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AABSTRACT 

 

Huge amount of solar photovoltaic (PV) power generation systems have been 

installed and connected to electric power grids in recent years. As the number of 

installations continues to increase, grid operators are growing increasingly worried that 

intermittent and uncontrolled PV generation can destabilize the electricity grid. In 

order to mitigate the destabilizing effect of PV generation system, the prediction of solar 

PV power generation or the forecasting of the solar irradiance is urgently required. The 

reliable forecasting information will help the grid operators for better management of 

the electric power balance between demand and generation. Previous studies mainly 

focused on the solar irradiance forecasting using the numerical weather prediction 

models. Detailed studies for the probabilistic forecasting of solar irradiance are very 

limited. 

Accordingly, this study is conducted for the investigation of (1) solar irradiance 

forecasting by applying a meteorological model, (2) improvement of solar irradiance 

forecasting, (3) forecasting reliability or prediction interval forecasting of solar 

irradiance, and (4) the effect of the improvement of solar irradiance forecasting to the 

forecasting of the prediction interval. For these purposes, the Weather Research and 

Forecasting (WRF) model, developed by the National Centers for Atmospheric Research 

(NCAR) and the National Centers for Environmental Prediction (NCEP), is employed. 

The post-processing method Kalman Filter and ensemble forecasting method are 

applied in this study. 

The WRF simulation on a 2km resolution grid is performed with parallelized 

computer cluster systems, and the accuracy and characteristic of the WRF-simulated 
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solar irradiance is examined using on-situ observations in the central region of Japan. 

Compared to the persistent model as a reference, it is clear that the WRF model has 

enough accuracy for the solar irradiance forecasting. On the other hand, a comparison 

with on-site observations exhibited that the intra-day solar irradiance simulated by 

WRF has a positive bias of more than +29% of the observed data. This indicates that the 

improvement of forecasting accuracy of simulated solar irradiance is necessary for 

evaluating the solar PV power generation.  

In order to increase the forecasting accuracy of the WRF-simulated solar irradiance, 

the results are analyzed separately for the use of the univariate Kalman Filter and the 

multivariate Kalman Filter. The accuracy of the WRF-simulated solar irradiance for the 

intra-day forecasting after applying univariate Kalman Filter is finally reduced to have 

a bias of -2.4 W/m2 and RMSE of 79.1 W/m2. Due to the application of multivariate 

Kalman Filter, the bias on average of the WRF-simulated solar irradiance for the 

intra-day forecasting is removed around 99.5%, and RMSE is improved around 25%. 

Moreover, correlation coefficients (CORRs) of both Kalman Filters are also slightly 

increased. 

To evaluate the forecasting reliability, the solar irradiance ensemble forecasting 

system is performed with the WRF model. The spread of the ensemble forecasting is 

calculated as a parameter corresponding to the unreliability of the forecasting, and the 

relationship of the spread and the forecasting error is discussed to evaluate the 

prediction interval. The size of the prediction interval changes with the reliability of the 

forecasting. The empirical coverage rates of the prediction interval are a little lower 

than the corresponding nominal ones in this ensemble. It may be caused by the 

overestimation of the solar irradiance computed with WRF. The reductions of the 
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empirical coverage rates from the nominal ones are about 0.3 of the nominal coverage 

rates, and not so large. The ensemble forecasting of solar irradiance with the prediction 

interval works well. Improvement of the solar irradiance forecasting may be needed to 

recover the reductions of the empirical coverage rates. 

To improve the forecasting accuracy of the prediction interval, two bias-correction 

methods are applied to the solar irradiance ensemble forecasting system with the WRF 

model. The forecasted results with the univariate Kalman Filter and the multivariate 

Kalman Filter are investigated separately. As a result, through the application of 

Kalman Filters as the post processor of the forecasting, the sizes of the prediction 

intervals reduce, and the empirical coverage rates increase and approach well to the 

nominal coverage rates. Consequently, the improvement by applying the Kalman Filter 

is not only for the solar irradiance forecasting itself, but also for the prediction interval 

estimation in the ensemble forecasting. 

 

Keywords: solar irradiance, meteorological model, Weather Research and Forecasting 

(WRF), ensemble forecasting, prediction interval, Lagged Averaged Forecast (LAF) 

method, spread, empirical coverage rate, nominal coverage rate, Kalman Filter  
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CChapter 1  Introduction 

 

1.1 Background and objectives 

It is well known that fossil fuels are limited and nonrenewable. British Petroleum 

(BP) statistical review of world energy 2015 pointed out the available years of fossil 

fuels. Specifically coal lasts about 110 years, oil lasts about 53 years, and natural gas 

lasts about 54 years. Also, fossil fuel use is the primary sources of CO2, leading to global 

warming. In particular, Japan is a country of fossil import dependence. Besides, human 

activities contribute to the global warming by adding excessive amounts of greenhouse 

gases to the atmosphere. Today, Japan uses renewable energy for only 1.3% of the total 

energy usage. While current renewable energy usage remains low, Japan is planning to 

accelerate further renewable energy development. Among them, solar energy is 

considered as one of the most promising energy alternatives.  

In order to build a low-carbon society, huge amount of solar photovoltaic (PV) power 

generation systems have been installed in recent years. According to International 

Energy Agency (IEA) Photovoltaic Power Systems (PVPS) report 2015, at least 38.7 GW 

of solar PV systems have been installed and connected to the electric power grids in the 

world in 2014. Japan was the second market for PV in 2014 with an estimated 9.7 GW 

of PV installations. The boom in solar PV power generation system got started since the 

introduction in Japan of a new feed-in tariff (FIT) scheme for renewable energy in July 

2012 (METI, 2015). Under this FIT scheme, regional utilities have to purchase power 

from solar and other renewable energy producers for non-household use at preset prices 

for a period of 20 years. By the end of 2014, cumulative capacity reached 23.3 GW, 

becoming the world's third largest power producer from solar PV with the help of the 
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Japanese government subsidy and the FIT scheme (IEA PVPS, 2015). Moreover, to 

promote photovoltaic (PV) in households, the Japanese government offers subsidies for 

installation costs.  

Large-scale solar PV power generation systems have been installed and connected 

to the electric power grids, and the prediction of their power generations or the 

forecasting of the solar irradiance are required to manage the electric grids for the 

stable energy supply. However, the solar power production is dominantly affected by the 

weather conditions. Besides, the fluctuation of solar PV power generation due to 

weather is an uncertain factor for the power grid’s management. The evaluation or 

forecasting of the solar irradiance is the first and the most essential step to estimate the 

PV generation and its fluctuation. But the forecasting error will have a relatively large 

influence in the projection of PV generation amount (Lorenz et al. 2009). Not only the 

solar irradiance forecasting but also its forecasting reliability should be urgently 

required for the management of the power grid containing large amount of PV systems. 

In this work, first of all is to employ a meteorological model for the solar irradiance 

forecasting. Next is to improve the accuracy by applying a post-processing approach of 

the meteorological computation. The reliable forecasting information will help the grid 

operators for better management of the electrical power balance between demand and 

generation (Heinemann et al. 2006; Hashimoto and Kobayashi 2011; Lorenz et al. 2009; 

Diagne et al. 2013). Therefore, the author applies an ensemble method (Palmer et al. 

2000; Richardson et al. 2000; Furukawa and Sakai 2004), and also evaluates the 

prediction interval of the solar irradiance forecasting as the forecasted reliability. 

Furthermore, the effect of the improvement to the forecasting of the prediction interval 

with the post-processing approach is also discussed in this work. 
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11.2 Outline of this thesis 

This thesis presents the results gained from investigations of probabilistic 

forecasting of solar irradiance using the Weather Research and Forecasting (WRF) 

model. Following Chapter 1 which describes the background and the objective of this 

study, Chapter 2 states the on-situ observations used for the validation of the accuracy 

of solar irradiance forecasting, and the evaluation of solar irradiance forecasting 

reliability. Chapter 3 states governing equations and physical options of the WRF model. 

Also, a WRF simulation is performed, and the accuracy of the simulated solar irradiance 

(Global Horizontal Irradiance, GHI) is examined using the on-situ observations 

illustrated in the chapter 2. Chapter 4 presents an attempt at increasing the accuracy of 

the WRF-simulated solar GHI with the use of Kalman Filter as a post-processing 

method. In order to evaluate the prediction interval of solar irradiance forecasting, 

ensemble forecasting is employed in Chapter 5 and solar irradiance GHI ensemble 

forecasting with Kalman Filter is also discussed in Chapter 6. Finally, the conclusions of 

the whole study and some suggestions for future studies are given in Chapter 7. 
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CChapter 2  On-site observations 

 

2.1 Pyranometer 

The observed solar irradiance (Global Horizontal Irradiance, GHI) data used in the 

work are measured by the Chubu Electric Power Co. Inc. under PV300 project, 

supported by the Ministry of Economy, Trade and Industry of Japan. Solar irradiance 

GHI, which refers to hemispherical solar irradiance received on a horizontal plane 

surface, is measured by using the EKO Pyranometer MS-402 (EKO instruments 

manual).  

The MS-402 conforms to the First Class specifications defined by ISO9060 and its 

robust brass mechanical construction makes it a durable sensor suitable to be used in 

harsh environments for routine global irradiance measurements. The MS-402 can be 

applied as multipurpose high quality monitoring sensor in the PV and Meteorological 

market. 

Specifications of EKO Pyranometer MS-402 are listed in TTable 2.1. The appearance 

and outline drawing of MS-402 Pyranometer are shown in FFig. 2.1 and FFig. 2.2, 

respectively. Glass domes are used to reject infrared radiation of wavelength above 3μm 

for thermopile-type sensors. Key features of MS-402 are: response time (95% signal 

level in 8s); temperature compensated over a wide temperature range. 

 Fig. 2.1 Appearance of MS-402 Pyranometer 
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Table 2.1 Specifications of EKO Pyranometer MS-402 

Characteristics MS-402 

ISO9060 classification First Class 

Response time 95% (sec) Approx. 8 

Zero offset Thermal radiation (200W/m2) 

Zero offset Temperature change (5K/hr) 

< 6W/m2 

< 2W/m2 

Non-stability (change/year) < 0.5% 

Non-linearity (at 1000W/m2) < 0.2% 

Directional response (at 1000W/m2) < 20W/m2 

Spectral selectivity (0.35 1.5μ ) < 1% 

Temp. response (for 50°C band) < 1% 

Tilt response (at 1000W/m2) < 0.2% 

Sensitivity (μV/W m-2) Approx. 7 

Impedance (Ω) Approx. 500 

Operating temperature range (°C) -40 to +80 

Cable length 10m 

Wavelength range  285 to 3000nm 

ISO9060: an ISO norm (International Standard), defines the pyranometer and 
pyrheliometer characteristics, their requirements and corresponding categories. 

Fig. 2.2 Outline drawing of MS-402 Pyranometer 
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22.2 Target area 

The target area for the solar irradiance forecasting in this work is the central 

region of Japan; that is, Nagano, Gifu, Aichi, Mie and Shizuoka prefectures. There are 

61 observation sites for the solar irradiance in the area. FFigure 2.3 shows an overview 

on the locations of the sites. Detailed information of the sites on coordinates is provided 

in TTable 2.2.   

 
 

Table 2.2 Locations of observation sites 

No. Site Longitude Latitude 

1 Daiti001 136.95˚E 35.06˚N 
2 Daiti002 136.94˚E 35.08˚N 
3 Daiti003 136.93˚E 35.07˚N 
4 Daiti004 136.99˚E 35.04˚N 
5 Daiti005 136.90˚E 35.05˚N 
6 Daiti006 136.90˚E 35.09˚N 
7 Daiti007 136.88˚E 35.07˚N 
8 Daiti008 136.99˚E 35.13˚N 
9 Daiti009 136.91˚E 35.13˚N 
10 Daiti010 137.01˚E 34.99˚N 
11 Daiti011 136.84˚E 35.11˚N 
12 Daiti012 136.92˚E 35.16˚N 
13 Daiti013 136.86˚E 35.17˚N 
14 Daiti014 137.08˚E 35.13˚N 
15 Daiti015 136.93˚E 35.20˚N 
16 Daiti016 137.01˚E 35.20˚N 
17 Daiti017 136.78˚E 35.12˚N 
18 Daiti018 136.94˚E 34.89˚N 
19 Daiti019 137.15˚E 35.12˚N 
20 Daiti020 136.97˚E 35.25˚N 
21 Dmie021 136.67˚E 35.06˚N 
22 Daiti022 136.94˚E 35.32˚N 
23 Daiti023 136.81˚E 35.31˚N 
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24 Daiti024 137.37˚E 34.83˚N 
25 Daiti025 137.28˚E 34.67˚N 
26 Dsizu026 137.51˚E 34.71˚N 
27 Dsizu027 137.72˚E 34.70˚N 
28 Dsizu028 137.86˚E 34.71˚N 
29 Dsizu029 138.01˚E 34.77˚N 
30 Dsizu030 138.17˚E 34.83˚N 
31 Dsizu031 138.41˚E 34.98˚N 
32 Daiti032 137.16˚E 34.94˚N 
33 Dnaga033 138.36˚E 36.84˚N 
34 Dnaga034 137.91˚E 36.30˚N 
35 Dnaga035 137.98˚E 36.23˚N 
36 Dnaga036 138.30˚E 36.37˚N 
37 Dnaga037 138.46˚E 36.23˚N 
38 Dnaga038 138.22˚E 36.67˚N 
39 Dnaga039 138.15˚E 36.58˚N 
40 Dnaga040 137.96˚E 36.11˚N 
41 Dnaga041 138.08˚E 36.07˚N 
42 Dnaga042 137.83˚E 35.52˚N 
43 Dnaga043 137.97˚E 35.84˚N 
44 Dgifu044 136.76˚E 35.42˚N 
45 Dgifu045 136.93˚E 35.49˚N 
46 Dgifu046 137.13˚E 35.34˚N 
47 Dgifu047 136.62˚E 35.36˚N 
48 Dmie048 136.53˚E 34.87˚N 
49 Dmie049 136.13˚E 34.75˚N 
50 Dgifu050 137.03˚E 35.44˚N 
51 Dgifu051 136.74˚E 35.39˚N 
52 Dgifu052 137.50˚E 35.50˚N 
53 Dgifu053 137.26˚E 36.15˚N 
54 Dmie054 136.40˚E 34.22˚N 
55 Dmie055 136.71˚E 34.49˚N 
56 Dmie056 136.63˚E 34.97˚N 
57 Dmie057 136.20˚E 34.07˚N 
58 Dgifu058 137.21˚E 35.87˚N 
59 Dgifu059 136.85˚E 35.40˚N 
60 Dmie060 136.51˚E 34.71˚N 
61 Dmie061 136.54˚E 34.58˚N 
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2.3 Observation data 

Each site observes the solar irradiance on the horizontal ground plane (Global 

Horizontal Irradiance, GHI) with 10-second interval. The observation data with high 

time resolution contain short-term fluctuations, but the averaged irradiance is more 

important for the applications (Lorenz et al. 2009). The observation data are, therefore, 

smoothed within 30-minute interval and then averaged with all sites, because all sites 

are in the area of one commercial electric power grid. 

Figure 2.4 depicts the time series of observed irradiance (GHI) from 10-second 

interval, 30-minutely average at single site (136.95˚E, 35.06˚N) and 30-minutely 

average at 61 observation-point average during the daytime on July 1st, 2013. The 

fluctuation of the solar irradiance in the single site is reduced and the trend of the time 

Fig. 2.3 Target area of the solar irradiance forecasting and observation sites (red 

dots). This area is corresponding to the Domain D03 in Fig. 3.3 and Table 3.6. 
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variation of the irradiance is emphasized by calculating mean value in time and space 

as found in this figure. The observed data are used for the verification of the solar 

irradiance forecasting and also for the evaluation of its prediction interval. 

