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Abstract

Numerous computations of the neutron star equation of state (EOS) have

been performed throughout the years. Recent neutron star observations

have exhibited and started to assume a critical role in finding the realistic

EOS. In this thesis, we analyze mass-radius relations derived from various

EOSs with observational data of neutron stars. Furthermore, we adjust

EOSs to be consistent with observational data of neutron stars and employ

Bayesian statistical analyses to obtain constraints on EOS. Our results

demonstrate that EOS needs to be softened at the medium density region

(2-4 times of the saturation density) and has a rapid change of stiffness

around the energy density ∼ 650 MeV/fm3.
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Chapter 1

Introduction

Neutron star is a star composed of neutrons. In spite of the fact that neutron stars

normally have a radius at the order of 10 km, they could have masses of about twice

that of the solar. The average density is more than 1014 times the density of the sun.

Due to its extraordinarily high density of approximately 1017 kg/m3 (the Earth has

a density of around 5×103 kg/m3), the surface gravity of the neutron stars is as large

as 2×1011 times the surface gravity of the earth, and the escape speed reaches c/3

(where c is the speed of light). A neutron star is formed as a result of its central

core being compressed by a supernova explosion of a giant star. The existence of

neutron stars was predicted in 1933, however, it was not discovered until 1967 that

rapidly spinning neutron stars, known as pulsars were detected. There are at present

over 2,000 neutron stars known in the disk of the Milky Way. Many discussions were

made on the structure of neutron star so far, however many mysteries are nonetheless

left. Although various equation of state (EOS) representing the structure of neutron

stars have been proposed, our knowledge of neutron star structure is still limited.

Moreover,in recent years neutron stars which have not been explained by theory were

discovered. Therefore, the theory so far need to be reconsidered.

Among neutron star research, EOS of neutron star matter is one of central issues.

Because the average densities of typical neutron stars are about two times of the

nuclear density (≈ 3.0 × 1014g/cm3), explanation of EOS of neutron stars is one

of fundamental problems in nuclear physics. The EOS determines properties such as

the neutron star cooling, maximum mass, the mass-radius relationship, the saturation

densities, etc. Establishing a reasonable neutron star matter EOS which can support

observed masses and radii of neutron stars is the focal point of researchers thinking.

Further, the recent discovery of the heavy neutron stars PSR J1614+22309 with mass

M = 1.97 ± 0.04 M� and PSR J0348+04324 with mass M = 2.01 ± 0.04 M�,

has delivered a lot of challenge in this problem. Because most of EOS are too soft
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to sustain the neutron star mass 2 M� (even 1.4 M�), the stiffer EOS seem to be

needed. In addition, the difficulty called hyperon puzzle48 in which the appearance

of new degrees of freedom softens EOS and the maximum mass of neutron stars is

reduced considerably makes neutron star research more difficult. By constructing the

EOS giving the maximum mass of neutron stars larger than 2 M�, we can find the

solution to the hyperon puzzle problem in principle. Many nuclear physicists have

been attempted to solve these difficulties such as in frameworks based on the model

with quark-meson coupling23,28,45 and the vector baryon-fmeson coupling model.51 By

stiffing the EOS in high densities, such as the hadron-quark crossover,27 the universal

repulsive three-body force effect,31,53 the maximum mass can increase up to ≈ 2 M�.

In high-density region, physical effects such as many-body forces, boson condensations

or effects of quark degrees of freedom are proposed and expected to be important.

In particular, the recent studies of neutron star radii are extremely important, be-

cause it rejects a large number of EOS. Recent observations of neutron stars have

presented evidence that range of possible neutron star radii = 9.1+1.3
−1.5 km (90%-

confidence).18 The stiff EOS can support a 2 M� neutron star but are not compatible

with the small neutron star radii. Because most of the EOSs are compatible with large

radii (≈12 km; see Fig. 5.2), it is necessary to adjust the EOS to be consistent with

small radii. For this problem, we introduce the phenomenological third order term of

baryon density to control the stiffness of EOS and extend the EOS to high densities

by assuming a parametric form. The adjustable parameters are fixed utilizing the sta-

tistical method developed by Steiner et al. to be consistent with observational data

of neutron stars. In this thesis, by comparing mass-radius (M-R) relations derived

from various EOSs with observational data, we discuss the properties of the probable

EOS. Our aim is to establish realistic constraints on the neutron star matter EOS.

This thesis consists of six chapters, including this introduction. Below is a sum-

mary of the major contents of each chapter.

In chapter 2, we start by briefly introducing some basic knowledge of neutron star

matter EOS. Then we propose our EOS model to describe neutron star structure.

The purpose of this chapter is to provide an overview of our EOS parameters.

Chapter 3 describes the Tolman-Oppenheimer-Volkov equations that are funda-

mental ingredients to calculate mass-radius of neutron star. From the Einstein equa-

tions, we formulate and derive the Tolman-Oppenheimer-Volkov equations that de-

scribe neutron star structure.

Chapter 4 is subdivided into two parts. The first provides the Bayesian analy-

sis and the second discusses observational data. While not all of the uncertainties
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involved in constraining the mass and radii of neutron stars are under control, it is

important to quantify the constraints on the EOS which are implied by the observa-

tions.

Chapter 5 concerns constraints on the EOS and saturation properties. In this

chapter, we review existing literature in saturation properties and discuss the prop-

erties of appropriate EOS obtained from this work.

Finally, chapter 6 is devoted to give the summary of this work and also to propose

some future plan.
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Chapter 2

Equation of State

A description of neutron star structure is obtained by constructing the equation of

state (EOS). In physics, an EOS is an equation relating state variables pressure and

energy density (or baryon density) which describes the state of matter. In this thesis,

we divide EOS to the three regions as illustrated in Fig. 2.1. The first region is the

crust of neutron stars. The second region is the theoretical EOS region defined by

the baryon densities from ρ0/2 to nρ0, where n is a variable and ρ0 = 0.17 fm−3 is

the saturation density. The third region is that with densities higher than n times of

the saturation density. This region is described by the EOS satisfying the causality

condition (dp/dε < 1).

