパイロットランプあるいはインジケーター,LED デ ィスプレイとしては,AV 機器,家電製品,計測器などに数字または文字表示用と して使用されている.ドットマトリックスディスプレーは駅構内の行き先表示, 新幹線車内の案内表示,街頭の電光ニュース板などに使用される.このように可 視光 LED 材料は AlGaAs, GaAsP 系混晶と GaP 系化合物半導体を中心に開発, 実用化が進められてきたが,高輝度青色発光ダイオードがえられないため,ディ スプレイのフルカラー化が実現できなかった. 1-1-2 青色 LED をめざして

青色 LED を実現するためには,広い禁制帯幅(バンドギャップ)を有する半 導体結晶が不可欠であり,以下の条件を満たすことが必要となる.

①禁制帯幅Egが 2.5eV以上であること.

②p-n 接合が形成でき効率のよい電流注入ができること.

③バンド構造が直接遷移型あること.

④エピタキシャル成長基板として大型の単結晶が容易にえられること.

この条件をいくつか満たす候補材料として,II - VI族化合物のZnSe, ZnS,IV-IV族化合物のSiC, III-V族化合物のGaNがあげられる.表 1-4 にその特性を示すが,SiCを除きすべて直接遷移型のバンド構造を有する.

特性	GaN	ZnSe	SiC	ZnS
融点(°C)	1700	1520	2827	1830
遷移型	直接	直接	間接	直接
格子定数	a =0.318	0.5667	a=0.308	0.5407
(nm)	c = 0.516		c=0.151	
電気伝導型	p, n	p, n	p, n	n
基板結晶	Al ₂ O ₃	GaAs	SiC	GaAs
禁制带幅	3.5	2.67	3.2	3.66
(eV)				
結晶構造	ウルツ鉱	ウルツ鉱	立方晶	ウルツ鉱型
	型	型		
		閃亜鉛鉱		
		型		

表 1-4 青色LED用材料の特性比較⁵⁾

SiCは間接遷移型の結晶であり,Si原子とC原子がある規則性をもって配列しているが,この並び方が種々ありその性質は少しずつ異なっている.約 130 種類ある多形のうち代表的な結晶構造には,3C,15R,6H,4H がある.C は立方晶(Cubic),Hは六方晶(Hexagonal),Rは菱面体(Rhombic)構造を意味し,数字は繰り返し周期を表している.このうち立方晶は3Cのみでこれをβ-SiC,他をα-SiCと称する.禁制帯幅は結晶構造によりかなり異なり,青色 LED を実現するためには 6H型を形成する必要がある.6H-SiC の作製法としては CVD 法や LPE 法があるが,LPE 法で作製された LED の方が優れている.

代表的な作製法である回転ディップ法では,基板をAlまたはBを添加したp型層 用のるつぼに浸漬して適当な厚さのp型層を成長させた後に引き上げる.次に不 純物の添加されていないるつぼに基板を漬けて,p型層成長時に付着したSiを除 去する.さらに,これを雰囲気ガス中にN2を混入したn型層用のるつぼに浸漬し てp型層上にn型層を成長させる.この方法は階段型のp-n接合の製作が可能であ り,不純物添加量の精密制御ができる特徴を有している.その発光はアクセプタ のAlとドナーのN(窒素)とのD-A対発光によるものと考えられている. SiC LEDの構造を図 1-14 に示す.n型基板上にn,p型層を形成し,接合を下方にした形 成した構造にして光の取り出し効率の向上をはかり 12 mcdの光度が得られた という.SiC LEDはアメリカのクリー社により最も早く実用化されたが,間接遷 移型であり明るさが 10mcd前後と低かったため眼科検査用という特殊な用途に 使われたにすぎない.

図 1-14 SiC LEDの構造⁵⁾

ZnS は直接遷移型半導体であるが,p 型結晶はえられていない.そこで,ヨウ素 輸送法により成長バルク ZnS を溶融亜鉛中で熱処理することにより低抵抗の n 型結晶を作製した.次に n 型 ZnS 結晶の表面を酸化したのち金属膜を蒸着して MIS(metal insulator semiconductor)型 LED が作製された. ZnS LED の構造を図 1-15 に示す.ZnS は禁制帯幅が 3.8eV と紫外領域に相当するので,可視光を発光す るためには,禁制帯幅中にある程度深い準位を形成する不純物を添加する必要 がある.したがって,発光強度は不純物の数により規定されてしまい発光効率の 向上は望めなかった.そのため,その後の研究は下火となり ZnSe と GaN が研究の 中心となっていった.

図 1-15 ZnS LEDの構造⁵⁾

(3) ZnSe

ZnSe は禁制帯幅が 2.7 eV,460~490 nm の青色発光波長に相当する唯一の結晶 材料であり,かつ直接遷移型のため伝導帯-価電子帯間での遷移による発光が期 待される材料であった.MOVPE法や MBE 法を用いると比較的容易に p型結晶が えられるため,1985 年以前は青色 LED 用材料研究の主流であった.

図 1-16 に ZnSe 系緑色,青色 LED の基本構造を示す.ZnSe 系 LED の基本構造 は障壁層(クラッド層)と活性層(発光層)からなるダブルヘテロ構造をもつ が,量子井戸構造をもつものが最も高出力がえられ,外部量子効率なども GaN 系 量子井戸構造 LED とくらべ遜色はなかった.とくに発光スペクトルの半価幅が 12nm と GaN 系 LED の 30nm より狭く色純度に優れていた.ZnSe 系 LED の発光 スペクトルは緑色であるが,活性層の CdSe 分率を減らすことで青色にシフトさ せることができる.

これら ZnSe 系 LED の基礎的特性が GaN 系 LED と同等であったにもかかわ らず,実用化の点で GaN 系 LED に敗北したのは寿命の問題が解決できなかった からである.これらの原因は,エピ成長段階ですでに存在している積層欠陥、貫 通転位などといわれている.さらに詳しく言えば,電流注入下においてあらかじ め存在している積層欠陥が核となって,転位ループと転位ダイポールを生成し ながら非発光領域を広げてゆくと言われている.

このように ZnSe 系青色 LED は寿命の点で GaN 系 LED と同等のレベルまで 達せず現在に至るまで実用化されていない.

図 1-16 ZnSe系青色LEDの代表的構造⁶⁾

GaNはZnSeと同様に直接遷移型半導体であり,現在青色LEDの主流として実用化され市場規模も拡大の一途をたどっている.しかし,実用化に至るまでには数々の課題を克服しなければならなかった.表1-5にGaN系半導体研究の歴史を示す.

1969年, Muruska と Tietjen は, HCl と Ga を反応させた GaCl とアンモニアを原料としたハイドライド気相成長(Hydride Vapor Phase Epitaxy: HVPE)によりはじめてサファイア基板上に GaN 単結晶を作製した.

1971年Pankoveらは同様の方法によりZnドープ層を絶縁・発光層に用いたMIS型LEDの試作に成功したが,その電力-光変換効率は 10⁻⁵程度であった.その後,GaNの研究は何人かの研究者に引き継がれGaNのバンド構造,光学的特性,電気特性などの基礎的物性が解明された.しかし,高品質な結晶がえられず発光素子としての応用が進展しなかったため,多くの研究者はGaNの研究から撤退していった.

1971年,Manasevit らによってはじめられたⅢ族窒化物半導体の有機金属気相 成長(MOVPE)法は,原料供給時に特別な反応を必要とせず,単にガス流量のみで 供給量の制御が可能である.HVPE法と比べて原料供給の制御が容易であるとこ ろから, MOVPE法により再び GaN 作製が試みられるようになった.

年	内容	著者
1969	GaN by hydride vapor phase epitaxy ⁸⁾	Maruska,Tiejen
1971	Metal insulator semiconductor LED's ⁹⁾	Pankove et al.
	GaN by MOVPE ¹⁰⁾	Manasevit et al.
	Ultraviolet stimulated emission at 2K	Dingle et al.
	Study of luminescence	Pankove and
		Lampert

表 1-5 GaN系半導体研究の歴史⁷⁾

1974	GaN by sublimation	Matsumoto and Aoki
	GaN by MBE (Ga+NH ₃)	Akasaki et al.
1975	AlN by MBE (Al+NH ₃)	Yoshida et al.
1982	Synthesis (high pressure)	Karpinski et al.
1983	AlN intermediate layer (MBE)	Yoshida et al.
1986	Specular films using AlN buffer layer (MOVPE) 11)	Amano and Akasaki
1989	p-type doping with Mg and LEEBI ¹²⁾	Amano et al.
	GaN p-n junction LED ¹²⁾	Amano and Akasaki
	InGaN epitaxy(XRRC=100 arcmin)	Nagamoto et al.
1990	Conductivity control of n-type nitride	Amano and Akasaki
	UV stimulated emission at room temperature	Amano et al.
1991	GaN buffer layer by MOVPE ¹³⁾	Nakamura
1992	Mg activation by thermal annealing ¹⁴⁾	Nakamura et al.
	High brightness AlGaN UV/Blue LEDs (1.5%)	Akasaki et al.
	InGaN epitaxy (XRRC=5 arcmin)	Nakamura et al.
1993	InGaN MQW structure	Nakamura et al.
1994	InGaN/AlGaN DH blue LEDs (1cd)	Nakamura et al.
	InGaN/AlGaN DH blue-green LEDs (2cd)	Nakamura et al.
	High temperature hetero-bipolar transistor	Pankove et al.
1995	InGaN SQW green LEDs (10cd)	Nakamura et al.
	Stimulated emission(from InGaN SQW) by current injection ¹⁵⁾	Akasaki et al.

1996	Blue laser diode, pulse operation ¹⁶⁾	Nakamura et al.	
	Shortest wavelength laser diode	Akasaki et al.	
	Blue laser diode, pulse operation	Itaya et al.	
	Blue laser diode, CW operation	Nakamura et al.	

1986年,天野,赤崎らは,MOVPE法により無色透明でクラックのない GaN を得ることに成功した.これはサファイア基板と GaN の大きな格子不整合を緩和するために,GaN の成長に先立ち AIN を低温で堆積させるバッファー層を設けることにより実現されたものである.これにより GaN の電気的,光学的特性が飛躍的に向上した.

1989 年,天野,赤崎らは低温バッファー層を介して成長させた Mg ドープ高品 質 GaN に低速電子線照射(LEEBI)を行なうことにより p型 GaN をえた.これによ り p-n 接合型青色,緑色 LED が初めてえられた.

さらにその後,1991 年には p 型 AlGaN を 1995 年には p 型 InGaN を実現した ことにより LED の発光波長を紫外から赤外まで制御できるようになった.

一方,1991 年中村らはサファイア基板上にGaNをバッファー層に使用してえ られたMgドープGaNをN2中で熱処理するという量産性に優れた方法によりp型 GaNをえた.これ以降,ダブルヘテロ構造,多重量子井戸構造,単一井戸構造を形成 させることにより高輝度青色LED,緑色LEDが次々と開発されてきた.1996 年に は,中村らによって青色レーザー(LD)も実現された.

1-1-3 白色 LED

白色 LED は主として携帯電話用の液晶パネルのバックライトで使われてい るが,今後の技術開発によって照明分野への応用も期待されている.照明の主流 である蛍光灯などが白色 LED に代替できるだけでなく,照明器具そのものへの 影響が大きいことから,照明メーカーの期待も大きく膨らんでいる.

現在,地球温暖化対策の一環として温室効果ガス排出量の 6%を削減すること が求められているが,生活用エネルギー消費量の 20%以上を占める照明の省エ ネルギー化は避けて通ることができない.このため白熱電球や蛍光灯に比べて 少ない電流で光を発生することができる白色 LED を使った照明光源の実用化 が期待されている.

(1) 白色 LED の発光方式

白色LEDを実現するにはさまざまな発光方法が開発されており,GaN系では 大きく分けて表 1-6 に示す三つの方式があげられる^{17,18)}.

最も早く実用化されたのは、青色 InGaN LED と YAG 系蛍光体を用いた方式 である.図 1-17に示すように構成が簡単で低コストではあるが,青色 LED の励起 波長では YAG 蛍光体の発光効率が低いうえ,赤色等の演色性が良くない欠点が ある.

また,波長 400nm 前後の紫外光を R,G,B 蛍光体に照射し励起させ白色光を得 る方式がある.蛍光体を励起する白色 LED 光源は蛍光体の組み合わせにより白 色以外の発光色を出すことが可能であり照明以外への応用範囲は異なる.しか し,近紫外に効率よく発光する蛍光体の開発が現在のところ課題である.

青色 LED(InGaN),緑色 LED(InGaN),赤色 LED(AlGaAs)から発する三色を混合 し白色光を得る方式は,発光効率が高く,表示色が自由に変更できるという長所 を有するが,それぞれのチップに電源回路が必要でありコストが高い.

最近,ZnSe 基板上に ZnCdSe 活性層を有する白色発光 ZnSe 系 LED が作製され ている.その断面構造を図 1-18 に示す.その発光原理は,①活性層で青色~青緑色 を発光②基板方向に入射した青色~青緑色光で基板の SA 発光を励起させ黄色 光を発光③青色光と励起された黄色光が LED から同時に放射されることで,青

色と黄色が混合され白色発光するのである. ZnSe 系は GaN 系に比べて低コスト で動作電圧が低いという長所を有するが,発光寿命が短い点で実用化は難しい ものと考えられる.

方式	励起源	発光材料および蛍	発光原理
		光特性	
ワン・チッ	青色 LED	InGaN/YAG,ZnS 系	青色光で蛍光体(黄色発
プ型			光)を励起
	紫外 LED	AlGaN/R,G,B 蛍光体	蛍光ランプと同様で蛍光
			体を励起
マルチ・チ ップ型	青色 LED }	InGaN,GaP	補色関係の2色をひとつ
) / <u>L</u>	黄緑色 LED J 青緑色 LED)		のパケージに実装
	青橋已 LED 黄橙色 LED }	AlInGaP	
	青色 LED 緑色 LED	InGaN	3 原色の LED をひとつの
	赤色 LED	AlInGaP	パケージに実装
		AlGaAs	
ZnSe	青色 LED	ZnSe 基板	青色光と基板に入射した
			青色光による SA 発光の
			黄色光を混合

表 1-6 白色LEDの発光原理¹⁷⁾

以上をまとめると,変換効率が高く,演色性に配慮した蛍光体材料が開発可能 であれば,紫外 LED と R,G,B 蛍光体の組み合わせによる白色 LED が性能とコス トのバランスから有望と考えられる.

図 1-17 InGaN-YAG白色LEDの構造 19)

図 1-18 ZnSe系白色LEDの構造²⁰⁾

(2) 白色 LED 照明の将来展望

白色 LED は蛍光灯と異なり回路がシンプルでインバータ回路と安定器が不

要である.また LED の寿命は蛍光灯の 10 倍あるため保守費用も少ない.発光効率 40 lm/W の 40 W 蛍光灯を 40 lm/W の白色 LED に置き換えるとすると,同じ明る さを得るには約 500 個の LED を必要となる.一個の白色 LED が約 5 円で得られ ると長寿命な照明器具が 5000 円程度ででき普及が進むものと考えられる.

1-1-3 GaN 系半導体の問題点

(1) 基板結晶

GaN系半導体薄膜の結晶成長は一般的にAl₂O₃,Si,GaAs,SiCなどの結晶基板上 にヘテロエピタキシャル成長によりおこなわれる.これはGaNの単結晶育成が 難しく大型のバルク結晶が得られていないからである.

基板として最も多く用いられているものはAl₂O₃である.低温バッファー層の 採用により比較的高品質のGaN系結晶成長が可能となり,LEDの製造に用いら れている.この方法で作製したGaN結晶は転位密度が 10⁸~10¹¹ cm⁻²と大きいに もかかわらず,LEDの初期特性および信頼性は非常に良好である.また,価格も GaAsなどの他の化合物半導体基板と比べて 1/2~1/4 と安価であるため,LEDの基 板として広く使われている.

しかし,低温バッファー層は基板の格子にコヒーレントにエピタキシャル成 長するのではなく,いろいろな点で結晶の核発生が起こる.発生した核は大きく なりそれらが融合して連続した膜になる.発生した核中の結晶格子面は基板の それと平行ではないので,それらが融合した膜の格子面は完全な平面ではなく なる.これがモザイク構造の原因であるといわれている.各結晶核中では結晶の 完全性は高いものの,それらの境界面では転位が発生したり,ナノメーターサイ ズの穴(ナノパイプ)ができたりする²¹⁾.すなわち,サファイア基板上に成長さ れたエピタキシャルGaN基板は,完全結晶とはほど遠い結晶である.そこで,サフ ァイアにかわる基板の探索が行なわれてきた.

表 1-7 は現在入手可能な単結晶基板の結晶構造,格子不整合,熱膨張係数差,へき開面,成長雰囲気での安定性を示している.MOVPE成長を想定した熱処理実験を行なった結果から,Si,6H - SiC, Al₂O₃, MgAl₂O₄を除いてほとんどの結晶が結晶雰囲気での安定性の点で問題があることがわかる.MnO, NdGaO₃, ZnO,

LiAlO₂, LiGaO₂はいずれも格子不整合が 2%以下である点では優れているが,結 晶雰囲気における安定性を保つためには,SiO₂膜などによる裏面・側面の保護が 必要である.また,Si,GaP,ZnO,6H - SiCは熱膨張係数がGaNより小さくGaNエ ピタキシャル結晶中にクラックを発生させやすい基板結晶である.

物質	結晶構造	実効的	熱膨張	へき開面	成長雰囲
		格子不	係数差		気での安
		整合	(×		定性
		(%)	10 ⁻⁶)		
Si	ダイヤモンド型	20.1	- 2.0	(111)	0
GaAs	閃亜鉛鉱型	25.3	0.4	(110)	
GaP	閃亜鉛鉱型	20.7	- 0.9	(110)	
MgO	岩塩型	- 6.5	4.9	(100)	
MnO	岩塩型	- 1.4		(100)	×
CoO	岩塩型	4		(100)	×
NiO	岩塩型	- 7.6		(100)	×
MgAl ₂ O ₄	スピネル型	- 10.3	1.9	(100)	0
NdGaO ₃	ペロブスカイト型	- 1.2	1.9		
ZnO	ウルツ鉱型	2.0	- 2.7	(1100)	
				(1100)	
				$(11\overline{2}0)$	
				(1120)	
				(0001)	
6H-SiC	ZnS 6H 型	- 3.4	- 1.4	(1100)	0
				(1100)	

表 1-7 基板結晶の性質 22)

				(1120) (0001)	
LiAlO ₂	β - NaFeO2型	1.7	1.7	(001)	
LiGaO ₂	β - NaFeO2型	- 0.1	1.9	(010)	
Al ₂ O ₃	コランダム型	- 13.8	1.9	(1102)	0
LiNbO ₃	イルメナイト型	- 6.7	9.9	(1102)	×
LiTaO ₃	イルメナイト型	- 6.8	10.6	(1102)	

以上の結果より, Al₂O₃はGaN結晶に対して-13.8%の格子不整合をもつにもか かわらず,現在のところ価格と性能のバランスのとれた基板結晶であるといえ る.

Al₂O₃に代わる結晶基板が現在のところ入手できないため,理想的な基板である バルクGaNの必要性が高まっている.バルクGaNの研究は 1960 年代から行なわ れているが,結晶の大きさ,結晶の品質の点で十分な結晶はえられていない.最近, 窒化物系半導体の急激な進展とともにバルク結晶を見直す動きが強まってい る.

(2) LED の構造

図 1-19 は InGaN LED 発光チップの構造,図 1-20 は青色 LED の構造を示 したものである.発光チップはサファイア基板上に GaN バッファー層を形成さ せたのち,n・GaN 層,発光層として InGaN 層,p・GaN 層が形成され作製される.p 電極は表面の p・GaN 層に設けることができるが,n 電極はサファイアが絶縁性 のためチップ側面からしか取ることができない.しかし,n・GaN 層は4µmと極め て薄く電極を設けることは困難である.そこで,n・GaN 層,InGaN 発光層,n・GaN の一部をエッチングにより除去しn電極が設けられている.そのため,一極を一 側のリードフレームにボンディングする必要が生じ従来の LED に比べ工程が 多くなる.

このようにサファイアを基板に用いた場合,エッチング工程,ボンディング工程が長くなり LED のコストアップは避けられないのである.

図 1-19 InGaN LED発光チップの構造¹⁸⁾

図 1-20 青色 LED の構造

(3) 結晶成長

GaN系半導体の結晶成長法としては,MOVPE,MBE,HVPEなどの気相成長法が あげられる.このなかでも MOVPE は,膜厚制御性が良好で化学量論組成制御が 可能なため,窒化物半導体の成長法としてもっとも広く用いられている結晶成 長法である.

Ⅲ族元素の有機金属化合物としては,アルキル基としてメチル基(CH₃-),エチ ル基(CH₅-)あるいはブチル基(C₄H₉-)との化合物が一般的である.アクセプタ不 純物としては,マグネシウム(Mg)にはシクロペンタジエニル基(C₅H₅-)あるいは メチルペンタジエニル基(CH₃-C₅H₅-)の化合物が用いられている. 一方、V 族元素の原料ガスとしてはアンモニア(NH₃)、ドナー不純物としては、 シリコン(Si)が一般的であり、シラン(SiH₄)、ジシラン(Si₂H₆)あるいは有機シラ ンであるテトラエチルシラン(Si(C₂H₅)₄)が用いられる.これら原料化合物の性 質を表 1-8 に示す.

高純度結晶をえるためには,原料も高純度である必要がある.有機金属化合物 の高純度化には,蒸留を繰り返すことにより蒸気圧の異なる成分を除去する方 法が一般である.アンモニアは特に酸素や水分を多く含むことがあるため結晶 成長に重大な影響をもたらす.そこで,吸着しやすい有機分子に吸着させたり,酸 素や水分との反応性の高い金属中を通過させるなどの方法により酸素や水分の 除去を行なう.したがって,これら原料は他法で使用される原料に比べ値段が高 いという欠点を有している.

化合物	状態	分子量	融点	沸点	比重
	(室温)		(°C)	(°C)	
Ga(CH ₃) ₃	液体	114.83	- 15.8	55.8	1.151
$Ga(C_2H_5)_3$	液体	156.91	- 82.3	143	1.058
Al(CH ₃) ₃	液体	72.08	15	127	0.743
$Al(C_2H_5)_3$	液体	114.16	- 52.5	194	0.835
In(CH ₃) ₃	固体	159.82	88.4	136	1.56
$In(C_2H_5)_3$	液体	159.82	- 32	184	1.260
NH ₃	気体	17.03	- 77.7	- 33.5	

表 1-8 原料化合物の性質

MOVPE装置は図 1-21 に示すように石英ガラス製反応管, RF加熱装置,Ⅲ族原 料系,V族原料としてのNH₃,不純物としてのSiH₄,CP₂Mg系からなっている.

トリメチルガリウム(TMG),トリメチルアルミニウム(TMA),トリメチルイン ジウム(TMIn)などの有機金属化合物原料は,室温付近では液体であるため通常 数十~数百 cc のステンレスシリンダー中に封入されている.シリンダー入口か ら高純度水素を吹き込むと出口から飽和した原料ガスが押し出され反応管に導 入される.反応管は縦型と横型の両方が用いられる.基板の加熱は高周波加熱で 行われることが多く反応管壁は水冷または空冷によって低く保たれる.サファ イア基板は SiC で被覆されたカーボンのサセプタ上に置かれる.

