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Abstract

Codes for flash memory applications are investigated. In this dissertation, we consider three
codes for flash memories: index-less indexed flash code with inversion cells (I-ILIFC), parallel
random I/O (P-RIO) code, and permutation code.

Index-less indexed flash code (ILIFC) is a coding scheme to prolong the lifetime of flash
memory. I-ILIFC improves the average performance of index-less indexed flash code (ILIFC).
The ILIFC is originally designed in terms of the worst-case performance. We analyze the
worst-case performance of I-ILIFC. We derive an upper bound on the worst-case number of
writes by ILIFC and lower bounds on the number of writes by I-ILIFC. The results show that
the worst-case performance of I-ILIFC is better than that of ILIFC when the code length is
sufficiently large.

Random I/O (RIO) code is a coding scheme that minimizes the number of read thresholds
required to read one of pages in multilevel flash memory. P-RIO code is RIO code in which all
pages are encoded in parallel. We construct P-RIO codes using coset coding with Hamming
codes. When (7, 4) Hamming code and (15, 11) Hamming code are used, we provide P-RIO
codes with 4 pages and 8 pages, respectively. Our P-RIO codes have parameters for which
RIO codes do not exist.

Rank modulation is a coding scheme to correct errors in flash memory. In rank mod-
ulation, information is stored in the permutation induced by the charge levels of the cells.
Permutation codes that can correct errors are investigated for applications in the rank modu-
lation. The generalized Cayley distance is one of distances that are considered in permutation
codes. We derive a tighter upper bound on the generalized Cayley distance using the block
permutation distance that is simple to compute. We employ our upper bound to derive an
upper bound on the optimal code rate with the generalized Cayley distance.
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Chapter 1

Introduction

Flash memory is the widely used type of non-volatile memory at present, and flash devices are
employed in universal serial bus (USB) memory technology, solid state drives (SSD), mobile
applications, and so on. A flash memory consists of an array of cells in which information bits
are stored in the form of an amount of charge. In conventional flash memory, one cell stores a
single bit, and the information is read using a single read threshold. Recently, multilevel flash
memory technology has been introduced. In multilevel flash memory, each cell can represent
one of more than two levels, and these levels are distinguished by multiple read thresholds.

One of the most notable characteristics of flash memory is the asymmetry of charging
and discharging operations. That is, the charge level of the cell can be increased in a cell-
by-cell manner but cannot be decreased in this manner. Instead, discharging is achieved by
way of a special operation known as block erasure, which discharges the cells in a long block
simultaneously. The disadvantage of the block erasure operation is that it partially destroys
cells in the flash memory and thus increases the error probability. This necessitates the use of
an error correcting code. However, the cells invariably become highly unreliable after block
erasure is executed a certain number of times.

1.1 Flash Codes

Designing coding schemes that are useful for prolonging the lifetime of flash memory has been
important. Such coding schemes, known as flash codes, were given in [1, 2]. The objective
of flash codes is to write the information into flash memory without discharging the cells,
that is, block erasure. In flash codes, a write is supposed to change one of the information
bits only by transitions from a lower level to a higher level in the cells. The performance of
flash codes is characterized in terms of a write deficiency, defined as the difference between
the total number of available level transitions and the number of such writes that can be
accommodated.

Rank modulation codes are very related to flash codes but the objective of rank modu-
lation codes, which is to improve the reliability of flash memories, is slightly different from
that of the flash codes [3]. In other works, efficient data movement in flash memories was
studied [4] and algorithms to achieve high write speed were presented [5].

Index-less indexed flash code (ILIFC) is one of flash codes that approaches the best known
lower bound on the write deficiency [6]. In the ILIFC, both the value of one of the information
bits and the index of the bit are stored in one slice. Several modified ILIFC schemes capable
of improving the performance of the ILIFC have since been proposed [7, 8, 9].

ILIFC with inversion cells (I-ILIFC), which is one of such modified ILIFC schemes, was
proposed to increase the number of writes between two block erasures [7]. Here, a write means
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that the current information bits are changed to new information bits. That is, multiple bits
among the information bits can be changed by a single write. This write is more practical
than the conventional write in flash codes. Computer simulation was used to show that the
I-ILIFC improves the average performance of the ILIFC in many cases [7, 10].

In this dissertation, we focus on the analysis of the worst-case performance of the I-ILIFC.

1.2 Random I/O Codes

In multilevel flash memory, in general, multiple read thresholds are required to read a single
logical page. For example, we consider the triple-level cell (TLC) that is currently being
utilized in multilevel flash memory. A TLC can represent one of eight levels from 0 to 7, that
is, it stores three bits. Each level corresponds to a vertical three-bit sequence, as listed in Table
1.1, and each bit represents one logical page. Then, a group of such cells stores three logical

Table 1.1: Triple-level cell (TLC)

Level 0 1 2 3 4 5 6 7

Page 1 0 0 0 0 1 1 1 1
Page 2 0 0 1 1 1 1 0 0
Page 3 0 1 1 0 0 1 1 0

pages, referred to as pages 1–3. Each logical page is supposed to be retrieved independently.
To read page 1, the read threshold between levels 3 and 4 is required. To read page 2, the read
threshold between levels 1 and 2 is required. Moreover, the threshold between levels 5 and 6
is also required. Similarly, to read page 3, four thresholds are required. Hence, on average,
the number of read thresholds that are required to read one page is (1+2+4)/3 = 2.33. The
use of a large number of read thresholds degrades the read performance of the flash memory
device.