2.1 Crust EOS Region

The first region is the crust of neutron stars. The mass of neutron star crustconsti-

tutes only 1% of the neutron star mass and its thickness is typically less than onetenth

of the star radius. The crust of neutron stars with densities ranging from 0.0 to 0.5

times of nuclear density extends down to about 1 kilometer below the surface. To

construct crust EOS of neutron star we need knowledge in many different research

fields such as nuclear reactions, physical kinetics, the nuclear many-body problem,

hydrodynamics, the physics of liquid crystals, superfluidity, etc. The research of neu-

tron star crust EOS is numerous and represents very different theoretical challenges.

Most of the research contributes to description of neutron star crust EOS in many

aspects. Because the EOS of the crust of a neutron star can be well-described by a

model formulated in the classical paper of Baym, Pethick, and Sutherland (BPS),7 in

this region, we use BPS EOS and its extrapolation up to the transition baryon density

up to the transition baryon density ρcrust = ρ0/2, where ρ0 = 0.17 fm−3 is the nuclear
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Figure 2.1: EOS structure. Pressure p as the function of energy density ε. In high-
density region, we use parameterized EOS which is the general piece-wise linear func-
tion. We take ρcrust = ρ0/2, 2 ≤ n ≤ 5 and 0 < ν1,...,i ≤ 1.

saturation baryon density. Table C.1 (Appendix C)15 shows the EOS of neutron star

matter at subsaturation densities is due to Baym, Pethick and Sutherland.7

2.2 Theoretical EOS Region

The second region is the theoretical EOS region defined by the baryon densities from

ρ0/2 to nρ0, where n is a variable. This region that is the main region of the present

thesis, represents very different theoretical challenges. Although a large number of dif-

ferent EOSs has been supposed, the EOS for this region is still not well-known. From

a theoretical perspective, they can generally be separated into three groups. The first

includes EOSs based on phenomenological nuclear interactions. Two-nucleon (NN)

interactions were formulated to fit NN scattering experiments at low energies. Since

two-nucleon interactions by themselves cannot completely explain the properties of

nuclear matter, three-nucleon (3N) interactions were introduced. Many-body prob-
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lems based on NN and 3N interactions are still very difficult to solve owing to strong

forces at relatively small distances, which lead to expanding higher order wave func-

tions. The second group incorporates EOSs based on effective field theory (EFT)

approaches. The development of chiral EFT has provided a framework for a system-

atic expansion for nuclear forces at low momentum, where nucleons interact by pion

exchange and short-range interactions. The advancements of EFT are that it uti-

lizes less parameters and has high predictive power. In recent years, the chiral EFT

has become more and more popular. The third group of EOSs is characterized by

their inclusion of softening components at high densities, such as hyperons13 and bo-

son condensates (kaon condensates16), or the assumption of a single first-order phase

transition between nuclear and quark matter.

In this region, we assume the energy density given by

ε = εtheo(ρ) + ε3ρ
3 for ρcrust < ρ < nρ0

p = ptheo + 2ε3ρ
3,

(2.1)

where ε and ρ are the energy density and the baryon density, respectively. The εtheo

and ptheo are determined from various EOS models and the ε3-term is introduced as

a phenomenological third order term of baryon density. The ε3-term does not mean

directly the three-body force effect. It is well known that for a given neutron star

mass, the neutron star radius depends on how stiff or soft the EOS is. A. W. Steiner

et al. estimated that the radius of a neutron star with mass 1.4 M� is between 10.4

and 12.9 km.43 Because neutron star radii are mainly decided by theoretical EOS

in the second region, the ε3-term plays a role in controling neutron star radii.46 The

εtheo is taken from many different EOS models. Among them, we choose typical EOSs

and use them as the theoretical EOS in the second region based on their saturation

property.

2.3 Parameterized EOS Region

The third region is that with densities higher than n times of the saturation density.

This is the neutron star core region. This region is described by the EOS satisfying

the causality condition (dp/dε < 1). However, the inner structure of neutron stars is

is a huge challenge to theorists due to the theoretical and observational uncertainties.

Theoretically, the inner core of neutron stars with very high density is expected to

be composed of various exotic particles, such as pions, kaons, hyperons15 and strange

quark states37.50 However, EOS of dense matter beyond the nuclear density are still
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quite uncertain in particle and nuclear physics. Because of these uncertainties, EOS

of neutron star core region is not well-known. But when calculating M-R relation

of neutron stars, we need EOS to solve the system of TOV equations. Therefore in

neutron star core region, we assume the pressure p(ε) as a parameterized piecewise

linear function of the energy density ε given by

p(ε) =

{
pi−1 + νi(ε− εi−1) for εi−1 ≤ ε ≤ εi(i = 1 ∼ (N − 1))
pN−1 + νN(ε− εN−1) for εN−1 ≤ ε,

(2.2)

with

εi = ε0 + iΔε(i = 1 ∼ (N − 1)),

pi = pi−1 + νiΔε(i = 1 ∼ (N − 1)),
(2.3)

where νi is slope parameters.

Here we use totally eight parameters n, ε3, ν1,...,4 to construct neutron star EOS.

The six linear functions (N = 6) with slopes ν1,...,6 and the Δε parameter make it

possible to vary the stiffness of EOS at high-density region. Note that we parameterize

the high-density EOS as a function of the energy density ε. We choose the Δε = 0.2

fm−4 and the transition baryon density nρ0 = (2.0-5.0) ρ0. The p0 is determined by

continuity of p(ε) at the transition density ε0 = ε(nρ0). We vary the slope parameters

over the ranges νi−1 ≤ νi < 1 (the causality condition). In numerical calculations,

we confirmed that N = 6 and Δε = 0.2 fm−4 is suitable values to ensure that EOS

at high-density region could be parameterized reasonably well and results are not

changed significantly even if additional linear functions are introduced. By extending

EOS to higher densities in this way, we hopefully achieve constraints on the EOS not

only in the secon region but also the third region.
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Chapter 3

Tolman-Oppenheimer-Volkov
Equation

3.1 Introduction

The Tolman-Oppenheimer-Volkoff (TOV) equations32,47 derived from the Einstein

equations play an important role in determining neutron star mass-radius relation.