一方,窒素源としては気体のアンモニア(NH₃)が用いられる.TMGとNH₃の反応は次式であらわされる.

$Ga(CH_3)_3 + NH_3 \rightarrow GaN + 3CH_4$

加熱温度は AIN,GaN バッファー層作製時には 600~700°C,GaN 作製時には 1000~1100°C と高温である.

トリメチルガリウムなどの有機金属化合物は空気に触れると激しく反応し爆 発の危険がある.また,アンモニアは猛毒のためガス配管には十分な注意が必要 である.

反応は大気圧(常圧)で行われていたが,最近では 10~100 Torr の減圧下で行われることが多い.常圧 MOVPEと減圧 MOVPEで本質的な違いはなく,単に流体力学的な違いによって,減圧 MOVPE の方が急峻で均一な成長膜が得られると考えられている.

このように MOVPE 法は原料の取り扱いが難しく,原料に対する窒化物の収率 も数%と低いにもかかわらず,原料の流量,切り替えが自動制御できるところか ら大量生産に最適な製造方法として採用されている.

しかし,MOVPE法は有害な有機金属化合物,NH3を大量に用いるため排気ガス 処理には特別な対策が必要である.現在,触媒除害,湿式除害,燃焼除害などの方 法があるがいずれも除去装置の設置に費用がかかる欠点がある.

このように、GaN系半導体の課題をまとめると以下のようになる.

- ・性能とコストのバランスの点でサファイアに代わる成長基板は現時点でみつ かっていないため理想的な基板であるバルク GaN 結晶が望まれている.
- ・MOVPE 法は装置が高価でありランニングコストも高く原料の歩留まりが低くコストダウンに限界がある.
- ・MOVPE 法はアンモニア,有機金属化合物など排ガスの処理が必要であり環境 負荷の大きな成長法である.

図 1-21 MOVPE 装置の模式図

1-2 窒化物とは

窒化物は天然に存在することは少なくほとんどが人工的に作られる物質であ る.表 1-9 に示すように,窒素が地球の大気の組成中で 78%を占めるにもかかわ らずなぜ金属窒化物の作製が困難であるか考えてみたい.それには,標準反応ギ ブスエネルギーを計算することにより明らかとなる.下式は,一般的な金属であ る AI と窒素,酸素の標準反応ギブスエネルギーをそれぞれ計算した結果である.

> $2Al+N_2 \rightarrow 2AlN$ $\Delta_r G=-286.7 \text{ kJ/mol}$ $4Al+3O_2 \rightarrow 2Al_2O_3$ $\Delta_r G=-1580.8 \text{ kJ/mol}$

Al と酸素が反応する場合の標準反応ギブスエネルギーは-1580.8kJ/mol と Al と窒素の標準反応ギブスエネルギー-286.7kJ/mol に対してはるかに大きい.そのため,大気中では酸化物が優先的に生成し天然には窒化物が存在はしないのであろう.

成 分	容積比(%))
窒素分子	78.088
酸素分子	20.949
アルゴン	0.93
二酸化炭素*	0.04
一酸化炭素	1.0×10 ⁻⁵
ネオン	1.8×10^{-3}
ヘリウム	5.24×10 ⁻⁴
メタン	1.4×10 ⁻⁴
クリプトン	1.14×10 ⁻⁴
一酸化二窒素	5.0×10 ⁻⁵
水素分子	5.0×10 ⁻⁵
オゾン*	2.0×10 ⁻⁶
水蒸気*	0.03~0.00

表 1-9 大気の組成²³⁾

*季節的,地域的な変動が多い

窒化物は,窒素とそれより陽性の元素との二元化合物で,希ガス,白金族および 金を除くほとんどすべての元素について知られている²⁴⁾.窒素分子は $N \equiv N \equiv$ 重結合をもつため解離エネルギーが 944.7kJ mol⁻¹と大きくきわめて安定である. 気体,液体,固体の窒素はすべて 2 原子分子で液体と固体の凝集力はファンデル ワールス力である.N₂は室温では不活性であるが,高温では多くの元素と反応 し,NH₃やNO_xなどの窒素化合物をつくる²⁵⁾. 窒化物は,その性質からイオン性窒化物,共有性窒化物,および金属性窒化物に 分類できる²⁶⁾.

1-2-1 イオン性窒化物

陽性の強い金属の窒化物は一般にイオン性である.たとえば,Li₃N, Na₃N, Mg₃N₂, Zn₃N₂などは融点数百度の固体で水と反応してNH₃と金属水酸化物と なる.すなわち本質的には

$$N^{3}$$
+3H₂O \rightarrow NH₃+3OH⁻

と考えられる.これら窒化物は金属とN₂を高温で直接反応させるか,金属アミド を熱して脱アンモニア反応によりえられる.

$3Ca(NH_2)_2 \rightarrow Ca_3N_2 + 4NH_3$

イオン性窒化物は族の番号が増えるにつれて熱力学的安定性が増す.たとえ ば,アルカリ金属の窒化物はきわめて不安定であるが,希土類金属の窒化物は安 定である.また,イオン性窒化物は一般に,Li₃Nのような電気絶縁体あるいはイオ ン導電体(固体電解質)である.

1-2-2 共有性窒化物

表 1-10 に示す非金属元素の窒化物は一般に共有性窒化物である.これには分子結晶と三次元巨大分子結晶がある.SNは融点 185°Cの結晶であるが,室温付近では橙黄色,100°C以上では赤,-190°Cでは無色となるS4N4分子からなっている. 減圧にして加熱すれば昇華しベンゼンのような溶媒に溶解する.

一方,窒化ホウ素(boron nitride) BN はこれと対照的で,無色の結晶,高融点(~3000°C)で化学的にきわめて安定である.六方晶 BN はグラファイトと似た構造をとっており,これを数万気圧,1400~1800°C に保持するとボラゾン(borazon)とよばれるダイヤモンド構造の立方晶に変化する.ダイヤモンド構造の BN は高硬度で熱伝導性に優れるため,量産鋼製品の研磨,切削用工具材料として使用されている.

窒化ケイ素(silicon nitride)Si₃N₄も高融点(1900°C),高硬度であり,耐熱衝撃抵

抗,耐摩耗性に優れる.この性質を生かして高温構造材料として使用されている.

近年,窒化炭素C₃N₄が合成され,硬度がダイヤモンド以上であることが明らかにされた.そのため,カミソリの刃や音楽のCDなどのコーティング材として実用化され,電界放出素子としても注目されている²⁷⁾.

その他の非金属ダイヤモンド型窒化物としては,AIN,GaN,InN がある.これら Ⅲ族窒化物はウルツ鉱型構造をもち,その優れた半導体特性から発光ダイオー ド,レーザーダイオード等に用いられている.その性質を表 1-10 に示す.

N を除くⅢ族窒化物半導体である GaN,AIN,InN は,いずれも室温,大気圧にお ける安定な結晶構造であるウルツ鉱型の直接遷移エネルギーバンド構造をもつ 半導体である.また,同一結晶構造の化合物同志で三元または四元混晶の作製も 可能であり,すべて直接遷移型バンド構造をもつ.そのバンドギャップは室温に おいて 0.9~6.2eV におよび,紫外域から赤外域をカバーする LED,LD および紫外 線検出用材料として有望な半導体である.

とくに,GaNは電子飽和速度がGaAsのそれより大きく,AlGaNは負の電子親和 力をもつことから,この材料系は超高周波・高出力動作のトランジスタや固体電 子エミッタなどの新しいデバイスへの応用も期待できる.

さらに,これらⅢ族窒化物半導体は物理的にも化学的にも安定である.AIN や GaNは熱伝導率が比較的大きいため通常の半導体デバイスに比べてより過酷な 環境条件下における動作が可能である.ついで安全性の点で GaAs 等の化合物半 導体に比べてすぐれており環境に優しい半導体といえる.

窒化物	構造	格子定数(nm)	密度 (g/cm ³)	安定温度
				(°C)
BN	六方晶	a=0.254	2.3	3,000
		c=0.661		
	立方晶	a=0.3615	3.4	
	(閃亜鉛鉱型)			

表 1-10 非金属 (ダイヤモンド型) 窒化物の性質²⁸⁾

AlN	六方晶	a=0.311	3.05	2,200
	(ウルツ鉱型)	c=0.4975		
GaN	六方晶	a=0.319	5.0	600
	(ウルツ鉱型)	c=0.518		
InN	六方晶	a=0.3533	6.88	500
	(ウルツ鉱型)	c=0.5692		
Si ₃ N ₄	六方晶 α	a=0.7748	3.2	1,900
		c=0.5618		
	六方晶β	a=0.7608		
		c=0.2911		

1-2-3 金属性窒化物

遷移金属の窒化物は,一般に窒素原子が金属格子の中に侵入した,いわゆる侵入型(interstitial)結晶構造をとる.そのため,非化学量論的な組成のものが多い.これらの化合物は一般には金属と同様の外観,電気伝導性を保ち,高融点で硬く,化学的に安定である.

また,炭化物,ホウ化物,ケイ化物とともに耐熱性の硬質金属として区分され対称型の金属類似の格子配列をもつ結晶をつくる.その性質を表 1-11 に示す.

窒化物	構造	格子定数	密度	安定温度	
		(nm)	(g/cm^3)	(°C)	
TiN	立方晶	0.4246	5.43	2,950	金属性
	NaCl 型				

表 1-11 金属窒化物の性質²⁸⁾

ZrN	立方晶	0.4577	7.3	2,980	
	NaCl 型				
HfN	立方晶	0.4518	14.0	3,330	
	NaCl 型				
VN	立方晶	0.4139	6.10	2,350	
	NaCl 型				
NbN	立方晶	0.4388	8.47	2,630(分解)	超伝導性
	NaCl 型				
- 3	六方晶	<i>a</i> = 0.5191	14.3	2,950(分解)	
TaN		<i>c</i> = 0.2906			
δ -	立方晶	0.4336	15.6	2,950(分解)	
TaN	NaCl 型				
CrN	立方晶	0.4150	6.14	1,080(分解)	
	NaCl 型				
Mo ₂ N	立方晶	0.416	9.46	790(分解)	
W ₂ N	立方晶	0.412	17.7	分解	
ThN	立方晶	0.5159	11.9	2,820	
	NaCl 型				
UN	立方晶	0.4890	14.4	2,800	
	NaCl 型				
PuN	立方晶	0.4907	14.4	2,550	
	NaCl 型				

以上のように,予測される金属窒化物は 200 種類以上とされるが,合成されたのは 20 種類である.現在,実用化されている窒化物は表 1-12 に示す 10 種類にすぎないが,窒化物は様々な可能性を秘めた材料であるといえる.

表 1-12 実用化されている窒化物²⁹⁾

窒化物	実用化されている窒化物		
工具材料	BN		
構造用材料	Si3N4, TiN, AlN		
半導体材料	GaN, InN, InGaN, AlGaN, GaNP,		
	AlN		

参考文献

- 1) 社団法人照明学会編: "照明工学", p25 (オーム社, 2002).
- 2) 社団法人照明学会編: "照明用語辞典" (オーム社,1990).
- 3) 宮尾亘,平田仁著: "光エレクトロニクスの基礎"(日本理工出版会,1999).
- 小沼稔,吉田信也,柴田光義編著:"オプトエレクトロニクスとその材料"(工 学図書,1995).
- 5) 奥野保男著: "発光ダイオード" (産業図書,1993).
- 6) 赤崎勇編著:"青色発光デバイスの魅力"(工業調査会,1997).
- 7) 赤崎勇,応用物理 67,509(1998).
- 8) Maruska, H. P. and Tiejen, J. J., Appl. Phys. Lett. 15, 327 (1969).
- 9) Pankove, J. I., Miller, E. A. and Berkeyheiser, J. E., RCA Rev. 32, 383 (1971).
- 10)Manasevit, H.M., Erdmann, F.M. Simpson, W.I. and , J. Electrochem. Soc, 118, 1864(1971).
- 11)Amano, H., Sawaki, N. and Akasaki, I., Appl.Phys.Lett.48, 353 (1986).
- 12)Amano, H.,Kito, M., Hiramatsu, K. and Akasaki, I., Jpn.J.Appl.Phys.28, L2112 (1989).
- 13) Nakamura. S. Jpn.J.Appl.Phys.30, L1705 (1991).
- 14)Nakamura. S. Mukai, T., Senoh, M. and Iwasa, N., Jpn. J. Appl. Phys. 31, L139 (1992).
- 15)Akasaki. I., Amano, H., Sota, H., Saki,S., Tanaka,H. and Koeide,M., Jpn.J.Appl.Phys.34, L1517 (1995).

- 16)Nakamura, S., Senoh, M. Nagahara, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn.J.Appl.Phys.35, L174 (1995).
- 17) 田口常正, OPTRONICS, 12, 112-119 (2000).
- 18) 川上養一,藤田茂夫,unpublished.
- 19) 向井孝志,中村修二,応用物理,68,152-155(1999).
- 20) 武部俊彦,応用物理,70,554-558(2001).
- 21) 赤崎勇編著:"Ⅲ族窒化物半導体"(培風館,1999).
- 22) 倉又朗人,堀野和彦,堂免恵,棚橋俊之,応用物理,65,936-940(1996).
- 23) 河村哲也: "大気の科学" 2p,(山海堂,2003).
- 24) 大木道則,大沢利明,田中元治,千原秀明編:"化学辞典"(東京化学同人,1998).
- 25) 山下仁大,片山恵一,大倉利典,橋本和明:"工学のための無機化学" p94,(サイ エンス社,2000).
- 26) 木田茂夫: "無機化学" p169, (裳華房, 2003).
- 27) 青野祐美:岐阜大学大学院学位論文,甲 172,p4,(2002).
- 28) 塩川二朗監修: "カークオスマー化学大辞典" p853,(丸善,1988).
- 29) 高橋直行,高橋正志,中村高遠,金光義彦,Graham M Smith, Peter. C.
 Riedi:表面,Vol.40,No.4,p.15(2002).

第2章 Li₃Nの反応特性

2-1 緒言

従来,Ⅲ族窒化物であるGaN作製の窒素源として気体のNH₃やN₂が用いられてきたが,近年より反応活性な窒化リチウム(Li₃N)を窒素源に使用する試みが行われている.^{1),2),3),4)}

Li₃Nは,六方晶,空間群P6/mmm,格子定数a=0.3648 nm,c=0.3875 nm⁵⁾の格子定数をもち,N-Li-Nブリッジを作るLiイオンによって結びつけられた六方晶Li₂Nよりなるユニークな構造を有する⁶⁾. また高いイオン伝導性をもつため固体電解質として注目されてきた⁷⁾.

その構造を図 2-1 に示すが,図中でオレンジの小さな球はLi原子である. この ようにLi₃Nの構造には,2種類の等価でないLi⁺イオンが含まれている.すなわち, Li⁺イオンの 2/3 はN³⁻イオン層中に存在し,1/3 はこの層と層の間のかなり広い 体積中に橋かけイオンとして存在する.層中のイオンは 3 個の窒化物イオンN³⁻ に配位しているのに対して,橋かけイオンは 2 個の窒化物イオンに配位してい るにすぎない.各N³⁻イオンは 8 個のLi⁺イオンに配位している. このようにLi₃N は知られているただ 1 つのアルカリ性金属窒化物である.

図 2-1 Li₃Nの分子構造

本研究では低環境負荷型プロセッシングによる高品質なGaNバルク単結晶の 育成を目的として検討を開始したが,そのためには窒素源としてLi₃Nを用いる のが望ましいと考えた.Li₃NはLiと純化したN₂から合成されるが,合成にあたっ ては窒素源であるN₂からO₂,H₂Oを触媒,モレキュラーシーブにより除去しなけ ればならないとされているところから⁸⁾, O₂,H₂Oに敏感であることが予測でき た.

しかし、Li₃Nとそれらの反応特性については詳しく調べられていない.そこで、 Li₃N を窒素源に用いるにあたりLi₃NとO₂,H₂Oとの反応特性を調べた.

2-2 実験方法

2-2-1 使用した試薬

表 2-1 使用した試薬

武薬	構造式	分子量	製造元	純度%
窒化リチウム	Li ₃ N	34.83	アルドリッチ	不明

2-2-2 使用した測定装置

表 2-2 使用した測定装置

装置名	製造メーカー・型番
差熱分析(DTA)	島津製作所 DTA-50
熱重量分析(TG)	島津製作所 TGA-50
X 線回折(XRD)	理学電機 RAD-2R

2-2-3 実験操作

Li₃Nを空気中に放置した場合の変化を調べるため,ガラス板上に約 1gのLi₃N を常温で 20 時間放置し,X線回折測定を行った.また,25gビンに入ったLi₃Nはシ リカゲルを底部に敷き詰めた 500 ml密閉容器中に保管した.

2-2-4 生成物の評価

(1) 粉末 X 線回折測定

X線源はCuKα,加速電圧40 kV,電流20 mA,スキャンスピード2°C/minで測定 した.えられたX線回折データはJCPDSカードに基づき同定した.X線回折デー タの補正は内部標準法により生成物に立方晶Siを添加し,Si(111)の20,半値幅を 求め補正を行った.

(2) 熱重量測定(TG: Thermogravimetry),示差熱分析(DTA: Differential Thermal Analysis)

DTA および TG 測定には Pt セルを使用した.Pt セルは蒸留水で洗浄した後,6N 熱塩酸により洗浄した.その後再び蒸留水で洗浄した.Pt セルをアルミナ製ボー ト上に置き空気雰囲気で1000°C,2時間乾燥し放冷後とり出した.DTA および TG 測定は,昇温速度 5°C/min,測定温度範囲 30~800°C/min で行った.DTA 測定につい ては空の Pt セルを reference として用いた.

2-3 結果と考察

2-3-1 Li₃Nを空気中に放置した場合の変化

図 2-2 は初期Li₃Nと空気中に 20 時間放置したLi₃NのXRDパターンをそれぞ れ示している.空気中に 20 時間放置した試料はすべてLi₂CO₃であった.これは (1)式のようにLi₃Nは空気中のCO₂,O₂と反応してLi₂CO₃に変化したものと考え られる. この結果は無機化合物・錯体辞典の記述と一致した⁹⁾.

 $2Li_{3}N+3CO_{2}+3/2O_{2}\rightarrow 3Li_{2}CO_{3}+N_{2} \quad (1)$

2-3-2 Li₃NをN₂中に保存した場合の変化

図 2-3 は密閉容器中に1年保管したLi₃Nと初期Li₃NのXRDパターンをそれぞ れ示している.容器の開閉にともない微量のH₂Oとの接触は不可避である が,XRDパターンに変化は認められなかった.初期においてLiOHの回折ピークが 認められるのは、Li₃Nの純度が低いためと考えられる.

図 2-2 Li₃Nを室温放置した場合の構造変化

図 2-3 密閉状態下におけるLi3Nの経時変化

2-3-3 Li₃Nの熱分析

(1) Li₃NのTG-DTA測定及び昇温速度の影響

Li₃NのみをPtセル内にて 7005°C/min,10°C/minの昇温速度により加熱して得られたDTA曲線と,800°Cまで 20°C/minの昇温速度により加熱昇温し得られた DTA曲線を図 2-4 に示す.このDAT曲線によれば,200°C,400°Cに微小な発熱ピー クが認められるものの,700°Cまでは大きな発熱ピークは認められない.800°Cま で加熱した図 2-4(c)の発熱ピークは,表 2-3 に示すDTAにおける発熱ピークと吸 熱ピークの原因によれば,Li₃Nの酸化分解と考えられる.

図 2-4 昇温速度を変化させたときのLi₃NのDTA曲線

試料量 10mg 昇温速度 (a)5°C/min,(b)10°C/min,(c)20°C/min 雰囲気 N₂ガス 100ml/min 試料容器 Pt 製セルφ5.0mm,H5.0mm

変化	吸熱	発熱	変化	吸熱	発熱
(物理的原因)			(化学的原因)		
結晶転移	0	0	化学吸着	0	
非晶質の結晶化	0		析出	0	
融解	0		脱水	0	
蒸発	0		分解	0	
吸着		0	酸化分解		0
脱 離	0		気相酸化		0
吸収	0		気相還元	0	0
			固相反応	0	0

表 2-3 DTA における発熱と吸熱ピークの原因

図 2-5 は図 2-4 と同一条件でLi₃NのみをPtセル内にて加熱して得たTG曲線で ある.いずれも 650°C付近において昇温速度 5°C/minでは 7%,10°C/minでは 5%,20°C/minでは 3%の重量増加が認められた.用いた高純度N₂に含有される不 純物の積算量は実測値(3~7%)に対し,1%に満たないことから,この重量増加の原 因は,TG,DTA装置内に吸着したH₂O,O₂などがキャリアガスのN₂により運ば れ,Ptセル内のLi₃Nと反応し重量が増加するものと考えられる.

図 2-5(c)には 800°CにおいてLi₃Nの分解によると考えられる 10%の重量減少 が認められた.図 2-5(a),(b)については 700°Cで加熱を停止しているが,図 2-5(c) と同様にLi₃Nの分解による重量減少の傾向が認められた.

図 2-5 昇温速度を変化させた時の Li₃NのTG曲線

試料量 10mg

昇温速度 (a)5°C/min,(b)10°C /min,(c)20°C /min

雰囲気 N₂ガス 100ml/min

図 2-6 は図 2-4 と同一条件で加熱した後,Ptセル内に残ったLi₃NのXRDパター ンを示したものである.図 2-6(a),(c)ではブロードな回折ピークが認められた.一 部のLi₃Nが分解しLi-Li₃N共晶組成をつくるためLi₃Nの結晶性が低下するため と考えられる¹⁰⁾.図 2-6(b)のXRDパターンには未反応Li₃Nの回折ピークが認め られた.この条件ではLi₃Nは比較的安定と考えられる.

いずれのXRDパターンからも未反応Li₃Nに加えて,Li₂Oに帰属される強い回 折ピークとLiOHに帰属される回折ピークが認められた.Li₃NはH₂OやO₂と反応 しやすいことが知られているが⁸⁾,図 2-4 にはLi₂Oの生成に対応する発熱ピーク は認められない.

そこで、 $Li_2Oi Li_3N \ge O_2$ の反応により生成すると仮定すると,次のように書か れよう.

$$4\operatorname{Li}_{3}N+3O_{2} \rightarrow 6\operatorname{Li}_{2}O+2N_{2} \uparrow \qquad (1)$$

また、Li₃N とH₂Oとの反応によりLiOHが生成し、さらに脱水されLi₂Oが生成

すると仮定すると次のように書かれよう.

$$Li_{3}N+3H_{2}O \rightarrow 3LiOH+NH_{3} \uparrow$$
 (2)

 $2\text{LiOH} \rightarrow \text{Li}_2\text{O} + \text{H}_2\text{O} \tag{3}$

図 2-6(a)ではLi₂Oのみが認められ,図 2-6(b),(c)ではLiOH,Li₂Oが認められ た.Li₃Nを長時間N₂中で加熱すると(1)式の反応によりLi₂Oが生成し,(2)式の反 応によりLiOHが生成するが最終的には(3)式の反応によりLi₂Oが生成するもの と考えられる.