In order to solve this problem, random I/O (RIO) code was proposed by Sharon and
Alrod [11]. This is a coding scheme in which one logical page can be read using a single read
threshold in multilevel flash memory. Further, Sharon and Alrod showed that the construction
of RIO codes is equivalent to the construction of well-studied write-once memory (WOM)
codes [11]. WOM code, introduced by Rivest and Shamir, is a coding scheme that permits
writing data bits into binary cells several times without decreasing the levels [12].

In WOM codes, the data are stored sequentially and are not all known in advance. There-
fore, each encoding depends on the current data and the previous data. However, in RIO
codes, the data of all logical pages may be known in advance. Yaakobi and Motwani pro-
posed a family of RIO codes called parallel RIO (P-RIO) code [13]. In P-RIO codes, the
encoding of each page is performed in parallel and depends on the data of all logical pages.
These researchers demonstrated P-RIO codes with parameters for which WOM codes or RIO
codes do not exist. In addition, they proposed an algorithm to construct a P-RIO code via
a computer search [13]. However, the complexity of this algorithm increases exponentially
with the code length or the number of pages.

In this dissertation, we focus on the construction of P-RIO codes using coset coding
technique [14] with Hamming codes.
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1.3 Permutation Codes

A coding scheme for flash memory using the rank modulation was proposed [3]. In this
scheme, a block of cells stores the information in the permutation induced by the charge
levels of the cells. For example, we consider a block consisting of 6 cells. The relative levels
of the cells in the blocks are shown in Figure 1.1. The cells in the block are supposed to be

 1      2       3      4       5       6       index

1      5       3      4       2       6       permutation

Figure 1.1: Example of the relative levels of cells in a block

indexed as shown in Figure 1.1. In this example, the permutation induced by the levels of
the cells is obtained as follows. The charge level of cell 1 is the highest in the block. Thus,
the first component of the permutation is 1. The cell of which the level is the second highest
is cell 5. Hence, the second component of the permutation is 5. Similarly, the remaining
components of the permutation are obtained. As a result, the permutation is (1, 5, 3, 4, 2, 6).

In the rank modulation, uniform offsets do not cause any errors because uniform offsets
do not change the relative level of any cell as shown in Figure 1.2.

 1      2       3      4       5       6       index

1      5       3      4       2       6       permutation

offset

Figure 1.2: The effect of uniform offsets

On the other hand, since high density flash memories are used recently, we must take
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into account the inter-cell interference. The inter-cell interference is caused by unintended
capacitance among adjacent cells. Local offsets, non-uniform offsets can be caused by the
inter-cell interference. For example, by neighboring cells, the charge levels of the first, third,
and fifth cells may be decreased as shown in Figure 1.3. In this example, the charge level of
the third cell is lower than that of the second cell and the charge levels of the first and fifth
cells are lower than that of the third cell. Then, by swapping two subsequences (1, 5) and

 1      2       3      4       5       6       index

1      5       3      4       2       6       permutation

4      2       3      1       5       6

offset

Figure 1.3: The effect of non-uniform offsets

(4, 2), the permutation (1, 5, 3, 4, 2, 6) may be changed into (4, 2, 3, 1, 5, 6), which is an error.

Permutation codes have recently been studied for flash memory applications [15, 16]. In
permutation codes, various metrics, such as the Cayley distance, Kendall tau distance, and
Ulam distance, have been considered [17, 18]. The generalized Cayley distance, introduced
recently by Chee and Vu, is defined as the minimum number of generalized transpositions be-
tween two permutations [19]. Generalized transpositions include transpositions and translo-
cations, of which the numbers are captured by the Cayley, Kendall tau, and Ulam distances.
Permutation codes with the generalized Cayley distance were studied using a breakpoint
analysis by Chee and Vu [19]. However, the rate of these codes is much smaller than the
optimal rate when the code length is large. On the other hand, Yang, Schoeny, and Dolecek
introduced a new distance, called the block permutation distance, to construct order-optimal
codes with the generalized Cayley distance [20]. They derived a relation between these two
distances, and showed that the construction of codes with one of the distances can be trans-
formed into the construction with the other.

Christie showed an algorithm to compute the block-interchange distance, which is exactly
the generalized Cayley distance [21]. On the other hand, Yang, Schoeny, and Dolecek derived
two constants in an inequality that shows that the generalized Cayley and block permutation
distances are strongly equivalent on the space of permutations [20].

In this dissertation, we derive a tighter upper bound on the generalized Cayley distance,
using the block permutation distance. Furthermore, we employ our upper bound to derive a
tighter upper bound on the optimal rate for codes with the generalized Cayley distance when
the code length satisfies a condition.

The remaining part of this dissertation is organized as follows. In Chapter 2, we give a
preliminary of ILIFC and I-ILIFC. In Chapter 3, the analysis of the worst-case performance
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of I-ILIFC is described. In Chapter 4, we give a construction of P-RIO codes using coset
coding with Hamming codes. In Chapter 5, the derivation of a tighter upper bound on the
generalized Cayley distance is described. Finally, in chapter 6, we close this dissertation by
remarking a brief conclusion.
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Chapter 2

Index-less indexed flash code with
inversion cells

This chapter describes index-less indexed flash code (ILIFC) and ILIFC with inversion cells
(I-ILIFC).