These equations constrains the structure of neutron stars. For a given EOS, masses

and radii of neutron stars can be determined as functions of central pressure (or

central energy density) by solving the TOV equation.

Figure 3.1: Masses and radii of neutron stars can be determined by solving the TOV
equation using EOS. The EOS has a one-to-one correspondence to the mass-radius
curve.
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3.2 The Tolman-Oppenheimer-Volkoff Equation

Start with the Einstein equation,

Gμν =
8πG

c4
T μν (3.1)

here Gμν is the Einstein tensor, describing the curvature of spacetime and T μν is the

stress energy tensor, describing matter/energy sources of spacetime curvature. We

also have

T μν = −pgμν + (p+ ε)uμuν (3.2)

Where, ε is the energy density, p is the pressure, uμ is the four-velocity, and gμν is

the four-metric which we use to measure distances in spacetime (ds2 = gμνdx
μdxν).

It is well known that Schwarzschild metric gives line element ds2 as the following

formula:

ds2 = −e2φ(r)c2dt2 +

(
1− 2Gm(r)

rc2

)−1

dr2 + r2dΩ2 (3.3)

Here, m(r) is the mass inside radius r, eφ(r) is the lapse function and φ(r) will be

called the metric potential.

Assuming zero space velocity, spherical symmetry and using eq. (3.3), the stress

energy tensor of eq. (3.2), we can solve and reformulate eq. (3.1). Tolman, Op-

penheimer, and Volkoff worked this out and arrived a system of ordinary differential

equations, the so-called TOV equations:32,47

dp

dr
= −G

r2

[
ε+

p

c2

] [
m+

4πr3p

c2

] [
1− 2Gm

rc2

]−1

, (3.4)

dm

dr
= 4πr2ε (3.5)

Here G is gravitational constant. In the case of neutron star, m is mass, r is radius

of neutron star and m(r) is the mass inside radius r. By set of boundary conditions

and using EOS that provides a relationship between energy density and pressure we

can solve these equations by numerical integration.

The TOV equations presents hydrostatic equilibrium, i.e. there must be a balance

between the pressure and gravity. A stable star must be satisfied this requirement.

When we set G = c = 1, eq. (3.4) and (3.5) become

dp

dr
= − (ε+ p)

m+ 4πr3p

r(r − 2m)
, (3.6)

dm

dr
= 4πr2ε (3.7)
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This is a system of 2 ordinary differential equations with the EOS relating pressure

p and energy density ε. We can be solved by integrating from r = 0 with starting

values

ε(r = 0) = εc, p(r = 0) = pc, m(r = 0) = 0, (3.8)

where εc is central energy density and pc is central pressure. And

p(R) = 0, m(R) = M, (3.9)

where R is neutron star radius and M is neutron star total mass. Our aim is to

obtain the mass of the neutron star M(ε(0)) ≡ M(εc) as a function of the central

energy density and the radius of the neutron star R(ε(0)) ≡ R(εc) as a function of

the central energy density. This integration yields the pressure profile P (r), and

the corresponding energy density profile ε(r) for given central energy density. For

the given EOS, there is a unique relationship between the mass and central density.

Figure 3.1 shows relationship between EOS, TOV equations and M-R relation.
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Chapter 4

Application of Statistical Method
to Constraints on the EOS

Because of the lack of observations and experimental data, at present constraining

on the neutron star’s behaviour and mass-radius relation is still very difficult. Over

the past many years a large of sophisticated models have been developed and there

have been significant recent works in measuring the radii of neutron stars. Statistical

method which were used to bring out the most probable values of mass and radii of

neutron stars is one of those works. More information becomes available to allow us

to make more realistic constraints. In this thesis, we employ the Bayesian statistical

method proposed by Steiner et al.44 to build up constraints on the M–R relation and

the EOS of NS matter. Additionally, using more observational sources enables us to

put more reasonable constraints on the EOS of NS matter. Below sections will give

a brief introduction of Bayesian framework and the observational data.

4.1 Bayesian Analysis

Let’s start with Bayes theorem

P (M|D) =
P (D|M)P (M)

P (D)
. (4.1)

where P (M) is the prior probability of the model M without any information from

the data D, P (D) is the prior probability of the data D, P (D|M) is the condi-

tional probability of the data D given the model M and P (M|D) is the conditional

probability of the model M given the data D.

For the select models Mi which satisfy
∑

i P (Mi) = 1, the eq. (4.1) can be

rewritten by

P (Mi|D) =
P (D|Mi)P (Mi)∑
i P (D|Mi)P (Mi)

. (4.2)
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For our problem, the model space consists of the EOS parameters, {pi(i = 1, ..., 8)} =

{n, ε3, ν1, ν2, ν3, ν4, ν5, ν6} and the masses of neutron stars, {Ml(l = 1, ..., 23)}. Con-

structing the EOS by using these parameters, {pi}, and solving the TOV equations,

a radius {Rl} for each of the neutron star masses {Ml} is obtained. Because if we as-

sume that the model space consists of only six EOS parameters, we cannot determine

uniquely the mass and radius of neutron stars, {Ml} parameters but should be in-

cluded in the data D. Therefore, model parameter, for example, the central pressure

pc to determine uniquely the mass and radius for each neutron star needs to be added.

In this treatment, pc for each l is a function of {Ml} and the eight EOS parameters.

Therefore, {M(eight EOS parameters, pc for l = 1, ..., 23)} is equivalent to {M(six

EOS parameters, M1, ...,M23)}. On the other hand, pc depends strongly on the EOS

used and its lower and upper bounds are unclear. Therefore, pc for l = 1, ..., 23 are

unsuitable as model parameters. This is the reason why we choose to treat {Ml} as

model parameters. Substituting in the eq. (4.2), we have

P [M({pi}, {Ml})|D] = P [D|M({pi}, {Ml})]

× P [M({pi}, {Ml})]
[∫

P [D|M]P [M]dNM
]−1

,
(4.3)

where N = Np + NM = 8 + 23 = 31 is the dimension of our model space, where Np

the total number of EOS parameters and NM is the total number of neutron stars in

our data set.