図 2-6 昇温速度を変えたときの Li3N の XRD パターン 昇温速度 (a)5°C/min,(b)10°C /min,(c)20°C /min 雰囲気 N₂ガス 100ml/min

(2) Li₃NとPtセルとの反応

昇温速度 20°C/min,800°Cまで昇温したところ,測定後の試料はLi₂Oとなり,Pt 製セルに焼きつきや変形が見られた.このPt製セルのXRDパターンを図 2-7 に示 すが,Li₂Ptと見られる回折ピークが認められるところからLiと反応するものと 考えられる.このことから反応るつぼにPtるつぼを使用する場合はLi₃Nが分解 するものと考えられる.

図 2-7 Li3NとPtセルの反応

- 2-4 まとめ
 - ① キャリアーガスである窒素ガス中に微量の不純物が含まれている.
 - ② 測定装置内部を完全にシールすることができないため空気が装置内に進入する.
 - ③ 装置内部に吸着した二酸化炭素や酸素等が加熱により放出する.

したがって,TG-DTA測定結果には主反応である熱的変化以外の要因が含まれる可能性がある.

- Song, Y., Wang, W., Yuan, W., Wu, X. and. Chen, X., J. Cryst. Growth, 247, 275-78 (2003).
- Song, Y. T., Chen, X. L., Wang, W. J., Yuan, W. X., Gao, Y.G. and Wu, X., J. Cryst. Growth, 247, 327-330(2004).
- Xie, Y., Qian, Y., Wang, W., Zhang, S. and Zhang, Y., Science, 272, 1926-27 (1996).
- 4) Kamler, G., Weisbrod, G. and Podsiadlo, S., J. Thermal Anal., 61, 873-77 (2000).
- 5) Rabenau, A. and Schulz, H., J. Less-Common Metals, 50, 155-159(1976).
- 6) Huggins, R, A., Electrochim. Acta, 22, 773, (1977).
- 7) Alpen, U.V., Rabenau, A. and Talat, G.H., Apl. Phys. Lett., 30, 621-623 (1977).
- 8) Schönherr, E., Müller, G. and Winckler, E., J. Cryst. Growth, 43, 469-472 (1978).
- 9) 中原勝儼著: "無機化合物・錯体辞典"(講談社サイエンティフィック,1997).
- 10) Saitho, Y. and Maruyama," T., Kotaino ion dendou", Uchida Roukakuho, (1999).

第3章 LiGaO2の合成とその結晶評価

3-1 緒言

LiGaO₂はウルツ鉱型複合酸化物であり,斜方晶系に属し透明でモース硬度 7.5, 化学的に安定な化合物である.その単結晶は誘電率が低く,電気機械結合定数の 高い材料であることが知られ¹⁾,Marezioによってその結晶構造が明らかにされ ている²⁾.またLiGaO₂は非線形光学特性をもつことから最初レーザー用材料と して研究が始まった³⁾が,その後は下火となっていった.

ところが,最近GaN系半導体が青色発光ダイオードやレーザーダイオード用 材料として実用化されるにつれて,その結晶成長用基板として新たな注目が集 まり,研究が活発化してきている.^{4)~8)} GaNは従来,サファイア基板上にヘテロ エピタキシャル成長により作製されているが,その場合にはサファイアとGaN との間に16%⁹⁾という格子不整合を有し,これに起因して多くの欠陥が存在する 問題がある.この格子不整合を緩和するために,AINやGaNを低温バッファー層 としてサファイア基板上に設ける技術が開発されて改善が図られた.GaNの結 晶性は大幅に改善され,^{10),11)}これらに伴い電気的,光学的特性が向上した.

しかし、こうして得られるGaN薄膜も転位密度は 2×10¹⁰ cm⁻²¹²⁾となお高い ため、サファイアに代わる基板の探索が行われてきた.これら候補材料中 で、LiGaO₂はGaNとの格子不整合が 1~2%⁹⁾ときわめて小さいところから、GaN の結晶成長用基板として最近注目されるようになってきた.

LiGaO₂単結晶の作製は、LiGaO₂種結晶をLiOHとGa₂O₃のNaOH溶解液を満た したオートクレーブ中に置いて結晶成長を行う水熱法,LiGaO₂を原料に用いる フラックス法やCzochralski法があり,Remeikaらによってそれぞれ報告されてい る¹⁾.

水熱法は 350°Cという比較的低い反応温度で合成できる特徴を有するが,約80 MPaという高圧を必要とするため,これに耐える圧力容器が必要となる。しかも反応時間が 2~10 日と長い^{13),14)}.フラックス法は, PbO-B₂O₃などのフラックスを用いて結晶拡大をはかる方法であり,フラックスの除去が必要なうえ,LiGaO₂結晶中にPbOが混入する問題がある¹⁵⁾.

Czochralski法は、多結晶LiGaO₂を原料とする融液からLiGaO₂種結晶を核と して大面積LiGaO₂単結晶を成長させる方法である.LiGaO₂は 1600°Cにおいて コングルエント組成(congruent melting)を形成するため、LiGaO₂メルトから直接 大きな単結晶の成長ができる.得られた単結晶からLiGaO₂単結晶ウエハーを切 り出し、その上へ電子線エピタキシ法(MBE)などにより作製したGaNの特性が報 告されている¹⁶⁾.Czochralski法は、大面積基板が作製できる利点を有するが、成 長温度が 1500~1600°Cと非常に高いため、Li₂Oが揮発し融液組成が変化する欠 点がある.

ここで,LiGaO₂単結晶の作製に関する従来の手法をまとめると,水熱法,フラ ックス法, Czochralski法ではいずれも原料となるLiGaO₂を合成したのち,これら を原料として結晶成長を行う.LiGaO₂の合成については,楯らはLi₂CO₃とGa₂O₃ とをモル比 1:1 で 900°C,3 時間固体反応させ¹⁵⁾,石井らはLi₂CO₃とGa₂O₃を 1300°C,20 時間空気中で反応させており¹⁶⁾いずれも高温が必要である.

我々は環境負荷の低いGaN合成法に関する検討の中で,フラックスとして LiCl,KCl,NaClを用い,Ga₂O₃とLi₃Nとを反応させると,比較的低温でLiGaO₂が生 成することを見出した.そして,従来の合成法と比べると格段に温和な反応条件 下でLiGaO₂が合成できる点に着目した.これに基づいて,直接大面積で高品質の LiGaO₂単結晶育成への手順の検討を開始した.本研究では,それに先立って,上 記のフラックス中における反応温度,モル比等の反応条件と得られる生成物の 関係を検討することを目的とした.

3-2 実験方法

3-2-1 使用した試薬

LiGaO₂合成のための出発物質として表 3-1 に示すようにGa₂O₃(キシダ化学, 純度 99.99%)とLi₃N (アルドリッチ,純度不明)を用いた.本研究では反応媒質と して塩化物系フラックスを用いたが,種々の温度での実験を可能にするために, 融点を考慮してフラックスの組成を表 3-2 のように選択した.

すなわち,反応中のフラックスの揮発を極力防ぐため,反応はフラックスの融 点よりやや高い温度になるようにした.反応温度 370°C については反応温度の 下限を探るため,反応温度 450°C と同じフラックス組成に設定した.なお,用い たフラックスは LiCl (キシダ化学,純度 99.9%),KCl (ナカライテスク,純度 99.5%),NaCl (キシダ化学,純度 99.5%) である.窒化ガリウムは GaN 生成を確認 するための標準試薬であるが純度,製造方法は不明である.

試薬	構造式	分子量	製造元	純度%
酸化ガリウム	Ga ₂ O ₃	187.44	キシダ化学	99.99
窒化リチウム	Li ₃ N	34.83	アルドリッチ	不明
塩化リチウム	LiCl	42.39	キシダ化学	99.0
塩化カリウム	KC1	74.55	ナカライテスク	99.5
塩化ナトリウム	NaCl	58.44	キシダ化学	99.5
窒化ガリウム	GaN	83.73	和光純薬	不明

表 3-1 使用した試薬

3-2-2 実験操作

乾燥窒素を充填したグローブボックス中で,Ga₂O₃とLi₃Nを SiO₂63%,Al₂O₃31%より成る外径¢36 mm,高さ27 mm,容量15 mlのフタなし るつぼ中にフラックスと共に秤量しよく混合した.

予備実験では図 3-1 に示す反応装置を使用したが,窒素によるシールが不十分 であり酸素の混入が懸念された.

そこで,図 3-2 に示す反応装置に変更した.石英ガラス管中にるつぼを収納したあとシリコーン栓で密閉し,電気炉にセットした.次に流量 150 ml/min の窒素(純度 99.9995%)を通しながら 370~800°Cまで昇温速度 15°C/min で加熱し,24時間反応させた.反応終了後,石英ガラス管を室温まで冷却し,るつぼをとり出した.るつぼに蒸留水を加えフラックスを溶解させた後,ろ過により生成物をフラックスの溶解液をろ紙により離して,80°C,1時間乾燥させた.

反応温度	融点	LiCl	KC1	NaCl
(°C)	(°C)	(mmol)	(mmol)	(mmol)
370	405	41	29	
450	405	41	29	
550	510	20	47	
600	550	42	24	
700	685		33	33
800	730		51	15

表 3-2 フラックス組成

3-2-3 使用した測定装置

表 3-3 に示すように,反応機構の解析のために示差熱分析,熱重量分析を行ったが,それには TGA-50(島津製作所製),TGA-50(島津製作所製)をそれぞれ用い, 高純度窒素ガス雰囲気中(100ml/min)において測定した.昇温速度 5~20°C/min,測 定セルは Pt 製セル(φ5.2 mm,H5.0 mm)を使用した.生成物は CuKα線(λ= 0.154183nm)を用いたX線粉末回折装置(理学電機 RAD-2R) により同定した. 表面形態の観察は走査型電子顕微鏡(日立製作所製 S-4300),結晶構造は透過型 電子顕微鏡(TEM,日立製作所製 H-8100)を用い加速電圧 200 kV によりそれぞれ 観察した.

装置名	製造メーカー・型番
カールフィッシャー水分測定器	京都電子工業製 MKC - 510N
示差熱分析(DTA)	島津製作所 DTA-50
熱重量分析(TG)	島津製作所 TGA-50
X 線回折(XRD)	理学電機 RAD-2R
走查型電子顕微鏡(SEM)	日立製作所製 S-4300
透過型電子顕微鏡(TEM)	日立製作所 H-800

表 3-3 使用した測定装置

図 3-1 反応装置(1)

図 3-2 反応装置(2)

3-2-4 生成物の評価

(1) 水分測定

カールフィッシャー水分測定器の測定原理は以下のとおりである.水は(1)式 のように塩基とアルコールの存在下でヨウ素および二酸化硫黄と反応する.

H₂O+I₂+SO₂+CH₃OH+3RN→[RNH]SO₄CH₃+2[RNH]I (1)
 水分測定を容量滴定法で行なう場合,ヨウ素は滴定液中に分子状態で存在するが,電量滴定法による水分測定では(2)式のようにヨウ素はヨウ素イオンを含む発生液を電気分解して発生させる.

 $2I^{-} \rightarrow I_{2} + 2e^{-}(2)$

発生ヨウ素が(1)式にしたがって消費されると,検出電極でヨウ素が消費された ことを検出して,再び電気分解により(2)式にしたがってヨウ素を発生する.発生 ヨウ素量はファラデーの法則にしたがって電気量に比例する.(1)式からI₂と H₂Oは 1:1 で反応するので,水1モル(18g)が2×96500クーロンに相当し,10.72ク ーロン/1mg H₂Oとなる.以上の原理にもとづいて電気分解に要した電気量を水 分量に換算することにより水分が測定できるのである. 図 3-3 は滴定セルの構造である.溶液試料の場合は,直接滴定セルに投入する が,固体試料の場合はオーブンで水分を追い出しキャリヤーガスとともに滴定 セルに吹き込み水分を測定する.

図 3-4 は水分気化装置の構造である.まず試料ボード上のガラスセルに試料を のせ,キャリヤーガスの窒素を流しながら内部の水分を除去する.その後,ガラス セルはオーブンに挿入され 300°C まで加熱されると,試料から水分が追い出さ れ滴定セルに導入され水分量が測定できるのである.

図 3-3 滴定セルの構造

図 3-4 水分気化装置の構造

(2) 粉末 X 線回折測定

X線源はCuKα,加速電圧40 kV,電流20 mA,スキャンスピード2°C/minで測定した.えられたX線回折データはJCPDSカードに基づき同定した.X線回折データの補正は内部標準法により生成物に立方晶Siを添加し,Si(111)の20,半値幅を求め補正を行った.

(3) 熱重量測定(TG: Thermogravimetry),示差熱分析(DTA: Differential Thermal Analysis)

DTA および TG 測定には Pt セルを使用した.Pt セルは蒸留水で洗浄した後,6N 熱塩酸により洗浄した.その後再び蒸留水で洗浄した.Pt セルをアルミナ製ボー ト上に置き空気雰囲気で1000°C,2時間乾燥し放冷後とり出した.DTA および TG 測定は,昇温速度 5°C/min,測定温度範囲 30~800°C/min で行った.DTA 測定につい ては空の Pt セルを reference として用いた.

(4) 走查型電子顕微鏡(SEM: Scanning Electron Microscope)

試料台にカーボンテープを貼り,粉体試料を載せ SEM による表面観察を電子線加速電圧 5 kV で行った。倍率は 5000 倍を基準に観察した.

(5) 透過型電子顕微鏡(TEM: Transmission Electron Microscopy)
 試料をマイクログリッドに搭載し電子線加速電圧 200 kV で TEM 観察を行った.

3-3 結果と考察

3-3-1 反応温度とモル比の影響

図 3-5 はフラックス中でGa₂O₃とLi₃Nとを 370~800°Cの温度範囲で加熱して 得られた生成物の粉末X線回折(XRD)パターンである.まず融点より低い 370°C では,図 3-5(a)に示すように未反応のGa₂O₃の回折ピークのみが認められ,Ga₂O₃ とLi₃Nとの反応は進行しないことが分かる.XRDパターンにLi₃Nの回折ピーク が認められないのは,未溶融のフラックスを除去するため生成物に蒸留水を加 えたとき,Li₃NとH₂Oの反応によりLiOHが生成しこれが水に溶解したため考え られる.

450°Cでは図 3-5(b)に示すように,未反応Ga₂O₃による回折ピーク以外に LiGaO₂に帰属される回折ピークが現れ,LiGaO₂が生成した.

550°C以上になると図 3-5(c)~(f)に示すように,すべての回折ピークがLiGaO₂に帰属され,JCPDSカードとの比較からも斜方晶LiGaO₂の生成が確かめられた.

図 3-6は Ga₂O₃/Li₃Nのモル比を変えて得えられた生成物の XRDパーンである.Ga₂O₃/Li₃N=2 mmol/2 mmolの場合には,図 3-6(a)に示すように,未反応 Ga₂O₃ のピークが認められた.Li₃Nの量を増やして Ga₂O₃/Li₃N=2 mmol/4 mmol, 2mmol/9.74 mmolとすると,図 3-6(b),(c)のように得られた生成物はすべてLiGaO₂ となった.

61

図 3-5 表 3-1 のフラックス組成で反応させてえ た生成物の XRD パターン

図 3-6 モル比の影響

(a) $Ga_2O_3/Li_3N=2 \text{ mmol}/2 \text{ mmol}$

(b) $Ga_2O_3/Li_3N=2 \text{ mmol}/4 \text{ mmol}$

(c) $.Ga_2O_3/Li_3N=2 \text{ mmol}/9.74 \text{ mmol}$

3-3-2 熱分析

本反応系においては,Li₃Nが重要な役割を果たすことは言うまでもない.そ こでLiGaO₂形成に至る反応機構を解明するに当たって,昇温に伴うLi₃N自身の 変化についての詳しく検討を行うこととした.

2-2-3 Li₃Nの熱分析では試料量が 10 mgと少なかったため 700°CまでDTA曲線には大きな発熱,吸熱ピークは認められなかった.これはLi₃Nの発熱量がきわめて小さいからと考えられる.そこで,試料重量を増やし再度Li₃Nの熱分析を行った.

図 3-7 はLi₃NをPtセル内で 700°Cまで加熱昇温してえられたTG-DTA曲線で ある. その結果によれば,DTA曲線では 165°C,250°Cに微小な発熱ピーク,480°C 付近に強い発熱ピークがみられた.これらはLi₃Nと微量のH₂Oとの反応による ものと考えられる. Li₃NはH₂OやO₂に対してきわめて敏感であることが報告さ れているが¹⁷⁾,この強い発熱ピークは(1)式に示すLi₃NとO₂との反応によるもの と考えられる.

$$2Li_3N+O_2 \rightarrow 2Li_2O+N_2\uparrow(1)$$

図 3-7 Li₃NのTG-DTA曲線 試料採取量 30mg 昇温速度 5°C/min 雰囲気 N₂ 100 ml/min

セル Pt \$5.0 mm, H5.0 mm

図 3-8 は 200°C,300°C,400°C,500°C,700°Cまで加熱したPtセル内の試料に対応 したXRDパターンである.図 3-8(a), (b),(c)のXRDパターンはLi₃Nを示す回折ピ ークであり,400°CまではLi₃Nは極めて安定である.

図 3-8(d)のXRDパターンから未反応のLi₃N以外に強いLi₂Oからの回折ピー クと弱いLiOH, ,Li₂CO₃からの回折ピークが認められた.Li₂Oは(1)式のように O₂との反応により生成したものと考えられる.LiOHはDTA装置内に吸着した H₂OやキャリヤーガスのN₂中に微量に含まれるとH₂OとLi₃Nが,(2)式のように 反応して生成するものと考えられる.

$Li_3N+3H_2O \rightarrow 3LiOH+NH_3$ (2)

Li₂CO₃はPtセルを冷却後,空気中に取り出したとき,未反応Li₃Nが空気中の CO₂と反応して生成したものであり,加熱中に生成したものではない.この温度 においては $Li_3N \ge O_2$ の反応が支配的である.さらに 700°Cまで加熱した場合に は,図 3-7に示すようにブロードな発熱曲線が続き,図 3-8(e)に示すように Li_3N の 回折ピークは消失し Li_2O のピークが強くなった.これは Li_3N の量が多いため (1)式に示す反応が 500~700°C間で起こり, Li_3N が O_2 と反応し Li_2O に変化する ためと考えられる.

TG曲線では 300°C付近から重量増加が認められるが,これは装置内に存在する微量のH₂OやO₂を試料が吸着するためと考えられる.

以上よりLiGaO₂の生成メカニズムは以下のように推定できる.500°C以下で は,まず(1)式のように溶融塩やGa₂O₃に含まれるH₂OとLi₃Nとの反応により LiOHが生成する.つぎに(3)式のようにLiOHはGa₂O₃と反応しLiGaO₂が生成す る.しかし、H₂Oは微量なためLiOHの生成は不十分であり未反応Ga₂O₃が残るも のと考えられる.

図 3-8 Pt セル内残留性生物の XRD パターン

- (a) 200°Cまで昇温(b) 300°Cまで昇温
- (c) 400°Cまで昇温(d)500°Cまで昇温
- (e) 700°Cまで昇温

500°C以上では(2)式の反応により生成したLi₂OとGa₂O₃が(4)式のように反応 しLiGaO₂が生成するものと考えられる.

 $Ga_2O_3+2LiOH \rightarrow 2LiGaO_2+H_2O$ (3)

 $Li_2O+Ga_2O_3 \rightarrow 2LiGaO_2$ (4)

そこで、Li₂O 2 mmolとGa₂O₃2 molを溶融塩中で図3-5と同一条件で反応させ て得た生成物のXRDパターンを図3-9に示す.LiGaO₂が生成したが未反応の Ga₂O₃が多く残りLi₃Nを用いた場合と大きく異なる.これは(4)式の反応により LiGaO₂が生成するばかりでなく、溶融塩中で活性なLi₃NがGa₂O₃を還元するこ とにより生成するものと考えられる.本来O₂を完全に除いた条件下では(5)式の ようにGaNとLi₂Oが生成するものと考えられる.

 $2Li_3N+Ga_2O_3 \rightarrow 2GaN+3Li_2O(5)$

しかし,微量の O_2 が存在すると(6)式のように Ga_2O_3 の還元が完結せずLiGa O_2 が生成するものと推測される.

 $2Li_3N+3Ga_2O_3+3/2O_2\rightarrow 6LiGaO_2+N_2\uparrow(6)$

図 3-9 Li₂OとGa₂O₃を溶融塩中で反応させた生成物の XRDパターン

モル比Li2O 2 mmol, Ga2O3 2 mmol, NaCl 33 mmol,

KCl 33 mmol

反応条件 700°C,24hrs

つぎに,生成したLiGaO2の格子定数を以下の式にしたがって求めた.LiGaO2 は斜方晶系に属するので結晶面(h,k,l)と隣接する面との距離dとの関係は以下 の式で表される.

$$\frac{1}{d^2} = \frac{4\sin^2\theta}{\lambda^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$
(1)

ここで d は面間隔, λ は X 線の波長(λ =1.541nm),(h,k,l)はミラー指数,a,b,c は格 子定数, θ は回折角である.

まず,(200)を(1)式に代入すると

$$\frac{4\sin^2\theta}{\lambda^2} = \frac{4}{a^2} \qquad \qquad a = \frac{\lambda}{\sin\theta} \quad (2)$$

(200)からの回折ピーク 20から求めた0を(2)式に代入すると格子定数 a を求めることができる.

つぎに(002)を(1)式に代入すると

$$\frac{4\sin^2\theta}{\lambda^2} = \frac{4}{c^2} \qquad \qquad c = \frac{\lambda}{\sin\theta} \quad (3)$$

(002) からの回折ピーク 20から求めた0を(3)式に代入すると格子定数 c を求めることができる.最後に(111)を(1)式に代入すると

$$\frac{4\sin^{2}\theta}{\lambda^{2}} = \frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}}$$

$$b = \frac{1}{\sqrt{\frac{4\sin^{2}\theta}{\lambda^{2}} - \frac{1}{a^{2}} - \frac{1}{c^{2}}}}$$
(4)

(111)からの回折ピーク 20から求めた0とすでに求めた格子定数 a,c をそれぞれ(4)式に代入すると格子定数 b を求めることができる.

格子定数の計算に先立ちX線回折データの補正を行った.立方晶SiのJCPDSカ ード(27-1402)のデータを使用してブラッグの式nλ=2dsinθから面間隔dを求める とd=0.31356 nmとなる.ここで,n=1,λ=0.1540598 nm(CuK_α1) 20=28.465°の値を用 いた.使用したX線回折であるRAD-2Rのλは 0.154183 nmであるので再びブラッ
グの式にd=0.31356 を代入すると 20=28.465°となる.生成物のXRDパターンから 求めたSi(111)の 20=28.460°であることから両者の差は 0.005°であった.通常,生 成物のXRDパターンからは 20の値は小数点以下 2 桁まで求めるため 0.005°の誤 差は無視できる.

粉末の結晶が0.1µm以下の細かい粒子からなる場合や,結晶中にひずみや組成 の不均一が存在すると,X線回折の幅は広がってくる.さらに極端に結晶粒子が 小さくなると回折線はもはや認められなくなる.

結晶にひずみや組成の不均一がなく,しかも均一な粒子径からなると仮定する と以下に示すシェラー(Scherer)の式が成立する.

$$D_{hkl} = \frac{0.9\lambda}{\beta\cos\theta}$$

ここで D_{hkl} は(hkl)面から見た結晶の大きさ、 λ はX線の波長(nm), β は回折線の 半値幅の広がり(ラジアン), θ は回折角である.回折線の半値幅Bは試料に起因 する広がり β と装置との光学系による広がりよりなっており, $B=\beta+b$ の関係が ある.そこで,Si(111)の半値幅をbとしB-bから β を求めた。

表 3-4 には 450~800°Cで反応させて得られたLiGaO2のX線回折データより見 積もられた格子定数及び結晶子径を示す.