2.1 Index-less indexed flash code (ILIFC)

In this dissertation, it is assumed that the level of electric charge in a cell of a NAND flash
memory is in the range Aq = {0, 1, . . . , q − 1}. A block of data bits (information bits) of
length k is encoded and stored in a block of cells of length n. An ILIFC that satisfies these
conditions is denoted by ILIFC(n, k, q).

In the ILIFC, the block of cells of length n is divided into slices consisting of k cells
and, therefore, the number of slices in the block is m = �n/k�. If n is not a multiple of
k, the remaining cells in the block are unused. Each slice represents one bit of the k data
bits. Since k slices are used to store k data bits, we require m ≥ k, that is, n ≥ k2. For
example, when n = 17 and k = 4, the block of 17 cells is divided into 4 slices and one cell
is unused as shown in Figure 2.1. In this example, q is assumed to be 3 and the level of one
cell in the range {0, 1, 2} is also shown in Figure 2.1. The state of m slices is denoted by

cell slice slice slice slice

unused cell

the level of one cell in the range {0,1,2}

0 1 2

Figure 2.1: Cells and slices in ILIFC(17, 4, 3)

(x1 | x2 | · · · | xm), where xj ∈ Ak
q for 1 ≤ j ≤ m. When n = 17, k = 4 and q = 3, an

example of the state of slices is shown in Figure 2.2. In this example, the state of 4 slices is
denoted by ((2, 2, 2, 2) | (2, 1, 0, 0) | (0, 0, 1, 0) | (0, 0, 0, 0)). For a slice x = (x1, x2, . . . , xk),
we define wt(x) =

∑k
i=1 xi and bv(x) = wt(x) mod 2. wt(x) is termed the weight of the slice

x. For example, for the second slice x = (2, 1, 0, 0) from the left in the Figure 2.2, wt(x) = 3
and bv(x) = 1. A slice x = (x1, x2, . . . , xk) is said to be full if x1 = x2 = · · · = xk = q − 1
and to be empty if x1 = x2 = · · · = xk = 0. The slice is said to be active if it is neither full
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slice slice slice slice

Figure 2.2: The state of slices in ILIFC(17, 4, 3)

nor empty. In Figure 2.2, the first slice from the left is full, the second and third slices are
active, and the fourth slice is empty.

In the ILIFC, the value of the i-th bit in the k data bits and the index i of the bit are
stored in a slice as follows (see [6] for details). In the initial state, it is assumed that all slices
are empty and all data bits are 0.

Suppose that the value of the i-th bit is changed. If none of the slices represent the i-th
bit, an empty slice is reserved for the bit and then the level of the i-th cell in the slice is
changed to 1. In the case that no empty slices exist, block erasure is incurred.

On the other hand, if there is a slice representing the i-th bit, the weight of the slice is
increased by 1. In the beginning, the level of the i-th cell in the slice is increased. If the
level of the i-th cell is q − 1, the level of the i′-th cell is increased, where i′ = (i mod k) + 1.
Similarly, if the level of the i′-th cell is also q−1, the level of the i′′-th cell is increased, where
i′′ = (i′ mod k) + 1. This procedure enables the value of the bit, which is represented by
bv(x), to be obtained for the active slice x. Additionally, the index of the bit is represented
by the position of the first updated cell in x. This updating procedure is performed until the
slice gets full.

For example, let n = 16, k = 4 and q = 3. The initial state of n/k = 4 slices is as follows.

((0, 0, 0, 0) | (0, 0, 0, 0) | (0, 0, 0, 0) | (0, 0, 0, 0)).
Then all data bits are 0, that is, the current data is (0, 0, 0, 0).

Suppose that the data (0, 0, 0, 0) are changed into (1, 0, 0, 1), that is, the first and fourth
bits are changed. First, two empty slices are reserved for these two bits. In the slice for the
first bit, the level of the first cell is changed to 1. Similarly, in the slice for the fourth bit, the
level of the fourth cell is changed to 1. The state of 4 slices is changed as follows.

((1, 0, 0, 0)︸ ︷︷ ︸
1st bit

| (0, 0, 0, 1)︸ ︷︷ ︸
4th bit

| (0, 0, 0, 0) | (0, 0, 0, 0)).

Next, suppose that the data (1, 0, 0, 1) are changed into (1, 1, 1, 0), that is, the last three
bits are changed. Since the leftmost slice represents the fourth bit, the level of the fourth cell
in the slice is increased by 1, that is, changed to 2. Because there are not slices representing
the second or three bits, empty slices are reserved for the bits and the level of one cell in each
slice is changed to 1 as follows.

((1, 0, 0, 0)︸ ︷︷ ︸
1st bit

| (0, 0, 0, 2)︸ ︷︷ ︸
4th bit

| (0, 1, 0, 0)︸ ︷︷ ︸
2nd bit

| (0, 0, 1, 0)︸ ︷︷ ︸
3rd bit

).