Next step, P (D|M) is proportional to the product over the probability distribu-

tions Dl is assumed. The Dl is evaluated at the masses which are determined in the

model and evaluated at the radii which are determined from the model M, i.e.,

P [D|M({pi}, {Ml})] ∝
∏

l=1,...,23

Dl(M,R)|M=Ml,R=R(Ml). (4.4)

More specifically, eq. (4.3) can be rewritten by

P [M({pi}, {Ml})|D]({pi}) ∝
∫

P [D|M({pi}, {Ml})]dM1...dM23

∝
∫ ∏

l=1,...,23

Dl(M,R)|M=Ml,R=R(Ml)dMl,
(4.5)

where the prior probability P (M) is uniform under the several conditions for model

parameters: 2 < n < 5, 0 < νi ≤ νi+1 < 1, and supporting 2 M�. As the data

Dl we use the probability distributions Dl (l = 1, ..., 23) derived from neutron star

observations listed in Table 4.2. In this work, all of the probability distributions
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Dl(M,R) of neutron stars has probability inside of the ranges, Mlow < M < Mhigh

and Rlow < R < Rhigh. We choose Mlow = 0.8 M�, Mhigh =2.5 M�, Rlow = 5 km and

Rhigh = 18 km. Radii of observed neutron stars used in this work are shown in Table

4.1.

Name Radius (group 1) Radius (group 2) ΔR (km)
4U 1608-52 9.3 ± 1.019 9.80 ± 1.8 +0.50
EXO 1745-248 9.034 10.5 ± 1.6 +1.50
4U 1820-30 9.11 ± 0.420 11.1 ± 1.8 +2.00
X7 in 47 Tuc 14.5+1.8

−1.6
21 11.1+0.8

−0.7 −3.40
M13 9.7749 10.9 ± 2.3 +1.13
ω Cen 11.6649 9.40 ± 1.8 −2.26
NGC2808 9.149

U24 in NGC6397 8.9+0.9
−0.6

17 9.20 ± 1.8 +0.30
KS1731-260 9.4 ± 0.333 10.0 ± 2.2 +0.60
SAX J1748 11.7 ± 1.7
4U 1724 12.2 ± 1.4
M28 8.50 ± 1.3
M30 11.6 ± 2.1
NGC 6304 10.7 ± 3.1
X5 9.60+0.9

−1.1

Average 10.08 10.45 0.36

Table 4.1: Radii of observed neutron stars. ΔR shows the radius difference between
group 1 and group 2.

4.2 Observed Masses and Radii of Neutron Stars

The first observational data of neutron star was discovered in 1967. There are at

present over 2,000 neutron stars known in the disk of the Milky Way but only about

60 neutron star masses have been determined so far. Because of their unusual char-

acteristics, detecting neutron stars requires different technique than those used to

detect normal stars. Neutron stars have two essential attributes that researchers can

identify. The first is neutron star’s gravitational force in which neutron stars can

be detected by how their gravity affects to objects around them. The second is the

detection of pulsars which are the highly magnetized, rotating neutron star or white

dwarf. Because of fast rotation that created by the gravitational pressure, pulsars

emit electromagnetic radiation and this radiation can be observed.
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The available neutron star observations with masses and radii simultaneously

measured allow us to research neutron star EOS more comprehensively. Using the

currently available data with somewhat large uncertainties on estimated masses and

radii, we can make intial constraints on the EOS of neutron star. The observational

data used here is divided into 2 groups. The first is the 9 neutron stars which derived

form original sources. The second is the 14 neutron stars which obtained from Feryal

Özel et al. work.35 We must note that for the same observational source there are

different assumptions and techniques used to calculate neutron star massed and radii.

Therefore, there are multiple probability distributions for the same observational

source. In this work, we do not plan to discuss which technique is preeminent. We

respect and employ all of the probability distributions. That is, we have used 23

probability distributions obtained from 15 observational sources (see Table 4.1).

4.2.1 Group 1

The first group consists of the 9 neutron stars which derived from original sources.

Their information of masses and radii was obtained from astrophysical observations of

X-ray bursts and thermal emissions from quiescent low-mass X-ray binaries (LMXBs).

When neutron stars pull material away from companion stars they can become much

brighter. Using observation of X-rays at different wavelengths, combined with theo-

retical models of neutron star atmospheres, we can estimate the relationship between

the radius and mass of the neutron stars. This work has been performed by Heinke,21

by Natalie Webb and Didier Barret,49 and by Sebastien Guillot.17 All of these obser-

vations were done for neutron star binaries in globular clusters. Because of thermonu-

clear explosions on surfaces, the atmosphere of neutron stars expands. If observers

catch one of these bursts, they can calculate its surface area based on the cooling

process. After that, when this calculation is combined with independent estimate of

the distance to the neutron star, the mass and radius of this star can be estimated.

Feryal Özel and Tolga Guver have applied this technique in their papers.19,20,33,34

The papers referred above provide information about the neutron star M-R relation

and we use this information to construct probability distributions Dl.

In detail, the probability distributions for 4U 1608-52 and 4U 1820-30 are described

as the Gaussian distribution

Dl(M,R) = Al exp

(
−1

2

(M −Mc)
2

σ2
M

− 1

2

(R−Rc)
2

σ2
R

)
, (4.6)

with the values given in Table 4.2. For EXO 1745-248, we use
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Name Mc σM Rc σR

4U 1608-52 1.74 0.14 9.3 1.0
4U 1820-30 1.58 0.06 9.1 0.4

Table 4.2: Parameters in the probability distributions of 4U 1608-52 and 4U 1820-30.

D2(M,R) = A2

[
a1 exp

(
−1

2

(M −Mc1)
2

σ2
M1

− 1

2

(R−Rc1)
2

σ2
R1

)

+ a2 exp

(
−1

2

(M −Mc2)
2

σ2
M1

− 1

2

(R−Rc2)
2

σ2
R2

)]
,

(4.7)

where the values of parameters are given in Table 4.3.