 

 

Fig. 2.4 Time series of observed solar irradiance (GHI) in 10-second interval, 

30-minutely average at single site (136.95˚E, 35.06˚N) and 30-minutely average at 

61 observation-point average (from 05:00:00 to 20:00:00 LST, July 1st, 2013) 
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CChapter 3  Solar irradiance forecasting by applying a mesoscale 

meteorological model 

 

3.1 Introduction 

The attempts on solar irradiance forecasting have been started more than thirty 

years ago (Jensenius and Cotton 1981). Up to the present, different approaches to 

forecast the solar irradiance in different time horizons have been proposed. Hammer et 

al. (2003) analyzes satellite images for the irradiance forecasting. Reikard (2009) 

applies statistical models and forecasts the irradiance by analyzing data of the past. 

Lorenz et al. (2009), Hashimoto et al. (2011) and Shimada et al. (2012) represent the 

physical atmospheric conditions by applying numerical weather prediction (NWP) 

models, and forecast the solar irradiance. Perez et al. (2010) compares the solar 

irradiance forecasts with some approaches, and shows that the satellite image approach 

is better than others until 5 hour ahead forecasting; but after that, the NWP forecasting 

becomes better. The forecasting period of this work is of several days ahead, therefore, a 

NWP model for the solar irradiance forecasting is employed. 

 

3.2 Methodology 

3.2.1 Meteorological model WRF 

This thesis employed the Advanced Research Weather Research and Forecasting 

(WRF) model (ARW; Skamarock et al. 2008) for forecasting weather and the solar 

irradiance in the several days ahead. This model is a fully compressible, 

non-hydrostatic mesoscale model developed by National Centers for Atmospheric 

Research (NCAR) and National Centers for Environmental Prediction (NCEP). This 

model is designed to be a flexible, state-of-the-art atmospheric simulation system that is 
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portable and efficient on available parallel computing platforms. This model is 

commonly used worldwide these days in the meteorological field. For the estimation of 

the renewable energy resources, this model is also used extensively, because it can 

simulate the realistic weather with high resolution. For example, Heinemann et al. 

(2006) investigates the resources of the solar energy in recent years based on daily 

weather forecasting with this model. 

 

33.2.2 Governing equations of WRF 

The WRF dynamics solver integrates the compressible, non-hydrostatic Euler 

equations casted in a flux (conservative) form where the vertical coordinate, denoted as 

, is defined by a normalized hydrostatic pressure (or mass) (Laprise 1992).  
 

hths
hth pp

pp where)(                   (3.1) 

 

Where hp  is the hydrostatic component of the pressure, and hsp  and htp  are 

the values for the dry atmosphere at the surface and top boundaries, respectively. 

Following common practice, here sets htp constant.  decreases monotonically from 

a value of 1 at the surface to 0 at the upper boundary of the model domain. This 

coordinate definition proposed by Laprise, and depicted in FFig. 3.1. 

The grid staggering of the WRF model is the Arakawa-C grid. As shown in FFig. 3.2, 

the u  and v  components of horizontal velocity are normal to the respective faces of 

the grid cell, and the mass/thermodynamic/scalar/chemistry variables are located in the 

center of the cell. The solid lines denote coarse grid cell boundaries, and the dashed 

lines are the boundaries for each fine grid cell. The horizontal components of velocity ( u  
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and v ) are defined along the normal cell face, and the thermodynamic variables ( ) are 

defined at the center of the grid cell (each square). The bold typeface variables along the 

interface between the coarse and the fine grid define the locations where the specified 

lateral boundaries for the nest are in effect. 

 

Using the terrain following  vertical coordinate, the flux-form moist Euler 

equations are expressed as: 

 

Ux FpPuV
t

U ),()(                         (3.2) 

 

Vy FpPvV
t
V ),()(                         (3.3) 

Fig. 3.1 Schematic of the terrain following  coordinate of WRF 

(Skamarock et al. 2008) 
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FV
t

)(                               (3.5) 
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0)(1 gWV
t

                         (3.7) 
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Q
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Where ),( yx  represents the mass of the dry air per unit area with the column in 

the model domain at ),( yx , hence the flux form variables are defined as 
 

),,( WVUv
m

V , 
m
uU , 

m
vV , 

m
wW , 

m
, 

m
         (3.9) 

 

Where m  is a map-scale factor that allows mapping of the equations to the sphere 

(Haltiner and Williams, 1980) and is given as  
 

earththeondistance
),( yxm                          (3.10) 

 

The velocities ),,( wvuv  are the physical velocities in the two horizontal and 

vertical directions, respectively, w  is the transformed ‘vertical’ velocity, and  is 

the potential temperature. mm qQ ; ,,,, icvm qqqq represent the mass of water 
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vapor, cloud, rain, ice, etc, and q  are their mixing ratios (mass per mass of dry air). 

Here also defines non-conserved variables gz  (the geopotential), p  (pressure), 

and 1  (the specific volume) that appear in the governing equations. d  refers 

to the specific volume of the dry air, and  is the specific volume including all moist 

species, i.e. 1)1( icvd qqq , as described in Skamarock et al. (2008). 

To close the system, we use the diagnostic relation for the specific volume (that is, 

the hydrostatic relation for dry air) 
 

d                                  (3.11) 

 

and the moist equation of state 

 

d

md
p
R

pp
0

0  where )61.11(1 vv
d

v
m qq

R
R            (3.12) 

 

where 4.1vp cc  is the ratio of the heat capacities for dry air, dR  is the gas 

constant for dry air, and 0p is a reference pressure (typically 105 Pa). And 
 

)()()(2 aVa
y

Ua
x

maV                   (3.13) 

 

am
y
aV

x
aUmaV 2                       (3.14) 

 

Where a  represents a generic scalar variable. The pressure gradient terms in Eqs. 

(3.2) to (3.4) are given by 
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p
x

p
x
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p
m
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),(                           (3.17) 

 

The right-hand-side terms ,,,, FFFF WVU  and mQF  represent forcing terms 

arising from model physics, turbulent mixing, spherical projections, the earth’s rotation, 

and moist physics, and are described in detail in NCAR’s WRF tutorial manual 

(Skamarock et al. 2008). 

 
   

Fig. 3.2 Arakawa-C grid staggering for a portion of a parent domain and an 

imbedded nest domain with a 3:1 grid size ratio (Skamarock et al. 2008) 
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33.2.3 Physics options of WRF 

The WRF physical options fall into several categories, each containing several 

choices. The physics categories are (1) microphysics, (2) cumulus parameterization, (3) 

planetary boundary layer (PBL), (4) land-surface model and (5) atmospheric radiation. 

 

(1) Microphysics 

Microphysics includes explicitly resolved water vapor, cloud and precipitation 

processes. In the version 3 of the Advanced Research WRF (ARW), microphysics is 

carried out at the end of the time-step as an adjustment process, and so does not provide 

tendencies. TTable 3.1 shows a summary of the microphysics options, and for each 

scheme, the number of moisture variables, and whether ice-phase and mixed-phase 

processes are listed (Skamarock et al. 2008). Mixed-phase processes are those that result 

from the interaction of ice and water particles such as riming that produces graupel or 

hail. As a general rule, for grid sizes less than 10 km, where updrafts may be resolved, 

mixed-phase schemes should be used, particularly in convective or icing situations. For 

coarser grids the added expense of these schemes is not worth it because riming is not 

likely to be well resolved.  

The Kessler scheme (Klessler 1969) is a simple warm cloud scheme that includes 

water vapor, cloud water and rain. In Purdue Lin scheme (Chen and Sun 2002), six 

classes of hydrometeors are included: water vapor, cloud water, rain, cloud ice, snow and 

graupel. This is a relatively sophisticated microphysics scheme in WRF, and it is most 

suitable for use in research studies. The WRF single-moment 3-class (WSM3) scheme 

(Hong et al. 2004) predicts three categories of hydrometers: vapor, cloud water/ice, and 

rain/snow, which is a so-called simple-ice scheme. This scheme is computationally 
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efficient for the inclusion of ice processes, but lacks super-cooled water and gradual 

melting rates. The WSM5 scheme is similar to the WSM3 simple ice scheme. However, 

vapor, rain, snow, cloud ice, and cloud water are held in five different arrays. The details 

can be found in Hong et al. (2004) and Hong and Lim (2006). This scheme is efficient in 

intermediate grids between the mesoscale and cloud resolving grids. The WSM6 scheme 

extends the WSM5 scheme to include graupel and its associated processes. A more 

detailed description of the WSM6 scheme including the production terms and the 

computational procedure is given in Hong and Lim (2006). A new method for 

representing mixing-phase particle fall speeds for the snow and graupel particles by 

assigning a single fall speed to both sedimentation and accretion processes is introduced 

(Dudhia et al. 2008). The Eta grid-scale cloud and precipitation (GCP) scheme predicts 

changes in water vapor and condensate in the forms of cloud water, rain, cloud ice, and 

precipitation ice (snow/graupel/sleet). 

Table 3.1 Microphysics options 

Scheme 
Number of 
variables 

Ice-phase 
processes 

Mixed-phase 
processes 

Kessler 3 N N 

Purdue Lin 6 Y Y 

WSM3 3 Y N 

WSM5 5 Y N 

WSM6 6 Y Y 

Eta GCP 2 Y Y 

Thompson 7 Y Y 

Goddard 6 Y Y 

Morrison 2-Moment 10 Y Y 

Data source: Skamarock et al. 2008. 
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A new bulk microphysical parameterization (BMP), Thompson et al. scheme 

(Thompson et al. 2004), has been developed for the use with WRF. The Goddard cumulus 

ensemble models (Tao and Simpson 1993) one-moment bulk microphysical schemes are 

mainly based on Lin et al. (1983) with additional processes from Rutledge and Hobbs 

(1984). The Morrison et al. (2009) scheme is based on the two-moment bulk microphysics 

scheme of Morrison et al. (2005) and Morrison and Pinto (2006). The scheme has been 

extensively tested and compared with both idealized and real case studies covering a 

wide range of conditions. 

In this study, the WSM6 graupel scheme is used. Of the three WSM schemes, the 

WSM6 scheme is the most suitable for cloud-resolving grids, considering the efficiency 

and theoretical backgrounds. 

 

(2) Cumulus parameterizations 

Cumulus parameterizations are theoretically only valid for coarser grid sizes, e.g., 

greater than 10 km, where they are necessary to properly release latent heat on a 

realistic time scale in the convective columns. While the assumptions about the 

convective eddies being entirely sub-grid-scale break down for finer grid sizes, 

sometimes these schemes have been found to be useful in triggering convection in 5~10 

km grid applications. Generally, they should not be used when the model can resolve the 

convective eddies itself (e.g., less than 5 km). TTable 3.2 summarizes the basic 

characteristics of the available cumulus parameterization options in the WRF. 

The modified version of the Kain-Fritsch scheme (Kain 2004) utilizes a simple cloud 

model with moist updrafts and downdrafts, including the effects of detrainment, 

entrainment, and relatively simple microphysics. The Betts-Miller-Janjic (BMJ) scheme 
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(Janjic 1994; Janjic 2000) has been optimized over years of operational application at 

NCEP. Recently, attempts have been made to refine the scheme for higher horizontal 

resolutions, primarily through modifications of the triggering mechanism. Grell and 

Devenyi (2002) introduced an ensemble cumulus scheme in which effectively multiple 

cumulus schemes and variants are run within each grid box and then the results are 

averaged to give the feedback to the model. The Grell-3 scheme was first introduced in 

version 3.0, so is new and not yet well tested in many situations. 

In this study, the Betts-Miller-Janjic cumulus parameterization is used, because it 

has been refined for higher horizontal resolutions and has been optimized on the 

operational application. 

 

Table 3.2 Cumulus parameterization options 

Scheme Cloud detrainment Type of scheme Closure 

Kain-Fritsch Y Mass flux CAPE removal 

Betts-Miller-Janjic N Adjustment Sounding adjustment 

Grell-Devenyi Y Mass flux Various 

Grell-3 Y Mass flux Various 

CAPE: convective available potential energy. 

Data source: Skamarock et al. 2008. 
 

(3) Planetary boundary layer 

The planetary boundary layer (PBL) is responsible for vertical sub-grid-scale fluxes 

due to eddy transports in the whole atmospheric column, not just the boundary layer. 

The PBL schemes determine the flux profiles within the well-mixed boundary layer and 

the stable layer, and thus provide atmospheric tendencies of temperature, moisture 

(including clouds), and horizontal momentum in the entire atmospheric column. TTable 
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33.3 summarizes the basic features of the PBL schemes in WRF. 

In this study, the Mellor-Yamada-Janjic PBL scheme is used. This parameterization 

of turbulence in the PBL represents a nonsingular implementation of the 

Mellor-Yamada level 2.5 turbulence closure model (Mellor and Yamada 1982) through 

the full range of atmospheric turbulence regimes.  

 

Table 3.3 Planetary boundary layer options 

Scheme 
Unstable PBL 

mixing 
Entrainment 

treatment 
PBL top 

Medium Range 
Forecast Model 

(MRF) 

K profile + 
countergradient 

term 
part of PBL mixing 

from critical bulk 

iR  

Yonsei University 
(YSU) 

K profile + 
countergradient 

term 
explicit term 

from buoyancy 
profile 

Mellor-Yamada-Janjic 

(MYJ) 

K from prognostic 
TKE 

part of PBL mixing from TKE 

Asymmetrical 
Convective Model 
version 2 (ACM2) 

Transilient mixing 
up, local K down 

part of PBL mixing 
from critical bulk 

iR  

TKE: turbulent kinetic energy. 

Data source: Skamarock et al. 2008. 
 

(4) Land-surface model 

The land-surface models (LSMs) use atmospheric information from the surface 

layer scheme, radiative forcing from the radiation scheme, and precipitation forcing 

from the microphysics and convective schemes, together with internal information on 

the land’s state variables and land-surface properties, to provide heat and moisture 
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fluxes over land points and sea-ice points. The LSM provides no tendencies, but does 

update the land’s state variables which include the ground (skin) temperature, soil 

temperature profile, soil moisture profile, snow cover, and possibly canopy properties. 

TTable 3.4 summarizes the basic features of the land-surface treatments in WRF. 

In this study, the Noah LSM (Chen and Duddhia 2001) is used. The scheme has the 

benefit of being consistent with the time-dependent soil fields provided in the analysis 

datasets. This provides sensible and latent heat fluxes to the boundary-layer scheme. 

 

Table 3.4 Land surface options 

Scheme 
Vegetation 
processes 

Soil variables 
(layers) 

Snow scheme 

5-layer N Temperature (5) none 

Noah Y 
Temperature, 

Water+Ice, Water (4) 
1-layer fractional 

Rapid update cycle 
(RUC) 

Y 
Temperature, Ice, 

Water+Ice (6) 
Multi-layer 

Pleim-Xiu Y 
Temperature, 
Moisture (2) 

Input only 

Data source: Skamarock et al. 2008. 

 

(5) Atmospheric radiation 

The radiation schemes provide atmospheric heating due to radiative flux 

divergence and surface downward long wave and short wave radiation for the ground 

heat budget. Within the atmosphere, the radiation responds to model-predicted cloud 

and water vapor distributions, as well as specified carbon dioxide, ozone, and 

(optionally) traces gas concentrations. All the radiation schemes in WRF currently are 

column (one-dimensional) schemes, so each column is treated independently, and the 
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fluxes correspond to those in infinite horizontally uniform planes, which is a good 

approximation if the vertical thickness of the model layers is much less than the 

horizontal grid length. This assumption would become less accurate at high horizontal 

resolution. TTable 3.5 summarizes the basic features of the radiation schemes in the 

WRF. 