後者は(110)面からの回折ピークから評価した.これによると反応温度を変え てもその格子定数の値はa=0.5408~0.5419 nm, b=0.6375~0.6382 nm, c=0.5017~0.5019 nmというきわめて小さな変化しかなく,Marezioによって求め られたLiGaO₂の格子定数a=0.5402 nm,b=0.6372 nm,c=0.5007 nmとほぼ一致した.

結晶子径は反応温度とともに大きくなる傾向を示し,700~800°Cにおいて約 59 nmであった.この温度においてはLi₃Nがフラックス中で解離し,これが生成 したLiとLi₃Nとが共晶組成を形成して融体となり¹⁸⁾,このことが粒成長を引き 起こしているのではないかと推測される.

反応温度(°C)	a(nm)	b(mm)	c(nm)	D ₁₁₀ (nm)
450	0.5416	0.6382	0.5019	40.9
550	0.5419	0.6377	0.5019	46.8
600	0.5411	0.6379	0.5019	45.4
700	0.5408	0.6378	0.5017	58.9
800	0.5414	0.6375	0.5017	59.2
Marezio ¹¹⁾	0.5402	0.6372	0.5007	* *

表 3-4 LiGaO2の格子定数および結晶子径

3-3-4 SEM による形態観察

図 3-10はGa₂O₃/Li₃N=2 mmol/4 mmolの組成で仕込み,種々の温度で反応させ て得られたLiGaO₂のSEM写真である.450°Cでは,図 3-10(a)に示すように,微小な 棒状のLiGaO₂結晶が認められたが,結晶はほとんど成長していないことがわか る.600°Cでは,微細なLiGaO₂粒子中に約 5µmの結晶が認められた.さらに,反応温 度を 700,800°Cとした場合には,図 3-10(c),(d)に示すように,約 2µmの結晶が認め られるフラックス中でLiGaO₂が.結晶の角が取れているのは,フラックスを除 くためにるつぼ中の生成物に水を加えるが,その際にLiGaO₂表面がわずかに溶 解したことによるものではないかと考えている.このことは実際に物をろ過分 離した後のろ液の蒸発乾固物からLiGaO₂が検出されたことから確かめられた.

次に,モル比をGa₂O₃/Li₃N=2 mmol/2 mmolとして各種温度で 24 時間反応さ せた.こうして得られた生成物のSEM写真を図 3-11(a),(b),(c)に示す.

また,図 3-11(d),(e),(f)はモル比をGa2O3/Li3N=2 mmol/9.74 mmolとして同様

に得られた生成物のSEM写真である.

モル比が2mmol/2mmolの場合,粒子の拡大は小さいが,モル比が2mmol/9.74 mmolの場合,LiGaO2粒子が拡大しているように見える.前述したように,この温 度においては過剰に存在するLi3Nがフラックス中で解離し,その結果生成した LiとLi3Nが共晶組成を形成するためと考えられる.すなわち,600°CではLi-Li3N 液相中で還元が進むためLiGaO2粒子の成長が進むものと考えている.

図 3-10 反応温度を変えて得られた生成物の SEM 写真

モル比	Ga ₂ O ₃ /Li3N=2mmol/4mmol
溶融塩組成	表 2-3
反応温度	(a) 450°C (b)600°C(c) 700°C (d)800°C
反応時間	24hrs

図 3-11 反応温度及びモル比を変えて得られた生成物の SEM 写真 モル比 Ga₂O₃/Li₃N=2mmol/2mmol 反応条件(a) 600°C,24hrs (b) 700°C,24hrs (c)800°C,24hrs モル比 Ga₂O₃/Li₃N=2mmol/9.74mmol 反応条件(d) 600°C,24hrs(e) 700°C,24hrs,(f)800°C,24hrs 溶融塩組成 表 3-3 に示す

反応により得られた試料をマイクログリッドに搭載し,TEM観察をおこなった.図3-12(a)はその一例であるが,ここには約1µmの大きさの結晶が認められる. それに対応する制限視野電子線回折像を図3-12(b)に示す.得られた試料はいずれ

も高結晶性であったが,図3-12(b)に示す晶帯軸に対応しておりLiGaO2による 回折点は図中に示されたように指数付けされることがわかった.

図 3-12 生成物の TEM 写真と制限視野回折 像(SAD) モル比 $Ga_2O_3 2 \text{ mmol}, Li_3N 4 \text{ mmol}$ 溶融塩組成 LiCl 42 mmol, KCl 24 mmol 反応条件 600^{72} , 24 hrs 3-3-6 GaNがえられない理由

ここでなぜGaNがえられずLiGaO2のみが生成したかについて考察する.Ga2O3とLi3Nの反応は熱力学計算によれば標準反応自由エネルギーが ΔG=-532.6 kJ/molであることから,反応が起こると考えられる.

 $Ga_2O_3+2Li_3N \rightarrow 2GaN+3Li_2O$ $\Delta G=-532.6 \text{ kJ/mol(at 298K)}$ しかし,反応温度,モル比を変えても GaN はえられず,生成物はすべて LiGaO₂であった.これは電気炉に静置した磁製るつぼの窒素シールが不十分な ため,Li₃NがO₂またはH₂Oと反応しLi₂Oが生成し,さらにGa₂O₃と反応すること によりLiGaO₂が生成したものと考えられる.

Li₃NとO₂が反応する場合は,以下のように反応式によりLiGaO₂が生成するものと考えられる.

 $4Li_3N+3O_2\rightarrow 6Li_2O+2N_2$

 $Li_2O+Ga_2O_3 \rightarrow 2LiGaO_2$

 $Li_3N \ge H_2O \ge が反応する場合は、まずLiOHが生成し、600°C以上でLi_2O \ge なり、Ga_2O_3 \ge 反応することによりLiGaO_2が生成するものと考えられる.$

 $Li_3N+3H_2O\rightarrow 3LiOH+NH_3$

 $2LiOH \rightarrow Li_2O + H_2O$

 $Li_2O+Ga_2O_3 \rightarrow 2LiGaO_2$

そこで,2 mmolのLi₂Oと2 mmolのGa₂O₃を溶融塩中で反応させたところ一部 未反応のGa₂O₃が残ったもののLiGaO₂がえられた.図 3-9にそのXRDパターンを 示す.

表 3-6 はカールフィッシャー水分測定装置により反応成分の水分含有率を測定した結果である.使用したフラックスであるNaCl, KCl, LiClのうちLiClはきわめて吸湿しやすい.そのため,減圧乾燥後,大気に曝すとただちに吸湿する.NaCl,KClは比較的水分含有率は低いがフラックスを用いる場合Ga₂O₃,Li₃Nに対し 10 倍量使用するため水分量は一桁あがり無視できない量となる.一方,Ga₂O₃の水分は 100°Cで減圧脱水しても常圧に戻せば再び吸湿するので,0.4%以下に下げることができない.

Li₃Nを窒素源に用いる場合の水の影響については,久保らのソルボサーマル 法によるGaNナノクリスタルの低温合成において同様の結果が報告されている ¹⁹⁾.脱水ベンゼン,トルエン中でGaCl₃とLi₃Nを圧力容器中、80~110°Cで反応させ てえられたGaNを作製した.副生物として、ベンゼン中ではGa,トルエン中では LiGaO₂,Gaがえられたと報告している.これは、ベンゼンに比べてトルエンは水 を含みやすいため,水とLi₃Nが反応しLiGaO₂が生成すると考えられる.このよう に,ソルボサーマル法は液体溶媒により低温合成が可能であるが,溶媒の完全脱 水が困難であるため,本法に比べLi₃Nの副反応を抑制することができないと考 えられる.

出発物質	乾燥前	減圧乾燥後		
		(26.6Pa,100°C,67hrs)		
Ga ₂ O ₃	0.447	0.409		
LiCl	7.22	0.986		
KC1	0.0594	0.0644		
NaCl	0.0408	0.0604		

表 3-6 出発物質の水分含有率(%)

以上の結果にもとづき,水を極力減らすため,フラックスを使用しないで Ga₂O₃ 2mmolとLi₃N 4mmolを 550°C,24 時間反応させた.えられた生成物を水洗 ろ過したろ過物のXRDパターンを図 3-13 に示す.標準GaNに比べわずかなずれ が認められるが,GaN(100),GaN(002),GaN(101)と推定されるピークが認められ た.

図 3-13 溶融塩を使用しないで反応させた生成物の XRD パターン モル比 Ga₂O₃ 2mmol, Li₃N 4mmol 反応温度 550°C.24hrs

生成した GaN は六方晶系に属するので,結晶面(*hkl*)と隣接する面との距離*d*との関係は以下の式で表される.

$$\frac{1}{d^2} = \frac{4\sin^2\theta}{\lambda^2} = \frac{4}{3}\frac{h^2 + hk + k^2}{a^2} + \frac{l^2}{c^2}$$
(1)

ここで、dは面間隔、 λ はX線の波長、(h,k,l)は結晶のミラー指数、a,b,cは格子定数、 θ は回折角である.

まず,GaN(100)からの回折ピーク 2 θ から求めた θ を(1)式に代入すると格子定数 aを求めることができる.

$$a = \frac{\lambda}{\sqrt{3}\sin\theta}$$

(002)からの回折ピーク 2 θ から求めた θ を(1)式に代入すると格子定数cを 求めることができる.

$$c = \frac{\lambda}{\sin \theta}$$

求めた格子定数と他法でえられた GaN の値表 3-9 に示す.a,c ともに山根らの フラックス法,Karpinski らの高温高圧法、赤崎らの MOVPE 法に比べ小さい.こ れは反応時間が短いため結晶が不完全であることに起因していると考えられ る.

	a (nm)	c (nm)
A7	0.3173	0.5153
山根ら20)	0.31890	0.51863
Karpinski ⁶ ²¹⁾	0.31890	0.51820
赤崎ら ²²⁾	3.1890	5.1850

表 3-9 生成した GaN の格子定数比較

つぎにシェラー式を用いて結晶子径を計算した結果を表 3-10 に示す.

表 3-10 生成した GaN の結晶子径

	結 晶 子 径			
	(nm)			
D ₁₀₀	46			
D ₀₀₂	21			
D ₁₀₁	92			

生成したGaN結晶は 20~90 nmの微結晶であることが確かめられた.この結果 は久保らのソルボサーマル法によりえられたGaNナノクリスタルの 20 nmに近 い¹⁹⁾. 3-4 まとめ

3-4-1 GaN の生成

溶融塩を使用せずGa₂O₃ 2mmol, Li₃N 4mmolを反応させたところGaN微結晶 がえられ,以下の反応式が成立することがわかった.

 $Ga_2O_3+2Li_3N \rightarrow 2GaN+3Li_2O$

その格子定数は a=0.31733 nm, c=0.51528 nm であり,フラックス法,高温高圧法 でえられた GaN の格子定数より小さい.

溶融塩中で反応させると,溶融塩に含まれる水分とLi₃Nが反応しNがNH₃となって失われるためGaNはえられずLiGaO₂が生成したものと考えられる.

 $Li_3N+3H_2O\rightarrow 3LiOH+NH_3$

 $2LiOH \rightarrow Li_2O+H_2O$

$Li_2O+Ga_2O_3 \rightarrow 2LiGaO_2$

図 3-1 に示す反応装置では出発物質に含まれるH₂O,O₂の除去は困難である. ポーランドのKamlerらはGa₂O₃とLi₃Nの反応機構の解明を示差熱分析(DTA),熱 重量分析(TG)を用いて行っている²³⁾.その結果によれば、600°Cに重量減少をと もなわない発熱ピーク,720°C,780°C,850°Cに吸熱ピークが認められ,850°Cで は,GaNとLi₂Oが生成すると報告している.

しかし,我々の実験では,550°Cで24時間反応させることによりGaN, Li₂Oが生成した. Kamler らの詳しい反応装置が不明のため断言できないが,反応時間が短いためわれわれの結果と異なり850°Cという高温にならないとGaN, Li₂Oが生成しないと考えられる.また,LiGaO₂,Li₅GaO₄のような複合酸化物の生成原因について言及していない.

LiGaO₂とGaNの結晶構造を図 3-14 に示す.両者の結晶構造はよく似ているが, イオン半径の異なるLi原子とGa原子を調節する必要があるためLiGaO₂の結晶 構造は六方晶からわずかにずれている.Ga₂O₃とLi₃Nの反応は,雰囲気中にO₂が 存在しない場合にはGaNとLi₂Oが生成するが,わずかにO₂が存在するとLiGaO₂ が生成するものと考えられる.

図 3-14 LiGaO₂とGaNの結晶構造比較¹⁶⁾

3-4-2 るつぼ

図 3-15 は反応終了後,反応性生物を水により溶解,除去したるつぼの内部写真 である.反応温度が高いほど,Li₃Nのモル比が高いほど,るつぼ内面に茶褐色の生 成物が認められた.これは磁製るつぼのるつぼの成分であるSiO₂,Al₂O₃とLi₃N が反応した複合酸化物と考えられる.したがって,Li₃Nと反応しないグラファイ トつぼ等を使用する必要がある.

図 3-15 反応終了後のるつぼの内部写真

3-4-3 LiGaO2新規製造法としての位置づけ

LiGaO₂の合成に関する従来の手法をまとめると,水熱法においては低温反応 であるが,高圧に耐える圧力容器が必要であり,フラックス法, Czochralski法はと もに 1000°C以上の高温が必要であるため,環境負荷が高くなる.

我々は環境負荷の低いGaN合成法に関する検討の中で,LiCl,KClから成る比較 的低温の溶融塩中でGa₂O₃とLi₃Nとを反応させることによりLiGaO₂が生成す ることを見出した.水熱法,フラックス法,Czochralski法と比べると格段に温和な 反応条件下でLiGaO₂が合成できる特徴を有することがわかった.

近年, LiGaO₂はGaNとの格子不整合が 1.7%と小さいためGaN結晶成長用基板 として研究されている⁹⁾.この場合,大面積の結晶が作製できるCzochralski法が 採用されているようである.

本合成法でえられたLiGaO₂は比較的低温,短時間でLiGaO₂粉末を作製できるので,Czochralski法の原料として有用であると考えられる.

また、LiGaO₂結晶の大型化については,溶融塩中に生成したLiGaO₂を徐冷することにより実現できると考える.

参考文献

- 1) Remeika, J. P. and Ballman, A. A., Appl. Phys. Lett., 5, 180-1 (1964).
- 2) Marezio, M., Acta Cryst., 18, 481-4 (1965).
- Miller, R. C., Nordland, W. A., Kolb, E. D. and Bond, W.L., J. Appl. Phys., 41, 3008-11 (1970).
- 4) MacKenzie, J. D., Donovan, S. M., Abernathy, C. R. Pearton, S. J. Holloway, P. H.,
- Linares, R., Zavada, J. and chai, B., J. Electorchem. Soc. 145,2581-85 (1998).
- 5) Matyi, R.J., Doolittle, W. A. and Brown, A. S., J. Phys. D: Appl. phys. 32, A61-4 (1999).
- 6) Seo, S. W., Lee, K. K., Kang, S., Huang, S., Doolittle, W. A., Jokerst, N. M. and Brown, A. S., Appl. Phys. Lett., 79, 1372-74 (2001).
- 7) Shen, J., Johnston, S., Shang, S. and Anderson, T., J. Cryst. Growth, 240,6-13

(2002).

- 8) Takahashi, H., Fujita, H., Ohta, J., Oshima, M. and Kimura, M., J. Cryst. Growth, 259, 36-9 (2003).
- Kung, P., Saxler, A., Zhang, X., Walker, D., Lavado, R. and Razeghi, M., Appl. Phys. Lett., 69, 2116-8 (1996).
- 10) Amano, H., Sawaki, N. and Akasaki, I, Appl. Phys. Lett., 48, 353-55 (1986).
- 11) Nakamura, S., Jpn. J. Appl. Phys., 30, L1705-07 (1991).
- 12) Lester, S. D., Appl. Phys. Lett., 66, 1249-51 (1995).
- 13) Marshal, D. J. and Laudise, R. A., J. Cryst. growth, 1, 88-92 (1967).
- 14) Kolb, E. D., Capraso, A. J. and Laudise, R. A., J. Cryst. Growth, 8, 354-8 (1971).
- 15) Tate, I. and Oishi, S., Nippon Kagaku kaisi, 2, 200-3 (1977).
- 16) Ishii, T., Tazoh, Y. and Miyazawa, S., J. Cryst. Growth, 186, 409-19 (1998).
- 17) Schönherr, E., Müller, G. and Winckler, E., J. Cryst. Growth, 43, 469-72 (1978).
- 18) Saitho, Y. and Maruyama," T., Kotaino ion dendou", Uchida Roukakuho, (1999).
- 19) 久保優吾,磯部徹彦,高橋尚光,伊藤茂生,電気化学第 71 回大会学術講演 集,3B03,(2004).
- 20) Yamane, H., Shimada, M., Endo, T. and DiSalvo, F. J. Jpn. J. Appl .Phys., 37, 3436-40 (1998).
- 21) Karpiski, J., Jun, J. and Porowski, S., J. Cryst. Growth., 66, 1-10 (1984).
- 22) Detchprohm, T., Hiramatsu, K., Itoh, K. and Akasaki, I., jpn. J. Appl. Phys., 31,L1454-56 (1992).
- 23) Kamler, G., Weisbrod, G. and Podsiadlo, S., J. Thermal Anal., 61, 873-77 (2000).

第4章 GaNの合成とその結晶評価

4-1 緒言

GaN はウルツ鉱型の結晶構造をもち,直接遷移型の広いバンドギャップを有するⅢ-V族半導体であり,青色発光ダイオードやレーザーダイオード用材料として大きな注目を集めている.

GaNは主として有機金属気相成長(MOVPE)法によりサファイア基板上にヘテ ロエピタキシャル成長により作製されているが,サファイア基板上のGaN薄膜 はサファイアとGaN間の大きな格子ミスマッチや熱膨張係数差に起因する多く の欠陥や転位を含んでいる.このミスマッチを緩和するためAINやGaNを低温 バッファー層として基板上に設ける技術が開発されたことにより,GaNの結晶 性は大幅に改善され,これに伴って電気的,光学的特性も向上した^{1),2)}.

しかし、GaN薄膜の転位密度は 2×10¹⁰ cm^{-2 3)}となお高いため、これらの欠陥 に起因する特性低下が認められる.したがって,いっそうの特性向上のためには、 これらの欠陥密度の低減化が必要である.

そこで,サファイアに代わるヘテロエピタキシャル成長用基板が研究された が,GaN バルク単結晶上へのエピタキシャル成長が望ましいことは言うまでも ない.これを実現するためには,高品質の GaN バルク単結晶を得ることが必須 となる.

バルクGaNの作製に関しては,1932 年Johnsonらが金属ガリウム(Ga)をアンモニア(NH₃)気流中で以下の反応式にしたがってGaN粉末を合成したことに始まる⁴⁾.

$2Ga+2NH_3 \rightarrow 2GaN+3H_2$

当時,Ⅲ族窒化物のうちBN, AlN, InN, TINはすでに合成されていたが,GaNは 合成されていなかった.これは原料のゲルマン鉱Cu₃(Fe,Ge)S₄から高純度Gaを 取り出すことが難しかったためと考えられる.GaとNH₃の反応は 700°C以下で はその速度が遅く,GaNの収率を上げるには 900~1000°Cで反応させる必があ った.しかし,反応温度が 1000°Cでは金属Gaが蒸発し反応管の冷えた部分に凝 縮したり,生成したGaNが昇華する問題があった. Lorenzらは Ga_2O_3 をNH₃気流中で反応させることにより以下の反応式にした がってGaNの作製を試みた⁵⁾.

$Ga_2O_3+2NH_3 \rightarrow 2GaN+3H_2O$

 600° C以下ではNH₃の分解が十分に進行しないため反応が進まないが, $600\sim1100^{\circ}$ Cの温度範囲では黄色からグレーのGaNが得られた.これは,NH₃の分解が 600° Cから始まり, 1000° Cでほぼ完全に起るためと考えられる.しかし 1000° Cでグレーに着色するのは,GaNの分解により窒素空孔が生ずるからであ ろう.

Zetterstrom, EjderらはJohnsonらの方法で得たGaN粉末をNH₃気流中で加熱す る昇華法によりmmサイズのウィスカー,針状,板状,プリズム状 GaN 結晶を作製 することに成功した^{6),7)}.昇華速度を上げるために 1200°Cあるいはそれ以上に まで昇温したところ,黒色のGaN結晶が生成した.これはGaNの分解により窒素 空孔を生ずるためと彼らは推定している.このように昇華法では 1000~1150°Cで GaとNH₃を反応させることによりGaN粉末を作製した後,再び 1200°C付近にま で加熱し昇華させるため,生成されたGaNが分解する問題点がある.

以上のことから,窒素源としてNH₃を用いる場合には,NH₃の分解のための 1000°Cの高温が必要となるが,この温度では生成されるGaNの分解も進行する ため,その両者を両立させる反応条件を設定することは難しいと結論されよう.

これに代わって,KarpinskiらはN₂ガスを利用することを考え,それをGaと直接 反応させる高温高圧法を試み,mmサイズの板状GaN単結晶を作製した⁸⁾⁻⁹⁾.こ れは,高温によりN₂を分解し,高圧によりGaNの分解を抑制するもので,GaN以外 の副生物が生成しない極めて理想的な作製方法である.また,圧力容器中で反 応を行うためN₂の消費量も少ない.本法により最近ではcmサイズのGaN単結晶 も作製されており,それらの転位密度は 10^5 cm⁻²と低い¹⁰⁾.しかし,約 10,000 気圧, 約 1500°Cという極端な反応条件のため大型耐圧装置が必要であり工業的大量 生産には必ずしも適しているとは言えない.

このような高温,高圧といった反応条件に頼ることなく,できるだけ低環境負荷下で合成することが望ましいのは言うまでもない。そのために提案された手法の一つがフラックス法^{11)~17)}である. Na, K, Ca, Liをフラックスとして用いることにより,GaとN₂を出発原料に用いながらも,700~800°C,10~100気圧という

高温高圧法に比べて比較的マイルドな条件下でGaN結晶の合成が実現された. フラックス法は高温高圧法と同様に圧力容器中で反応を行うためN₂の消費量 は少ないメリットがあるものの,反応後に未反応Gaやフラックスの除去が必要 であり,GaNを高収率で作製できる方法とは言えない.

以上のGaN作製法では窒素源として気体の NH_3 や N_2 が用いられてきたが,よ り反応活性な Li_3N を窒素源に使用する試みも行われている. Songらは Li_3N と金 属Gaを反応させることにより以下の反応式にしたがってGaNが得られることを 報告している^{18),19)}.

$2Li_3N+Ga \rightarrow Li_3GaN_2+3Li$

$Li_3GaN_2+Ga \rightarrow 2GaN+3Li$

Li₃Nの密度が 1.28 に対しGaのそれは 6.095(29.6°C,液体)のためLi₃NはGaの上 に浮く.したがって,これらの反応はLi₃NとGaの界面で起こると考えられる.本 法では,Li₃GaN₂が生成した後,それがさらにGaと反応してGaNが生成する 2 段 階の反応により進むとされる.そのため,得られる生成物中にはGaNと共に Li₃GaN₂とが含まれることとなり,GaNの収率を上げることは難しいものと考え られる.