Name a1 a2 Mc1 Mc2 σM1 σM2 Rc1 Rc2 σR1 σR2

EXO 1745-248 0.8 0.2 1.7 1.4 9 11 0.15 0.15 0.5 0.5

Table 4.3: Parameters in the probability distributions of EXO 1745-248.

Values of Al in eqs. (4.6) and (4.7) are determined to normalize probability

densities Dl. For six other neutron stars, based on contour figures given in original

papers,21,33 we estimated probability distributions showed in Figs. 4.1, 4.2 and 4.3.

Our probability distributions are similar to these given by A. W. Steiner et al.44 but

not the same.

4.2.2 Group 2

The second group is the 14 neutron stars which obtained from Feryal Özel et al.

work.35 A number of methods have been developed that may provide new information

on neutron star masses, radii, EOS. Because of small size, it is very difficult to observe

neutron stars directly and measure their radius. In the past few years, using the statis-

tical methods with modern X-ray instruments, several mass-radius measurements of

neutron stars were estimated by Feryal Özel et al. The probability distributions were

derived from the observation data with 2-sigma uncertainties by analysing neutron

star thermonuclear bursts and quiescence. They are shown in the Fig. 4.4–4.7 be-

low. The databases can be found on http : //xtreme.as.arizona.edu/NeutronStars/,

home page of the Xtreme Astrophysics Group at the University of Arizona. In pre-

vious paper,46 probability distributions of only group 1 were used. Because the more

observation data used, the stronger constraints will be made, in this work, 14 new

probability distributions of NSs35 are added.
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Figure 4.1: Probability distributions Dl described as Gaussian distributions for 4U
1608-52,19 4U 1820-3034 and EXO 1745-248.20 All distributions are normalized.
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Figure 4.2: Probability distributions Dl for X7 in 47 Tuc,21 M13, ω Cen.49 All
distributions are normalized.
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Figure 4.3: Probability distributions Dl for NGC2808,49 U24 in NGC6397,17 KS1731-
260.33 All distributions are normalized.
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Figure 4.4: Probability distributions Dl for 4U 1724, SAX J1748, M28. All distribu-
tions are normalized.
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Figure 4.5: Probability distributions Dl for M30, NGC6304, Tuc X5. All distributions
are normalized.
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Figure 4.6: Probability distributions Dl for 4U 1608-52, EXO 1745-278, 4U 1820-30,
X7 in 47 Tuc. All distributions are normalized.
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Chapter 5

Results and Discussions

We have employed the Bayesian statistical method proposed by Steiner et al.44 to

make constraints on the M-R relation and the EOS of neutron star matter. Moreover,

utilizing more observational sources allows us to place more realistic constraints on

the EOS of neutron star matter. By comparing the M-R relation derived by solving

the Tolman-Oppenheimer-Volkoff32,47 equation and the observed data, we discuss the

properties of probable EOS.

5.1 Saturation Properties

Saturation properties play an important role in nuclear matter research. The satura-

tion baryon density (ρs), the binding energy (B), the symmetry energy (Sv) and its

derivative (L) are defined by

−B = E(ρ0, 1/2), Sv =
1

8

∂2E

∂x2

∣∣∣∣
ρ=ρ0,x=1/2

, L =
3ρ0
8

∂3E

∂ρ∂x2

∣∣∣∣
ρ=ρ0,x=1/2

(5.1)

with

E(ρ, x) =
ε(ρ, x)

ρ
−mn + (mn −mp)x, (5.2)

where x = ρp/ρ denotes the proton fraction (x = 1/2 corresponds to symmetric nu-

clear matter) and mp (mn) is the proton (neutron) rest mass. To determine adequate

theoretical EOS of neutron star matter, we must calculate the symmetry energy Sv

and the L parameter (the slope of the neutron matter energy density) from the neu-

tron star matter EOS. We assume that neutron star matter at normal density consists

of neutrons with some electron and proton mixing and obtain25

εβ(ns) = ns

(
E(ns, x = 1/2) + Sv(1− 2x)2 +mB

)
+ εe(nsx), (5.3)
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pβ(ns) =
L

3
ns

(
1− x(4− 12

Sv

L
)

)
− εe(nsx). (5.4)

From these equations and the β-stability condition,

∂εβ(n = ns)

∂x
= 0 (5.5)

and

E(ns, x = 1/2) = −15.7 MeV/A for ns = 0.17 fm−3, (5.6)

we determine Sv, L, and x (the proton fraction) for given εβ(ns) and pβ(ns). In Fig.

5.1, we show Sv and L for various neutron star EOS. We find four groups, A–D, as

listed in Table 5.1. Among them, we select typical EOSs from each of the groups and

use them as the theoretical EOSs in the second region.
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Figure 5.1: Symmetry energy Sv and L parameter at saturation density. Based on Sv

and L values we divide EOSs into four groups (A–D). EOS names are listed in Table
5.2.

The EOSs employed in the theoretical EOS region are summarized in Table 5.2.

From group A, we select the EOS labeled as AP1 (the AV18 potential).2 From group
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Group EOS name
A AP1-4,2 ALF2,3 WFF352

B ALF1,3ALF3-4,3 BBB2,6 BSK19-21,39 FPS,12ENG,11 MPA1,29 WFF1-2,52 SLY10

C H1-7,24 MS1,30 MS1b,30 PAL6,40 PCL241

D BGN1H1,5 BPAL12,54 GS2,42 MS230

Table 5.1: Summation of the EOS model’s property.

B, we take the nuclear-quark matter EOS ALF1,3 the many-body theory EOS BBB26

with the AV14 potential plus three-body forces, and the EOS BSK19,39 which is based

on nuclear energy density functional theory with generalized Skyrme effective forces.

The Dirac–Brueckner–Hartree–Fock ENG,11 MPA1,29 and the variational method

FPS12 are also considered. Finally, we discuss the EOS SLY,10 which is based on the

Skyrme-type effective NN interaction, and The EOS WFF1 obtained in variational

calculations of Wiringa et al.52 The EOS labeled as PAL6 from the phenomenolog-

ical nonrelativistic potential model of Prakash et al.40 is taken from group C. The

incompressibility of PAL6 has K = 120 MeV. From group D, we choose two types

of EOS. The first is the EOS BGN1H1,5 which is obtained in the framework of the

Brueckner–Bethe–Goldstone (BBG) theory by assuming a realistic NN potential and

a model of the 3N interaction. The second is the EOS BPAL12,54 which is a soft

EOS characterized by a nuclear incompressibility K = 120 MeV; it is a nonrelativis-

tic model for the EOS that has been developed to describe hot asymmetric nuclear

matter.