Long wave radiation includes infrared or thermal radiation absorbed and emitted 

by gases and surfaces. Upward long wave radiative flux from the ground is determined 

by the surface emissivity that in turn depends upon land-use type, as well as the ground 

(skin) temperature. The rapid radiative transfer model (RRTM) long wave scheme is 

based on Mlawer et al. (1997) and is a spectral-band scheme using the correlated-k 

method. Eta geophysical fluid dynamics laboratory (GFDL) long wave radiation scheme 

follows the simplified exchange method of Fels and Schwarzkopf (1975) and 

Schwarzkopf and Fels (1991), with calculation over spectral bands associated with 

carbon dioxide, water vapor, and ozone. The community atmosphere model version 3.0 

(CAM3) is for climate simulations. It is documented fully by Collins et al. (2004).  

In this study, the RRTM long wave radiation scheme is used. It uses pre-set tables 

to accurately represent long wave processes due to water vapor, ozone and CO2, as well 

as accounting for cloud optical depth. 

Short wave radiation includes visible and surrounding wavelengths that make up 

the solar spectrum. Hence, the only source is the sun, but processes include absorption, 

reflection, and scattering in the atmosphere and at surfaces. For short wave radiation, 

the upward flux is the reflection due to surface albedo. Short wave calculations are 

made using a daylight-mean cosine solar zenith angle over the time interval in the Eta 

GFDL short wave radiation scheme (Lacis and Hansen 1974). The Dudhia short wave 
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radiation scheme is based on Dudhia (1989) and is taken from MM5. As described in 

Chou and Suarez (1994), the Goddard short wave radiation scheme has a total of 11 

spectral bands and considers diffuse and direct solar radiation components in a 

two-stream approach that accounts for scattered and reflected components. The CAM3 

short wave radiation scheme is especially suited for regional climate simulations by 

having an ozone distribution that varies during the simulation according to monthly 

zonal-mean climatological data. 

In this study, the Dudhia short wave radiation scheme is used, because it is a 

simple downward integration of solar flux, accounting for clear-air scattering, water 

vapor absorption, and cloud albedo and absorption. In the version 3, the scheme has an 

option to account for terrain slope and shadowing effects on the surface solar flux. 

 

Table 3.5 Radiation options 

Scheme 
Long wave/Short 

wave 
Spectral bands CO2, O3, clouds 

RRTM LW LW 16 CO2, O3, clouds 

GFDL LW LW 14 CO2, O3, clouds 

CAM3 LW LW 2 CO2, O3, clouds 

GFDL SW SW 12 CO2, O3, clouds 

Dudhia SW SW 1 clouds 

Goddard SW SW 11 CO2, O3, clouds 

CAM3 SW SW 19 CO2, O3, clouds 

Data source: Skamarock et al. 2008. 
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33.2.4 Computational conditions of WRF 

The computational domains with WRF are set as shown in FFig. 3.3. The resolutions 

of domains D01, D02 and D03 are 18 km, 6 km and 2 km, respectively, and they are 

nested in two-way. The all 61 observation sites are in the domain D03. 

The computational settings of weather forecasting with WRF are summarized in 

Table 3.6. The Japan Meteorological Agency (JMA) Global Analysis data for the Global 

Spectral Model for Japan Area (GSM-JP, Japan Meteorological Business Support Center, 

2015) (0.2°×0.25°and 3-hour time interval, 72-hour ahead), the analysis data of Global 

Forecast System (GFS) (0.5°× 0.5°and 3-hour time interval, 72-hour ahead) from the 

National Centers for Environmental Prediction (NCEP, 2015), and the Operational Sea 

Surface Temperature and Sea Ice Analysis (OSTIA) (0.05°× 0.05° and daily) at National 

Centre for Ocean Forecasting (2015) are used as the initial and the boundary conditions 

for the model simulation. Specifications of three kinds of objective analysis data used for 

the input data are described in TTable 3.7. 

The target period of this analysis is from July 2013 to June 2014. 

 
Fig. 3.3 Computational domains of the meteorological model WRF 
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 Fig. 3.5 Appearance of parallelized computer used for the WRF simulation 

Fig. 3.4 Solar irradiance forecasting cycle using WRF 
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Table 3.6 Computational condition for the weather and the solar irradiance forecasting 

with WRF 

Period 
Start: 12:00 UTC (21:00 LST) 
72-hour forecasting in Computation 

Input data 
JMA GSM-JP (3-hourly, 0.2°×0.25°) 
NCEP GFS (3-hourly, 0.5°×0.5°) 
OSTIA (daily, 0.05°×0.05°) 

Nesting 2-way nesting 

Domain 
Domain 01, D01 (18 km, 120 110 grids) 
Domain 02, D02 (6 km, 130 130 grids) 
Domain 03, D03 (2 km, 160 229 grids) 

Vertical layer 50 levels (surface to 100 hPa) 

Physical options 

Dudhia short wave radiation scheme 
RRTM long wave radiation scheme 
WSM 6-class graupel scheme 
Betts-Miller-Janjic cumulus parameterization 
(Domain 01 and Domain 02 only) 
Noah land surface model 
Mellor-Yamada-Janjic PBL parameterization 

FDDA option Disable 

 

Table 3.7 Description of input data used in the WRF model 

Name 
Developed 

organization 
Usage 

Grid spatial 
resolution 

Vertical levels 

GSM-JP JMA 
Initial and boundary 

data of weather 
elements 

20×25 km 
60-level 

(surface to 0.1 hPa) 

GFS NCEP 
Initial and boundary 
data of land surface 

model (LSM) 
50×50 km 

26-level 

(surface to 10 hPa) 

OSTIA Met Office 
Sea surface 

temperature (SST) 
5×5 km - 
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33.2.5 Solar irradiance forecasting system 

Figure 3.4 shows the solar irradiance forecasting cycle using WRF. The 

computation of forecasting is performed once a day. The initial valid time of the 

forecasting is 21:00 LST (Local Standard Time). The time difference of the LST in Japan 

is 9 hours from Universal Coordinated Time (UTC), and the initial time is therefore 

12:00 UTC. This cycle gets the meteorological data from the meteorological agencies, 

and starts computation by using them as the initial and boundary conditions of the 

forecasting. The horizon time of the computation is 72 hours, and the forecasting 

contains the solar irradiance in three daytimes. The data computed in the 

meteorological agencies are downloaded, and the weather and the solar irradiance are 

computed with WRF. The WRF computation is terminated at the next morning of the 

initial valid time of the forecasted data in the Local Standard Time. Therefore, a 

termination day of forecasting computation is called as an operation day. The forecasted 

results are divided in the time horizon into three days: intra-day, next-day and 2-day 

ahead forecasting. They are analyzed separately in the following sections. FFigure 3.5 

shows the appearance of parallelized computer used for the WRF simulation.  

 

3.3 Results and discussion 

The forecasted solar irradiance computed with WRF is compared with the observed 

data, and the verification of the forecasting is discussed in this section. As explained 

before, the global horizontal irradiance (GHI) averaged in 61 sites in FFig. 2.3 and with 

30-minute interval is used for the verification. The data in night time are rejected for 

the verification. 

 The statistical indices used to evaluate the forecasting accuracy are mean bias 
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(Bias), relative mean bias (rBias), root mean square error (RMSE), relative root mean 

square error (rRMSE) and correlation coefficient (CORR). They are defined as follows: 

 
N

i
iobservediforecasted GHIGHI

N
Bias

1
,, )(1                        (3.18) 

 

observed

N

i
iobservediforecasted

observed GHI

GHIGHI
N

GHI
BiasrBias 1

,, )(1

             (3.19) 

 

N

i
iobservediforecasted GHIGHI

N
RMSE

1

2
,, )(1                     (3.20) 

 

observed

N

i
iobservediforecasted

observed GHI

GHIGHI
N

GHI
RMSErRMSE 1

2
,, )(1

         (3.21) 

 

N

i
forecastediforecasted

N

i
observediobserved

N

i
forecastediforecastedobservediobserved

GHIGHIGHIGHI

GHIGHIGHIGHI
CORR

1

2
,

1

2
,

1
,,

)()(

))((
   (3.22) 

 

Where N  is the number of data, iforecastedGHI ,  and iobservedGHI ,  represent the 

thi forecasted and observed GHI, respectively,  indicates its mean value. 

FFigure 3.6 (a) to  (c) show correlation charts of the observed and the forecasted solar 

irradiances (GHIs) with WRF for the intra-day, next-day and 2-day ahead forecasting 

from July 1st, 2013 to June 30th, 2014. The chart of the persistent model is also shown in 

Fig. 3.6 (e). The model applies the observation data in the previous day as solar 

irradiances of the intra-day forecasting. The model is useful as the reference of the 

numerical prediction model. The statistical indices, i.e. Bias, rBias, RMSE, rRMSE and 
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CORR, for each forecasting are summarized in TTable 3.3. Besides, the ensemble mean in 

Fig. 3.6 (d) and TTable 3.3 are for the later discussion in the chapter 5. 

The RMSEs and CORRs of the WRF forecasting results are better than those 

obtained by the persistent model. This shows the validity of the forecasting with WRF. 

The Bias of the persistent model is theoretically zero, and much smaller than the other 

forecasts. 

Biases of the intra-day, next-day and 2-day ahead forecasting are 49.7 W/m2, 51.4 

W/m2 and 50.8 W/m2, respectively. From these results, the solar irradiance forecasting 

with WRF has a notable positive bias, which means that WRF overestimates the solar 

irradiance on the whole. According to Shimada et al. (2012), the positive bias in the 

irradiance forecasting might be the effect of atmospheric turbidity, which is not taken 

into account in the WRF model, and the actual atmosphere contains more cloud cover 

than the simulated results. 

The aerosol optical depth (AOD) is a measure of the atmospheric turbidity. Aerosol 

Optical Depth (AOD) is the measure of aerosols (e.g., urban haze, smoke particles, 

desert dust, sea salt), which is a dimensionless parameter, distributed within a column 

of air from the instrument (earth's surface) to the top of the atmosphere. In particular, 

the value at 500nm wavelength is used as an index representing the atmospheric 

turbidity. The AOD is derived from direct and diffuse intensity measured with a sky 

radiometer, which is a sensitive solar radiometer for the routine automated 

measurement of direct and scattered solar radiation at multiple wavelengths (Aoki et al. 

2013). The appearance of the sky radiometer installed at Gifu University (136.7˚E, 

35.5˚N) is shown in FFig. 3.7.  
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(a) Intra-Day Forecasting (b) Next-Day Forecasting 

(c) 2-Day Ahead Forecasting (d) Ensemble Mean 

(e) Persistent 

Fig. 3.6 Correlation charts of the intra-day, next-day, 2-day ahead forecasted solar 

irradiances, their ensemble mean and the persistent model with the observed data 

(61 observation-point average, from July 1st, 2013 to June 30th, 2014) 
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Fig. 3.8 Monthly mean aerosol optical depth (AOD) at 500nm obtained from 

skyradiometer measurements at Gifu University for February 2011 to March 

2012 (Shimada et al. 2012) 

Fig. 3.7 Appearance of sky radiometer at Gifu University (136.7˚E, 35.5˚N) 

(Shimada et al. 2012) 
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FFigure 3.8 shows the monthly mean aerosol optical depth (AOD) at 500nm obtained 

from sky radiometer measurements at Gifu University for February 2011 to March 2012. 

It is clear that the AOD has a tendency of increase in summer and has a tendency of 

decrease in winter as shown in FFig. 3.8, and the value of AOD on June 2011, which is 

maximum value during the observation period, is about 0.55. The Dudhia short wave 

radiation scheme, where the AOD representing the atmospheric turbidity over Boulder 

is about 0.1 according to Zamora et al. (2003), is used in the WRF model. The 

performance of the Dudhia scheme in simulating solar irradiance implies that the 

largest errors in the forecasted solar irradiance are found when aerosol scattering and 

absorption in the atmosphere exceeds the climatological value used in the WRF model. 

Consequently, the positive bias problem in the solar irradiance forecasting with WRF is 

presumably due to the atmospheric turbidity, whose value used in the radiation scheme 

of the WRF model is different from the actual conditions of the atmosphere in the 

central Japan. 

The RMSE of the intra-day forecasting is 102.9 W/m2, and it has the smallest value 

among these three forecasts. In contrast, the correlation coefficient (CORR) of the 

intra-day forecasting is 0.950, and it is the largest among them. From these statistical 

errors, it is found that the intra-day forecasting is the most accurate, and the 

forecasting error becomes larger as the forecasting time horizon becomes longer. 
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Table 3.3 Statistical error indices (Bias, RMSE and CORR) for the GHI forecasting of 

the intra-day forecasting, next-day forecasting, 2-day ahead forecasting, their ensemble 

mean and the persistent model (from July 1st, 2013 to June 30th, 2014) 

  
 

3.4 Summary 

The meteorological model WRF is used to produce 72-hour ahead solar irradiance 

forecasting covering the central region of Japan with a horizontal resolution of 2 km. 

The forecasting accuracy is evaluated with the on-situ observation data using different 

statistical error indices during the period from July 2013 to June 2014. The results are 

analyzed respectively for the intra-day, next-day and 2-day ahead forecasting with 

WRF.  

Accuracy evaluation gives a RMSE of 102.9 W/m2 (rRMSE: 59.6%) and correlation 

coefficient (CORR) of 0.950 for the intra-day forecasting, and a RMSE of 118.9 W/m2 

(68.9%) and CORR of 0.929 for the next-day forecasting, and a RMSE of 129.8 W/m2 

(75.2%) and CORR of 0.911 for the 2-day ahead forecasting. And the persistent model 

Forecasting Method 
Bias [W/m2] 

(relative Bias) 
RMSE [W/m2] 

(relative RMSE) 
CORR [-] 

Intra-Day Forecasting 
49.7 

(28.8%) 
102.9 

(59.6%) 
0.950 

Next-Day Forecasting 
51.4 

(29.7%) 
118.9 

(68.9%) 
0.929 

2-Day Ahead Forecasting 
50.8 

(29.4%) 
129.8 

(75.2%) 
0.911 

Ensemble Mean 
50.6 

(29.3%) 
104.9 

(60.7%) 
0.946 

Persistent 
0.3 

(0.15%) 
191.7 

(110.9%) 
0.718 
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has a RMSE of 191.7 W/m2 (110.9%) and CORR of 0.718. Compared to the persistent 

model as a reference, the WRF model appears to be a viable method, which has enough 

accuracy, for the solar irradiance forecasting for respective forecast day. 

Moreover, in terms of Bias, the WRF has a Bias of 49.7 W/m2 for the intra-day 

forecasting, and a Bias of 51.4 W/m2 for the next-day forecasting, and a Bias of 50.8 

W/m2 for the 2-day ahead forecasting. This result indicates that WRF-simulated GHI is 

found to have a notable positive bias in comparison with observation on the whole. One 

reason of the positive bias in the solar irradiance forecasting could be explained by the 

effect of atmospheric turbidity. The aerosol optical depth (AOD) value as its measure, 

used in the radiation scheme of the WRF model, is less than the actual one of the 

atmosphere conditions in the central Japan. It is considered as another reason of the 

positive bias that the actual atmosphere contains more cloud cover than the 

WRF-simulated results. Further investigations of improving the solar irradiance 

forecasting are required for more efficient use in evaluating the solar PV power 

generation. 
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CChapter 4  Increasing the accuracy of solar irradiance forecasting by 

applying Kalman Filter 

 

4.1 Introduction 

A comparison of the on-situ observations and the solar Global Horizontal Irradiance 

(GHI) simulated by WRF in the previous chapter has shown that the WRF-simulated 

GHIs include not only large root-mean-square-errors (RMSEs) but also positive biases. 