Li₃Nを用いる方法としては,XieらがGaCl₃とLi₃Nをベンゼンあるいはトルエ ン溶媒中で反応させる方法を提案し,実際にナノサイズのGaNが得られること を報告した²⁰⁾.特筆すべきは反応温度が280°Cと低いこととGaNの収率が80% と高いことであるが,ベンゼンやトルエンにGaNが溶解しないため,GaN濃厚溶 液からの再結晶によるGaN結晶サイズの拡大は困難と考えられる.

我々は低環境負荷型プロセッシングによる高品質なGaNバルク単結晶の育成 を目的として検討を開始したが,そのためには窒素源としてLi₃Nを用いるのが 望ましいと考えた.実験に先立ってガリウム源として考えられ得る金属Ga, Ga₂O₃, GaCl₃について熱力学計算²¹⁾に基づく予備検討をまず行った.その結果, 下記に示すように,Li₃Nと金属GaからGaNを得る反応の室温における生成自由 エネルギーは 51.1 kJ/molであるのに対し,Li₃NとGa₂O₃のそれは-532.6 kJ/mol, Li₃NとGaCl₃のそれは-645.6 kJ/molであり, GaCl₃を用いるのが有利 と推測された。

 $Ga+Li_3N \rightarrow GaN+3Li$ $\Delta_rG=51.1 \text{ kJ/mol}$

 $Ga_2O_3+2Li_3N \rightarrow 2GaN+3Li_2O \quad \Delta_rG=-532.6 \text{ kJ/mol}$

 $GaCl_3+Li_3N \rightarrow GaN+3LiCl \quad \Delta_rG=-645.6 \text{ kJ/mol}$

しかし、GaCl₃は不安定で取り扱いが難しいことから,本研究ではガリウム源 としてGa₂O₃を用いることとした.

なお,KamlerらはGaNの合成を目的とするものではないものの,Li₃NとGa₂O₃の反応についてその反応機構を熱重量分析(TG),示差熱分析(DTA)により解析している²²⁾.関連する反応式は下記の通りである.

 $Ga_2O_3+2Li_3N \rightarrow Li_4GaNO_2+(Li_2GaNO) \rightarrow Li_2O+GaN$

 $2Li_4GaNO_2 \rightarrow Li_5GaO_4 + Li_3GaN_2$

 $Li_3GaN_2 \rightarrow GaN + Li_3N \uparrow$

これらによれば、 600° CにおいてLi₄GaNO₂とLi₂GaNOとが生成するが、この Li₂GaNOは分解しGaN,Li₂Oとなる.すなわち反応成物にはGaN,Li₂O, Li₄GaNO₂ が含まれることとなる.次にLi₄GaNO₂は 850°Cで分解しLi₅GaO₄とLi₃GaN₂とに なる.さらにLi₃GaN₂は 900°Cで分解しGaNとLi₃Nになるという. しかし、この反 応によって生成したGaNの形態、結晶性に関しては報告されていない.

本研究では、大面積で高品質なバルクGaN作製の可能性を探ることを目的として、Ga₂O₃とLi₃Nを反応させた場合の種々の反応条件と得られる生成物の関係を報告する.

4-2 実験方法

4-2-1 使用した試薬

実験に使用した試薬を表 4-1 に示す.

表 4-1 使用した試薬

試薬	構造式	分子量	製造元	純度
酸化ガリウム	Ga ₂ O ₃	187.44	キシダ化学	99.99%
窒化リチウム	Li ₃ N	34.83	アルドリッチ	不明

4-2-2 使用した装置

実験に使用した測定装置を表 4-2 に示す.

装置名製造メーカー・型番示差熱分析(DTA)島津製作所 DTA-50熱重量分析(TG)島津製作所 TGA-50X線回折(XRD)理学電機 RAD-2R走査型電子顕微鏡(SEM)日立製作所 S-4300エネルギー分散型 X線アナライザー(EDX)堀場製作所 EMAX 6853-H

日立製作所 H-800

表 4-2 使用した測定装置

4-2-3 実験操作

诱過型電子顕微鏡(TEM)

窒素ガスで置換したグローブボックス中で種々のGa₂O₃/Li₃Nモル比の混 合試料を調製して内径 20 mm,深さ 20 mmのグラファイトるつぼに仕込んだ.次 に図 4-1 に示す密閉した石英ガラス管にグラファイトるつぼを収納し,電気炉に セットし,150 cc/minの窒素を通しながら加熱した.加熱終了後,石英ガラス管を 室温まで冷却しるつぼをとりだし,生成物をCuKα線(λ=0.154183 nm)を用いた X線粉末回折装置(理学電機製,RAD-2R)により測定した. 複合酸化物の生成を抑制しGaNの最適合成条件を調べる実験では,図4-2に示 す反応装置グラファイトるつぼを内径55 mmのステンレス製圧力容器に収納し, 圧力容器を電気炉にセットした.次に真空ライン,窒素ラインをステンレス製圧 力容器に接続した.真空度26.6 Paで1時間減圧したのち,0.4 MPaの窒素(日本 酸素製,純度99.9995%)で加圧しながら500~800°Cで70時間加熱した.加熱終 了後,圧力容器を室温まで冷却し,るつぼから生成物をとりだした.生成物は上記 と同様のX線粉末回折装置(理学電機製,RAD-2R)により測定し,標準GaN(和 光純薬工業製,試薬1級)と比較した.表面試料の形態と元素分析はエネルギー 分散型X線アナライザー(堀場製,EMAX 6853-H)を備えた走査型電子顕微鏡(日 立製作所製,S-4300),結晶構造は透過電子顕微鏡(TEM,日立製作所製 H-800)を用 い加速電圧200 kV でそれぞれ観察した.

図 4-1 反応装置(3)

4-3 結果と考察

4-3-1 GaN 合成条件の探索

(1)TG-DTA 分析

Ga₂O₃とLi₃N混合物試料のTGおよびDTA曲線を図 4-2 に示す.DTA曲線で認 められる 570°C付近の発熱ピークはGa₂O₃とLi₃Nの反応による発熱ピークと考 えられる.Kamler²²⁾らも強い発熱ピークが 600°Cにおいて認められたと報告し ている.

TG曲線では 450°Cから 600°Cの間で 2%の重量減少が認められた.これは 850~1200°Cにおいて重量減少が認められたKamlerらの結果と大きく異なる.こ の重量減少はLi₃Nが微量のO₂,H₂Oと反応することによりNがN₂あるいはNH₃ となって揮発するからと考えられる.我々の実験では試料量が 50 mgであるのに 対し,Kamlerらの実験では試料量が 150 mgと多い.そのため,重量減少が相対的に 小さく重量減少が高温側へシフトしたものと考えられる.

図 4-2 Ga₂O₃とLi₃N混合物試料のTG-DTA曲線 試料採取量 50mg 昇温速度 5°C/min, 雰囲気 N₂ 100 ml/min セル Pt φ5.0 mm,H5.0 mm

GaNの生成温度を調べるため,DTA装置内で試料を 450°C,550°C,700°Cまで加 熱後,冷却した.その試料のXRDパターンを図 4-3 に示す.図 4-3(a)に示すように 加熱を 450°Cで停止した場合,反応は起らず未反応のLi₃NとGa₂O₃が認められた. 図 4-3(b)に示すように加熱を 550°Cで停止した場合,GaNと副生物であるLi₂O,複 合酸化物のLiGaO₂,Li₅GaO₄が生成した.図 4-3(c)に示すように加熱を 700°Cで停 止した場合,生成物は 550°Cと生成物は同じであるが,それぞれの回折ピークが 強くなり結晶性が向上した.とくにLiGaO₂,Li₅GaO₄の回折ピークが強くなった.

図 4-3 Pt セル内残留生成物の XRD パターン (a) 700°C 反応停止, (b) 560°C 反応停止 (c) 450°C 反応停止

Ga2O3/Li3Nのモル比を 2/2,2/4,2/6,2/8 と変化させ,混合した試料を石英ガラス

反応管中で 500°C,17 時間反応させてえらえた生成物のXRDパターンを図 4-4 に 示す.

モル比 2/2 では、GaN(100),(002)の回折ピークは認められるもののGaN(101) の回折ピークは認められなかった. 複合酸化物のLiGaO₂,Li₅GaO₄が生成 し,Li₃N 不足のため未反応Ga₂O₃が認められた.

モル比 2/4 ではGaN(100),(002)(101)の主要ピークが認められたが,その回折 強度は弱く半値幅も広く結晶性が低い.モル比 2/6 ではGaN(100),(002)(101)の主 要ピーク強度が強くなり、半値幅も狭く結晶性の向上が認められた.さらにモ ル比 2/8 ではGaN(100),(002)(101)のピーク強度はわずかに強くなった.20=30°付 近に出現したピークは現在のところの不明である.複合酸化物の生成はLi₃Nの モル比が大きくなるにつれてLiGaO₂からLi₅GaO₄が多くなる傾向が認められ た.

図 4-4 生成物に及ぼすGa₂O₃/Li₃Nモル比の影響

モル比Ga₂O₃/Li₃N= B18:2/8, B20:2/6, B21:2/4, B22:2/2 反応条件 490°C,17hrs グラファイトるつぼ 以上,GaNの合成条件についてまとめると、

- 微量のH₂Oと反応するLi₃Nを補うためにはGa₂O₃/Li₃Nのモル比は 2/6 が必要である.
- ② GaN の結晶性を上げるには反応温度は 500℃ では不十分であり,それ以上の 温度が必要である.
- ③GaNの収率を上げるには複合酸化物LiGaO₂,Li₅GaO₄の生成を防ぐ必要がある.

4-3-2 複合酸化物生成原因と GaN 最適合成条件の確立

Ga2O3に含まれるH2O水をカールフィシャー法により測定したところ,約 0.5%のH2Oが含まれていることがわかった.これら粉体に吸着したH2Oを除く には加熱による減圧脱水が有効であるが,粉体を常圧に戻すと再びGa2O3に H2Oが吸着される.従って,操作過程で出発物質に吸着したH2Oを減圧除去する ことがLi3Nの消費を抑えるうえで不可欠である.

図 4-5(a)にGa₂O₃ 2mmolとLi₃N 6mmolを 650°C,70 時間圧力容器中で反応 させて得られた生成物のX線回折パターンを示す.回折パターンはシャープで あり,図 4-5(b)に示す市販のGaN粉末の回折パターンと比較すると,明らかに GaNが含まれていることがわかる.回折ピークにはGaN以外にLi₂Oに帰属され るものも認められる.このことから,Ga₂O₃とLi₃Nから(1)式に従ってGaN及 びLi₂Oが生成されるものと推測される.

$Ga_2O_3 + 2Li_3N \rightarrow 2GaN + 3Li_2O(1)$

図 4-4(a)には,20=20~25°にGaN及びLi₂Oに帰属されない小さなピークも見 られるが、これらはLiとGaとの複合酸化物であるLiGaO₂,Li₅GaO₄によるもの と同定された.ガラス反応管中で反応させて得られたものと比べ強度が弱い.

KamlerらはGa₂O₃ 1 molとLi₃N 2 molを窒素雰囲気中 600°Cで反応させる と,Li₄GaNO₂とLi₂GaNOの分解により生じるLi₂OとGaNとの混合物が生成する と報告している²²⁾.

しかし,我々の実験では窒素酸化物であるLi₄GaNO₂は検出されなかった.彼らの実験では出発物質や窒素に含まれる微量のH₂OやO₂の除去が不十分なた

めと, Ga_2O_3 1 molに対し化学量論比の 2 molしか Li_3N 加えなかったためこれ ら 窒素酸化物が生成したものと考えられる. 我々の実験で得られた $LiGaO_2,Li_5GaO_4$ の生成は Li_3N と H_2O の反応で生成する $LiOH,Li_2O$ に起因す ると考えられる.

そこで、650°Cで反応させるのに先立って 500°Cで 3 時間の予備加熱を行っ て得られた生成物のX線回折パターンを図 4-5 (c)に示すが、それら複合酸化物 のピークはほとんど認められない.これは 500°Cでは出発物質に含まれる微量 のH₂OがLi₃Nと反応しLiOHとして固定されている間に、(1)式の反応が起り Ga₂O₃のGa成分は全てGaNに転換するものと考えられる.次に 650°Cに昇温する とGaNは変化せず結晶性のみ向上するが、LiOHは脱水されLi₂Oに変化したり、 過剰のLi₃Nと反応してLi₂Oに変化する.そのため図 4-5(c)のX線回折パターン にはGaN、Li₂Oからの回折ピークのみで複合酸化物のピークがほとんど認めら れなかったと考えられる.

図 4-5 生成物に及ぼす予備加熱の効果 (a)予備加熱なし(b)標準 GaN(c)予備加熱あり

以上の結果より,複合酸化物の生成を抑制し,GaN を生成するための最適条件 をまとめると次のようになる.

①試料調製過程で含まれるH₂Oを除くため減圧脱水は不可欠である.

② Ga_2O_3 に吸着された約 0.5%の H_2O は除くことができないため、モル比は化学 量論比の $Ga_2O_3/Li_3N=2/4$ より Li_3N 過剰の $Ga_2O_3/Li_3N=2/6$ は必要である.

③複合酸化物であるLiGaO₂,Li₅GaO₄の生成を抑制するには,500°Cにおける予備加熱が有効である.

4-3-3 格子定数及び結晶子径

表 4-3 は上記と同様の反応条件により 500~800°CでえられたX線回折パター ンから求めた格子定数と最も回折強度の強いGaN(101)からシェラー式により 求めた結晶子径を示したものである.反応温度 500°Cにおける格子定数 a=0.3185 nm, c=0.5173 nmは標準GaNの格子定数とほぼ同じである.反応温度 650~750°Cにおいてえられた格子定数a=0.3192~0.3196 nm, c=0.5190~0.5196 nmは最も大きな値を示した.GaNの結晶性が最も良好で分解が最も進みにくい 温度範囲と考えられる.800°Cではa=0.3183 nm, c=0.5176 nmと再び小さくなっ たのは, GaNの分解により結晶性が低下するものと考えられる.また,650~750°C においてえられたGaNの格子定数は,サファイア基板上GaN の格子定数 a=0.3189 nm, c=0.5185 nm²³⁾や LiGaO₂ 基板上GaNの格子定数a=0.3173nm, c=0.5066 nm²⁴⁾に比べ大きくなった.

1227~1627°C,2 GPaの高温高圧法でえられたGaNの格子定数は*a*=0.3189 nm, *c*=0.5186 nm⁹⁾であり本法の反応温度 800°CのGaNの格子定数に近い.

フラックス法でえられた板状GaNの格子定数は,*a*=0.3189 nm, *c*=0.5186 nm¹³⁾であり、本法の反応温度750°Cで作製したGaNの格子定数に近い.

Xieらがベンゼンサーマル法でえた六方晶GaNの格子定数 *a* =0.3188 nm, *c* =0.5176 nm²⁰⁾は,本法の 500°Cで作製したGaNの格子定数に近い.反応温度が 280°Cと低いためGaNの結晶性が低いためと考えられる.

結晶子径は格子定数と同様,反応温度 650°Cにおいて 41 nmと最大であり, Xie ら²⁰⁾のベンゼンサーマル法でえられた 32 nmより大きい.800°Cで 20 nmと小さ

くなったのは生成したGaNが徐々に分解するためと考えられる.

Kをフラックスに用いたフラックス法¹⁵⁾やベンゼンサーマル法²⁰⁾では立方 晶GaNが生成することが報告されているが,我々の実験では認められなかった.

No	反応温度(°C)	a (nm)	<i>c</i> (nm)	D ₁₀₁ (nm)
a	500	0.3185	0.5173	9.15
b	650	0.3196	0.5196	41.2
с	700	0.3194	0.5196	37.6
d	750	0.3192	0.5190	38.8
e	800	0.3183	0.5176	20.0
	標準 GaN(和光純薬)	0.3189	0.5185	41.9

表 4-3 格子定数及び結晶子径

4-3-4 SEM による表面形態観察

図 4-6 (a)は,500°C,70 時間加熱してえた生成物の SEM 写真である.約2 μm の 棒状の生成物が観察された.これは9 nm の結晶子径を有する GaN 微結晶よりな る多結晶体と考えられる.

図 4-6(b)は 500°C,3 時間予備加熱した後 650°C,70 時間反応させてえた生成物 の SEM 写真である.3~4 µm の粒子は約 40 nm の GaN 微結晶よりなる多結晶体と 考えられる.この生成物は白色であった.エネルギー分散型 X 線アナライザー (EDX)により元素分析を行ったところ,図 4-7 に示すように N のピークが 0.4 keV,Ga のピークが 1.1 keV,9.3 keV に観測され GaN の生成が確認できた.

図 4-6(c)は 500°C,3 時間予備加熱した後 750°C,70 時間反応させてえた生成物の SEM 写真である.結晶子径は(b)と同様であり形態も似通っている.

図 4-6(d)は 500°C,3 時間予備加熱した後 800°C,70 時間反応させてえた生成物の SEM 写真である.3~4 µm の板状結晶が認められた.20 nm の GaN 微結晶より なる多結晶体と考えられる.この GaN 粉末は濃い灰色であったことから,窒素の

不足に起因すると考えられ GaN の分解が推定できた.そこで生成物を詳しく調 べたところ図 4-8 に示すように Ga ドロップレットが認められた.EDX により画 面をマッピングしたところ Ga と同定され GaN の分解が確かめられた.

図 4-6 様々な条件で反応させて得られた生成物の SEM 写真 モル比 Ga₂O₃/Li₃N=2/6 反応条件(a)500°C,70hrs,(b)500°C,3hrs+650°C,70hrs

x || (a) 000 0, 101115, (b) 000 0, 01115 000 0, 1

(c)500°C,3hrs+750°C,70hrs,

(d) 500°C,3hrs+800°C,70hrs

図 4-7 生成物の EDX プロファイル モル比 Ga₂O₃/Li₃N=2/6 反応条件 500°C,3hrs+650°C,70hrs,

図 4-8 GaN の分解により生じた Ga ドロップレット モル比 Ga2O3/Li3N=2/6 反応条件 500°C,3hrs+800°C,70hrs, 試料をマイクログリッドに搭載しTEM観察をおこなった.図4-9(a)に示す試料では約1μmの結晶が認められた.次に高分解能TEM像(a)と対応する制限視野電子線回折像(b)を図4-9(b)は六方晶GaNの晶帯軸[001]に対応しており,この試片が(001)面から成っていることがわかる.マイクログリッド上の試片の制限視野回折像のうち12個中9個の試片については晶帯軸[001]に対応しており,この試片が(001)面から成っていることがわかった.

このように TEM で観察した GaN は約 1 µm であり,X 線回折パターンから求 めた結晶子径約 40 nm に比べはるかに大きい.これはナノサイズの GaN 微結晶 がµm サイズの GaN 結晶を形成しているものと考えられる.今回の実験では反応 終了後に徐冷しなかったため GaN の結晶成長はあまり起こらず,ナノサイズの GaN が多くなったものと考えられる.

図 4-9 生成物の TEM 写真と SAD 像 モル比 Ga₂O₃/Li₃N=2/6 反応条件 500°C,3hrs+650°C,70hrs,

4-4 まとめ

 Ga_2O_3 とLi₃Nとを通常の方法よりマイルドな条件下で反応させることにより,GaNを作製するための Ga_2O_3 /Li₃Nモル比,予備加熱温度,反応温度等の最適合成条件を確立した.生成物にはGaNとLi₂Oが含まれるが,生成物を水に溶解することにより容易にLi₂Oを除去することができる.

本法は,環境負荷の少ない方法で GaN 結晶の生成を可能にするものである. また,InN,AIN など他の窒化物の合成への展開も期待できる手法といえる.

参考文献

- 1) Amano, H., Sawaki, N., Akasaki, I. and Toyoda, Y., Appl. Phys. Lett., 48, 353-55 (1986).
- 2) Nakamura, S., Jpn. J.Appl. Phys., 30, L1705-07 (1991).
- Lester, S. D., Ponce, F. A., Craford, M. G. and Steigerwald, D. A., Appl. Phys. Lett., 66, 1249-51 (1995).
- 4) Johnson, W. C., Parsons ,J. B. and Crew, M. C., J. Phys. Chem., 36, 2651-54 (1932).
- 5) Lorenz, M. R. and Binkowski, B. B., J. Electrochem. Soc., 109, 24-26 (1962).
- 6) Zetterstrom, R. B., J. Mater. Sci., 5, 1102-04 (1970).
- 7) Ejder, E., J. Cryst. Growth, 22, 44-46 (1974).
- 8) Karpiski, J., Jun, J. and Porowski, S., J. Cryst. Growth., 66, 1-10 (1984).
- 9) Porowski, S., J. Cryst. Growth, 166, 583-89 (1996).
- 10) Inoue, T., Seki, Y., Oda, O., Kurai, S., Yamada, Y. and Taguchi, T., J. Ccryst. Growth, 229, 35-40 (2001).
- 11) Yamane, H, Shimada, M., Clarke, S. J. and DiSalvo F. J., Chem. Mater., 9, 413-16

(1997).

- Yamane. H., Shimada. M., Sekiguchi. T. and. DiSalvo, F. J., J. Cryst.Growth, 186, 8-12 (1998).
- 13) Yamane, H., Shimada, M., Endo, T. and DiSalvo, F. J. Jpn. J. Appl .Phys., 37, 3436-40 (1998).
- 14) Aoki, M., Yamane, H., Shimada, M., Sekiguchi, T., Hanada, T., Yao, T., S.
- Sarayama, S. and DiSalvo, F. J., J. Cryst. Growth, 218, 7-12 (2000).
- 15) Yamane, H., Kajiwara, T., Sekiguchi, T. and Shimada, M., Jpn .J. Appl. Phys., 39, L146-48 (2000).
- 16) Yamane, H., Kinno, D., Shimada, M., Sekiguchi, T. and Disalvo, F. J., J. Mater. Sci., 35, 801-08 (2000).
- 17) Morishita, M., Kawamura, F., Iwahashi, T., Yoshimura, M., Mori, Y. and Sasaki,T., Jpn. J. Appl. Phys., 42, L565-7 (2003).
- 18) Song, Y., Wang, W., Yuan, W., Wu, X. and. Chen, X., J. Cryst. Growth, 247, 275-78 (2003).
- 19) Song, Y. T., Chen, X. L., Wang, W. J., Yuan, W. X., Gao, Y.G. and Wu, X., J. Cryst. Growth, 247, 327-330(2004).
- 20) Xie, Y., Qian, Y., Wang, W., Zhang, S. and Zhang, Y., Science, 272, 1926-27 (1996).
- 21) Kubaschewski, O., Alcock, C. B. and Spencer, P. J. "Materials Thermochemistry 6th edition", Pergamon Press. Ltd., Oxford (1993) pp.257-323.
- 22) Kamler, G., Weisbrod, G. and Podsiadlo, S., J. Thermal Anal., 61, 873-77 (2000).
- 23) Detchprohm, T., Hiramatsu, K., Itoh, K. and Akasaki, I., jpn. J. Appl. Phys., 31,L1454-56 (1992).
- 24) Takahashi, H., Fujioka, H., Ohta, J., Oshima, M. and Kimura, M., J. Cryst. Growth, 259, 36-39 (2003).