Moreover, if the data are changed from (1, 1, 1, 0) to (1, 1, 1, 1), that is, the fourth bit is
changed, the i′-th cell in the slice representing the fourth bit is changed to 1, where i′ =
(4 mod 4) + 1 = 1, because the level of the fourth cell is q − 1 = 2 and cannot be increased.
Then the state of slices is as follows.

((1, 0, 0, 0)︸ ︷︷ ︸
1st bit

| (1, 0, 0, 2)︸ ︷︷ ︸
4th bit

| (0, 1, 0, 0)︸ ︷︷ ︸
2nd bit

| (0, 0, 1, 0)︸ ︷︷ ︸
3rd bit

).

14



We consider another example in which n = 20, k = 4 and q = 3. Suppose that the state
of 4 slices is as follows.

((2, 2, 2, 1)︸ ︷︷ ︸
1st bit

| (2, 1, 0, 2)︸ ︷︷ ︸
4th bit

| (0, 2, 2, 2)︸ ︷︷ ︸
2nd bit

| (2, 0, 2, 2)︸ ︷︷ ︸
3rd bit

| (0, 0, 0, 0)).

The data represented by this state are (1, 0, 0, 1). If the data are changed from (1, 0, 0, 1) to
(0, 0, 0, 1), the state is changed as follows.

((2, 2, 2, 2)︸ ︷︷ ︸
full

| (2, 1, 0, 2)︸ ︷︷ ︸
4th bit

| (0, 2, 2, 2)︸ ︷︷ ︸
2nd bit

| (2, 0, 2, 2)︸ ︷︷ ︸
3rd bit

| (0, 0, 0, 0)).

As shown in this example, note that any full slice, such as the leftmost slice in the above
state, cannot represent the index. In the ILIFC, the value of a bit without any corresponding
slice is considered to be 0. Therefore, for the full slice x′ ∈ Ak

q , wt(x
′) = k(q − 1) should be

even. Thus, in this dissertation it is assumed that k or q − 1 is even.
In the above state, if the data are changed from (0, 0, 0, 1) to (1, 1, 0, 1), that is, the first

and second bits are changed, the empty slice is reserved for the first bit because there is not
a slice representing the first bit. Then the state of slices is changed as follows.

((2, 2, 2, 2)︸ ︷︷ ︸
full

| (2, 1, 0, 2)︸ ︷︷ ︸
4th bit

| (1, 2, 2, 2)︸ ︷︷ ︸
2nd bit

| (2, 0, 2, 2)︸ ︷︷ ︸
3rd bit

| (1, 0, 0, 0)︸ ︷︷ ︸
1st bit

).

Lastly, suppose that the state of slices is as follows.

((2, 2, 2, 2)︸ ︷︷ ︸
full

| (2, 1, 0, 2)︸ ︷︷ ︸
4th bit

| (2, 2, 2, 2)︸ ︷︷ ︸
full

| (2, 0, 2, 2)︸ ︷︷ ︸
3rd bit

| (1, 0, 0, 0)︸ ︷︷ ︸
1st bit

).

The data represented by this state are (1, 0, 0, 1). If the data are changed from (1, 0, 0, 1) to
(1, 1, 0, 0), none of the slices represent the second bit that is changed and, in this case, no
empty slices exist. Therefore, block erasure is incurred.

The state of slices (x1 | x2 | · · · | xm) enables the k data bits (s1, s2, . . . , sk) to be
obtained as follows. For each i, si = bv(xj) if there is a slice xj representing the i-th bit;
otherwise, si = 0. The function that maps (x1 | x2 | · · · | xm) to (s1, s2, . . . , sk) is denoted
by Ds(x1 | x2 | · · · | xm).

The ILIFC is one of flash codes and, thus, in the ILIFC one write means changing one of
information bits [6]. Let an (n, k, q, t) flash code be a coding scheme for storing k data bits
in n cells with q levels such that any t writes can be accommodated without block erasure.
The performance of an (n, k, q, t) flash code is characterized in terms of its write deficiency.
The write deficiency of an (n, k, q, t) flash code is defined as

n(q − 1)− t.

The write deficiency of ILIFC(n, k, q) is at most

(k − 1) ((k + 1)(q − 1)− 1) . (2.1)

Flash codes proposed in [22] achieve a write deficiency of O(qk2), which is the best previously
known result. From (2.1), the ILIFC also achieves the write deficiency of O(qk2).

As stated in Chapter 1, practically, it is preferable that multiple bits among the informa-
tion bits can be changed by one write. In this dissertation, one write operation means that
the current data bits are changed to new data bits. If the new data bits are equal to the
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current data bits, then we assume that no write operation has occurred. The number of such
write operations that can occur between two consecutive block erasures is referred to simply
as the number of writes. The number of writes depends on the sequence of data bits to be
stored. The minimum number of writes is termed the worst-case number of writes.

Assume that the state of m slices (x1 | x2 | · · · | xm) is changed to (x′
1 | x′

2 | · · · | x′
m) by

one write, where xj ,x
′
j ∈ Ak

q for 1 ≤ j ≤ m. Then
∑m

j=1

(
wt(x′

j)− wt(xj)
)
is termed the

total number of cell level changes.