Various post-processing approaches, like Model Output Statistics (MOS) (Lorenz et 

al. 2009; Rincón et al. 2011; Lorenz and Heinemann 2012; Verzijlbergh et al. 2015) and 

Kalman Filter, are frequently used in meteorology for adjusting the forecasting results 

obtained by Numerical Weather Prediction (NWP) models. Homleid (1995) describes a 

Kaman Filter model for estimating diurnal corrections of temperature forecasts. DE 

Carvalho et al. (2011) develops a Kalman Filter to correct the errors in mean 

temperature estimated by the PRECIS model, which is a system of regional climate 

prediction developed by the Hadley Centre in Endland (PRECIS 2001). Delle Monache 

et al. (2008) estimates systematic errors in surface ozone forecasts. Galanis et al. (2006), 

Cassola and Burlando (2012) apply the Kalman Filtering procedure to bias removal in 

wind speed forecasts. Pelland et al. (2013), Diagne et al. (2014) and Shimada et al. (2013) 

apply the Kalman Filter to bias removal in solar irradiance forecasts. Traditionally, 

MOS is mostly based on linear regression methods to create correction functions. The 

theory of the Kalman Filter (Kalman 1960) provides equations to modify recursively the 

estimations with observations. 

In this work, the Kalman Filter is employed as a post-processing method to correct 

the systematic error of the forecasting for the solar irradiance. This chapter presents an 
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attempt at the improvement of the forecasting accuracy by using the bias-correction 

method.  

 

44.2 Kalman Filter 

Kalman Filter is designed to efficiently extract a signal from noisy data which 

contains statistical noise and other inaccuracies, and is therefore expected to show a 

more accurate performance with the training data (Diagne et al. 2014). This method is 

commonly used to correct systematic errors of the meteorological forecasting, and has 

been also adopted as one of the creation methods of the weather forecast guidances, e.g. 

precipitation amount, probability of precipitation and temperature, in the Japan 

Meteorological Agency (Kunitsugu 1997). 

In general, the value at arbitrary time k  in time series data would be affected in 

some way from the observed values at the time before the time k . Kalman Filter keeps 

track of the previous information as the system state, and updates it with the 

observation. Kalman Filter usually consists of two equations, the state equation and the 

observation equation. 
 

kkk wAxx 1                                     (4.1) 
 

kkk vHxz                                      (4.2) 
 

Kalman Filter assumes that the state at time k  is evolved from the previous state 

at time 1k  according to the state equation, Eq. (4.1). In this equation, kx  is a state 

variable, A  is a state transition matrix and kw  is a state transition noise. The 

observation data kz  is evaluated from the state variable kx  according to the 
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observation equation, Eq. (4.2). H  is a state-to-observation matrix and kv  is the noise 

in the observation data. In Kalman Filter, the noise is assumed to play an important 

role; both noises kw  and kv  are Gaussian zero mean white noises. 

FFigure 4.1 shows the computational procedure of Kalman Filter algorithm (Kim 

2011). First, the initial values of the estimated state variable 0x̂  and the error 

covariance matrix 0P , which is an internal variable, are set. The first step is for the 

prediction of system state and error covariance. The two variables kx̂  and kP , which 

will be used throughout the step 2 through 4, are computed in this step. Here the 

superscript  denotes predicted value. In the step 2, Kalman gain kK  is being 

computed. The variable kP  computed in the previous step is used. H  and R  are the 

values preseted outside Kalman Filter. In the step 3, the system state estimation is 

computed from an observation given as input. The variable kx̂  is the one computed in 

the step 1. In the step 4, the error covariance is computed. The error covariance is a 

measure indicating how accurate the estimation is. 

All the variables used in the algorithm are summarized in the TTable 4.1. 

Categorizing the variables according to their usage helps overall understanding or 

implementation of the algorithm. The variables in ‘System model’ category, shown as 

RQHA ,,, , are not computed in Kalman Filter. These are the values preseted by the 

user according to the characteristics of the system and the purpose of Kalman Filter. In 

this table, all the variables except those categorized as ‘System model’ could not be 

changed arbitrarily by the user because these are computed by the algorithm. In other 

words, the four variables of the system model are the design factors for the performance 

of the Kalman Filter. 
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In this study, the author applies Kalman Filter to correct the bias of the forecasted 

solar irradiance which corresponds to the system error of the forecasting. Kalman Filter 

is a mathematical method which can predict the future bias using a linear relationship 

between the present forecasting error and the estimated previous bias (Delle Monache 

et al. 2008; Shimada et al. 2013). After the current bias is estimated, it’s removed from 

the solar irradiance forecasted with WRF to improve the forecasting. 
 

0. Set initial values:  

00 ,ˆ Px  

2. Compute Kalman gain:  

1)( RHHPHPK T
k

T
kk  

1. Predict system state and error covariance:  

1ˆˆ kk xAx  

QAAPP T
kk 1  

3. Estimate system state:  

)ˆ(ˆˆ kkkkk xHzKxx  

4. Predict system state and error covariance:  

kkkk HPKPP  

Observation kz  

Estimation kW RF xHI ˆˆ  

Fig. 4.1 Algorithm of Kalman Filter 
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Table 4.1 Classification of variables in the Kalman Filter algorithm, depending on their 

usage 

Category Variable Description 

External input kz  Observation at k  time  

Final output kx̂  Estimated state variable at k  time 

System model 

A  
H  
Q  
R  

State transition matrix 
State-to-observation matrix 
Error covariance of system state variable 
Error covariance of observation 

For internal 
computation 

kx̂  Predicted state variable at k  time 

kP  
Predicted error covariance matrix of system state 
variable at k  time 

kP  
Error covariance matrix of system state variable at 
k  time 

kK  Kalman gain at k  time 

 
 

4.2.1 Univariate Kalman Filter 

The author formulates the univariate linear Kalman Filter in this section. Suppose 

that the estimated solar irradiance WRFÎ  with this univariate Kalman Filter is 

evaluated from the irradiance WRFI  only simulated with WRF with the following 

equation; 
 

baII WRFWRF
ˆ                                     (4.3) 

 

Where a  and b  are correction coefficients which change gradually in time. From 

this assumption, the state variable can be defined as bax T
k , and the state and 

observation equations, which correspond to Eqs. (4.1) and (4.2), can be derived as 
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follows; 

k
k

kkk w
b
a

wAxx
1

1 10
01                       (4.4) 

 

   k
k

W RFkkk v
b
a

IvHxz 1                        (4.5) 

 

Here the superscript T  denotes a transposed matrix. The observation data kz  is 

Iz WRFk ˆ . 

The state transition noise kw  and the observation noise kv  in Eqs. (4.4) and (4.5), 

or their corresponding covariance matrices Q  and R  in FFig. 4.1 are important 

parameters for the performance of the Kalman Filter. In this study, in order to detect 

the appropriate values, the author has conducted several WRF simulations with various 

matrices Q  and R . FFigure 4.2 shows the root-mean-square error, RMSE, of the solar 

irradiance intra-day forecasting under various determinants of matrices Q  and R . 

The appropriate ratio between the determinants Q  and R  which minimizes the 

forecasting RMSE can be found from this figure. Consequently, this work employ 

10
01

101 0  and 5.11101  for the covariance matrices Q  and R , respectively, to 

minimize the forecasting error. 

Figure 4.3 shows the time series of the coefficients a  and b  of the correction 

equation Eq. (4.3), which are the system state variables of the univariate Kalman Filter. 

The coefficient b  increases in time, but its magnitude is negligible compared with the 

solar irradiance whose order is about 100 or 1,000 W/m2. The coefficient a  changes 

seasonally. Both coefficients change in time in the filter, and work to adjust the solar 

irradiance forecasted with WRF. 
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Fig. 4.3 Time series of correction coefficients obtained from the univariate Kalman 

Filter in the intra-day forecasting during July 2013 and July 2014 

Fig. 4.2 Root mean square error (RMSE) of the intra-day forecasting of the solar 

irradiance under the various determinants of covariance matrices Q  and R  
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44.2.2 Multivariate Kalman Filter 

Multivariate linear Kalman Filter is formulated in this section. Suppose that the 

estimated solar irradiance WRFÎ  with this multivariate Kalman Filter is evaluated 

from multiple weather elements simulated with WRF with the following equation; 
 

76543021ˆ aPWaRHLaRHMaRHHaIaIaI WRFWRF             (4.6) 

 

Where 65,4321 ,,,, aaaaaa  and 7a  are correction coefficients which change 

gradually in time. From this assumption, the state variable can be defined as

7654321 aaaaaaax T
k , and the state and observation equations, which 

correspond to Eqs. (4.1) and (4.2), can be derived as follows; 
 

k

k
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2
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10         (4.8) 

 

Where the superscript T  denotes a transposed matrix. The observation data kz  is 

WRFk Iz ˆ . WRFÎ  is the WRF-simulated GHIs after applying the multivariate linear 
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Kalman Filter (WRF-mvKF), kx̂  is a system state variable represented in the form of 

the vector, H is a transformation matrix, WRFI  is the WRF-simulated GHIs (WRF), 

0I  is solar irradiance GHI outside the earth's atmosphere, RHH is the maximum value 

of the WRF-simulated relative humidity at the upper atmosphere (400~50hPa), RHM is 

the maximum value of the WRF-simulated relative humidity at the middle atmosphere 

(800~400hPa), RHLis the maximum value of the WRF-simulated relative humidity at 

the lower atmosphere (surface~800hPa), PW is the WRF-simulated precipitable water. 

These variables are selected from the meteorological parameters obtained from the 

atmospheric radiation scheme in the WRF simulation. 

Except that corrective factors vary with time, the basic concept of multivariate 

Kalman Filter is the same as the multivariate linear regression analysis. In order to 

avoid the problem of multicollinearity, Principal Component Analysis (PCA) is employed 

to remove the correlations among variables. 

PCA is a mathematical procedure that uses an orthogonal transformation to 

convert a set of computational values of possibly correlated variables into a set of values 

of linearly uncorrelated variables called principal component (PC). In a first step, in 

view of the difference of size among variables, meteorological data are normalized by 

the equation (4.9).  
 

xxX                                     (4.9) 

 

Where  is standard deviation of each variable ( x ), x  is mean of each variable. 

Mean is 0, and variance is 1 after normalizing for each variable. 
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Fig. 4.4 Time series of multiple weather elements simulated with WRF for the 
intra-day forecasting during Oct 1st to 31st, 2013 
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Fig. 4.5 Time series of multiple principal components (PC) obtained from Principal 
Component Analysis (PCA) for the intra-day forecasting during Oct 1st to 31st, 2013 
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In this study, principal components are computed using the covariance method. 

First, find the covariance matrix (Correlation matrix). Next, find the eigenvectors and 

eigenvalues of the correlation matrix. Finally, obtain the weight coefficient of each 

principal component (PC). TTable 4.2 shows combination coefficient of respective 

principal component (PC). TTable 4.3 shows the contribution ratio of respective principal 

component to the solar irradiance forecasting. FFigure 4.4 shows time series of multiple 

weather elements simulated with WRF, and FFig. 4.5 shows the ones of multiple 

principal components obtained from WRF outputs and principal component analysis for 

the intra-day forecasting during the period from Oct 1st to 31st, 2013. 
 
 
 

Table 4.2 Combination coefficient of respective principal component (PC) 

Variable 
No.1-PC 

[-] 
No.2-PC 

[-] 
No.3-PC 

[-] 
No.4-PC 

[-] 
No.5-PC 

[-] 
No.6-PC 

[-] 

WRFI  -0.068 0.702 -0.034 -0.010 0.011 0.708 

0I  0.044 0.702 -0.006 -0.139 0.068 -0.694 

RHH  0.438 0.026 0.769 0.190 0.421 0.050 

RHM  0.540 -0.018 0.147 -0.595 -0.571 0.077 

RHL 0.496 -0.070 -0.554 -0.258 0.608 0.077 

PW  0.513 0.097 -0.280 0.724 -0.350 -0.046 
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Table 4.3 Proportion and weight value for respective principal component (PC) 

Principal component Weight [-] Proportion [%] 

No.1-PC 2.613 43.55 

No.2-PC 1.949 32.48 

No.3-PC 0.739 12.32 

No.4-PC 0.390 6.50 

No.5-PC 0.254 4.23 

No.6-PC 0.055 0.92 

Total 6 100 

  

Usually, the strength of the linear association between two variables X  and Y  is 

quantified by the correlation coefficient, denoted by r . The variables X  and Y  can 

be written as datasets ix  and iy , for Ni ,,2,1 . The mathematical formula for 

computing r  is given by 
 

N

i
i

N
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ii
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yyxx
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2

1

2

1

)()(

))((
                        (4.10) 

 

Where N  is the number of pairs of data, x  and y  are the mean values of X  

and Y . The value of r  is such that 11 r . The + and – sign is used for positive 

linear correlation and negative linear correlation, respectively. 

Since the formula for calculating the correlation coefficient standardizes the 

variables, changes in scale or units of measurement will not affect its value. For this 

reason, the correlation coefficient is often useful in determining the strength of the 
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association between two variables. A correlation greater than 0.8 is generally described 

as strong, whereas a correlation less than 0.5 is generally described as weak. 

Correlation coefficients of series with different weather elements simulated by 

WRF during the period from July 2013 to June 2014 are shown in TTable 4.4, and the 

ones with different principal components are shown in TTable 4.5. The collinearity of 

multiple weather elements related to the atmosphere radiation becomes even clearer at 

some level (TTable 4.4); for example, there is a strong association between W RFI  and 0I , 

and there is a moderate association between RHH  and RHM . It should be noted that 

the respective principal components are completing uncorrelated (TTable 4.5). Based on 

the above, the PCA works well in terms of overcoming the multicollinearity problem 

among multiple variables. 
 

 

Table 4.4 Correlation coefficients of series with different weather elements simulated by 

WRF during the period from July 2013 to June 2014 

Variable W RFI  0I  RHH  RHM  RHL PW  

W RFI  1.000 0.926 -0.059 -0.121 -0.163 0.045 

0I  0.926 1.000 0.077 0.055 -0.015 0.149 

RHH  -0.059 0.077 1.000 0.597 0.296 0.450 

RHM  -0.121 0.055 0.597 1.000 0.615 0.573 

RHL  -0.163 -0.015 0.296 0.615 1.000 0.640 

PW  0.045 0.149 0.450 0.573 0.640 1.000 
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Table 4.5 Correlation coefficients of series with different principal components (PC) 

during the period from July 2013 to June 2014 

Variable No.1-PC No.2-PC No.3-PC No.4-PC No.5-PC No.6-PC 

No.1-PC 1.000 -0.000 -0.000 0.000 -0.000 0.000 

No.2-PC -0.000 1.000 -0.000 0.000 -0.000 0.000 

No.3-PC -0.000 -0.000 1.000 0.000 -0.000 0.000 

No.4-PC 0.000 0.000 0.000 1.000 0.000 -0.000 

No.5-PC -0.000 -0.000 -0.000 0.000 1.000 0.000 

No.6-PC 0.000 0.000 0.000 -0.000 0.000 1.000 

 

 

44.3 Solar irradiance forecasting with Kalman Filter 

As described in Chapter 3, the WRF computes 72-hour ahead forecasting for the 

solar irradiance GHI. In this section, the solar GHI is computed by WRF with the 

Kalman Filter as a post-processing method, and is compared with the observed data. As 

explained before, the global horizontal irradiance (GHI) averaged in 61 sites in FFig. 2.3 

and with 30-minute interval is used for the verification. The data in night time are 

rejected for the verification. The Kalman Filter is applied to the 61 observation-point 

averaged irradiance GHI. 