第5章 InNの合成とその結晶評価

5-1 緒言

InN はウルツ鉱型構造をもつⅢ-V族化合物半導体の中で最も小さいバンド ギャップと有効質量をもち,電子の移動度,ドリフト飽和速度が最も大きい.InN はこれらの特徴から長波長側の発光,受光デバイス,超高周波,超高速電子デバイ ス用材料として期待されてきた.

InNの作製については,1970年代からいろいろな方法が試みられてきたが,反応性RFスパッタリング^{1),2)},RFマグネトロンスパッタリング³⁾,,化学気相成長(CVD: Chemical Vapor Deposition)⁴⁾,マイクロウェーブ援用MOVPE^{5)~7)}などが報告されている.最近,MOVPE法⁸⁾,MBE法^{9~12)}の発展により比較的高品質の単結晶エピタキシャル膜が得られるようになり,バンドギャップが従来報告されていた 1.9 eVよりはるかに小さい 0.9 eV程度の可能性があることが明らかにされている.

しかし,InNの作製は難しくその研究はIII-V族化合物半導体中で最も遅れて いた.その第1の理由は,InNがInとNに解離する温度が600°Cときわめて低いこ とである.したがって,結晶成長温度を高く設定することができず窒素源のNH₃ の熱分解効率を上げることが難しく窒素不足となりやすいからである.

第2の理由は,格子整合する基板材料がないことである.InNとサファイア (α -Al₂O₃)間の格子不整合はGaNに対するそれの 16%¹³⁾よりさらに大きい約 25%¹⁴⁾である.この大きな格子不整合がInNに構造欠陥をもたらすのである. この格子不整合を緩和するため,いくつかの研究グループはサファイアに代わ る基板材料の探索を行ってきた.土屋らは $MgAl_2O_4(111)$ 上にInNを作製したこと を報告している¹⁵⁾がサファイアに置き換わるまでには至っていない.

理想的には, InN バルク単結晶上へのエピタキシャル成長が望ましいこと はいうまでもない.しかし,我々の知る限りそのような試みはなされていない.

我々は,反応性の高い窒素源として Li_3N に着目し,これを Ga_2O_3 と 500~800°C で反応させることにより,下記の反応式のようにバルクGaNを合成した.

 $Ga_2O_3+2Li_3N \rightarrow 2GaN+3Li_2O$

同様に In_2O_3 と Li_3N を反応させることによりInNが合成できると考えた. Li_3N と In_2O_3 の反応に関しては,TokarzewskiらはInNの合成を目的とするものではないが,その反応機構を熱重量分析(TG),示差熱分析(DTA)により解析している¹⁶⁾. その反応式は下記の通りである.

 $2In_2O_3+4Li_3N \rightarrow 3Li_4InNO_2+In+1/2N_2$

その結果によれば、400°CではLi₃NとIn₂O₃は反応せず、460°Cでは複合窒素酸 化物のLi₄InNO₂とIn,N₂が生成しInNはえられないという.これは生成したInNの 分解温度が極めて低いため、InN がInとN₂とに分解するためであろう⁷⁾.

そこで本研究では, $In_2O_3 \ge Li_3N$ を反応させることによるInN合成の可能性を 調べた.

5-2 実験方法

5-2-1 使用した試薬

実験に使用した試薬を表 5-1 に示す。

表 5-1 使用した試薬

武薬	構造式	分子量	製造元	純度
酸化インジウム	In ₂ O ₃	278.63	三津和化学	99.9%
窒化リチウム	Li ₃ N	34.83	アルドリッチ	不明

5-2--2 使用した測定装置

実験に使用した装置を表 5-2 に示す。

表 5-2 使用した装置

装置名	製造メーカー・型番		
示差熱分析(DTA)	島津製作所 DTA-50		
熱重量分析(TG)	島津製作所 TGA-50		
X 線回折(XRD)	理学電機 RAD-2R		
透過型電子顕微鏡(TEM)	日立製作所 H-800		

5-2-3 実験操作

図4-2に示す反応装置(3)を使用し,表5-3に示す配合組成にしたがって,N₂を封入したグローブボックス中でグラファイトまたは白金つぼに窒素を封入したグローブボックス中でそれぞれ秤量しよく混合した.つぎに図4-2に示す圧力容器にるつぼを静置した.

つぎに圧力容器を電気炉中にセットし,窒素ガス配管に接続した.上部バルブ 配管に真空ホースを接続し、真空ポンプにより26.6Paに達するまで減圧した.減 圧反応の場合は上部バルブを閉じた状態で加熱し反応を行った.加圧反応の場 合,上部バルブを閉じ右側バルブを開き圧力容器に窒素ガス(日本酸素、純度 99.9995%)を導入し0.4Mpaの圧力で加圧した.その後,右側バルブを閉じ加熱し 反応をおこなった。 電気炉とるつぼの温度はそれぞれ熱電対により検出し,A/D変換機によりコン ビュータに記録した.反応終了後,電気炉の電源を切り室温まで放冷した後,加圧 反応容器からるつぼを取り出し生成物をえた.

	In ₂ O ₃	Li ₃ N	反応温度	反応時	反応圧力	るつぼ
No	(mmol)	(mmol)	(°C)	間	(Mpa)	
				(hr)		
F5	2	4	350	3	0.4	Pt
F6	2	4	400	3	0.4	Pt
F4	2	4	440	3	0.4	Pt
F3	2	4	630	3	0.4	Pt
F11	2	4	450	0.5	26.6Pa	Pt
F12	2	5	450	0.5	26.6Pa	Pt
F13	2	6	450	0.5	26.6Pa	Pt
F15	2	5	450	5	26.6Pa	Pt
F16	2	5	450	5	26.6Pa	ク゛ラファイト

表 5-3 配合及び反応条件

5-2-4 生成物の評価

(1)粉末 X 線回折測定

2-2-4(1)に準じる.

(2) 示差熱(DTA),熱重量(TG)分析

2-2-4(2)に準じる. In₂O₃のモル比を 2mmolに対しLi₃Nのモル比を 4,6,8mmol と変化させ窒素雰囲気のグローブボックス中でそれぞれ秤量混合し,TG-DTA 測定用に約 50mg試料を採取した.

(3) 透過型電子顕微鏡(TEM)

2-2-4(5)に準じる.

5-3 結果と考察

5-3-1 加圧反応

図5-1は $In_2O_3 2 mmol$, $Li_3N 4 mmol を 白金るつぼ中,0.4 Mpaの加圧下でそれぞれ 350°C,400°C,440°C,630°Cで反応させてえられた生成物のXRDパターンである.350°Cでは反応は起こらず出発物質の<math>In_2O_3$ からの回折ピークが認められた.400°Cでは未反応の In_2O_3 とInの回折ピークが認められた.これは In_2O_3 が Li_3N によりInまで還元されたからと考えられる.

440°Cでは未反応 In_2O_3 の回折ピークは減少し,InとLio複合酸化物である Li_3InO_3 の回折ピークとInの強い回折ピークが認められた.複合酸化物 Li_3InO_3 は In_2O_3 に含まれる水と Li_3N とが反応しLiOHが生成し,さらに In_2O_3 と反応し生 成するものと考えられる.Inの回折ピークがさらに強くなったのは In_2O_3 の還元 がさらに進んだためと考えられる.630°Cでは未反応 In_2O_3 はなくなりIn, Li_3InO_3 が生成した.viずれの反応温度でもInNの生成を確認できなかった.

そこで, In_2O_3 と Li_3N の反応の可能性を熱力学的観点より検証するため,標準 反応自由エネルギーを計算した.表 5-1に示す熱力学データの標準反応エンタル ピー Δ_f H^o,標準反応エントロピーS°を(1)式にそれぞれの値を代入して標準反応 自由エネルギー Δ_r G°を求めた.ここでTは 298.15Kである.

 $\Delta_{\rm r} {\rm G}^{\circ} = \Delta_{\rm f} {\rm H}^{\circ} - {\rm T} \Delta_{\rm r} {\rm S}^{\circ} \tag{1}$

 $In_2O_3 + 2Li_3N \rightarrow 2InN + 3Li_2O \qquad \Delta_rG^\circ = -478.2 \text{ kJ/mol}$ (2)

 $In_2O_3 + 2Li_3N \rightarrow 2In + 3Li_2O + N_2 \qquad \Delta_rG^\circ = -546.7 \text{ kJ/mol}$ (3)

In₂O₃とLi₃Nの反応については,反応式(2),(3)の反応が競争的に起こると考えられるが,InNの生成より金属Inが生成する反応がやや支配的と考えられる.

 $InN \rightarrow 2In + N_2 \quad \Delta_r G^\circ = -69.4 \text{ kJ/mol}$ (4)

また,(4)のように生成したInNはInとN₂に徐々に解離すると考えられる.したがって,InNをえるには金属Inの生成を抑制する工夫と生成したInNの解離を抑える工夫がそれぞれ必要である.

図 5-1 生成物に及ぼす反応温度の影響

モル比 In₂O₃/Li₃N=2/4

反応温度 F05:350°C,F06:400°C,

F04:440°C,F03:630°C

反応時間 3hrs

第4章で Ga_2O_3 と Li_3N を加圧下で反応させることによりGaNが得られること を明らかにした.しかし,金属Gaの生成は加圧下 800°Cにおいて反応させたとき のみ確認している.そこで,表 5-1 の熱力学データを用いて同様に標準反応自由 エネルギー Δ_rG °を求めInNの場合と比較した。

$Ga_2O_3+2Li_3N \rightarrow 2GaN+3Li_2O$	$\Delta_r G^\circ = -532.3 \text{ kJ/mol}$	(5)
$Ga2O3+ 2Li_3N \rightarrow 2Ga+3Li2O+N2$	$\Delta_r G^\circ = -379.3 \text{ kJ/mol}$	(6)
$GaN \rightarrow 2Ga+N2$	$\Delta_r G^\circ = 152.9 \text{ kJ/mol}$	(7)

 Ga_2O_3 の場合, In_2O_3 と異なり(5)式の反応が優先的に起こり金属Gaの生成は $GaN分解温度 800^{\circ}C$ より低い温度では起こらないものと考えられる.GaNの解離 も標準反応自由エネルギー Δ_rG° がプラスであり自発的には起こらない.したが って,(5)式の反応式のようにGaNと Li_2O が生成するものと考えられる.

	$\Delta_{\rm f} { m H}^{\circ}$ (kJ/mol)	S°(J/deg mol)
Li ₃ N	- 164.8	62.6
Li ₂ O	- 597.9	37.7
Ga ₂ O ₃	- 1089.1	84.9
In ₂ O ₃	-925.9	107.9
GaN	- 109.6	29.7
InN	-138.1	43.5
In	0	57.8
Ga	0	40.8
N ₂	0	191.3
NH ₃ (g)	- 45.9	192.4
$H_2O(g)$	- 241.8	188.8

表 5-4 使用した熱力学データ¹⁷⁾

5-3-2 減圧反応とモル比の影響

金属InNの発生とInNの分解を抑えるため低温,短時間で減圧反応を試みた.図 5-2 はIn₂O₃ 2 mmolとLi₃Nをそれぞれ 4 mmol,5 mmol,6 mmolを白金るつぼ中で 減圧下,450°C,30 分反応させてえられた生成物のXRDパターンである.

Li₃N 6mmolでは反応は起こらなかった.これは過剰のLi₃Nを反応させるための熱量が不足していたためと考えられる.

 Li_3N 4 mmolでは未反応の Li_3N ,未反応の In_2O_3 ,金属In,複合酸化物の Li_3InO_3 がえられたが,InN (103)以外の回折ピークは認められなかった.

Li₃N 5mmolでは未反応のIn₂O₃が最も少なく金属Inからの回折強度が最も強い.InN(100), InN(002), InN(103)と推定される回折ピークが認められた.しか

し,InN(101)は認められなかった.これはIn(101)の回折ピークと重なっているためと考えられる.

図 5-2 生成物に及ぼす減圧反応の影響 モル比 In₂O₃/Li₃N=2/4,2/5,2/6 反応条件 450°C, 0.5hrs 反応圧力 26.6Pa Pt るつぼ

回折角 25~40°で 10 回スキャンを行った XRD パターンを図 5-3 に示す.回折強度 は弱いが六方晶 InN(100),InN(002)と考えられる回折ピークが認められた.

図 5-3 図 5-2 の拡大図

計算により求めたInNの格子定数を表 5-5 に示す.格子定数a=0.3508 nm, c=0.5611 nmはTansleyらの値²⁾や久保田らの値³⁾よりやや小さいが,無機化合 物・錯体辞典の値¹⁸⁾に近くInNが生成していると推定できる.

	<i>a</i> (nm)	<i>C</i> (nm)
F12	0.3508	0.5611
Tansleyら ²⁾	0.3548	0.5760
久保田ら ⁴⁾	0.3540	0.5705

表 5-5 生成した InNの格子定数比較

減圧反応によりInNが生成している可能性があるため,In₂O₃ 2 mmolとLi₃Nを 5 mmolとを白金るつぼ,グラファイトるつぼ中で減圧下,450°C,5 時間それぞれ 反応させた.生成物のXRDパターンを図 5-4 に示す.グラファイトるつぼ中で反 応させてえられた生成物にはInN(100), InN (002), InN (110), InN(103)の回折ピ ークが認められた.InN(101)の回折ピークはIn(101)の回折ピークと重なってい ると考えられる.グラファイトるつぼ中での反応はマイルドでInNの分解が起こ りにくいものと考えられる.

一方,白金るつぼ中で反応させてえられた生成物には InN(103)と推定される 回折ピーク以外認められなかった.白金の触媒作用で一旦生成した InN が分解 するためと考えられる.

図 5-4 生成物に及ぼするつぼの影響 モル比 In₂O₃/Li₃N=2/5 反応温度 450℃ 反応時間 5hrs 反応圧力 26.6Pa るつぼ: Pt,グラファイト

表 5-6 に計算で求めた格子定数を示す。格子定数a=0.3524 nm,c=0.5669 nmは 無機化合物・錯体辞典の値¹⁷⁾に一致した。このことによりグラファイトるつぼ 中におけるIn₂O₃とLi₃Nの反応はマイルドに進むと考えられる。しかし、反応 のメカニズムについては現在のところ不明である。

Baiらは、キシレン中においてLi₃NとInCl₃を 240°Cという低温で反応させる ことにより六方晶InNと立方晶InNが得られることを報告している¹⁸⁾.その反応 式は下式のように表される.

 $InCl_3+Li_3N \rightarrow InN+3LiCl$

この反応で得られた 六方晶 InN の格子定数は,a=0.3548 nm, c=0.5687 nm であり我々の得た値に近い.しかし,我々の実験では立方晶 InN は認められなかった.

	a(nm)	c(nm)
F16	0.3524	0.5669
Tansley $b^{2)}$	0.3548	0.5760
久保田ら4)	0.3540	0.5705

表 5-6 生成した InN の格子定数比較

5-3-4 熱分析

(1) In₂O₃/Li₃N=2/4の反応

反応過程に関する情報を得るためにまず,In₂O₃ 2 mmolとLi₃N 4 mmolの混合 物試料を用い,それのTGおよびDTA曲線を求めた.

DTA曲線によれば,図 5-5 に示すように 530°Cにブロードな発熱ピークと 580°Cに鋭く小さな吸熱ピークが認められた.この結果はTokarzewskiらの結果 とほぼ同じであるが,彼らの実験では発熱ピークが大きい^の.これは混合物試料 が我々の実験の 50 mgに対し 201 mgと多いため発熱量が大きくなったためと考 えられる.

TG曲線によれば,450°C付近から約5%の重量減少が認められた. Tokarzewski

らの結果では,500°C付近から約7%の重量減少が報告されている.

これら反応のメカニズムを探るため,図 5-6 に示すTG-DTA測定後,白金セルを 冷却し残留生成物のX線回折測定を行った.図 5-7 に示すX線回折(XRD)パター ンからはInNに帰属される回折ピークは認められず,Li₂O,金属In, 複合酸化物 であるLiInO₂, Li₃InO₃に帰属されると思われる回折ピークがあらわれた.

また未反応の In_2O_3 も認められた.Tokarzewskiらの実験¹⁸⁾では In_2O_3/Li_3N をモル比 1/2 で反応させた場合, Li_4InNO_2 ,金属 In,N_2 が生成したと報告されているが、本実験では Li_4InNO_2 の生成は確認されなかった.我々の実験ではこの複合窒素酸化物が生成しなかったのは, O_2 の少ない高純度 N_2 気流中で実験を行ったことによるものではないかと考えている.

TG-DTAによる分析の結果から、In₂O₃ とLi₃Nを反応させた場合,500°C以下に おいてすでにInNは生成しているものと考えられる.TG曲線において 450°Cから 重量減少が始まるのは,生成したInNが分解するためと推定される.生成した InNが完全に分解すると仮定すると,約11%の重量減少が起るはずである.しかし, 我々の実験では約 5%の重量減少しか観測されていないところから,500°C以下 においてはInNが存在する可能性があると考えられる.

図 5-5 In₂O₃/Li₃N=2/4の TG,DTA 曲線 試料量 50mg 昇温速度 5℃/min 雰囲気 N2 100ml/min 試料容器 Pt セル φ 5.0mm,H5.0mm

図 5-6 Pt セル内残留生成物の XRD パターン

(2) In₂O₃/Li₃N=2/6の反応

In₂O₃ 2 mmol,Li₃N 6 mmolを混合しTGおよびDTA測定を行った結果を図 5-7 に示す.DTA曲線では約 630°Cで吸熱ピークが確認された.TG曲線では約 450°C から重量減少が始まり,600°Cで終了するまで約 7.7%重量減少が見られた.生成 したInNが分解すると考えられる.

図 5-5 のIn₂O₃/Li₃N=2/4 の場合と異なり 630°C付近で重量減少を伴う吸熱ピ ークがみられた.

図 5-8 のXRDパターンより,In₂O₃が未反応のまま存在していることが確認された.図 5-6 の場合と同様の物質が生成していることが確認できるが,Inの回折 ピークが強くみられた。

図 5-7 In₂O₃/Li₃N=2/6のTG,DTA曲線

試料量 50mg 昇温速度 5℃/min 雰囲気 N2 100ml/min 試料容器 Ptセル φ5.0mm,H5.0mm

図 5-8 Pt セル内残留性生物の XRD パターン

(3) In₂O₃/Li₃N=2/8の反応

In₂O₃ 2 mmol,Li₃N 8 mmolを混合しTGおよびDTA測定を行った.得られた結果 を図 5-9 に示す.DTA曲線では約 630°Cで吸熱ピークがみられた.次にTG曲線で は約 450°Cから重量減少が始まり,600°Cで終了するまでに約 8%重量減少が見ら れた.生成したInNが分解するためと考えられる.

図 5-7 に示すIn₂O₃/Li₃N=2/6 の場合と同様に,重量減少を伴う吸熱ピークが図 3-11 においても見られた.この場合吸熱ピークは 630°C付近にみられ,図 5-5 の場 合よりもやや高温側にシフトしている.しかし,図 5-10 に示したXRDパターンか ら,Inの回折ピークは確認されなかった.この原因は現在のところ不明である.

図 5-9 In₂O₃/Li₃N=2/8のTG,DTA曲線

試料量	50mg	昇温速度	5°C/min
雰囲気	N ₂ 100ml	/min	
Ptセル	φ5.0mm,l	H5.0mm	

図 5-10 Pt セル内残留性生物の XRD パターン

5-3-5 TEM による構造解析

次に,InN の生成を確めるために上記実験で得られた試料の TEM による観察 を行った.図 5-11(a)に高分解 TEM 像,図 5-11(b)に制限視野回折像を示す.高分解 TEM 像からは数十 nm の微粒子の集合体が観察された.制限視野回折像に現れて いる内側のリングから求めた面間隔 d は 0.177 nm であり,外側のリングから求 めた d は 0.295 nm であり,それぞれ六方晶(110)面,六方晶(100)面からの回折に相 当するものであり,六方晶 InN の生成を示している.

図 5-11 生成物の TEM 写真と SAD 像

5-4 まとめ

(1) InN の生成

In₂O₃ 2 mmolとLi₃Nを 5 mmolをグラファイトるつぼ中で減圧下,450°C,5 時間 反応させたところ多結晶 InNの生成が確認できた.その格子定数はa=0.3524 nm,c=0.5669 nmであり,Tansley,久保田らのスパッタリング法によりヘテロエピ タキシャル結晶成長で作製されたInNの格子定数より小さい.

行ったすべての実験で金属Inが生成した.熱力学的にはInNの生成より金属In が生成する反応がやや優勢であるが,生成したInNは金属InとN2に解離するため と考えられる.

Tokarzewskiらは In_2O_3 と Li_3N をモル比 1:2 で反応させその反応機構の解明を 示差熱分析 (DTA),熱重量分析 (TG)を用いて行っている¹⁸⁾.その結果によれ ば,320°Cでは In_2O_3 と Li_3N 重量減少をともなわない弱い吸熱ピーク,400°Cに弱 い発熱ピークが認められたが,生成物のX線回折結果からは In_2O_3 と Li_3N が検出 され反応が進んでいないと報告している.400°Cでは反応が進まないのは図 5-1 に示す我々の結果と同じである.

480°Cでは小さな重量減少をともなう発熱ピーク,580°Cでは 6.8%の重量減少 をともなう強い発熱ピークが認められ,生成物はLi₃InNO₂, Li₃InO₃,In,Li₂Oがえ られInNはえられないと報告している.図 5-6 に示すわれわれの結果でも 460°C から重量減少がはじまり,580°Cに小さな発熱ピークと 3.5%の重量減少が認め られ,生成物としてInLi₃InO₃,In,Li₂Oがえられたが,Li₃InNO₂はえられていな い.

(2) 複合酸化物の生成

図 3-2 に示す反応装置(2)により In_2O_3 と Li_3N を反応させた場合,複合酸化物と して Li_3InO_3 のみしかえられないが,熱分析後の生成物には Li_3InO_3 と $LiInO_2$ が えられた.この違いを議論する。複合酸化物の生成原因は Li_3N と H_2O の反応によ って生成する Li_2O が In_2O_3 と反応するためと考えられる.

 $Li_3N \ge H_2O$ が反応する場合は、まずLiOHが生成し、600°C以上で Li_2O となり、 $In_2O_3 \ge C$ 応することによりLiInO₂が生成するものと考えられる。さらに Li_2O と反応することにより Li_3InO_3 まで反応が進むものと考えられる.

 $Li_3N+3H_2O \rightarrow 3LiOH+NH_3$

 $2LiOH \rightarrow Li_2O + H_2O$

 $Li_2O+In_2O_3 \rightarrow 2LiInO_2$

$$LiInO_2 + Li_2O \rightarrow 2Li_3InO_3$$

反応装置(2)では,反応温度を一定に保つためLi₂OとIn₂O₃の反応が十分おこ

116

るためLi₃InO₃のみがえられたものと考えられる.