2.2 ILIFC with inversion cells

Suppose that a write operation in which the current data v are changed to the new data
v′ is conducted by ILIFC. If such a write can be achieved without block erasure, the total
number of cell level changes is equal to the Hamming distance between v and v′. An ILIFC
with inversion cells (I-ILIFC) was proposed in order to reduce the total number of cell level
changes and increase the number of writes [7]. The I-ILIFC has two storing modes, a normal
mode and an inverted mode, information about which is contained in the inversion cells.

In this dissertation, it is assumed that k data bits are stored in a block of n q-ary cells
including r inversion cells. Such an I-ILIFC is denoted by I-ILIFC(n, k, q, r). In the I-
ILIFC(n, k, q, r), a block of (n − r) cells excluding the r inversion cells is divided into slices
consisting of k cells. These cells, which are grouped into slices, are termed data cells. Hence,
there are m = �(n − r)/k� slices. The restriction of the ILIFC scheme, m ≥ k, determines
that n ≥ k2 + r should hold.

For w = (w1, w2, . . . , wl) ∈ {0, 1}l, we define w = (w1, w2, . . . , wl), where wi is 1 if wi = 0,
and 0 if wi = 1. For w,w′ ∈ {0, 1}l, let dH(w,w′) be the Hamming distance between w and
w′.

In the I-ILIFC, the storing mode is represented by the r inversion cells. We denote the
state of these r inversion cells by b = (b1, b2, . . . , br) ∈ Ar

q. We denote the state of the

inversion cells and m slices by c = (b | x1 | x2 | · · · | xm), where xj ∈ Ak
q for 1 ≤ j ≤ m.

Suppose that the data v ∈ {0, 1}k are stored in the cell state c. If bv(b) = 0, the cell is in
the normal mode, and Ds(x1 | x2 | · · · | xm) = v is satisfied. If bv(b) = 1, the cell is in
the inverted mode, and Ds(x1 | x2 | · · · | xm) = v is satisfied. If there is an i that satisfies
bi < q − 1, the mode is changed by increasing bi by 1.

For example, let n = 20, k = 4, q = 3 and r = 4. Suppose that the state of (20− 4)/4 = 4
slices and 4 inversion cells is as follows.

( (2, 2, 0, 0)︸ ︷︷ ︸
inversion cells

| (2, 2, 1, 0)︸ ︷︷ ︸
1st bit

| (2, 0, 2, 2)︸ ︷︷ ︸
3rd bit

| (2, 2, 0, 2)︸ ︷︷ ︸
4th bit

| (0, 2, 1, 0)︸ ︷︷ ︸
2nd bit

).

Then the cell is in the normal mode and the stored bits (1, 1, 0, 0) are exactly the data.

On the other hand, suppose that the state of 4 slices and 4 inversion cells is as follows.

( (2, 2, 1, 0)︸ ︷︷ ︸
inversion cells

| (2, 2, 2, 2)︸ ︷︷ ︸
full

| (2, 1, 0, 2)︸ ︷︷ ︸
4th bit

| (2, 2, 0, 0)︸ ︷︷ ︸
1st bit

| (1, 0, 2, 2)︸ ︷︷ ︸
3rd bit

).

Then the cell is in the inverted mode and the stored bits (0, 0, 1, 1) are the inverted data,
that is, the data are (1, 1, 0, 0).

When new data are given, two rules can be considered for the encoding of the I-ILIFC.
We refer to these rules as rule 1 and rule 2. Rule 1 is to change the storing mode and store
the data in the new mode. Rule 2 is to store the data in the current mode.
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Assume that the state (b | x1 | x2 | · · · | xm) is changed to (b′ | x′
1 | x′

2 | · · · | x′
m) by

one write operation. Then
∑m

j=1

(
wt(x′

j)− wt(xj)
)
is termed the sum of the data cell level

changes and (wt(b′)− wt(b)) is termed the sum of the inversion cell level changes. The sum
of these two values is referred to as the total number of cell level changes.

In the I-ILIFC, when new data are given, one of two rules is applied during encoding
such that the total number of cell level changes is minimized. If the rule cannot be applied
without block erasure, erasure takes place.

Let n = 20, k = 4, q = 3 and r = 4. Suppose that the state of 4 slices and 4 inversion cells
is as follows.

( (1, 0, 0, 0)︸ ︷︷ ︸
inversion cells

| (0, 0, 1, 0)︸ ︷︷ ︸
3rd bit

| (0, 0, 0, 0)︸ ︷︷ ︸
empty

| (0, 0, 0, 0)︸ ︷︷ ︸
empty

| (0, 0, 0, 0)︸ ︷︷ ︸
empty

).

The data represented by this state are (1, 1, 0, 1) (Note that the cell is in the inverted mode).
Suppose that the data are changed from (1, 1, 0, 1) to (0, 1, 0, 0). If rule 1 is applied, that is,
the storing mode is changed and the data are stored in the new mode, the state of slices and
inversion cells is as follows.

( (2, 0, 0, 0)︸ ︷︷ ︸
inversion cells

| (0, 0, 2, 0)︸ ︷︷ ︸
3rd bit

| (0, 1, 0, 0)︸ ︷︷ ︸
2nd bit

| (0, 0, 0, 0)︸ ︷︷ ︸
empty

| (0, 0, 0, 0)︸ ︷︷ ︸
empty

).

Then, the total number of cell level changes is 3. On the other hand, If rule 2 is applied, that
is, the data are stored in the current mode, the state of slices and inversion cells is as follows.