Figure 4.6 shows correlation charts between the observed and the forecasted solar 

irradiance GHI with WRF and univariate Kalman Filter (WRF-KF), and FFig. 4.7 shows 

the ones between the observed and the forecasted GHI with WRF and multivariate 

Kalman Filter (WRF-mvKF). The intra-day, next-day and 2-day ahead forecasting are 

analyzed separately. It is detected that better agreements between the observed and the 
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forecasted irradiance GHI with WRF and Kalman Filters could be achieved in a way in 

these figures. In addition, the ensemble mean forecasting with WRF and Kalman 

Filters (FFig. 4.6 (d) and FFig. 4.7 (d)) are for the later discussion in the chapter 6. 

 
 

Fig. 4.6 Correlation charts of the intra-day, next-day, 2-day ahead forecasted solar 

irradiances, and their ensemble mean with WRF and univariate Kalman Filter 

(WRF-KF) with the observed data (61 observation-point average, from July 1st, 2013 

to June 30th, 2014) 

(c) 2-Day Ahead Forecasting (d) Ensemble Mean-KF 

(b) Next-Day Forecasting (a) Intra-Day Forecasting 
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An overall evaluation of the forecast accuracy (i.e. statistical error indices) for 

different forecasting approaches in dependence on the forecast horizon is given in TTable 

4.6. The results are grouped according to the forecast day. Results for the first forecast 

day (i.e. intra-day) integrate forecast horizons up to 24 h, and the second forecast day 

(i.e. next-day) integrates forecast horizons from 25 to 48 h, and the third forecast day 

(a) Intra-Day Forecasting 

(d) Ensemble Mean-mvKF 

Fig. 4.7 Correlation charts of the intra-day, next-day, 2-day ahead forecasted solar 

irradiances, and their ensemble mean with WRF and multivariate Kalman Filter 

(WRF-mvKF) with the observed data (61 observation-point average, from July 1st, 

2013 to June 30th, 2014) 

(c) 2-Day Ahead Forecasting 

(b) Next-Day Forecasting 
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(i.e. 2-day ahead) includes forecast horizons from 49 to 72 h. The evaluation was 

performed during the period from July 1st, 2013 to June 30th, 2014. Moreover, for 

respective forecast horizon, all approaches show a significant improvement in 

comparison to the persistent model, which is described in the section 3.3. 

Because of the application of Kalman Fitler, the positive biases of WRF-simulated 

GHI for respective forecast day are almost corrected on the whole. For the forecasting 

method WRF-KF, the Biases of the intra-day, next-day and 2-day ahead forecasting are 

-2.38 W/m2, -5.98 W/m2 and -8.46 W/m2 respectively, and for the forecasting method 

WRF-mvKF, their Biases are -0.24 W/m2, 0.42 W/m2 and 0.41 W/m2 separately. 

Meanwhile, compared to the forecasting method WRF, the RMSEs of the intra-day, 

next-day and 2-day ahead forecasting for WRF-KF are improved around 23.2%, 20.5% 

and 17.9% respectively, and the ones with WRF-mvKF are around 24.8%, 22.3% and 

20.9% respectively. Furthermore, their corresponding correlation coefficients (CORRs) 

are slightly increased as well.  

Consequently, the results of accuracy evaluation indicate that WRF-mvKF gave 

better results for solar irradiance GHI forecasting, compared to WRF-KF. From the 

aspect of the relative values of statistical error indices, the rBias corrects to -0.14%, the 

rRMSE amounts to 44.8%. Also, the correlation coefficient (CORR) increases from 0.950 

of WRF forecasting to 0.953 for the intra-day forecasting using WRF-mvKF. For 

next-day forecasting, the rBias of WRF-mvKF decreases to 0.24%, the rRMSE decreases 

to 53.5% and the CORR increases from 0.929 to 0.932. For 2-day ahead forecasting, the 

rBias of WRF-mvKF decreases to 0.23%, the rRMSE increases to 59.4%, and the CORR 

increases from 0.911 to 0.915. 
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Table 4.6 Statistical error indices (Bias, RMSE and CORR) for the GHI forecasting of 

the intra-day forecasting, next-day forecasting, 2-day ahead forecasting, their ensemble 

mean, and the persistent model (from July 1st, 2013 to June 30th, 2014). WRF is the 

forecasted result with WRF only, and WRF-KF is with WRF and univariate Kalman 

Filter, and WRF-mvKF is with WRF and multivariate Kalman Filter. 

Forecasting Method 
Bias [W/m2] 

(relative Bias) 
RMSE [W/m2] 

(relative RMSE) 
CORR [-] 

Intra-Day 
Forecasting 

WRF 
49.73 

(28.79%) 
102.97 

(59.60%) 
0.950 

WRF-KF -2.38 
(-1.38%) 

79.11 
(45.79%) 

0.951 

WRF-mvKF 
-0.24 

(-0.14%) 
77.41 

(44.81%) 
0.953 

Next-Day 
Forecasting 

WRF 
51.39 

(29.75%) 
118.96 

(68.85%) 
0.929 

WRF-KF -5.98 
(-3.46%) 

94.58 
(54.74%) 

0.930 

WRF-mvKF 0.42 
(0.24%) 

92.39 
(53.48%) 

0.932 

2-Day 
Ahead 

Forecasting  

WRF 50.76 
(29.38%) 

129.84 
(75.15%) 

0.911 

WRF-KF 
-8.46 

(-4.89%) 
106.56 

(61.68%) 
0.911 

WRF-mvKF 
0.41 

(0.23%) 
102.65 

(59.42%) 
0.915 

Ensemble 
Mean  

WRF 50.63 
(29.30%) 

104.93 
(60.74%) 

0.946 

WRF-KF 
-5.60 

(-3.24%) 
81.84 

(47.41%) 
0.947 

WRF-mvKF 
0.26 

(0.16%) 
80.83 

(46.82%) 
0.949 

Persistent  
0.3 

(0.15%) 
191.7 

(110.9%) 
0.718 
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It should be noted that the post-processing method Kalman Filters used in this 

study are exclusively based on statistical properties of the forecasting errors and do not 

use the physical properties of solar irradiance. 
 

44.4 Summary 

It has been shown that there are systematic deviations (i.e. bias) between the 

forecasted values by the meteorological model WRF and the observed values. 

Accordingly, the post-processing approach Kalman Filter is employed for correcting the 

WRF forecasting. One advantage of the Kalman Filter as compared to traditional 

statistical method is that the correction is continuously updated with the latest 

observation. Another advantage is its simplicity.  

The solar irradiance forecasting for 72 hours ahead is discussed with WRF and 

Kalman Filter during the period from July 2013 to June 2014, and the accuracy is 

verified with the on-situ observation data. The results are analyzed separately for the 

univariate Kalman Filter and the multivariate Kalman Filter. In the linear 

combinations of the forecasted variables of the latter, principal component analysis 

(PCA) is applied to overcome the multicollinearity among multiple variables. As a 

consequence, both applications of Kalman Filter are significantly effective in improving 

the accuracy of the forecasted solar irradiance GHI from WRF model. Meanwhile, the 

forecasting accuracy becomes lower as the forecasting time horizon becomes longer. 

More precisely, the WRF-KF has an overall Bias of -2.38 W/m2 (rBias: -1.38%) for 

the intra-day forecasting, increasing to -8.46 W/m2 (-4.89%) for the 2-day ahead 

forecasting, and the WRF-mvKF has an overall Bias of -0.24 W/m2 (rBias: -0.14%) for 
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the intra-day forecasting, increasing to 0.41 W/m2 (0.23%) for the 2-day ahead 

forecasting. These results indicate that the positive biases of WRF-simulated GHI for 

respective forecast day are almost corrected.  

The WRF-KF has an overall RMSE of 79.11 W/m2 (rRMSE: 45.8%) for the intra-day 

forecasting, increasing to 106.6 W/m2 (61.7%) for the 2-day ahead forecasting, and the 

WRF-mvKF has an overall RMSE of 77.4 W/m2 (rRMSE: 44.8%) for the intra-day 

forecasting, increasing to 102.7 (59.4%) W/m2 for the 2-day ahead forecasting. In 

comparison with WRF, both Kalman Filters lower the RMSEs and its relative values for 

respective forecast day, indicating the improvement of WRF forecasting. 

Furthermore, correlation coefficients (CORRs) of both Kalman Filters for respective 

forecast day are also slightly increased as compared to the ones with WRF. 
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CChapter 5  Ensemble forecasting of solar irradiance using WRF 

 

5.1 Introduction 

Since the forecasting error of solar irradiance will have a relatively large influence 

in the projection of PV power generation (Lorenz et al. 2009), the information on the 

forecasting reliability is of great importance. It is known that a forecast is an estimate 

of the future state of the atmosphere. It is created by estimating the current state of the 

atmosphere using observations, and then calculating how this state will evolve in time 

using a numerical weather prediction model. As the atmosphere is a chaotic system, 

very small errors in its initial state can lead to large errors in the forecast. In order to 

estimate the forecasting reliability of solar irradiance, which is about the coverage rate 

of the prediction interval, ensemble forecasting is introduced. This chapter aims to 

evaluate the prediction interval of solar irradiance forecasting. 

In the chapter 3, the solar irradiance forecasted with the meteorological model 

WRF shows the positive bias, e.g. 49.7 W/m2 for the intra-day forecasting, in comparison 

with the observation data, but its accuracy is acceptable for the forecasting. The author 

will keep on employing the WRF model for the ensemble forecasting of the solar 

irradiance. 

 

5.2 Methodology 

5.2.1 Ensemble forecasting method 

Ensemble forecasting method is used for quantifying uncertainties in weather 

prediction. Each computed result operated under the ensemble forecasting methods is 

called a member. The ensemble forecasting methods are categorized with the groups of 
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the members, e.g. members computed with different models, or members with different 

initial conditions. Hoffman and Kalnay (1983) suggests that, compared with Monte 

Carlo Forecasting (MCF) (Leith 1974; Seidman 1981) which is one of the common 

ensemble methods, the Lagged Averaged Forecast (LAF) method has an advantage to 

increase the ensemble member amount. In this study, the LAF method is employed to 

the ensemble forecasting of the solar irradiance. Each LAF ensemble member is 

computed with different initial conditions with different initial time. All the forecasting 

results in an ensemble are similar, indicating that the forecasting can be more 

confident, whereas they are different, indicating that uncertainty of forecasting must 

be taken more account of. 
 

55.2.2 Ensemble forecasting system of solar irradiance 

The diagram of the operation cycle of the solar irradiance (Global Horizontal 

Irradiance, GHI) ensemble forecasting is shown in FFig. 5.1. Let us call a member jiM ,  

as the computed result in the operation day i , and the forecasting day horizon j . 

Therefore, the members of 1,0j  and 2  correspond to the results of the intra-day, 

next-day and 2-day ahead forecasting, respectively from the operation day. As depicted 

in the figure, the solar irradiance of the intra-day forecasting in the operation day i  is 

forecasted with three members; the intra-day forecasting computed in the operation 

day i , 0,iM , the next-day forecasting computed in the previous day 1i , 1,1iM , and 

the 2-day ahead forecasting computed in the day before the previous day 2i , 

2,2iM . The number of the members for the next-day forecasting of the latest 

computation (i.e., the computation in the operation day i ) is two as revealed in FFig. 5.1, 

and is only one for the 2-day ahead forecasting. 
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55.2.3 Ensemble mean of solar irradiance forecasting 

The accuracy of the solar irradiance forecasting computed with WRF has been 

discussed already in the section 3.3. The discussion is taken up again here for the 

ensemble forecasting method. The correlation charts of the intra-day, next-day and 

2-day ahead forecasting, which are corresponding to the ensemble members 0,iM , 1,iM  

and 2,iM , are shown as FFig. 3.6 (a) to  (c). The chart of ensemble mean is added in FFig. 

3.6 (d). The ensemble mean is calculated as an average of the members for the same 

target day, e.g. the three members 0,iM , 1,1iM , 2,2iM  for the intra-day forecasting 

in the operation day i . The statistical indices of the forecasting error including the 

ensemble mean are already indicated in  Table 3.3.  The error indices of the ensemble 

mean are better than the ones of the next-day and 2-day ahead forecasting as indicated 

Fig. 5.1 Operation cycles of solar irradiance (GHI) ensemble forecasting using WRF. 

jiM ,  is an ensemble member of j day ahead forecasting in the operation day i . 



59 
 

in the table, however the ones of the intra-day forecasting are better than the ensemble 

mean. 

Usually the ensemble mean is employed as the forecasted value in the ensemble 

forecasting methods. However the intra-day forecasting 0,iM  is applied as the 

forecasted value, because the accuracy of the intra-day forecasting is the highest in FFig. 

3.6 and TTable 3.3. 

 

5.2.4 Ensemble spread and coverage rate 

Figure 5.2 shows an example of the forecasted solar irradiance (Global Horizontal 

Irradiance, GHI) computed in one day. The computed results in the figure contain the 

intra-day, next-day and 2-day ahead forecasting. The ensemble spread is also indicated 

in the figure. The spread is defined as the standard deviation of the ensemble members, 

and is calculated with the following equation. 
 

           
1

0

2
,, )(1 jN

k
kjkiji GHIGHI

jN
Spread                      (5.1) 

 

Where j  is the target day horizon, and 1,0j  and 2  correspond to the 

intra-day, next-day and 2-day ahead forecasting in the operation day i , respectively. 

kjkiGHI ,  is the forecasted solar irradiance, Global Horizontal Irradiance (GHI) of the 

member kjkiM , . N  is the number of forecasted days in one operation, and it is 3 in 

this study. jN  corresponds to the number of ensemble members. GHI  is the 

averaged GHI of the target members. When the variation among the members is large, 

the spread becomes also large, and the reliability of the forecasting may be low. 
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Therefore the spread may be used as the parameter of unreliability of forecasting. 

The number of ensemble members of the intra-day, next-day and 2-day ahead 

forecasting in FFig. 5.2 is 3, 2 and 1, respectively. The spread of the 2-day ahead 

forecasting is always zero because the number of its ensemble members is only 1. 

In this study, three days forecasting, i.e. the intra-day, next-day, 2-day ahead 

forecasting, is performed. Here the author focuses on the intra-day forecasting, because 

the number of its ensemble members is 3 and more than others. FFigure 5.3 shows the 

relationship between the spread of the intra-day forecasting and its forecasting error 

from the observation during the period from Sep 1st to Nov 30th, 2013. The upper and 

lower bounds of the forecasting error interval with the coverage rates 50%, 80%, 90% 

and 95% are also drawn with lines in the figure. These lines are evaluated with every 10 

W/m2 in the spread, and also evaluated positive and negative errors separately. 

Occurrence frequency of the forecasting error within the spread interval of interest is 

defined as coverage rate in this study. The plotted data converge symmetrically around 

the horizontal line 30x  W/m2, and the forecasting error diverges widely as the 

spread becomes large as shown with the bound lines of the intervals. 

The bound lines of the forecasting error interval are not smooth, because the 

number of ensemble members are limited, only 3, and the spread may contain random 

error. It causes the limitation of the computational environment in this work. 

Increasing of ensemble members may contribute for the improvement of the interval 

estimation. 