ー方,熱分析では室温から 700°Cまで昇温してゆくため $Li_2O \ge In_2O_3$ の反応 が不十分であり, $LiInO_2 \ge Li_2O$ が反応し Li_3InO_3 がえられるものと考えられ る.複合酸化物の生成を抑えるためには出発物質の脱水と複合酸化物と過剰の $Li_3N \ge 反応による還元が有効と考える.$

(3)るつぼ

グラファイトるつぼ中で反応させてえられた生成物には,InN(002), InN(100), InN(110), InN(103)の回折ピークが認められた.グラファイトるつぼ中での反応 はマイルドでInNの分解が起こりにくいものと考えられる.Li₃Nがグラファイト にインターカレートされることが考えられるが,詳しいメカニズムについては 現在のところ不明である。

- 1) Tansley, T. I. and Foley, C. P., J.Appl.Phys.59, 3241(1986).
- 2) Hovel, H. J. and Cuomo, J. J., Appl.Phys.Lett.20, 71(1972).
- 3) Kubota, K., Kobayashi, Y. and Fujimoto, K., J.Appl.Phys.66, 2984(1989).
- 4) Inushima, T., Mamutin, V. V., Vekshin, V. A. V.Ivnov, S. Sakon, T. and Motokawa,
 S. ,J. Cryst. Growth, 227, 481(2001).
- 5) A. Wakahara and A. Yoshida, Appl.Phys.Lett.54, 709(1989).
- 6) Wakahara, A., Tsuchiya, T., and Yoshida, A., J.Cryst.Growth.99, 385(1990).
- 7) Guo, Q.X. Yamamura, T., Yoshida, A and Itoh, N., J.Appl.Phys.75,4927(1994).
- 8) Yamaguchi, S., Kariya, M., S.Nitta, T.Takeuchi, C.Wetzel, H.Amano and Akasaki, I.J. Appl. phys. 85, 7682, (1999).
- H. Lu, W. J. Schaff, J. Hwang, H. Wu, W. Yeo, A. Pharkya and E. Eastman, Appl. Phys. Lett. 77, 2548, (2000).
- Y.Saito, N. Teraguchi, A. Suzuki, T. Araki and Y. Nanishi, Jpn.J.Appl.Phys. 40, L91 (2001).
- 11) M.Higashiwaki and T.Matsui, Jpn.J.Appl.Phys.41, L 540(2002).
- 12)Y.Nanishi,Y.Saito and T.yamaguchi, Jpn.J.Appl.Phys.42,2549(2003).
- 13) Kung, P., Saxler, A., Zhang, X., Walker, D., Lavado, R. and Razeghi, M., Appl. Phys. Lett., 69, 2116-8 (1996).
- 14) Lu, H., Schaff, W.J., Hwang, J., Wu, H., Koley, G. and Eastman, E., Appl. Phys.
 Lett. 79, 1489, (2001).
- Tsuchiya, T., Ohnishi, M., Wakahara, A. and Yoshida, A., J. Cryst. Growth, 220, 191(2000).
- 16) A. Tokarzewski and S. Podsiadlo, J.Thermal Anal.52,481 (1998).
- 17) Kubaschewski, O., Alcock, C. B. and Spencer, P. J. "Materials Thermochemistry 6th edition", Pergamon Press. Ltd., Oxford (1993) pp.257-323.
- 18) 中原勝儼著: "無機化合物・錯体辞典"(講談社サイエンティフィック,1997).

第6章 In_xGa_{1-x}Nの合成とその結晶評価

6-1 緒言

In_xGa_{1-x}N混晶は,その組成を制御することによりバンドギャップを広く変化 させることができるため,可視から紫外領域までの発光デバイス用半導体材料 として注目されてきた.

最も早くIn_xGa_{1-x}Nの作製を試みたのは長村らである¹⁾.彼らは減圧下におい て,GaとInモル比を変化させた混合物を電子ビームにより溶解し,dc放電により 発生したプラズマにより化学的に活性化したN₂と反応させた.生成した窒化物 の一部をサファイア基板あるいは溶融石英上に昇華させるヘテロエピタキシャ ル成長によりIn_xGa_{1-x}Nを作製し,混晶組成と光学特性,熱アニールの関係につ いて報告した.

その後,有機金属気相成長(MOVPE)法が確立されるとIn/Gaのモル比の制御が 容易となったことから,高品質なIn_xGa_{1-x}Nの作製が可能となり高輝度青色発光 ダイオード(In_{0.2}Ga_{0.8}N)や高輝度緑色発光ダイオード(In_{0.45}Ga_{0.55}N)が次々と 実用化されてきた²⁾.しかし,波長 520nm以上(X=0.45 以上)の波長を有する赤や オレンジ色のLEDは市販されていないようである.

その第1の理由は結晶中における窒素の欠陥である.MOVPE法では窒素源として通常NH₃が使用されるが,その分解には約1000°C前後の高温が必要である.In含有量の多いIn_xGa_{1-x}N を作製するにあたっては,分解温度が約600°Cといわれる³⁾InNの分解を抑えるため結晶成長温度を下げる必要がある.そうした場合にはNH₃の分解効率が低下するため高品質なIn_xGa_{1-x}N結晶の作製が難しいとされている.

第2の理由は、 $In_xGa_{1-x}N$ とサファイア基板の格子不整合に起因する欠陥によ り高品質な結晶の作製が難しいからである.サファイア基板を用いた場合,その 上に成長するエピタキシャル膜の格子不整合の誤差は、GaNとサファイアにお いて約 $16\%^{4)}$ とかなり大きく、InNとサファイアにおいては約 $25\%^{5)}$ とさらに大 きくなる.したがって、 $In_xGa_{1-x}N$ をサファイア基板上に成長させる場合、x = 0.45以上にモル比を高くすると、格子不整合に起因する結晶品質の悪化が避けられ ない.

そのため,サファイアに代わる成長用基板として種々の材料が研究されてきたが⁶⁾, In_xGa_{1-x}Nバルク単結晶上へのエピタキシャル成長が望ましいことは言うまでもない.しかし,我々の知る限り,そのような試みはなされていない.

我々は,反応性の高い窒素源としてLi₃Nに着目し,これをGa₂O₃と 500~800℃で反応させることにより,下記の反応式のようにバルクGaNを合成する方法の提案を行った⁷⁾.

 $Ga_2O_3+2Li_3N \rightarrow 2GaN+3Li_2O$

その方法は他の窒化物の合成にも適用できると考え, In_2O_3 と Li_3N の反応によるInNの合成に着目した. Li_3N と In_2O_3 の反応に関しては,InNの合成を目的とするものではないもののTokarzewskiらが試みており,その反応機構を熱重量分析(TG),示差熱分析(DTA)により解析している⁸⁾.その反応式は下記のように書かれている.

 $2 \text{In}_2 \text{O}_3 + 4 \text{Li}_3 \text{N} \rightarrow 3 \text{Li}_4 \text{In} \text{NO}_2 + \text{In} + 1/2 \text{N}_2$

その結果によれば、400°CではLi₃NとIn₂O₃は反応せず、460°Cでは複合窒素酸 化物のLi₄InNO₂とIn及びN₂が生成しInNは得られないとされている.これは生成 したInNの分解温度が極めて低いため、InN がInとN₂とに分解するためと考えら れる.

本研究では,InNの合成を目的として, In_2O_3 と Li_3N との反応を調べ,さらに Ga_2O_3 , In_2O_3 混合物と Li_3N を反応させることにより $In_xGa_{1-x}N$ の合成を試みた.

最終的には大面積で高品質なバルクIn_xGa_{1-x}N単結晶作製の可能性を探ることを目的とするが、それに先立って本論文では、まずIn₂O₃とGa₂O₃との混合物をLi₃Nと反応させた場合に起る反応について、原料の混合比、反応圧力、反応温度等の反応条件と得られる生成物の関係について調べた結果を報告する.

6-2 実験方法

6-2-1 使用した試薬

実験に使用した試薬を表 6-1 に示す.

表 6-1 使用した試薬

試薬	構造式	分子量	製造元	純度
酸化ガリウム	Ga ₂ O ₃	187.44	キシダ化学	99.99%
酸化インジウム	In ₂ O ₃	278.63	三津和化学	99.9%
窒化リチウム	Li ₃ N	34.83	アルドリッチ	不明

6-2-2 使用した測定装置

実験に使用した装置を表 6-2 に示す.

表 6-2 使用した測定装置

装置名	製造メーカー・型番
X 線回折(XRD)	理学電機 RAD-2R
走查型電子顕微鏡(SEM)	日立製作所 S-4300
エネルギー分散型 X 線アナライザー	堀場製作所 EMAX 6853-H
(EDX)	
透過型電子顕微鏡(TEM)	日立製作所 H-800

6-2-3 実験操作

窒素ガスで置換したグローブボックス中で表 6-3 に示す配合組成にしたがっ てGa₂O₃とIn₂O₃を予めよく混合した後,Li₃Nとさらに混合し,内径 20 mm,深さ 20 mmの白金るつぼに仕込んだ.この白金るつぼを内径 55 mmのステンレス製圧 力容器に収納し,圧力容器を電気炉にセットした.次に真空ライン,窒素ラインを ステンレス製圧力容器に接続した.真空度 26.6 Paで 1 時間減圧したのち 500~ 800°Cで 70 時間加熱し反応させた.加圧反応の場合,同様に 0.4 MPaの窒素(日本 酸素製,純度 99.9995%)で加圧しながら反応させた.加熱終了後,圧力容器を室温 まで冷却し,るつぼから生成物をとりだした.

反応機構の解析のために示差熱分析,熱重量分析を行ったが,それには DTA-50(島津製作所製),TGA-50(島津製作所製)をそれぞれ用い,高純度窒素ガス 雰囲気中(100ml/min)において測定した.昇温速度 5°C/min,測定セルは白金製セ ル(ф5.2mm,H5.0mm)を使用した.

生成物はCuKα線(λ=0.154183 nm)を用いたX線粉末回折装置(理学電機製,RAD-2R)により測定した.表面試料の形態は走査型電子顕微鏡(日立製作所,S-4300),結晶構造は透過電子顕微鏡(TEM,日立製作所H-8100)を用い加速電圧200 kVでそれぞれ観察した.

In ₂ O ₃	Ga ₂ O ₃	Li ₃ N	反応温度	反応時間	反応圧力	るつぼ
(mmol)	(mmol)	(mmol)	(°C)	(hrs)	(Mpa)	
0	2.0	6	430 & 650	3 & 70	0.0266	Pt
0.25	2.0	6	430 & 650	3 & 70	0.0266	Pt
0.5	1.75	6	430 & 650	3 & 70	0.0266	Pt
0.75	1.5	6	430 & 650	3 & 70	0.0266	Pt

表 6-3 配合組成及び反応条件

6-3 結果と考察

6-3-1 In_xGa_{1-x}Nの合成

第4章では Ga_2O_3 と Li_3N からGaNが形成されることを明らかにし,第5章では 同様な系を用いてInNの形成も認められたことから,それらの混晶 $In_xGa_{1-x}N$ の 合成も同様に期待できる.

まず,In₂O₃,Ga₂O₃,Li₃Nを表 6-1 に示す組成比で反応させた.その結果得られ た生成物のXRDパターンを図 6-1 に示す.

図 6-1(a)はGa₂O₃ 2 mmol及び Li₃N 6 mmolを 500°C,3 時間予備加熱したあ と,650°C,70 時間反応させて得られた生成物のXRDパターンである.前報で述べ たように複合酸化物に帰属される回折ピークは認められず,GaNと副生物の Li₂Oのみが得られた.図 6-1(b)はIn₂O₃ 0.25 mmolを加えた場合のXRDパターン であるが,(a)の場合に加えて金属Inによる回折ピークがみられる.(c),(d)のよう にIn₂O₃を増やすと,金属Inの回折ピークは消失してLi₃InO₃,LiGaO₂,Li₅GaO₄等 の複合酸化物が生成した.

これら複合酸化物の生成には反応系に微量含まれると考えられるH₂O,O₂が Li₃Nと反応することによって生成すると思われるLi₂Oの関与が推測される.

そこで、 Ga_2O_3 と In_2O_3 の混合物と Li_2Oe 500°C,3時間反応させ得られた生成物のXRDパターンを図 6-2 に示す. Ga_2O_3 と In_2O_3 は Li_2O と反応し $LiGaO_2$, Li_5GaO_4 , $LiInO_2$, Li_3InO_3 などの複合酸化物が生成した.このように,これら複合酸化物は Li_3N と H_2O , O_2 が反応して生成する Li_2O と Ga_2O_3 , In_2O_3 との反応により生成することが明らかになった.

GaNとInNの混晶の組成に関して注目すべきは,図 6-1(b),(c),(d)に見られる 36.8°,36.6°,36.6°付近の回折ピークである.それらを詳しく見ると図 6-1(a)のGaN の場合に比べて低角側にシフトしているように見える.そこで,図 6-1 に示す XRDパターンからIn_xGa_{1-x}Nと見られる (101)面の面間隔を求め,Vegard則に従 うと仮定した場合のxの値を計算した結果を表 6-4 に示す.加えたIn₂O₃のモル比 とは大きく異なるものの,Ga₂O₃のmol比に対してIn₂O₃の値が大きくなるにつ れてxの値も大きくなっており, In_xGa_{1-x}Nが生成したものと考えられる.

図 6-1 XRD パターンに及ぼす原料組成比(モル比)の影響

モル比 (a)In₂O₃/Ga₂O₃/Li₃N=0.75/1.5/6 (b)I n₂O₃/Ga₂O₃/Li₃N=0.50/1.75/6 (c) I n₂O₃/Ga₂O₃/Li₃N=0.25/2/6 (d) I n₂O₃/Ga₂O₃/Li₃N=0/2/6 反応条件 500°C,3hrs+650°C,70hrs 反応圧力 26.6 Pa Pt るつぼ

図 6-2 複合酸化物の生成を示す XRD パターン

In ₂ O ₃	Ga ₂ O ₃	x values
(mmol)	(mmol)	(101)
0	2.0	0
0.25	2.0	0
0.50	1.75	0.02362
0.75	1.5	0.0331
2.0	0	1

表 6-4 XRD データから計算した x の値

In₂O₃ 0.25 mmol とGa₂O₃ 2 mmolの混合物とLi₃N 6 mmolを反応させて得た 試料の高分解TEM像と制限視野回折像を図 6-3 に示す.制限視野回折像より六 方晶であることがわかった.また,回折スポットの中心からの距離rはGaNに比べ 縮小しており六方晶In_xGa_{1-x}Nの回折スポットと考えられる.入射スポットから の(100)面の回折スポットまでの距離は,GaNは約r=9.62(mm), InNは約 r=8.76(mm)であり,図 7(b)のそれは約r=9.45(mm)である.それらから面間隔dを求 めると,In_xGa_{1-x}Nのxは 0.2 と計算される.XRDパターンから求めたxの値が 0 で あることから,得られたIn_xGa_{1-x}NのIn組成は不均一であると考えられる.

図 6-3 生成物の TEM 写真と SAD 像

6-4 まとめ

第4章においては Ga_2O_3 と Li_3N との反応によりGaN微結晶が得られることを 明らかにしたが,同様な手法により In_2O_3 と Li_3N との反応によりInNの形成が確 認された.

これらの結果に基づいて、In₂O₃、Ga₂O₃との混合物とLi₃Nとの反応により In_xGa_{1-x}Nの合成を試みたところ,X線回折及び電子線回折のデータよりその生 成が確認された.格子定数の値がVegard則に従うとしてX線回折における回折ピ ークのシフトから見積もられたxの値は 0.03 であった.電子線回折データから同 様に見積もられたxの値 0.2 のものも見られたことから,xの値の異なる In_xGa_{1-x}Nの生成が推測される. 参考文献

- 1) Osamura, K., Naka, S. and Murakami, Y., J. Appl. Phys., 46, 3432-37 (1975).
- Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T.and Mukai, T., Jpn. J. Appl. phys. 34, L1332-35 (1995).
- 3) Guo, Q., Kato, O. and Yoshida, A.J. Appl. Phys., 73, 7969-71(1993).
- 4) Kung, P., Saxler, A., Zhang, X., Walker, D., Lavado, R. and Razeghi, M., Appl. Phys. Lett., 69, 2116-8 (1996).
- 5) Lu, H., Schaff, W. J., Hwang, J., Wu, H. and Koley, G., Appl. Phys.lett., 79, 1489-91 (2001).
- Nakamura, S., Senoh, M., Nagahama, S. Iwsa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y, Appl. Phys.lett., 68, 2105-07 (1996).
- Mabuchi, A, Iwase, Y, Yasuda, E, Sugiura, T. and Minoura, H., J.Ceram.Soc.Japan.113,291-296(2005).
- 8) Tokarzewski, A. and Podsiadlo, S., J. Thermal Anal., 52, 481-88 (1998).

第7章 AINの合成とその結晶評価

7-1 緒言

窒化アルミニウム(AIN)はウルツ型構造を持つⅢ-V族化合物半導体であり, 優れた熱伝導性,高い電気絶縁性を有することから半導体素子基板に使われて おりピエゾ効果を有する^{1),2)}.

ー般にAINは反応性イオンビーム蒸着³⁾,反応性蒸着⁴⁾,イオンインプランテー ション⁵⁾,イオンプレーティング⁶⁾,反応性MBE⁷⁾,CVD法^{8,9,10)},昇華法^{11~15)},スパ ッタリング法^{16~22)}等で作製されている.基板としては,サファイア,Si,ホウケイ 酸ガラス等が使用されておりGaN, InNと同じである.

第4章で述べたように,GaNは主として有機金属気相成長(MOVPE)法により サファイア基板上にヘテロエピタキシャル成長により作製されているが,サフ ァイア基板上のGaN薄膜はサファイアとGaN間の大きな格子ミスマッチや熱膨 張係数差に起因する多くの欠陥や転位を含んでいる.このミスマッチを緩和す るためAINやGaNを低温バッファー層として基板上に設ける技術が開発された ことにより,GaNの結晶性は大幅に改善された^{23,24)}.

しかし, GaN薄膜の転位密度は 2×10¹⁰ cm ²⁵⁾となお高いため, さらなる特性 向上のためには,これらの欠陥密度の低減化が必要である.そこで,サファイアに 代わるヘテロエピタキシャル成長用基板が研究された.

バルク AIN 単結晶は GaN に対して 2.4%の格子不整合と小さな熱膨張係数差を 有しているので,GaN ヘテロエピタキシャル成長用の基板として適している.ま た,転位やクラックを避けるためには重要なファクターである格子整合するた め AIN は AI 濃度の高い AIGaN 混晶を成長させる良好な基板でもある.

第4章で述べたように,反応性の高い窒素源として Li_3N に着目し,これを Ga_2O_3 と 500~800°Cで反応させることによりGaNを合成した.同様に Li_3N と In_2O_3 を減圧下で反応させることにより多結晶InNを合成できることを明らか にした.

そこで,本章ではAl₂O₃とLi₃Nと反応させた場合,AlNの合成可能性を探るためそれらの反応条件と得られる生成物の関係を調べたので報告する.

7-2 実験方法

7-2-1 使用した試薬

実験に使用した試薬を表 7-1 に示す.

表 7-1 使用した試薬

試薬	構造式	分子量	製造元	純度(%)
α-酸化アルミニウム	A1 ₂ O ₃	101.96	昭和電工, UA-5053	99.995
窒化リチウム	Li ₃ N	34.83	アルドリッチ	不明

昭和電工製α-酸化アルミニウムはAl₂O₃ 99.995%以上と極めて高純度であり, かつ粒径がサブミクロンの均一な超微粉である.

7-2-2 使用した装置

実験に使用した測定装置を表 7-2 に示す.

表 7-2 使用した測定装置

示差熱分析(DTA)	島津製作所 DTA-50
熱重量分析(TG)	島津製作所 TGA-50
X 線回折(XRD)	理学電機 RAD-2R

7-2-3 実験操作

図4-1に示す反応装置(3)を使用し,表7-3に示す配合組成にしたがって,N₂を封入したグローブボックス中でグラファイトまたは白金つぼに窒素を封入したグローブボックス中でそれぞれ秤量しよく混合した.つぎに図4-1に示す圧力容器にるつぼを静置した.

つぎに圧力容器を電気炉中にセットし,窒素ガス配管に接続した.上部バルブ 配管に真空ホースを接続し,真空ポンプにより26.6Paに達するまで減圧した.圧 力容器にN₂ガス(日本酸素,純度99.9995%)を導入し0.4Mpaの圧力で加圧した.そ の後,右側バルブを閉じ加熱し反応をおこなった.

電気炉とるつぼの温度はそれぞれ熱電対により検出し,A/D変換機によりコン ピュータに記録した.反応終了後,電気炉の電源を切り室温まで放冷した後,加圧 反応容器からるつぼを取り出し生成物をえた.

A1 ₂ O ₃	Li ₃ N	反応温度(°C)	反応時間	反応圧力(Mpa)	るつぼ
(mmol)	(mmol)		(hr)		
2	6	500	3	0.4	Pt
2	6	630	3	0.4	Pt
2	6	660	19	0.4	Pt

表 7-3 配合組成

7-2-4 生成物の評価

(1) 示差熱(DTA),熱重量(TG)分析

2-2-4(2)に準じる.

(2) 粉末 X 線回折測定2-2-4(1)に準じる.

7-3 結果と考察

7-3-1 熱分析

Al₂O₃ 2mmolとLi₃N 6mmolの混合試料のTG-DTA曲線を図 7-1 に示す.DTA 曲線からは約 610°Cに発熱ピークが認められた.これはAl₂O₃とLi₃Nが 600°C 付近で反応していることを示している.TG曲線からは約 550°Cまでに 1.5%重量 が増加し,その後 600°Cまでに 1.6%重量減少した.さらに 650°Cから 700°Cまで に約 0.9%重量減少が見られた.これは 550°C までは試料にO₂やH₂Oが吸着し 重量が増加するが,550°Cを超えるとN₂が揮発するため減少するものと考えら れる.

図 7-1 Al₂O₃ 2mmolとLi₃N 6mmolの混合試料の

TG-DTA曲線

試料採取量	50g
昇温速度	5°C/min
雰囲気	N_2 1001/min
Ptセル	φ5.0 mm,H5.0 mm

DTA測定後のPtセル内に残留した生成物のX線回折パターンを図 7-2 に示す.610°Cにおいて発熱ピークが見られるが,XRDパターンより生成物は複合酸化物のLi₅AlO₄,AlLiO₂であった.

図 7-1において 610°C付近で重量減少を伴う発熱ピークがみられたが,Ga2O3 を用いた場合と異なり図 7-2 より窒化物の生成は確認できなかった.DTA測定 後の試料はAlLiO2等の酸化物の回折ピークが確認された.これはLi3Nの分解に よりAl2O3とLiが反応してLiAlO2等の酸化物が生成すると考えられる.

図 7-2 Pt セル内残留生成物の XRD パターン

7-3-2 反応温度の影響

Al₂O₃ 2mmolとLi₃N 6 mmolを混合し 0.4 MPa加圧下,それぞれ 500°C,600°C で反応させて得られた生成物のX線回折パターンを図 7-3 に示す. 未反応の Al₂O₃, Li₃Nと副生物のLi₂O,窒化物のLi₃AlN₂からの回折ピークは認められた が,(1)式のようにAlNは得られなかった.

$$Al_2O_3 + 2Li_3N \rightarrow 2AlN + 3Li_2O \qquad (1)$$

LapinskiらはAl₂O₃ 2mmolとLi₃N 6 mmolを混合しN₂雰囲気下加熱したところ,550~750°Cに発熱ピークが認められ,600°Cにおいて(1)式の交換反応が起こると推定している²²⁾.また 700°CではAlN,Li₂Oと少量のLiAlO₂が生成するという.