( (1, 0, 0, 0)︸ ︷︷ ︸
inversion cells

| (0, 0, 1, 0)︸ ︷︷ ︸
3rd bit

| (1, 0, 0, 0)︸ ︷︷ ︸
1st bit

| (0, 0, 0, 1)︸ ︷︷ ︸
4th bit

| (0, 0, 0, 0)︸ ︷︷ ︸
empty

).

Then, the total number of cell level changes is 2. Therefore, in this example, rule 2 is applied
such that the total number of cell level changes is minimized.

The following theorem holds [7].

Theorem 1. Suppose a write operation, in which the current data v are changed to the new
data v′, is carried out by I-ILIFC(n, k, q, r), where v,v′ ∈ {0, 1}k. Rule 1 is applied during
encoding if and only if dH(v,v′) > (k + 1)/2.

Proof. We denote dH(v,v′) by d. If rule 1 is applied, the sum of the data cell level changes
is dH(v,v′) = dH(v,v′) = k − d, and the sum of the inversion cell level changes is 1. Hence,
the total number of cell level changes is (k − d+ 1). On the other hand, if rule 2 is applied,
the total number of cell level changes is equal to the sum of the data cell level changes,
dH(v,v′) = dH(v,v′) = d. Therefore, if d > k−d+1, that is, d > (k+1)/2, rule 1 is applied
during encoding. Additionally, if d ≤ (k + 1)/2, the above discussion shows that rule 2 is
applied during encoding.

For the state of r inversion cells b = (b1, b2, . . . , br) ∈ Ar
q, the inversion cells are said to

be exhausted if b1 = b2 = · · · = br = q − 1, that is, wt(b) = r(q − 1). In this case, rule 2 is
applied until the next block erasure takes place.

Computer simulation is used to show that the average number of writes by I-ILIFC(n, k, q, r)
is greater than that by ILIFC(n, k, q) in many cases when the number r of inversion cells is
optimized [7, 10]. We would like to show this result theoretically, but conducting an analysis
of the average performance may not be a simple matter. Therefore, in this dissertation we an-
alyze the worst-case performance and specify a threshold for the code length that determines
whether the I-ILIFC improves the worst-case performance of the ILIFC.
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Chapter 3

Worst-Case Performance of ILIFC
and ILIFC with Inversion Cells

This chapter describes the analysis of the worst-case performance of the I-ILIFC and compare
the performance of the I-ILIFC with that of the ILIFC.

3.1 Upper bound on the worst-case number of writes by IL-
IFC

Under the definition of one write operation in [6], that is, write operation changing one of
data bits, it is shown that the worst-case number of writes by ILIFC(n, k, q) is

k(�n/k� − k + 1)(q − 1) + k − 1

[6]. Let tw be the worst-case number of writes by ILIFC(n, k, q) under the definition of one
write in this dissertation. In this section, we derive the upper bound on tw.

We denote (0, 0, . . . , 0) and (1, 1, . . . , 1) by 0 and 1, respectively. Let T be the number of
writes by ILIFC(n, k, q) when the data sequence is 1,0,1,0, . . .. Then tw ≤ T holds. If the
state of slices after T such writes is (y1 | y2 | · · · | ym),

∑m
j=1wt(yj) = kT holds. Since the

total number of cell levels is n(q − 1), kT ≤ n(q − 1) holds. We denote the upper bound on
tw by tub. Then from tw ≤ T ≤ n(q − 1)/k, we have

tub = n(q − 1)/k. (3.1)

3.2 Maximum number of unused cell levels in I-ILIFC

In the I-ILIFC, when all data bits are changed, the sum of the data cell level changes is 0. In
this dissertation, we consider the worst-case performance of the I-ILIFC. Therefore, suppose
that the sum of the data cell level changes caused by one write is greater than 0.

In the following, it is assumed that a sufficient number r of inversion cells are reserved
such that the inversion cells are not entirely consumed whenever block erasure takes place
in the worst case. Then, r(q − 1) is bounded above by the maximum number of writes
(n− r)(q − 1). That is, r ≤ n/2. The strict bound on r is obtained in the next section.

When erasure takes place, we denote the state of slices by (y1 | y2 | · · · | ym), where m =
�(n−r)/k�. Then the weight of each of the slices wt(yj) can be increased (k(q − 1)− wt(yj))
more times. The sum of such unused cell levels

∑m
j=1 (k(q − 1)− wt(yj)) is termed the

number of unused cell levels.
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Since the number of unused cell levels decreases as the number of writes increases, it is
apparent that the number of unused cell levels in the worst case is greater than in the other
cases. Therefore, in this section we determine the maximum number of unused cell levels.

For v,v′ ∈ {0, 1}k(v �= v′), let d be the Hamming distance between v and v′. If the write
operation, in which the data v are changed to v′, is executed, then from Theorem 1, the sum
of the data cell level changes is d if d ≤ (k+1)/2, and (k− d) if d > (k+1)/2. Hence, if k is
even, the maximum sum of the data cell level changes δ(k) is as follows.

δ(k) = max{ max
1≤d≤k/2

d, max
k/2+1≤d≤k

(k − d)}
= max{k/2, k/2− 1} = k/2.