The distribution of the plots and the bound lines of the member 0,iM , which is the 

computed results with the meteorological model WRF, deflects to the positive side, 

because WRF has the tendency to overestimate the solar irradiance as explained before. 
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Fig. 5.3 Relationship of the ensemble spread of GHI and its forecasting error for 

the intra-day forecasting 0,iM  (61 observation-point average, from Sep 1st to Nov 

30th, 2013)  

Fig. 5.2 An example of ensemble forecasting result of the solar irradiance (GHI) 

with WRF (Forecasted at July 2nd, 2013)  
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55.2.5 Size of prediction interval of solar irradiance forecasting 

Figure 5.4 shows schematic diagram of the size of the prediction interval of solar 

irradiance GHI. The area TotalA  between the upper and the lower bound of prediction 

interval is defined as the size. Here gives a simple introduction about its calculation 

method. By splitting the region of the prediction interval up into small sub-regions, 

whose areas could be approximated by rectangles, the size of the prediction interval 

could be calculated as a limit of sums of rectangle areas. The size TotalA  of the 

prediction interval of solar irradiance GHI is defined with Eq. (5.2). 
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Where )(tUpper  and )(tLower  denote solar irradiance GHI of the upper bound 

and lower bound of prediction interval at t time, respectively, tia  is the thi )1(

time of valid sunshine time zone [ ba, ] in a day. a  is the time of sunrise, and b  is the 

time of sunset every day. Since GHI values used for the verification are obtained by 

calculating mean values in 61 observation sites and with 30-minute interval, the time 

interval h) 0.5, (i.e.min30t . 

Period average size ( AveS ) of the prediction interval of solar irradiance GHI is 

defined as follows: 
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Where DayN  is the number of days during the verification period, iTotalA ,  is the 

total size of the prediction interval of solar irradiance GHI on the thi  day. 
 

55.2.6 Empirical coverage rate of prediction interval of solar irradiance forecasting 

To take into consideration reliability of forecasted solar irradiance GHI, the 

empirical coverage rate of observed GHI within prediction interval is discussed in this 

section. The empirical coverage rate is expressed in the following Eq. (5.4). 
 

[%]100
Total

Actual
n
nratecoverageEmpirical                   (5.4) 

 

Fig. 5.4 Schematic diagram of the total size of the prediction interval of solar 

irradiance GHI. The black line with triangle shows the forecasted value; the red line 

with square represents the upper bound of the prediction interval; the blue line with 

diamond gives the lower bound of the prediction interval. 
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Where Actualn  is the actual number of observation data fallen within the 

prediction interval, Totaln  is the total number of data in the valid sunshine time zone. 
  

5.3 Results and discussion 

The ensemble forecasting of solar irradiance is performed every day, and the solar 

irradiance and its prediction interval are forecasted. The intra-day forecasting 0,iM  

are connected and indicated as the time series from Dec 1st to 10th, 2013 in FFig. 5.5. 

More details that the results with WRF for ten days from 1st to 10th each month are 

given in the AAppendix Figure A.1 to AA.9. The forecasted solar irradiance and the 

observed data are plotted with black solid lines and red dots respectively in the figure. 

The irradiance is forecasted larger than the observation because of the overestimation 

of WRF as explained before. The ensemble spread of the member 0,iM  is also indicated 

with a green dashed line in FFig. 5.5 (a). The value of the spread changes in time; for 

example, the spread in Dec 6th is large, and the one in Dec 3rd is almost zero. As the 

ensemble spread becomes smaller, the forecasted solar irradiance (GHI) comes closer to 

the observed one. 

The upper and lower bounds of the prediction interval are indicated with two blue 

dashed lines in FFig. 5.5 (b) to (e). Their coverage rates are 50%, 80%, 90% and 95%, 

respectively. To evaluate the bounds of the intervals, the upper and lower bounds of the 

prediction interval in FFig. 5.3 are evaluated from the given coverage rate and the spread 

in FFig. 5.5 (a) first. And they are plotted around the forecasted irradiance as the 

prediction interval. In this study, coverage rate of the prediction interval is called as 

nominal coverage rate. The size of the interval is small when the spread is small, like 
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Dec 3rd in the figure, and the interval size is large when the spread is large, like on Dec 

6th. 

When the nominal coverage rate is 50%, many observation data are out of the 

prediction interval as shown in FFig. 5.5 (b), but most of observation data lie in the 

interval when the probability is increased to 95% in FFig. 5.5 (e). 

Figure 5.6 shows daily and 10-days mean sizes of prediction interval of the 

ensemble forecasting for the intra-day solar GHI forecasting 0,iM  for ten days from 

Dec 1st to 10th, 2013. Nominal coverage rates 50%, 80%, 90% and 95% are discussed 

respectively. As indicated in this figure, it is clear that the interval size becomes large as 

the nominal coverage rate becomes large. 

Figure 5.7 shows correlation charts between daily and 10-days mean empirical 

coverage rates and the corresponding nominal coverage rates of the ensemble 

forecasting for the intra-day solar irradiance forecasting 0,iM  during the period from 

Dec 1st to 10th, 2013. As depicted in this figure, the daily empirical coverage rates are on 

the whole smaller than the corresponding nominal coverage rates, except on Dec 4th and 

Dec 10th. It could be probably due to the overestimation of the solar irradiance computed 

with WRF. Besides, for 10 days mean, the reductions of the empirical rates from the 

nominal rates 50%, 80%, 90% and 95% are about 0.31, 0.29, 0.26 and 0.21 of the 

nominal rates respectively, and not so large. These results indicate that the ensemble 

forecasting of the solar irradiance with the prediction interval works well.  
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Fig. 5.5 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting 0,iM (61 
observation-point average, from Dec 1st to 10th, 2013)  

(a) 0,iM  and Spread 

(b) 0,iM  and 50% prediction interval 

(c) 0,iM  and 80% prediction interval 

(d) 0,iM  and 90% prediction interval 

(e) 0,iM  and 95% prediction interval 
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Fig. 5.7 Correlation chart between daily and 10-days mean empirical coverage rates 

and nominal coverage rates of the prediction interval of the ensemble forecasting for 

the intra-day solar irradiance (GHI) forecasting 0,iM  with WRF (from Dec 1st to 

10th, 2013) 

Fig. 5.6 Daily and 10-days mean sizes of prediction interval of the ensemble 

forecasting for the intra-day solar irradiance (GHI) forecasting 0,iM  with WRF 

(from Dec 1st to 10th, 2013) 
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55.4 Summary 

In order to gain an insight into the forecasting reliability of solar irradiance, the 

solar irradiance GHI ensemble forecasting system for 72-hour ahead forecasting is 

performed with the meteorological model WRF. One of the ensemble methods, the 

Lagged Averaged Forecast (LAF) method is employed here and the several forecasting 

results operated with different initial time are used as the ensemble members. The 

spread of the ensemble forecasting is calculated as a parameter corresponding to the 

unreliability of the forecasting, and the relation of the spread and the forecasting error 

is discussed to evaluate the prediction interval. The solar irradiance and its prediction 

interval are forecasted with the ensemble method. The size of the prediction interval 

changes as the reliability of the forecasting in the ensemble forecasting varies. The 

empirical coverage rates of the prediction interval are a little lower than the 

corresponding nominal ones in this ensemble. It might be considered by the effect of 

overestimation of the WRF computation. 
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CChapter 6  Increasing the accuracy of ensemble forecasting of solar 

irradiance by applying Kalman Filter 

 

6.1 Introduction 

In the chapter 3, the accuracy of solar GHI forecasting with WRF was discussed, 

and in the chapter 4, the accuracy of WRF-simulated GHI forecasting after applying the 

Kalman Filter was discussed. Compared with the statistical error indices (Bias, RMSE, 

CORR) from different forecasting methods summarized in TTable 4.8, the magnitudes of 

biases are reduced evidently by applying the Kalman Filters as the post processor of the 

forecasting; for example, the bias of the intra-day forecasting 0,iM  changes from 49.7 

W/m2 to -2.4 W/m2 with the univariate Kalman Filter. The biases of the forecasting with 

WRF and Kalman Filters are almost negligible compared with the averaged intensity of 

the solar irradiance. By the application of the Kalman Filters, not only the Biases but 

also the RMSEs reduce, and CORRs increase as shown in TTable 4.8. The effect of the 

Kalman Filters to the forecasting accuracy is explained with the improvement of these 

error indices. 

In addition, the time series of the correction coefficient a  of the univariate 

Kalman Filter is illustrated in FFig. 4.3. The value of the coefficient is about 0.88 and 

less than one. This Kalman Filter reduces the intensity of the solar irradiance 

forecasted with WRF with the value of the coefficient, and corrects the overestimation of 

the WRF computation. Consequently, the accuracy of WRF-simulated solar GHI 

forecasting has been improved. 

However, the empirical coverage rates of prediction interval of solar GHI 
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forecasting with WRF only are smaller than the corresponding nominal coverage rates 

in the previous chapter. The reductions of empirical coverage rates from the nominal 

ones are about 0.3 of the nominal coverage rates. Therefore, in order to recover the 

reductions of the empirical coverage rates, the solar GHI ensemble forecasting with 

WRF and Kalman Filter is investigated in this chapter. 

  

6.2 Ensemble forecasting of solar irradiance with Kalman Filter 

Daily ensemble forecasting of the solar irradiance is conducted with the 

meteorological model WRF, as in the previous chapter, except the adaptation of Kalman 

Filter as the post processor of the WRF. The detail process of the ensemble forecasting 

has been explained in the section 5.2.2. 
 

6.2.1 Solar irradiance for ensemble forecasting with univariate Kalman Filter 

In the chapter 5, the ensemble mean is calculated as an average of the members for 

the same target day, e.g. the three members, 0,iM , 1,1iM , 2,2iM  for the intra-day 

forecasting in the operation day i . The label “ jiM , ” indicate the forecasted irradiance 

with WRF only in the chapter 5. In this section, the author indicates the 

WRF-simulated result adjusted with univariate Kalman Filter with “ KFM ji, ”. 

The accuracy of the forecasted solar irradiance has been discussed in the previous 

chapter, and the results are shown in FFig. 4.6 and TTable 4.6. The statistical error indices 

of the intra-day forecasting are better than the ones of the other forecasting including 

the ensemble mean. Usually the ensemble mean “Ensemble Mean KF ” is employed as 

the forecasted value in the ensemble forecasting methods. However the intra-day 

forecasting with WRF and univariate Kalman Filter “ KFMi 0, ” is applied as the 
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forecasted value in this chapter, because the accuracy of the intra-day forecasting is the 

highest among them in this figure and this table. 

FFigure 6.1 shows the relationship between the spread of the intra-day forecasting 

with WRF and univariate Kalman Filter and its forecasting error from the observation 

during the period from Sep 1st to Nov 30th, 2013. The upper and lower bounds of the 

forecasting error interval with the coverage rates 50%, 80%, 90% and 95% are also 

drawn with lines in this figure. These lines are evaluated within every 10 W/m2 in the 

spread, and also evaluated positive and negative errors separately. The plotted data 

converge around the origin of the graph, and the forecasting error diverges widely as 

the spread becomes large as indicated with the bound lines of the intervals. 

 

Fig. 6.1 Relationship of the ensemble spread of the solar irradiance (GHI) and its 

forecasting error for the intra-day forecasting with WRF and univariate Kalman 

Filter KFMi 0,  (61 observation-point average, from Sep 1st to Nov 30th, 2013)  
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The bound lines of the forecasting error interval aren’t smooth, because the number 

of ensemble members are limited, only 3, and the spread may contain random error. It 

causes the limitation of the computational environment in this work. Increasing of 

ensemble members may contribute for the improvement of the interval estimation. 

The plots and the bound lines distribute almost symmetrically with respect to the 

horizontal axis. It’s caused that the univariate Kalman Filter improves the 

overestimation of the WRF computation. 
 

66.2.2 Solar irradiance for ensemble forecasting with multivariate Kalman Filter 

The author indicates the forecasted solar irradiance adjusted with multivariate 

Kalman Filter with “ mvKFM ji, ”. The intra-day forecasting with WRF and 

multivariate Kalman Filter “ mvKFMi 0, ” is applied as the forecasted value in this 

chapter, because the accuracy of the intra-day forecasting is the highest. 

Figure 6.2 shows the relationship between the spread of the intra-day forecasting 

with WRF and multivariate Kalman Filter and its forecasting error from the 

observation during the period from Sep 1st to Nov 30th, 2013. The plots and the bound 

lines, except the lines with the coverage rate 95%, distribute almost symmetrically with 

respect to the horizontal axis. It is also found that the multivariate Kalman Filter 

improves the overestimation of the WRF computation. 
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6.3 Solar irradiance forecasting with prediction interval using Kalman Filter 

In the previous chapter, the ensemble forecasting of solar irradiance with WRF is 

performed. In this section, the solar irradiance with WRF and Kalman Filter, and its 

prediction interval are discussed. FFigure 6.3 shows the solar irradiance GHI forecasted 

with WRF and univariate Kalman Filter, and FFig. 6.4 shows the one with WRF and 

multivariate Kalman Filter. In these figures, the computed results of the intra-day 

forecasting KFMi 0,  and mvKFMi 0,  are connected and indicated as the time 

series from Dec 1st to 10th, 2013. The forecasted solar irradiance and the observed data 

are plotted with black solid lines and red dots respectively in these figures. As 

Fig. 6.2 Relationship of the ensemble spread of the solar irradiance (GHI) and its 

forecasting error for the intra-day forecasting with WRF and multivariate Kalman 

Filter mvKFMi 0,  (61 observation-point average, from Sep 1st to Nov 30th, 2013)  
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mentioned in the chapter 5, the irradiance forecasted with WRF only is larger than the 

observed one in FFig. 5.5 because of the overestimation of WRF. The forecasted 

irradiance with WRF and Kalman Filters seem well close to the observed one as shown 

in FFig. 6.3 and FFig. 6.4. 

The ensemble spread of the members KFMi 0,  with WRF and univariate Kalman 

Filter, and mvKFMi 0,  with WRF and multivariate Kalman Filter are also indicated 

with green dashed lines in FFig. 6.3 (a) and FFig. 6.4 (a). The value of the spread changes 

in time; for example, the spread on Dec 6th is large, and the one on Dec 3rd is almost zero, 

in these figures. 

The upper and lower bounds of the prediction interval are indicated with two blue 

dashed lines in FFig. 6.3 (b) to (e) and FFig. 6.4 (b) to (e). Their nominal coverage rates are 

50%, 80%, 90% and 95%, respectively. For better understanding of the forecasting 

reliability, the upper and lower bounds of the prediction interval in FFig. 6.1 or  Fig. 6.2 

are evaluated from the given nominal coverage rate and the spread in FFig. 6.3 (a) or  Fig. 

6.4 (a) first. And they are plotted around the forecasted irradiance as the prediction 

interval. The size of the interval is small when the spread is small, like Dec 3rd in these 

figures, and the interval size is large when the spread is large, like on Dec 6th. The 

nominal coverage rate becomes large proportionally to the interval size, as shown in 

these figures. 

Table 6.1 summarizes daily sizes of the prediction interval of the ensemble 

forecasting for the intra-day solar GHI forecasting from different forecasting methods 

for ten days from Dec 1st to 10th, 2013. The data of the night time are rejected for the 

calculation of the size. As displayed in this table, the daily sizes become large as the 
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nominal coverage rates become large on the whole. The sizes of the ensemble 

forecasting with WRF and Kalman Filters are small compared with the one forecasted 

with WRF only. 

TTable 6.2 summarizes daily empirical coverage rates of the ensemble forecasting for 

the intra-day solar GHI forecasting from different forecasting methods for ten days from 

Dec 1st to 10th, 2013. They are the ratio of the number of the observation data lied in the 

prediction interval of the intra-day forecasting 0,iM  with WRF only, KFMi 0,  with 

WRF and univariate Kalman Filter, and mvKFMi 0,  with WRF and multivariate 

Kalman Filter. The data of the night time are rejected for the calculation of the rates. 

Overall, the daily empirical coverage rates become large as the nominal ones become 

large as found in this table. The daily empirical coverage rates of the forecasting with 

WRF only are smaller than the nominal ones, but the daily empirical ones of the 

forecasting with WRF and univariate Kalman Filter increase their values and close well 

to the nominal ones.  