Name Reference Approach Composition
ALF1 3 Nuclear+quark matter quark (u, d, s)
AP1 2 Variational method np
BBB2 6 BBG theory npeμ

BGN1H1 5 BBG theory npeΛΞμ
BPAL12 54 BBG theory npeμ
BSK19 39 Nuclear energy-density functional theory npeμ
ENG 11 Dirac–Brueckner–Hartree–Fock np
FPS 12 Variational method npeμ
MPA1 29 Dirac–Brueckner–Hartree–Fock np
PAL6 40 Schematic potential np
SLY 10 Skyrme-type effective interaction npeμ
WFF1 52 Variational method np

Table 5.2: Equations of State
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5.2 EOS Constraints

In particular, the recent discovery of the two neutron stars PSR J1614+22309 and

PSR J0348+04324 is extremely important, because their properties allow us to reject

a large number of EOSs. Furthermore, the radii of several neutron stars have been

measured from modeling X-ray bursts and quiescent low-mass X-ray binaries. Re-

cent observations of neutron stars have presented evidence that the range of possible

neutron star radii is 9.1+1.3
−1.5 km (at 90% confidence).18 Because most of the EOSs are

compatible with large radii ≈ 12 km, it makes the problem more challenging than

ever. For that reason revisiting the EOS to fit observations becomes an important

issue.

0 5 10 15 20

Radius (km)

0.0

0.5

1.0

1.5

2.0

2.5

M
as
s
(M

�)

PSR J0348+0432

ALF1

AP1

BBB2

BGN1H1

BPAL12

BSK19

ENG

FPS

MPA1

PAL6

SLY

WFF1

Figure 5.2: M–R relations obtained from the original EOSs. The yellow area shows
the 90% confidence constraints on the neutron star radii R = 9.1+1.3

−1.5 that were pro-
posed by Guillot et al.18 The mass measurement of PSR J0384+0432 is shown as the
horizontal band.4 Most EOSs are compatible with large radii of ≈12 km.

In principle, neutron star with 2.0M� can be obtained by using stiffer EOS at

high density but it makes the neutron star radiii too large. Therefore, to make
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more realistic constraint to EOS not only mass but also radius should be considered.

These difficulties have posed many challenges for theoretical physics. To deal with

this problem, we put out below scenario (see Fig. 5.3). Step 1: the phenomenological

third-order term ε3 that plays a role in controlling neutron star radii is introduced.

Step 2: six linear functions with slopes ν1,...,6 which make it possible to vary the

stiffness of EOS at high-density regions . We adjust EOS parameters by the following

three conditions:

1. EOS supports neutron star with masses larger than 2.0M�.

2. EOS slopes satisfy 0 < ν1,...,6 ≤ 1 (the causality condition).

3. EOS consists with observational data.

ν1,...,6 and ε3 are optimized independently for each theoritical EOSs. In practice, the

n parameter is varied over the ranges 2 ≤ n ≤ 5 but after calculating we confirm that

n = 2 is the best value.

2 solar 
mass

Softening 
the EOS in 
the whole 
density 
range

stiffening the EOS at high densities

M
as

s

Radius

Figure 5.3: Scenario to adjust the EOS to fit the observations. Softening the EOS
in the whole density range can produce neutron star with small radii. Stiffening the
EOS at high density region is needed to support 2.0M� neutron star.

Table 5.3 summarize results of the conditional probability −logP [M|D] and the

EOS parameters. The smaller −logP [M|D] corresponds to the better fit, that is,

the EOS used is more probable. We can see that for soft EOS models (ALF1, AP1,
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WFF1, SLY...) the best fits are obtained with small ε3 ≈ 0 and large slopes ν5, ν6.

This means that we do not need adjust EOS in theoretical region and just stiffen EOS

in high-density region. Contrariwise, for stiff EOS models (BGN1H1, ENG, MPA1...)

the the best fits are obtained with rather large ε3 and large slopes ν5, ν6. It shows that

the EOSs at theoretical region need be softened. For both the two trends, we obtain

the EOS that is soft in the theoretical region and stiff in the high-density region.

The most probable EOS are shown by silver-shaded region in Fig. 5.4. We find

that EOS need to be softened at medium density region (2-4 ρ0) and have a rapid

change of stiffness around ∼ 650 MeV/fm3 energy density (∼3.5 ρ0). Because the

theoretical EOS was not be limited to a specific EOS, conclusions that we obtained

here are consistent with our previous results46 but more general. Our results suggest

that some physical mechanisms which lead to a stiffening of EOS would occur around

∼ 3.5ρ0 baryon density. At high densities, in general many phase transitions have

been considered such as superfluid transitions,36 kaon or pion condensates,1,38 hyperon

matter,8 etc. Eventually, phase transitions from nuclear matter to quark matter14,22

are expected at very high densities. In general, because of the appearance of new

degrees of freedom, EOS gets soft after the phase transition. The behavior of our

EOS is in contrast to the general phase transitions but is similar to assuming the

hadron-quark crossover27 which leads to a stiffening of EOS. But, we note that our

results are obtained based on Bayesian analysis and do not depend on specific physical

assumptions about neutron star matter.