Similarly, if k is odd,

δ(k) = max{ max
1≤d≤(k+1)/2

d, max
(k+1)/2+1≤d≤k

(k − d)}
= max{(k + 1)/2, (k + 1)/2− 2} = (k + 1)/2.

Therefore,

δ(k) =

{
k/2 (k is even)

(k + 1)/2 (k is odd)
.

For the state of slices (y1 | y2 | · · · | ym), let α1 be the number of bits without any
corresponding slice, and let α2 be the number of empty slices. Then the next write operation
for any new data can be carried out if and only if the changes to any δ(k) bits among the k
data bits can be stored in slices, that is,

(α1 < δ(k) and α2 ≥ α1) or

(α1 ≥ δ(k) and α2 ≥ δ(k)).

This condition is equivalent to the following condition.

α2 ≥ min{α1, δ(k)}.

Therefore, block erasure may take place if and only if

α2 < min{α1, δ(k)}. (3.2)

The number of bits that have a corresponding slice is (k − α1). Let yji be the slice cor-
responding to the i-th bit from the left among (k − α1) such bits. Since yji is active,
1 ≤ wt(yji) ≤ k(q − 1)− 1. Then the number of unused cell levels is as follows:

k−α1∑
i=1

(k(q − 1)− wt(yji)) + α2 · k(q − 1). (3.3)

When (3.2) holds, the maximum number of unused cell levels is derived. For fixed values of α1

and α2, the number of unused cell levels is maximized when wt(yj1) = · · · = wt(yjk−α1
) = 1.

Hence, the maximum is expressed as follows.

(k − α1)(k(q − 1)− 1) + α2 · k(q − 1).
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When α1 < δ(k) holds:

From (3.2), α2 < α1 holds. For fixed α1, when α2 = α1 − 1, the maximum is expressed as
follows.

(k − α1)(k(q − 1)− 1) + (α1 − 1) · k(q − 1)

= (k − 1) · k(q − 1)− k + α1.

Therefore, when α1 = δ(k)− 1, the maximum is as follows.

(k − 1) · k(q − 1)− k + δ(k)− 1. (3.4)

When α1 ≥ δ(k) holds:

From (3.2), α2 < δ(k) holds. Similarly, for a constant value of α1, when α2 = δ(k) − 1, the
maximum is expressed as follows.

(k − α1)(k(q − 1)− 1) + (δ(k)− 1) · k(q − 1).

Hence, when α1 = δ(k), the maximum is as follows.

(k − 1) · k(q − 1)− k + δ(k). (3.5)

From (3.4) and (3.5), the maximum number of unused cell levels is given by (3.5). We have
the following theorem.

Theorem 2. In the I-ILIFC(n, k, q, r), when block erasure takes place, the number u of
unused cell levels satisfies the following inequality:

u ≤ (k − 1) · k(q − 1)− k + δ(k).

3.3 Lower bound on the number of writes by I-ILIFC

In this section, we use Theorem 2 to show the lower bound on the worst-case number of
writes by I-ILIFC.

Let (y1 | y2 | · · · | ym) be the state of slices, where m = �(n− r)/k�. Then
∑m

j=1wt(yj)
is termed the number of used cell levels.

The number of used cell levels increases as the number of writes increases. Therefore, in
order to consider the worst-case number of writes, we derive the minimum number of used
cell levels when block erasure takes place.

Theorem 3. In the I-ILIFC(n, k, q, r), when block erasure takes place, the number u′ of used
cell levels satisfies the following inequality:

u′ ≥ (�(n− r)/k� − k + 1) · k(q − 1) + k − δ(k).

Proof. Let (y1 | y2 | · · · | ym) be the state of slices. From Theorem 2,

m∑
j=1

(k(q − 1)− wt(yj)) ≤ (k − 1) · k(q − 1)− k + δ(k).

Therefore,

u′ =
m∑
j=1

wt(yj) ≥ (m− k + 1) · k(q − 1) + k − ˇδ(k),

where m = �(n− r)/k�.
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Next, we use Theorem 3 to show a sufficient condition for the next write operation to be
possible for any new data.

Corollary 1. If the number u′ of used cell levels satisfies the inequality

u′ < (�(n− r)/k� − k + 1) · k(q − 1) + k − δ(k),

then the next write operation for any new data can be executed without block erasure.

Proof. This is the contraposition of Theorem 3.

For given n, k, and q, we define

U1(r) = (�(n− r)/k� − k + 1) · k(q − 1) + k − δ(k),

U ′
1(r) = ((n− r)/k − k + 1) · k(q − 1) + k − δ(k).

Then U1(r) ≤ U ′
1(r). We define t1(r) = �U1(r)/δ(k)	. Let r∗1 be the minimum integer r that

satisfies r(q− 1) ≥ U ′
1(r)/δ(k)+ 1. That is, r∗1 is the integer r that satisfies R1 ≤ r < R1+1,

where

R1 =
n− k2 + k + k/(q − 1)

δ(k) + 1
. (3.6)

As mentioned in Section 2.2, the restriction on the I-ILIFC(n, k, q, r∗1) scheme requires n ≥
k2 + r∗1 to be satisfied. Note that this inequality is satisfied if

n ≥ k2 +R1 + 1 (3.7)

holds. We substitute (3.6) for R1 in (3.7) and arrange the inequality so that n appears only
on the left side. The result is as follows.

n ≥ k2 +
k + 1 + k/(q − 1)

δ(k)
+ 1. (3.8)

In the following, we consider only values of n, k, and q that satisfy (3.8) because the I-ILIFC
scheme cannot be defined if (3.8) is not satisfied. Then from (3.6) and (3.8), R1 > 0. That
is, r∗1 ≥ 1.