Figure 6.5 shows 10-days mean sizes of prediction interval of the ensemble 

forecasting for the intra-day solar irradiance forecasting 0,iM , KFMi 0,  and 

mvKFMi 0,  for ten days from Dec 1st to 10th, 2013. Regarding it as a whole, for 

individual forecasting method, the 10-days mean size will become large proportionally 

to the nominal coverage rate as found in this figure. Moreover, by the application of 

Kalman Filters to improve the solar irradiance forecasting, the interval sizes become 

small. For the multivariate Kalman Filter, the 10 days mean sizes of nominal coverage 

rates 50%, 80%, 90% and 95% are narrowed about 15.2%, 14.8%, 9.5% and 5.8% of the 

ones of solar GHI forecasting 0,iM , respectively. 
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Fig. 6.3 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting KFMi 0,  (61 
observation-point average, from Dec 1st to 10th, 2013)  

(a) KFMi 0,  and Spread 

(b) KFMi 0,  and 50% prediction interval 

(c) KFMi 0,  and 80% prediction interval 

(d) KFMi 0,  and 90% prediction interval 

(e) KFMi 0,  and 95% prediction interval 
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Fig. 6.4 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting mvKFMi 0,  (61 
observation-point average, from Dec 1st to 10th, 2013)  

(a) mvKFMi 0,  and Spread 

(b) mvKFMi 0,  and 50% prediction interval 

(c) mvKFMi 0,  and 80% prediction interval 

(d) mvKFMi 0,  and 90% prediction interval 

(e) mvKFMi 0,  and 95% prediction interval 
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Table 6.1 Daily sizes of the prediction interval of the ensemble forecasting for the 

intra-day solar irradiance (GHI) forecasting. 0,iM  is a member forecasted with WRF 

only, and KFMi 0,  is with WRF and univariate Kalman Filter, and mvKFMi 0,  is 

with WRF and multivariate Kalman Filter (from Dec 1st to 10th, 2013) 

Nominal 

coverage 

rate of 

prediction 

interval 

Forecasting 

method  

Size of prediction interval [W/m2] 

12/01 12/02 12/03 12/04 12/05 12/06 12/07 12/08 12/09 12/10 

50% 

0,iM  79.9 65.4 65.4 112.9 65.4 120.9 82.9 65.4 90.8 104.7 

KFMi 0,  76.7 55.0 55.0 107.9 54.9 109.7 78.3 54.9 91.6 98.9 

mvKFMi 0,  74.6 54.8 54.8 90.4 54.8 91.0 74.0 63.6 77.3 88.9 

80% 

0,iM  155.6 111.8 111.8 231.9 111.8 232.1 164.5 111.7 196.7 208.0 

KFMi 0,  147.2 99.6 99.6 212.2 99.5 196.9 155.8 99.4 188.4 190.6 

mvKFMi 0,  149.6 95.9 96.0 179.5 95.9 179.6 148.4 120.6 156.9 171.4 

90% 

0,iM  217.0 144.5 144.5 316.4 144.4 304.6 233.3 144.3 287.1 284.4 

KFMi 0,  208.6 127.1 126.9 328.0 126.9 290.3 223.1 126.8 272.8 279.0 

mvKFMi 0,  217.1 129.0 129.3 269.5 129.1 262.3 220.2 174.2 223.2 257.0 

95% 

0,iM  274.8 171.9 171.9 427.6 171.8 408.2 320.7 171.8 381.3 378.4 

KFMi 0,  266.8 163.5 163.3 431.1 163.3 398.9 288.6 163.2 328.8 338.1 

mvKFMi 0,  295.4 171.1 172.1 371.1 171.6 354.9 301.2 238.0 302.5 334.1 
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Table 6.2 Daily empirical coverage rates of the prediction interval of the ensemble 

forecasting for the intra-day solar irradiance (GHI) forecasting. 0,iM  is a member 

forecasted with WRF only, and KFMi 0,  is with WRF and univariate Kalman Filter, 

and mvKFMi 0,  is with WRF and multivariate Kalman Filter (from Dec 1st to 10th, 

2013) 

Nominal 

coverage 

rate of 

prediction 

interval 

Forecasting 

method 

Empirical coverage rate of prediction interval [%] 

12/01 12/02 12/03 12/04 12/05 12/06 12/07 12/08 12/09 12/10 

50% 

0,iM  31.6 10.5 31.6 73.7 26.3 26.3 21.1 26.3 36.8 63.2 

KFMi 0,  57.9 52.6 42.1 57.9 57.9 47.4 63.1 57.9 36.8 68.4 

mvKFMi 0,  73.7 52.6 47.4 57.9 47.4 47.4 68.4 84.2 42.1 78.9 

80% 

0,iM  63.2 26.3 52.6 89.5 36.8 57.9 36.8 36.8 73.7 94.7 

KFMi 0,  73.7 78.9 78.9 89.5 84.2 68.4 84.2 89.5 63.1 94.7 

mvKFMi 0,  84.2 73.7 94.7 89.5 94.7 63.2 84.2 94.7 63.2 94.7 

90% 

0,iM  73.7 42.1 57.9 94.7 47.4 57.9 57.9 47.4 89.5 94.7 

KFMi 0,  84.2 78.9 94.7 94.7 94.7 89.5 94.7 94.7 78.9 94.7 

mvKFMi 0,  94.7 78.9 94.7 94.7 94.7 84.2 94.7 94.7 78.9 94.7 

95% 

0,iM  84.2 47.4 63.2 94.7 52.6 94.7 78.9 47.4 89.5 94.7 

KFMi 0,  94.7 84.2 94.7 94.7 94.7 94.7 94.7 94.7 89.5 94.7 

mvKFMi 0,  94.7 84.2 94.7 94.7 94.7 94.7 94.7 94.7 84.2 94.7 
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Fig. 6.6 Correlation chart between 10-days mean empirical coverage rates and 

nominal coverage rates of the prediction interval of the ensemble forecasting for the 

intra-day solar irradiance (GHI) forecasting 0,iM  with WRF only, and KFMi 0,  

with WRF and univariate Kalman Filter, and mvKFMi 0, with WRF and 

multivariate Kalman Filter (for ten days from Dec 1st to 10th, 2013) 

Fig. 6.5 10-days mean sizes of prediction interval for the intra-day solar irradiance 

(GHI) forecasting 0,iM  with WRF only, and KFMi 0,  with WRF and univariate 

Kalman Filter, and mvKFMi 0, with WRF and multivariate Kalman Filter (for ten 

days from Dec 1st to 10th, 2013) 
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FFigure 6.6 shows correlation charts between10-days mean empirical coverage rates 

and the corresponding nominal coverage rates of the ensemble forecasting for the 

intra-day solar irradiance forecasting 0,iM , KFMi 0,  and mvKFMi 0,  for ten days 

from Dec 1st to 10th, 2013. As shown in this figure, the 10-days mean empirical coverage 

rates will become large proportionally to the nominal one on the whole. With respect to 

the reductions of 10-days mean empirical rates from the nominal ones, 0,iM  

forecasting with WRF only is the largest, and KFMi 0,  forecasting with WRF and 

univariate Kalman Filter is the smallest. For nominal coverage rates 50%, the 

reduction ranges from 0.31 to -0.08. For nominal coverage rate 80%, the reduction 

ranges from 0.29 to -0.006. For nominal coverage rate 90%, the reduction ranges from 

0.26 to 0.001. For nominal coverage rate 95%, the reduction ranges from 0.21 to 0.02. 

These results suggest that the 10-days mean empirical coverage rates of KFMi 0,

forecasting could well approach the nominal ones. 

Furthermore, monthly prediction interval sizes and monthly empirical coverage 

rates of the ensemble forecasting for the intra-day solar irradiance forecasting from 

different forecasting methods during the period from October 2013 to June 2014 are 

listed in TTables 6.3 and 66.4.  

Figure 6.7 shows period average sizes of prediction interval of the ensemble 

forecasting for the intra-day solar irradiance forecasting 0,iM , KFMi 0,  and 

mvKFMi 0,  during the period from October 2013 to June 2014. In terms of single 

forecasting method, the period average size will become large as the nominal coverage 

rate becomes large as showed in this figure. Through applying the Kalman Filter to the 

ensemble forecasting, the interval sizes become small. Because of the use of 
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multivariate Kalman Filter, the period average sizes of nominal coverage rates 50%, 

80%, 90% and 95% are narrowed about 16.8%, 13.2%, 10.9% and 5.7% of the ones of 

solar GHI forecasting 0,iM , respectively. 

FFigure 6.8 shows correlation charts between period average empirical coverage 

rates and the corresponding nominal coverage rates of the ensemble forecasting for the 

intra-day solar irradiance forecasting 0,iM , KFMi 0,  and mvKFMi 0,  during the 

period from October 2013 to June 2014. Overall, the period average empirical coverage 

rate will become large proportionally to the nominal one as depicted in FFig. 6.8. Besides, 

for these two Kalman Filters, distinct differences are not found. However, it should be 

noted that the period average empirical coverage rates of the forecasting with WRF and 

multivariate Kalman Filter could well approach the nominal ones.In terms of the 

reductions of period average empirical rates from the nominal ones, 0,iM  forecasting 

with WRF only is the largest, and mvKFMi 0,  forecasting with WRF and 

multivariate Kalman Filter is the smallest. For nominal coverage rates 50%, the 

reduction ranges from 0.10 to -0.02. For nominal coverage rate 80%, the reduction 

ranges from 0.21 to 0.03. For nominal coverage rate 90%, the reduction ranges from 0.20 

to 0.04. For nominal coverage rate 95%, the reduction ranges from 0.19 to 0.03.  

Consequently, the multivariate Kalman Filter is employed into the solar irradiance 

forecasting to improve the WRF computation. By applying it to the ensemble forecasting, 

the sizes of the prediction interval become small, and the empirical coverage rates 

increase and approach the nominal ones. This result indicates that the improvement of 

the forecasting gives a better estimation of the prediction interval. 
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Table 6.3 Monthly prediction interval sizes of the ensemble forecasting for the intra-day 

solar irradiance (GHI) forecasting. 0,iM  is a member forecasted with WRF only, and 

KFMi 0,  is with WRF and univariate Kalman Filter, and mvKFMi 0,  is with WRF 

and multivariate Kalman Filter (from October 2013 to June 2014) 

Nominal 

coverage 

rate of 

prediction 

interval 

Forecasting 

method 

Size of prediction interval [W/m2] 

Oct-13 Nov-13 Dec-13 Jan-14 Feb-14 Mar-14 Apr-14 May-14 Jun-14 

50% 

0,iM  125.8 95.5 84.3 84.1 82.4 82.0 104.2 101.3 116.4 

KFMi 0,  103.0 80.2 77.0 73.4 70.6 73.9 97.5 90.1 103.6 

mvKFMi 0,  101.7 80.2 64.9 66.1 64.5 70.4 90.1 89.7 101.5 

80% 

0,iM  256.8 181.7 162.1 156.3 140.4 146.7 163.2 172.7 197.3 

KFMi 0,  221.7 161.6 148.5 141.5 125.1 130.2 161.2 162.6 183.4 

mvKFMi 0,  194.8 155.9 138.5 129.2 118.2 129.8 152.3 164.8 185.1 

90% 

0,iM  324.3 256.1 222.3 216.8 179.0 174.0 210.2 224.0 256.8 

KFMi 0,  307.4 220.2 207.3 194.0 167.5 159.9 206.2 218.8 240.9 

mvKFMi 0,  271.4 218.3 197.7 182.0 160.2 160.5 199.4 201.8 247.2 

95% 

0,iM  364.4 323.2 284.4 282.6 214.1 207.4 244.1 296.4 293.1 

KFMi 0,  373.3 281.7 263.7 250.9 218.7 195.2 242.4 288.9 287.9 

mvKFMi 0,  345.2 287.9 263.9 254.6 213.1 193.0 239.8 276.3 294.1 
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Table 6.4 Monthly empirical coverage rates of the prediction interval of the ensemble 

forecasting for the intra-day solar irradiance (GHI) forecasting. 0,iM  is a member 

forecasted with WRF only, and KFMi 0,  is with WRF and univariate Kalman Filter, 

and mvKFMi 0,  is with WRF and multivariate Kalman Filter (from October 2013 to 

June 2014) 

Nominal 

coverage 

rate of 

prediction 

interval 

Forecasting 

method 

Empirical coverage rate of prediction interval [%] 

Oct-13 Nov-13 Dec-13 Jan-14 Feb-14 Mar-14 Apr-14 May-14 Jun-14 

50% 

0,iM  50.1 47.2 48.7 50.3 52.5 36.7 43.6 32.1 42.0 

KFMi 0,  41.3 49.7 59.9 43.6 43.7 49.1 53.8 48.9 53.4 

mvKFMi 0,  45.0 55.7 65.5 55.4 43.7 45.9 51.0 45.3 50.5 

80% 

0,iM  67.9 63.2 69.8 74.5 68.7 59.5 58.8 50.3 57.5 

KFMi 0,  76.0 76.7 85.1 80.5 69.2 74.3 76.2 77.4 77.3 

mvKFMi 0,  75.1 81.2 89.1 84.2 73.8 73.8 72.6 72.6 78.9 

90% 

0,iM  71.6 75.8 77.9 83.6 79.4 69.3 64.5 58.9 68.0 

KFMi 0,  86.9 88.3 93.5 90.6 84.4 83.2 83.8 90.1 87.7 

mvKFMi 0,  86.8 89.5 94.4 91.8 84.7 82.5 82.2 81.2 88.1 

95% 

0,iM  67.0 80.0 84.9 88.5 83.0 79.1 66.8 70.1 69.2 

KFMi 0,  93.1 93.7 94.9 97.3 89.5 87.2 86.8 95.0 91.6 

mvKFMi 0,  93.2 93.0 95.2 96.3 90.5 86.7 86.4 90.4 93.5 
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Fig. 6.8 Correlation chart between period average empirical coverage rates and 

nominal coverage rates of the prediction interval of the ensemble forecasting for the 

intra-day solar irradiance (GHI) forecasting 0,iM  with WRF only, and KFMi 0,  

with WRF and univariate Kalman Filter, and mvKFMi 0, with WRF and 

multivariate Kalman Filter (from October 2013 to June 2014) 

Fig. 6.7 Period average sizes of prediction interval for the intra-day solar irradiance 

(GHI) forecasting 0,iM  with WRF only, and KFMi 0,  with WRF and univariate 

Kalman Filter, and mvKFMi 0, with WRF and multivariate Kalman Filter (from 

October 2013 to June 2014) 
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66.4 Summary 

In this chapter, for the purpose of increasing the forecasting accuracy of the 

prediction interval, Kalman Filter bias correction methods were applied to the solar 

irradiance GHI ensemble forecasting system for 72-hour ahead forecasting with the 

meteorological model WRF. The forecasting results with the univariate Kalman Filter 

and multivariate Kalman Filter were investigated separately. As a result, through the 

application of Kalman Filters as the post processor of the forecasting, the sizes of the 

prediction intervals reduce, and the empirical coverage rates increase and approach 

well to the nominal coverage rates. Based on the results obtained from this study, it 

could be concluded that the improvement by applying the Kalman Filters is not only for 

the forecasting itself, but also for the prediction interval estimation in the ensemble 

forecasting. 
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CChapter 7  Conclusion 

 

Solar irradiance is the most important meteorological factor that affects solar 

power production. The reliable forecasting information of solar irradiance is urgently 

required by the grid operators for better management of the electrical power balance 

between demand and generation. Probabilistic forecasting of solar irradiance using the 

mesoscale meteorological model WRF (Weather Research and Forecasting) model was 

investigated in this thesis. To achieve this purpose, the thesis was carried out by four 

parts for investigation of : (1) solar irradiance forecasting by applying a meteorological 

model, (2) increasing the accuracy of solar irradiance forecasting by applying Kalman 

Filter, (3) ensemble forecasting of solar irradiance using WRF, and (4) increasing the 

accuracy of ensemble forecasting of solar irradiance by applying Kalman Filter. General 

conclusions obtained in each chapter are summarized as follows. 