本実験ではPtセル内残留物からLiAlO2が見つかっているが,AlNはえられていない.得られたLi3AlN2はさらに何らかの分解反応によりAlNには変化すると考えられるが,現時点では不明である.

また,LapinskiらはAlNとLi₂Oが反応しLi₂AlNOが生成すると報告している²⁶⁾ が,我々の実験では認められていない.出発物質のAl₂O₃,Li₃Nが未反応で認めら れることから反応はLi₃NとGa₂O₃に比べ遅いため反応時間の延長が必要と考え る..

図 7-3 生成物に及ぼす反応温度の影響

モル比	$Al_2O_3/Li_3N=2/6$
反応温度	D2:500°C,3hrs D3:630°C,3hrs
反応圧力	0.4 MPa
Ptるつぼ	

Al₂O₃ 2mmolとLi₃N 6 mmolを混合し 0.4 MPa加圧下,660°C,19hrs反応させて 得られた生成物のX線回折パターンを図 7-4 に示す.未反応Al₂O₃, Li₃Nは減少し たが反応は完結していない.生成物は図 7-3 と同じく未反応のAl₂O₃, Li₃Nと副 生物のLi₂O,窒化物のLi₃AlN₂からの回折ピークが認められた.

図 7-4 生成物に及ぼす 反応時間の影響

モル比	$Al_2O_3/Li_3N=2/6$
反応条件	660°C,19hrs
反応圧力	0.4 MPa
Pt るつぼ	

7-4 まとめ

(1) Li₃AlN₂の生成

$$Li_3GaN_2 \rightarrow GaN + Li_3N$$

このような反応が起るとすればLi₃AlN₂は分解しAlNがえられるものと考えられる.そのためのさらなる反応条件の検討が必要である.

$Li_3AlN_2 \rightarrow AlN + Li_3N$

(2) AlGaN 混晶の合成可能性

 $Ga_2O_3 \ge Al_2O_3 \ge \varepsilon$ 混合したのち $Li_3N \ge m$ 熱反応させることによりAlGaN混晶を合成するにあたって予想されることは,両者の反応速度の違いである. Al_2O_3 \ge Li_3Nの反応は Ga_2O_3 のそれと比べ遅いためAl_2O_3が未反応で残り Li_3AlN_2 が生成すると考えられる.したがって,反応温度は何段階にわたり変える必要があると推定できる.また, $Ga_2O_3 \ge Li_3AlN_2$ を混合し $Li_3N \ge m$ 熱反応させることも考えられる.

- 1) O'Clock, Jr. G.D. and Duffy, M.T. Appl.Phys.Lett.23, 55(1973).
- 2) Shiosaki, T., Yamamoto, T., Oda, T. and Kawabata, A., Appl.Phys.Lett.36,643 (1980).
- 3) Harper, J. M. E. Cuomo, J.J. and Hentzell, H. T.G., J. Appl. Phys. 43, 547 (1983).
- 4) Yoshida, S., Misawa, S. and Itoh, A., Appl.Phys.Lett., 26, 461(1975).
- 5) N.Lieske and R.Hezel, J.Appl.Phys.52,5806(1981).
- 6) Mmurayama, Y., Kashiwagi, K. and Kikuchi, M. j. Vac. Sci. Technol. 17, 796(1980).
- 7) Yoshida, S., Misawa, S., Fujii, Y., Takada, S., Hayakawa, H., H. Gonda, H. and A. Itoh, j.Vac.Sci.Technol.16,990(1979).
- 8) Yim,W.M., Stofko, E.J. Zanzucchi, P.J. Pankove, J.I. Ettenberg, M. and Gilbert, L.,J.Appl.Phys.44,292(1973).
- 9) Komiyama, H. and Osawa, T., Jpn.J.Appl.Phys.24,L795(1985).
- 10) Someno, Y., Sasaki, M. and Hirai, T. Thin Solid Films. 202, 333(1991).
- 11) Slack, G.A. and McNELLY, T.F., J.Cryst.Growth, 34,263(1976).
- 12) G.A.Slack and T.F.McNELLY, J.Cryst.Growth, 42, 560(1977).
- 13) Dryburgh, P.M., J.Cryst.Growth, 125, 65(1992).
- 14) Tanaka, M., Nakahata, S. Sogabe, K., Nakano, H. and Tobioka, M. Jpn.J.Appl.Phys.36, L1062,(1997).
- Segal, A.S., Karpov, S. Yu., Makarov, Yu. N., Mokhov, E.N., Roenkov, A.D., Ramm, M.G. and Vodakov, Yu. A., J. Cryst. Growth, 211, 68 (2000).
- 16) Shuskus, A.J., Reader, T.M. and Paradis, E.L. Appl. Phys. Lett. 24, 155(1974).
- 17) Obuchi, F.S. and Russell, P.E., J. Vac. Sci. Technol, A, 5, 1630(1987).
- 18) Huffman,G.L., Fahline, D.E., Messier, R. and Pilione, L.J., J.Vac.Sci.Technol, A,7,2252 (1989).
- 19) Meng, W.J., Sell, J.A., Perry, T.A., Rehn, L.E. and Bald, P.M., J.Appl.Phys.75, 3446 (1994).
- 20) Penza, M., Riccardis, M.F.De, Mirenghi, L., Tagliente, M.A. and Verona, E., Thin Solid Films, 259, 154 (1995).

- 21) Wu, L., Chen, P.C., Wu, S., Song, H.T. and Chure, M.C., Jpn. J. Appl. Phys., 39, L545-547(2000).
- 22) Aita, C.R., J.Appl.Phys.53,1807-1808(1982).
- 23) Amano, H., Sawaki, N., Akasaki, I. and Toyoda, Y., Appl. Phys. Lett., 48, 353-55 (1986).
- 24) Nakamura, S., Jpn. J. Appl. Phys., 30, L1705-07 (1991).
- 25) Lester, S. D., Ponce, F. A., Craford, M. G. and Steigerwald, D. A., Appl. Phys. Lett., 66, 1249-51 (1995).
- 26) Lapinski, Z. and Podsiadlo, S., J. Thermal Anal., 32, 49-53 (1987).
- 27) Kamler, G., Weisbrod, G. and Podsiadlo, S., J. Thermal Anal., 61, 873-77 (2000).

第8章 総括と今後の展望

8-1 総括

8-1-1 GaN

Ga₂O₃に含まれる水分を除去したのちLi₃Nと反応させることにより,MOVPE 法に比べて低温で 1µm程度の六方晶GaNが合成できた.しかし, ミリメーターあ るいはセンチメーターサイズの大面積バルクGaN結晶はまだ得られていない. Ga₂O₃に化学量論比より多いLi₃Nと反応させると結晶が拡大しているところか ら,Li₃NとLiが共晶系が浴として働いている可能性があるためさらなる研究が 必要である.

8-1-2 LiGaO₂

フラックス中においてLi₃NとGa₂O₃を反応させると、フラックスに含まれる 微量のH₂Oの作用によりLiGaO₂が生成することが明らかとなった.LiGaO₂結晶 の大型化については、フラックス中に生成したLiGaO₂を徐冷することにより結 晶を大きくできるものと考える.

8-1-3 InN

In₂O₃ とLi₃Nをグラファイトるつぼ中で減圧下において反応させたところ, 多結晶InNの生成した.

しかし、すべての実験で金属Inの生成が認められた.熱力学的にはInNの生成よ り金属Inが生成する反応がやや優勢であるが、N₂雰囲気中では生成したInNは 金属InとN₂に解離するためと考えられる.MOVPE法では InNの分解温度が 600° Cと低いため、成長温度を 500° Cと低く設定されるが、NH₃の分解効率は低い にもかかわらずInNが生成する.このことから、NH₃雰囲気中でIn₂O₃ とLi₃Nを 反応させることにより金属Inの生成を抑制しつつInNの生成量を増加させる可 能性があると考えらる.
8-1-4 $In_xGa_{1-x}N$

 In_2O_3 と Ga_2O_3 をあらかじめ混合したのち, Li_3N と反応させることにより $In_xGa_{1-x}N$ が生成した可能性がある.しかし, In_2O_3/Ga_2O_3 の配合比に対してxの 価が一桁小さく混晶が生成しているか疑問がある.金属Inが生成しない条件が あることから, NH_3 雰囲気中で In_2O_3/Ga_2O_3 と Li_3N を反応させることによりxの 大きな混晶が生成する可能性があるものと考える.

8-1-5 LiAlN₂

 Al_2O_3 と Li_3N を反応させることにより Li_3AlN_2 が容易に合成できた.これから Li_3 を除くには反応条件を最適化と反応させる α - Al_2O_3 の選定が必要と考えられる.

8-2 今後の展望

8-2-1 GaN 結晶成長

図 8-1 に示すように,物質の形態には「液体」,「気体」,「固体」の三つがあ り,温度と圧力によりこれらの状態はお互いに可逆的変化によりその姿形を変 る. バルク結晶成長は「液相」と「固相」の相変態である.

図 8-1 物質の形態と状態変化

視点を変えると,結晶の成長は気体,液体(溶液,融液)などの不規則な構造をも つ相からの成長と,結晶粒の集合体(多結晶体)や非晶質のような固相からの成長 (再結晶)に大別される.現在,大半のエレクトロニクスやオプトエレクトロニク 応用の単結晶は前者による成長・育成である.

本研究におけるGaN合成では,原料は固体のGa₂O₃,Li₃Nである.図 4-6 に示す SEM写真では明らかに原料のGa₂O₃に比べ大きくなっている.とくに反応温度 を 500°Cから 800°Cまで上げてゆくと結晶の拡大が見られる.これは液相状態が 存在することを示唆している.この理由は図 8-2に示すようにLi₃NとLiが共晶系 を取るからと考えられる¹⁾.これは単純な共晶系であり,共晶組成は純リチウム にきわめて近いところにある.リチウムに富んだ液体は,高温でかなりの量の窒素をおそらく N^{3-} イオンとして溶解する. Li₃Nは調和融解(congruent melting)する.これは融点においてLi₃Nは正確に同組成の融体と平衡することを意味している.

図 8-2 リチウム・窒素系状態図

Li₃NとLiが共晶系をとる温度範囲においてGa₂O₃と反応すれば反応物の一部 は融解しており,冷却することによりGaNが凝固により結晶化すると考えられ る.GaNのバルク結晶成長にはこのLi₃NとLiが共晶系とGa₂O₃の関わりを明らか にすることが必要である。

なお,表 8-1には代表的な結晶成長法を分類し示した.

液相成長	融液成長	チョクラルスキー法(溶融引上げ法)		
		ブリッジマン-ストックバーガー法		
		ベルヌーイ法(火炎溶融法)		
		浮遊融体移動(TFZ)法		
		スカル溶融融法		
		ステパノフ法(EFG,ベデスタル)		
		 キロポーラス法 トップシード法(TSSG)法 フラックス法(溶媒法) 水熱合成法 液相成長法(LPE) 		
	溶液成長			
気相成長	蒸発相成長	物理輸送法(PVT)	レイリー法	
			ハイパー法	
			真空蒸着法	
			分子線ビーム(MBE)法	
			レーザーアブレーション法	
	混合ガス成長	化学輸送法(CVT)	有機金属分解法(MOVPE)ハライド/クロライド輸送法	
固相成長	多結晶相成長	粒成長法	固相エピ成長法(SPE)	
	非晶質成長	再結晶法		

表 8-1 結晶成長法の分類 2)

8-2-2 蛍光体

第 1 章で述べた各光源の変遷から述べたように,今後省エネルギーの点で白色 LED がますます増えるものと予想される.それには図 8-3 に示す紫外 LED と R,G,B 蛍光体の組み合わせによる図 8-4 に示す構造の白色 LED が性能とコスト の点で有利と考えられる.

図 8-3 紫外LEDチップの断面図 ³⁾

図 8-4 白色 LED の構造

白色 LED は紫外線により蛍光体を励起するものであり,蛍光灯の発光原理と 同じである.蛍光灯に使われる蛍光体としては,従来からハロリン酸カルシウム が用いられてきた.この蛍光体は発光効率が高く安価で安定であるなどの特徴 を有するが,演色性,高負荷安定性など不十分であった.

この演色性改良のため狭帯域発光を示す希土類蛍光体が開発されたことに より,図 8-5 に示す高効率演色性をもつ三波長形蛍光体ランプが実用化された のである.

図 8-5 ランプ用蛍光体の発光スペクトル²⁾

蛍光ランプ用の希土類蛍光体は狭帯域発光であり,紫外線劣化が少なく高温 高負荷特性にもすぐれている特徴をもち,表 8-1に示すように各種ランプに使用 されている.

このように希土類蛍光体はすぐれた高温高負荷安定性が良好なため各種複 写機,ファクシミリ用蛍光ランプや高圧水銀ランプの演色性改善などに用いら れている.

付活剤	母体組成	発光色	用途
Eu ²⁺	Sr ₂ P ₂ O ₇	青紫	複写機用ランプ
	(Sr,Ca) ₁₀ (PO4)C ₁₂	青	三波長形ランプ

表 8-2 ランプ用蛍光体⁴⁾

	BaMg ₂ Al ₁₆ O ₂₇	青	三波長形ランプ
	2SrO•0.84P ₂ O ₅ •0.16B ₂ O ₃	青緑	高演色性ランプ
	$(Ba,Ca,Mg)_{10}(PO_4)_6Cl_2$	青緑	高演色性ランプ
	$\mathbf{Sr}_4\mathbf{Al}_{14}\mathbf{O}_{25}$	青緑	高演色性ランプ
Eu ³⁺	Y ₂ O ₃	赤	三波長形ランプ
	Y(P,V)O ₄	赤	高圧水銀ランプ
Se ³⁺ Tb ³⁺	LaPO ₄	禄	三波長形ランプ
	MgA1 ₁₁ O ₁₉	緑	三波長形ランプ
	$GdMgB_2O_{10}$	禄	三波長形ランプ

各種蛍光体を紫外線励起白色LEDに用いる場合の問題点は紫外線の励起波長である.蛍光灯の励起波長は 253.7 nmを主体とする短波長紫外線であるのに対し,白色LEDの励起源であるAl_xGa_{1-x}N紫外LEDの発光波長は 370 nm前後と長波長である.

このため,表 8-1 に示す蛍光体を紫外LEDに使うと励起波長が長波長なため発 光効率が低くなる.紫外LEDの波長を短くするためには現在, Al_{0.1}Ga_{0.9}Nである xの値を大きくするためには,Al含有量を上げる必要があるが結晶成長が困難な ようである.励起紫外線の波長を短くするとLEDの封止樹脂であるエポキシ樹 脂の劣化が激しくなる問題が生じる.したがって,長波長の紫外線により効率 よく発光する蛍光体の開発が不可欠である.

原らはGaN系化合物が高い発光効率や材料の信頼性の点で優れている点に着 目し,気相合成法によりGaN系微結晶粒子を作製したのち,希土類・遷移金属をド ーピングすることにより蛍光体を作製した⁵⁾.しかし,これら元素は固体中の内 殻電子遷移による特有な光学特性を示すことが知られているが,GaN系材料中 における特性については多くの元素で明らかになっていないという.このよう にGaN系蛍光体は優れた蛍光特性を秘めた材料であるにもかかわらず研究は緒 についたばかりである.

図 8-6 はモル比Ga₂O₃/Li₃N=2/6 の混合物をそれぞれ反応温度 650, 700, 750, 800°Cで反応させて得た生成物に 365 nmの紫外線を照射した時の蛍光で

ある.反応温度が高いほど長波長の蛍光を発しているが,不純物準位は不明である.今後,不純物準位がどの元素によるかの解明が必要である.

GaN 系微結晶の作製に関して,本研究による方法は粉末原料を混合し反応させるため付活剤となる元素の添加も簡単である.

図 8-6 反応温度と蛍光

8-2-3 光触媒

光触媒反応を起こすことが知られている物質は多くあるが,実際に使われているのはほとんど酸化チタン(TiO₂)である.その理由としては以下の点あげられる.

- (1) TiO₂は広い範囲の物質を酸化還元することができ,とく酸化力が強いことか ら有機化合物の分解に利用できる.
- (2) TiO₂は自己溶解性がなく光安定性が高い.
- (3) TiO₂に光が当たると光触媒反応を起こすが,光がなければ 100°C以下の温度 では何も反応が起こらない.これは生体に対しても安全であることを意味し ており食品添加物としても認められている.

- (4)チタンのクラーク数は 0.46%であり 100 種類以上ある元素の中で 10 位にラ ンクされており入手が容易である.
- (5) TiO₂は光のうち人間の目が感じる可視光は吸収せず,紫外光だけを吸収する. そのため,粉末では白,コーティングした薄膜の状態では無色透明である.そ のため,表面にコーティングしたり,別の材料として混合して使う場合でも 元の材料の色が変化しないといメリットがある.

図 8-7 に示すように、TiO₂はバンドギャップが 3.2 eVであり、これは光の波長 に換算すると約 390~400 nmになる.したがって、TiO₂が光触媒活性を示すには 400 nm以下の紫外光の照射が不可欠であり、太陽エネルギーの一部しか利用で きないという問題点がある⁶⁾.

光触媒活性を可視光照射下で実現する試みは 1980 年代から行われてきた.最 初は,V⁵⁺,Cr³⁺,Fe³⁺などの着色した遷移金属イオンなどのカチオン種をドーピ ングする方法がとられてきた^{7,8)}.しかし,含浸法や共沈法などの化学的方法で 遷移金属をドーピングすると、TiO₂のTi⁴⁺の位置に遷移金属イオンがドーピン グされず,遷移金属イオンが電子とホールの再結合サイトとなり可視光応答性 を示さないという.

遷移金属イオンのドーピングにはイオン注入法⁹⁾があるが,プロセスのコスト 面から工業的利用が困難であった.

TiO₂へアニオン種をドーピンングする試みとしては,1986年にNO_xを酸化チタンにドーピングすることにより可視光応答性が得られることが報告された⁹⁾.

その後、TiO₂の格子酸素の一部を窒素と置換するとTiO₂のバンドギャップが 狭まり,可視光照射下で高い光触媒活性を示すことが報告された¹⁰⁾.

それは窒素中でスパッタによりTiO₂を窒化する方法,アナターゼ型TiO₂をアン モニア気流中で窒化する方法が行われた.

 TiO_2 の窒素以外のアニオンドーピングとしては,SやCのドーピンング,NとFの 共ドープがあげられる.

今後, TiO₂のアニオン種ドーピングが,可視光応答型TiO₂触媒の主流となると考 えられる.

Li₃Nを窒素源としてTiO₂を窒化する方法やGaNやInNの混晶によるバンドギ

ャップを狭める方法は可視光応答型TiO2触媒実現の可能性を秘めている.

図 8-7 窒化物系材料の光触媒効果

参考文献

- 1) Saitho, Y. and Maruyama," T., Kotaino ion dendou", Uchida Roukakuho, (1999).
- 2) 宮澤信太郎責任編集: "メルト成長のダイナミクス" p4,(共立出版 2002).
- 3) 川上養一,藤田茂夫,unpublished.
- 4) 足立吟也監修:"希土類物語" p50-51,(産業図書 2001).
- 5) Hara, K., Matsuno, Y. and Matsuo, Y., Jpn. J. Appl. Phys., 40, L242-244(2001).
- 6) 安保正一監修, "高機能な酸化チタン光触媒" p316-317(NTS 2004).
- 7) Fox, M. A. and Dulay, M.T., Chem. Rev., 93,341(1993).
- 8) Herrmann, J. M., Disdier, J. and Pichat, P., Chem. Phys. Lett., 108, 618(1984).

- 9) Anpo, M., Ichihashi, Y., Yamada, Y., Yamashita, H., Yoshinari, T. and Suzuki, Y. Proc. Electrochem. Soc., 331, 97-20(1997).
- 10) Asahi, R., Morikawa, T. and Taga, Y., Science, 293, 269, (2001).

謝辞

本研究は,岐阜大学大学院工学研究科 箕浦秀樹教授のご指導のもとに遂行 されたものであります.その間,箕浦先生におかれましては,各種学会,国際会議 へ参加され大変ご多忙中にもかかわらず,ご指導とご鞭撻を賜り心より感謝申 し上げます.

3 年間の研究生活におきまして,有用なるご助言,ご指導賜りました杉浦隆助 教授,吉田司助教授にも同じく心より感謝申し上げます.特に,杉浦隆助教授には 結晶学の初歩からご指導いただき本論文をまとめることができました.厚くお 礼申し上げます.

また,大矢豊教授には XRD,アルミナ材料について有用なご助言をいただき ましたあわせて厚くお礼申し上げます.

本論文の作成にあたり,有用なご助言を賜りました岐阜大学大学院工学研究 科環境エネルギーシステム専攻 守富寛教授,野々村修一教授に深く感謝申し 上げます.

学外実習の場を提供いただいた北川工業株式会社真空コンポーネント事業 部新事業部長 真部勝英氏に深く感謝します.

熱分析を担当してくださいました岩瀬悠理子氏(現:中部テクノ),InGaN 混晶の 研究を担当してくださいました安田英二氏(現:オーツカ株式会社)に感謝を申 し上げます.

最後に,会社を退職し本研究を始めることを理解し支援してくれた妻馬淵た つ子,娘の暁子,景子,貴子に感謝します.

151

著者略歴

まぶち あきら

馬淵 彰

昭和 24 年 (1949 年)11 月 10 日生

[学歴]

昭和 43 年(1967 年) 3 月 愛知県立瑞陵高等学校普通科 卒業
昭和 43 年(1967 年) 4 月 岐阜大学工学部工業化学科 入学
昭和 47 年(1971 年) 3 月 岐阜大学工学部工業化学科 卒業
昭和47年(1971年)4月 岐阜大学大学院工学研究科修士課程工業化学専攻入学
昭和49年(1973年)3月 岐阜大学大学院工学研究科修士課程工業化学専攻修了
平成 1年(1989年)5月 新潟大学工学部化学工学科研究生
~8 月
平成 13 年(2001 年)12 月 岐阜大学大学院工学研究科環境エネルギーシステム
専攻研究生
平成 14 年(2002 年)~3 月
平成14年(2002年) 4月 岐阜大学大学院工学研究科博士後期課程環境エネル
ギーシステム専攻入学
平成17年(2005年) 3月 岐阜大学大学院工学研究科博士後期課程環境エネル
ギーシステム専攻修了

[学会]

昭和 63 年~ 応用物理学会 会員

平成 5年~ 高分子学会 会員

[職歴]

1973年(昭和49年)4月 豊田合成株式会社 入社
2001年(平成13年)12月 豊田合成株式会社 退社

[研究歴]

- 昭和 46 年 4 月~昭和 49 年 3 月 Cu(111)膜の電気化学的挙動に関する研究
- 昭和 49 年 9 月~昭和 62 年 12 月 ポリウレタン材料の研究・開発

昭和 63 年 1 月~平成 1 年 12 月 GaN 気相成長におけるガス反応解析に関する 研究(新潟大学研究生)

平成2年1月~平成4年12月 フロンを使用しないポリウレタン発泡成形法の研究・開発

平成5年1月~平成9年3月 構造用接着剤の研究・開発

平成9年4月~平成13年11月 発光ダイオード用封止材の研究・開発 平成13年12月~現在 Ⅲ族窒化物のバルク合成に関する研究

[その他]

平成 15 年 4 月~ 岐阜大学 工学部 リサーチアシスタント 平成 16 年 3 月