For each model of the theoretical EOS, corresponding to the best cases of -

logP [M|D], we draw the M-R relation to compare with probability distributions of

observed neutron stars in Figs. 5.5. Neutron star observations used here have small

radii ∼ 10 km. Our results support that neutron stars with mass 2.0 M� have small

radius ∼10 km. These M-R curves is consistent with our above remark on the soft

theoretical EOS. The EOS which is stiff in both the theoretical and the parameterized

EOS regions may not be denied. But this type of EOS cannot give high probability

because of large radii and is disfavored by the present 23 observational data used

in this work. Indeed, we must emphasize that because of the systematic errors in

neutron star radius measurements, this behavior of our EOS must be confirmed in

future.
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5.3 Structure of Neutron Stars

We now enter the study of neutron star structure. The observations of neutron star

masses and radii have played an important role in imposing constraints on the EOS

of neutron star matter. In section 5.2, we have determined that the EOS needs to be

softened in vicinity of the saturation density and to have a rapid change of stiffness

around an energy density of 650 MeV/fm3. In this section, for a given mass, based

on this EOS, we study the internal structure of neutron star. Corresponding to three

EOS regions, we split the neutron star structure into three main layers: the crust, the

outer core and the inner core (see Fig. 5.6). Our aim in this section is to determine

the thickness of each layer.

Crust (crust EOS region): 
nuclei, electrons

Outer core (the theoretical EOS region): 
neutrons, protons, hyperons 

Inner core (the parameterized EOS region):
quarks?

Neutron Star

Figure 5.6: Neutron star structure.

We start by analyzing the density profile. In Fig. 5.7, we show calculated profiles

of neutron stars with masses M =1.0, 1.4 and 2.0 M�. A very interesting point is

the radius is independent of mass. For heavy neutron star with mass 2.0 M�, we

find the small radius (R < 10 km) implies very high energy densities in the central

region, strongly depending on the EOS in the second region (ρ0 < ρ < nρ0). In the

case of canonical neutron stars (M = 1.0 and 1.4 M�), the central energy density

only weakly depends on the EOS in the second region. We have to note that the

neutron star radius is primarily determined by the behavior of the theoretical EOS.

If we consider rapid change of stiffness is the point marks the beginning of new layer
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in the neutron star structure, we can determine the depth of each layer. For 2.0 M�
neutron stars, the depth of the crust and the outer core is about 1.5 km. For 1.4

and 1.0 M� neutron stars the depth are 2.5 and 3.5 km respectively. It demonstrates

that even though neutron stars have nearly the same radii, there are differences in

the depth of each layer depending on mass.

0 2 4 6 8 10

Radius (km)

0

200

400

600

800

1000

1200

1400

1600

1800

E
n
er
gy

d
en
si
ty

(M
eV

/f
m

3
)

ALF1-2M�
AP1-2M�
BB2-2M�
BGN1H1-2M�
BPAL12-2M�
ENG-2M�

ALF1-1.4M�
AP1-1.4M�
BB2-1.4M�
BGN1H1-1.4M�
BPAL12-1.4M�
ENG-1.4M�

ALF1-1.0M�
AP1-1.0M�
BBB2-1.0M�
BGN1H1-1.0M�
BPAL12-1.0M�
ENG-1.0M�

Figure 5.7: Density profiles of 1.0, 1.4, and 2.0 M� neutron stars.

The crust that contains atomic nuclei and free electrons have a thickness of few

hundred meters. The outer core layer is composed by baryons. At present, the core

region of neutron star is not well known both theoretically and observationally. The

composition of the core of the star is particularly uncertain: it may be liquid or

solid; it may consist of various hadrons (pions, quarks, hyperons...); and there may

be another phase change. Fig. 5.8 illustrates the depth profiles of 1.0, 1.4, and 2.0

M� neutron stars.

Figs. 5.9 and 5.10 show dependence of the mass on central energy density (εc) and

central pressure (pc) for some EOSs. On the lower-mass side, the M−pc and M−εc

curves depend rather weakly on the assumed EOS. On the higher-mass side, these

curves strongly depends on the assumed EOS. At present, the central energy density

and central pressure of a neutron star are unknown but in general, they depend on
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2.0 1.4 1
Mass Crust

(volume percent)
Outer core

(volume percent)
Inner core

(volume percent)
2.0 200 m (0.63%) 1.5 km (40.03%) 8.0 km (59.34 %)
1.4 200 m (0.63%) 2.5 km (59.62%) 7.0 km (39.75%)
1.0 200 m (0.63%) 3.5 km (74.34%) 6.0 km (25.03 %)

Neutron Stars

Figure 5.8: Neutron star cross section.

mass, the EOS and the composition of the neutron star. However, as a result of this

work, for 2.0 M� neutron star, we prospect that the εc (pc) values lie in the region

of 1200–1600 (700–1100) MeV/fm3. A larger mass requires a higher central pressure

and hence also higher central energy density to support it. By increasing the central

energy and the central pressure, the mass that EOS can support increases but larger

pressure means the particles become relativistic. The fact that the mass is getting

heavier also means that gravitational attraction becomes stronger and makes the star

radius smaller. This means that increasing mass of neutron stars does not make them

bigger and makes them denser.
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Figure 5.9: Mass versus central energy density for EOS models.
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Chapter 6

Summary

The equation of state (EOS) of neutron star matter is a critical subject in nuclear

physics research. As of late, neutron star observations have exhibited and started to

put essential constraints on the EOS of neutron star matter. We have investigated

the EOS of neutron matter using constraints from recent neutron star observations.

It is found that the EOS that have the best fit to observations is the EOS softened by

the additional third order term of baryon density in the moderate density region (2–

4ρ0) and the stiff EOS in the high-density region (>4ρ0). We predict a rapid change

of stiffness around 3.5–4.0 times of the saturation density. In addition, for a given

mass, based on this EOS, we have studied the internal structure of neutron star. We

have demonstrated that the radius depends negligibly on the increasing mass and

increasing mass makes the inner stiff core of neutron star bigger. By analyzing 12

EOS models and using a total of 23 probability distributions with improved analyses

allow us to place more realistic constraints. More neutron star observations with mass

and radius constraints would enable us to improve on results and make calculation

more effective.

The enhanced research of the neutron star mass and radius and the laboratory

constraints of the properties of dense matter have already had a generous effect on

our study of the nuclear matter properties but there are still many challenges in the

future. For example, reducing the uncertainties in the neutron star radii and masses,

constructing the hot dense matter EOS, demonstrating how to perform the inverse

problem: take the M-R relationship, and produce an EOS,26 etc require further study.