In Chapter 1, the background and objective of this dissertation were stated. 

In Chapter 2, the on-situ observations in the central region of Japan were 

illustrated. The observations analyzed in this chapter are able to be used not only for 

the verification of the accuracy and characteristics of solar irradiance simulated by WRF, 

but also for the examination of solar irradiance forecasting reliability in the following 

chapters in this study. 

In Chapter 3, firstly, a description of the WRF model, in particular about its 

governing equations and physical options, was stated. Secondly, the accuracy and 

characteristics of solar irradiance (Global Horizontal Irradiance, GHI) simulated by 

WRF were examined using on-situ observations in the central Japan. The WRF 

simulation on a 2km resolution grid was performed, and thus the solar irradiance GHI 
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forecasting for 72-hour ahead forecasting was obtained. In order to verify its forecasting 

accuracy, the three statistical indices of bias, root mean square error (RMSE) and 

correlation coefficient (CORR) were calculated. As a result, the intra-day solar GHI 

forecasting simulated by WRF was found to have a notable positive bias of more than 

+29% of the observed solar GHI and a RMSE of 60%. The positive bias in the WRF solar 

GHI is likely caused by the effect of atmospheric turbidity, which is not taken into 

account in the WRF model, and the actual atmosphere contains more cloud cover than 

the simulated results. Moreover, the persistent model was introduced for reference. The 

RMSE and CORR of the WRF forecasting result was better than that obtained by the 

persistent model. This indicated the validity of the forecasting with WRF. 

In Chapter 4, in order to increase the accuracy of WRF-simulated GHI forecasting, 

statistical post-processing approaches Kalman Filters were applied. The results 

indicated that the use of Kalman Filters was a reasonable methodology to improve the 

accuracy. The accuracy of the WRF-simulated GHI for the intra-day forecasting after 

applying univariate linear Kalman Filter was finally reduced to have a bias of -2.4 W/m2 

and RMSE of 79.1 W/m2. Due to the application of multivariate linear Kalman Filter, 

the bias on average of WRF-simulated GHI for the intra-day forecasting is removed 

around 99.5%, and RMSE is improved around 25%. Furthermore, the CORR with WRF 

and Kalman Filter was also slightly increased compared to the one with WRF only. 

In Chapter 5, in order to gain an insight into the forecasting reliability of solar 

irradiance, ensemble forecasting method was applied for assessing the prediction 

interval of the solar irradiance forecasting. The Lagged Averaged Forecast (LAF) 

method was employed to create the ensemble member in this analysis. The spread of 

the ensemble forecasting was calculated as a parameter corresponding to the 
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unreliability of the forecasting, and the relation of the spread and the forecasting error 

was discussed to evaluate the prediction interval. As a result, the size of the prediction 

interval changes as the reliability of the forecasting in the ensemble forecasting varies. 

The empirical coverage rates of the prediction interval are a little lower than the 

corresponding nominal ones in this ensemble. 

In Chapter 6, the effect of the improvement to the forecasting of the prediction 

interval was also investigated with ensemble forecasting and Kalman Filter. The 

prediction interval was evaluated from the relationship between the ensemble spread 

and the forecasting error. The forecasting results with the univariate linear Kalman 

Filter and multivariate linear Kalman Filter were investigated separately. As a result, 

the sizes of prediction interval with Kalman Filters were narrower than that of 

forecasting without Kalman Filter. Also, the empirical coverage rates of observed GHI 

within prediction interval with the use of Kalman Filter close well to the nominal rates 

of prediction interval. 

The findings of this study may provide some important and valuable information 

for the prediction of photovoltaic system generation. However, relevant investigations 

on how to use the prediction interval forecasted results of solar irradiance are still 

needed. 
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AAppendix 

 

Time series of observed and forecasted solar irradiance (Global Horizontal 

Irradiance, GHI) and its 50%, 80%, 90%, 95% prediction interval for the intra-day 

forecasting are shown in this section. GHI values are obtained by calculating mean 

values in 61 observation sites and with 30-minute interval. FFigure A.1 to AA.9 show the 

results with WRF only for ten days from 1st to 10th each month. FFigure B.1 to BB.9 show 

the results with WRF and univariate Kalman Filter for ten days from 1st to 10th each 

month. FFigure C.1 to CC.9 show the results with WRF and multivariate Kalman Filter 

for ten days from 1st to 10th each month. The period is from October 2013 to June 2014. 
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Fig. A.1 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting 0,iM (61 
observation-point average, from Oct 1st to 10th, 2013)  

(a1) 0,iM  and Spread 

(b1) 0,iM  and 50% prediction interval 

(c1) 0,iM  and 80% prediction interval 

(d1) 0,iM  and 90% prediction interval 

(e1) 0,iM  and 95% prediction interval 
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Fig. A.2 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting 0,iM (61 
observation-point average, from Nov 1st to 10th, 2013)  

(a2) 0,iM  and Spread 

(b2) 0,iM  and 50% prediction interval 

(c2) 0,iM  and 80% prediction interval 

(d2) 0,iM  and 90% prediction interval 

(e2) 0,iM  and 95% prediction interval 
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Fig. A.3 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting 0,iM (61 
observation-point average, from Dec 1st to 10th, 2013)  

(a3) 0,iM  and Spread 

(b3) 0,iM  and 50% prediction interval 

(c3) 0,iM  and 80% prediction interval 

(d3) 0,iM  and 90% prediction interval 

(e3) 0,iM  and 95% prediction interval 
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Fig. A.4 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting 0,iM (61 
observation-point average, from Jan 1st to 10th, 2014)  

(a4) 0,iM  and Spread 

(b4) 0,iM  and 50% prediction interval 

(c4) 0,iM  and 80% prediction interval 

(d4) 0,iM  and 90% prediction interval 

(e4) 0,iM  and 95% prediction interval 
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Fig. A.5 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting 0,iM (61 
observation-point average, from Feb 1st to 10th, 2014)  

(a5) 0,iM  and Spread 

(b5) 0,iM  and 50% prediction interval 

(c5) 0,iM  and 80% prediction interval 

(d5) 0,iM  and 90% prediction interval 

(e5) 0,iM  and 95% prediction interval 
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Fig. A.6 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting 0,iM (61 
observation-point average, from Mar 1st to 10th, 2014)  

(a6) 0,iM  and Spread 

(b6) 0,iM  and 50% prediction interval 

(c6) 0,iM  and 80% prediction interval 

(d6) 0,iM  and 90% prediction interval 

(e6) 0,iM  and 95% prediction interval 
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Fig. A.7 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting 0,iM (61 
observation-point average, from Apr 1st to 10th, 2014)  

(a7) 0,iM  and Spread 

(b7) 0,iM  and 50% prediction interval 

(c7) 0,iM  and 80% prediction interval 

(d7) 0,iM  and 90% prediction interval 

(e7) 0,iM  and 95% prediction interval 
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Fig. A.8 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting 0,iM (61 
observation-point average, from May 1st to 10th, 2014)  

(a8) 0,iM  and Spread 

(b8) 0,iM  and 50% prediction interval 

(c8) 0,iM  and 80% prediction interval 

(d8) 0,iM  and 90% prediction interval 

(e8) 0,iM  and 95% prediction interval 
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Fig. A.9 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting 0,iM (61 
observation-point average, from Jun 1st to 10th, 2014)  

(a9) 0,iM  and Spread 

(b9) 0,iM  and 50% prediction interval 

(c9) 0,iM  and 80% prediction interval 

(d9) 0,iM  and 90% prediction interval 

(e9) 0,iM  and 95% prediction interval 
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Fig. B.1 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting KFMi 0,  (61 
observation-point average, from Oct 1st to 10th, 2013)  

(a1’) KFMi 0,  and Spread 

(b1’) KFMi 0,  and 50% prediction interval 

(c1’) KFMi 0,  and 80% prediction interval 

(d1’) KFMi 0,  and 90% prediction interval 

(e1’) KFMi 0,  and 95% prediction interval 
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Fig. B.2 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting KFMi 0,  (61 
observation-point average, from Nov 1st to 10th, 2013)  

(a2’) KFMi 0,  and Spread 

(b2’) KFMi 0,  and 50% prediction interval 

(c2’) KFMi 0,  and 80% prediction interval 

(d2’) KFMi 0,  and 90% prediction interval 

(e2’) KFMi 0,  and 95% prediction interval 
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Fig. B.3 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting KFMi 0,  (61 
observation-point average, from Dec 1st to 10th, 2013)  

(a3’) KFMi 0,  and Spread 

(b3’) KFMi 0,  and 50% prediction interval 

(c3’) KFMi 0,  and 80% prediction interval 

(d3’) KFMi 0,  and 90% prediction interval 

(e3’) KFMi 0,  and 95% prediction interval 
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Fig. B.4 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting KFMi 0,  (61 
observation-point average, from Jan 1st to 10th, 2014)  

(a4’) KFMi 0,  and Spread 

(b4’) KFMi 0,  and 50% prediction interval 

(c4’) KFMi 0,  and 80% prediction interval 

(d4’) KFMi 0,  and 90% prediction interval 

(e4’) KFMi 0,  and 95% prediction interval 
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Fig. B.5 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting KFMi 0,  (61 
observation-point average, from Feb 1st to 10th, 2014)  

(a5’) KFMi 0,  and Spread 

(b5’) KFMi 0,  and 50% prediction interval 

(c5’) KFMi 0,  and 80% prediction interval 

(d5’) KFMi 0,  and 90% prediction interval 

(e5’) KFMi 0,  and 95% prediction interval 
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Fig. B.6 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting KFMi 0,  (61 
observation-point average, from Mar 1st to 10th, 2014)  

(a6’) KFMi 0,  and Spread 

(b6’) KFMi 0,  and 50% prediction interval 

(c6’) KFMi 0,  and 80% prediction interval 

(d6’) KFMi 0,  and 90% prediction interval 

(e6’) KFMi 0,  and 95% prediction interval 
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Fig. B.7 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting KFMi 0,  (61 
observation-point average, from Apr 1st to 10th, 2014)  

(a7’) KFMi 0,  and Spread 

(b7’) KFMi 0,  and 50% prediction interval 

(c7’) KFMi 0,  and 80% prediction interval 

(d7’) KFMi 0,  and 90% prediction interval 

(e7’) KFMi 0,  and 95% prediction interval 
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Fig. B.8 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting KFMi 0,  (61 
observation-point average, from May 1st to 10th, 2014)  

(a8’) KFMi 0,  and Spread 

(b8’) KFMi 0,  and 50% prediction interval 

(c8’) KFMi 0,  and 80% prediction interval 

(d8’) KFMi 0,  and 90% prediction interval 

(e8’) KFMi 0,  and 95% prediction interval 
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Fig. B.9 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting KFMi 0,  (61 
observation-point average, from Jun 1st to 10th, 2014)  

(a9’) KFMi 0,  and Spread 

(b9’) KFMi 0,  and 50% prediction interval 

(c9’) KFMi 0,  and 80% prediction interval 

(d9’) KFMi 0,  and 90% prediction interval 

(e9’) KFMi 0,  and 95% prediction interval 
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Fig. C.1 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting mvKFMi 0,  (61 
observation-point average, from Oct 1st to 10th, 2013)  

(a1’’) mvKFMi 0,  and Spread 

(b1’’) mvKFMi 0,  and 50% prediction interval 

(c1’’) mvKFMi 0,  and 80% prediction interval 

(d1’’) mvKFMi 0,  and 90% prediction interval 

(e1’’) mvKFMi 0,  and 95% prediction interval 
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Fig. C.2 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting mvKFMi 0,  (61 
observation-point average, from Nov 1st to 10th, 2013)  

(a2’’) mvKFMi 0,  and Spread 

(b2’’) mvKFMi 0,  and 50% prediction interval 

(c2’’) mvKFMi 0,  and 80% prediction interval 

(d2’’) mvKFMi 0,  and 90% prediction interval 

(e2’’) mvKFMi 0,  and 95% prediction interval 
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Fig. C.3 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting mvKFMi 0,  (61 
observation-point average, from Dec 1st to 10th, 2013)  

(a3’’) mvKFMi 0,  and Spread 

(b3’’) mvKFMi 0,  and 50% prediction interval 

(c3’’) mvKFMi 0,  and 80% prediction interval 

(d3’’) mvKFMi 0,  and 90% prediction interval 

(e3’’) mvKFMi 0,  and 95% prediction interval 
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Fig. C.4 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting mvKFMi 0,  (61 
observation-point average, from Jan 1st to 10th, 2014)  

(a4’’) mvKFMi 0,  and Spread 

(b4’’) mvKFMi 0,  and 50% prediction interval 

(c4’’) mvKFMi 0,  and 80% prediction interval 

(d4’’) mvKFMi 0,  and 90% prediction interval 

(e4’’) mvKFMi 0,  and 95% prediction interval 
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Fig. C.5 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting mvKFMi 0,  (61 
observation-point average, from Feb 1st to 10th, 2014)  

(a5’’) mvKFMi 0,  and Spread 

(b5’’) mvKFMi 0,  and 50% prediction interval 

(c5’’) mvKFMi 0,  and 80% prediction interval 

(d5’’) mvKFMi 0,  and 90% prediction interval 

(e5’’) mvKFMi 0,  and 95% prediction interval 
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Fig. C.6 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting mvKFMi 0,  (61 
observation-point average, from Mar 1st to 10th, 2014)  

(a6’’) mvKFMi 0,  and Spread 

(b6’’) mvKFMi 0,  and 50% prediction interval 

(c6’’) mvKFMi 0,  and 80% prediction interval 

(d6’’) mvKFMi 0,  and 90% prediction interval 

(e6’’) mvKFMi 0,  and 95% prediction interval 
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Fig. C.7 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting mvKFMi 0,  (61 
observation-point average, from Apr 1st to 10th, 2014)  

(a7’’) mvKFMi 0,  and Spread 

(b7’’) mvKFMi 0,  and 50% prediction interval 

(c7’’) mvKFMi 0,  and 80% prediction interval 

(d7’’) mvKFMi 0,  and 90% prediction interval 

(e7’’) mvKFMi 0,  and 95% prediction interval 
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Fig. C.8 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting mvKFMi 0,  (61 
observation-point average, from May 1st to 10th, 2014)  

(a8’’) mvKFMi 0,  and Spread 

(b8’’) mvKFMi 0,  and 50% prediction interval 

(c8’’) mvKFMi 0,  and 80% prediction interval 

(d8’’) mvKFMi 0,  and 90% prediction interval 

(e8’’) mvKFMi 0,  and 95% prediction interval 
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Fig. C.9 Time series of observed and forecasted solar irradiance (GHI) and its 50%, 
80%, 90%, 95% prediction interval for the intra-day forecasting mvKFMi 0,  (61 
observation-point average, from Jun 1st to 10th, 2014)  

(a9’’) mvKFMi 0,  and Spread 

(b9’’) mvKFMi 0,  and 50% prediction interval 

(c9’’) mvKFMi 0,  and 80% prediction interval 

(d9’’) mvKFMi 0,  and 90% prediction interval 

(e9’’) mvKFMi 0,  and 95% prediction interval 
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