But with the appearance of the next generation of X-ray instruments and of advanced

gravitational wave detectors, it is optimistic that tighter constraints on neutron star

radii will soon be made. Such constraints joined with laboratory measurements will

give us essential clues to construct high-density matter EOS.
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Appendix A

Physical Constants

Speed of Light c = 2.997 924 58× 108 ms−1

Gravitational Constant G = 6.673 848× 10−11 m3 kg−1s−2

Planck Constant h = 6.626 069× 10−34 J s
Reduced Planck Constant � = h/2π = 1.054 571× 10−34 J s
Electron Rest Mass me = 9.109 382× 10−31 Kg
Elementary Charge e = 1.602 177× 10−19 C
Proton Rest Mass mp = 1.672 623× 10−27 Kg
Neutron Rest Mass mn = 1.674 928× 10−27 Kg
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Appendix B

Units and Symbols

B.1 Units

MeV = 1.6022×10−6 erg.
MeV = 1.7827×10−27 g = 1.1604×1010 K.
�c = 197.33 MeV fm.
e2 = 1.4400 MeV fm = 1.3805×10−34 cm2.
fm = 10−13 cm.
MeV/fm3 = 1.6022×1033 dyne/cm2.
1/fm4 = 197.33 MeV/fm3.
1/fm4 = 3.5178×1014 g/cm3 = 3.1616×1035 dyne/cm2.
M� = 1.989×1033 g = 1.116×1060 MeV.

B.2 Symbols

ρ baryon density fm−3

ρ0 saturation density fm−3

p pressure fm−4

ε energy density fm−4

r radius km
M mass solar mass
M� solar mass
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Appendix C

Baym-Pethick-Sutherland EOS

ρ ε p ρ ε p
(fm−3) (g/cm3) (dyne/cm2) (fm−3) (g/cm3) (dyne/cm2)

4.7300E-15 7.8610E+00 1.0100E+09 2.5060E-05 4.1720E+10 4.6280E+28
4.7600E-15 7.9000E+00 1.0100E+10 3.1550E-05 5.2540E+10 5.9490E+28
4.9100E-15 8.1500E+00 1.0100E+11 3.9720E-05 6.6170E+10 8.0890E+28
6.9900E-15 1.1600E+01 1.2100E+12 5.0000E-05 8.3330E+10 1.1000E+29
9.9000E-15 1.6400E+01 1.4000E+13 6.2940E-05 1.0490E+11 1.4950E+29
2.7200E-14 4.5100E+01 1.7000E+14 7.9240E-05 1.3220E+11 2.0330E+29
1.2700E-13 2.1200E+02 5.8200E+15 9.9760E-05 1.6640E+11 2.5970E+29
6.9300E-13 1.1500E+03 1.9000E+17 1.1050E-04 1.8440E+11 2.8920E+29
6.2950E-12 1.0440E+04 9.7440E+18 1.2560E-04 2.0960E+11 3.2900E+29
1.5810E-11 2.6220E+04 4.9680E+19 1.5810E-04 2.6400E+11 4.4730E+29
3.9720E-11 6.5870E+04 2.4310E+20 1.9900E-04 3.3250E+11 5.8160E+29
9.9760E-11 1.6540E+05 1.1510E+21 2.5060E-04 4.1880E+11 7.5380E+29
2.5060E-10 4.1560E+05 5.2660E+21 2.5720E-04 4.2990E+11 7.8050E+29
6.2940E-10 1.0440E+06 2.3180E+22 2.6700E-04 4.4600E+11 7.8900E+29
1.5810E-09 2.6220E+06 9.7550E+22 3.1260E-04 5.2280E+11 8.3520E+29
3.9720E-09 6.5880E+06 3.9110E+23 3.9510E-04 6.6100E+11 9.0980E+29
5.0000E-09 8.2940E+06 5.2590E+23 4.7590E-04 7.9640E+11 9.8310E+29
9.9760E-09 1.6550E+07 1.4350E+24 5.8120E-04 9.7280E+11 1.0830E+30
1.9900E-08 3.3020E+07 3.8330E+24 7.1430E-04 1.1960E+12 1.2180E+30
3.9720E-08 6.5900E+07 1.0060E+25 8.7860E-04 1.4710E+12 1.3000E+30
7.9240E-08 1.3150E+08 2.6040E+25 1.0770E-03 1.8050E+12 1.5000E+30
1.5810E-07 2.6240E+08 6.6760E+25 1.3140E-03 2.2020E+12 1.7000E+30
1.9900E-07 3.3040E+08 8.7380E+25 1.7480E-03 2.9300E+12 1.9000E+30
3.1550E-07 5.2370E+08 1.6290E+26 2.2870E-03 3.8330E+12 2.2000E+30
5.0000E-07 8.3010E+08 3.0290E+26 2.9420E-03 4.9330E+12 2.7000E+30
6.2940E-07 1.0450E+09 4.1290E+26 3.7260E-03 6.2480E+12 3.2000E+30
7.9240E-07 1.3160E+09 5.0360E+26 4.6500E-03 7.8010E+12 3.8000E+30
9.9760E-07 1.6570E+09 6.8600E+26 5.7280E-03 9.6120E+12 4.5000E+30

table continued on next page
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continued from previous page

ρ ε p ρ ε p
(fm−3) (g/cm3) (dyne/cm2) (fm−3) (g/cm3) (dyne/cm2)

1.5810E-06 2.6260E+09 1.2720E+27 7.4240E-03 1.2460E+13 5.4000E+30
2.5060E-06 4.1640E+09 2.3560E+27 8.9070E-03 1.4960E+13 6.4000E+30
3.9720E-06 6.6020E+09 4.3620E+27
5.0000E-06 8.3130E+09 5.6620E+27
6.2940E-06 1.0460E+10 7.7020E+27
7.9240E-06 1.3180E+10 1.0480E+28
9.9760E-06 1.6590E+10 1.4250E+28
1.2560E-05 2.0900E+10 1.9380E+28
1.5810E-05 2.6310E+10 2.5030E+28
1.9900E-05 3.3130E+10 3.4040E+28

Table C.1: Equation of state of BPS.15
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