We use the sufficient condition of Corollary 1 to derive the lower bound on the number
of writes.

Theorem 4. Suppose that (3.8) is satisfied. Let t∗1 be the number of writes by I-ILIFC
(n, k, q, r∗1). Then

t∗1 ≥ t1(r
∗
1).

Proof. We prove this theorem by induction on the number of writes t.
Since (3.8) is satisfied, n ≥ k2+r∗1; that is, the number of slices is at least k. Additionally,

r∗1 ≥ 1. Therefore, it is apparent that the first write operation for any new data can be
executed.

For t < t1(r
∗
1), we suppose that t write operations for any data sequence of length t can

be executed without block erasure. Let (b | y1 | y2 | · · · | ym) be the state of inversion cells
and slices after t writes. Then

wt(b) ≤ t (3.9)

because when one write operation has occurred, the maximum sum of the inversion cell level
changes is 1. From the definitions,

t < t1(r
∗
1) = �U1(r

∗
1)/δ(k)	 < U1(r

∗
1)/δ(k) + 1 ≤ U ′

1(r
∗
1)/δ(k) + 1 ≤ r∗1(q − 1). (3.10)
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From (3.9) and (3.10), wt(b) < r∗1(q − 1). Hence, r∗1 inversion cells are not used in their
entirety. Additionally, since the maximum sum of the data cell level changes is δ(k),

m∑
j=1

wt(yj) ≤ δ(k) · t. (3.11)

t1(r
∗
1) is the minimum integer t′ such that t′ ≥ U1(r

∗
1)/δ(k), and t is the integer that satisfies

t < t1(r
∗
1). Hence, t < U1(r

∗
1)/δ(k) holds. Therefore,

δ(k) · t < U1(r
∗
1). (3.12)

From (3.11) and (3.12),
∑m

j=1wt(yj) < U1(r
∗
1). Therefore, according to Corollary 1, the next

(t+ 1)-th write operation for any new data can be executed.
The above discussion serves to confirm that t1(r

∗
1) write operations for any data sequence

of length t1(r
∗
1) can be carried out without erasure.

We define

Ulb1(r) = ((n− r)/k − 1− k + 1) · k(q − 1) + k − δ(k)

= (n− k2 − r)(q − 1) + k − δ(k).

Then U1(r) > Ulb1(r). Hence,

t1(r
∗
1) = �U1(r

∗
1)/δ(k)	 ≥ U1(r

∗
1)/δ(k) > Ulb1(r

∗
1)/δ(k). (3.13)

From r∗1 < R1 + 1,
Ulb1(r

∗
1) > Ulb1(R1 + 1). (3.14)

From (3.13) and (3.14),
t1(r

∗
1) > Ulb1(R1 + 1)/δ(k). (3.15)

We define t∗lb1 = Ulb1(R1 + 1)/δ(k). Let t∗w1 be the worst-case number of writes by I-
ILIFC(n, k, q, r∗1). Since t∗w1 ≥ t1(r

∗
1) > t∗lb1, t

∗
lb1 is the lower bound on t∗w1.

If k is even,

t∗lb1 = 2

(
n− k2 − 2

k + 2
− 1

k

)
(q − 1) +

2k

k + 2
− 1. (3.16)

If k is odd,

t∗lb1 = 2

(
n− k2 − 3

k + 3

)
(q − 1) +

2k

k + 3
− 1. (3.17)

We compare t∗lb1 and tub, where tub is the upper bound on the worst-case number tw of
writes by ILIFC(n, k, q). From (3.1), tub = n(q − 1)/k. If tub < t∗lb1, then tw ≤ tub < t∗lb1 <
t∗w1; that is, the worst-case number of writes by I-ILIFC(n, k, q, r∗1) is greater than that by
ILIFC(n, k, q). Therefore, t∗lb1 > tub is the sufficient condition for improving the worst-case
performance of ILIFC(n, k, q). For k ≥ 4, we can show that t∗lb1 > tub if and only if n > p1.
From (3.16) and (3.17),

p1 =

{
2(k3+3k+2)

k−2 − k
q−1 (k is even)

2k(k2+3)
k−3 − k

q−1 (k is odd)
. (3.18)

Then p1 is a threshold of the code length n that determines whether I-ILIFC(n, k, q, r∗1)
improves the performance of ILIFC(n, k, q) in the worst case. In this dissertation, p1 is
referred to simply as the threshold. The results show that I-ILIFC(n, k, q, r∗1) improves the
worst-case performance of ILIFC(n, k, q) if n is sufficiently large.
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3.4 Another lower bound on the number of writes by I-ILIFC

Thus far, we have assumed that block erasure takes place if the rule that minimizes the total
number of cell level changes cannot be applied during encoding. However, at the moment
it remains possible to apply another rule, that is, the rule that does not minimize the total
number of cell level changes.

For example, let n = 20, k = 4, q = 3 and r = 4. Suppose that the state of 4 slices and 4
inversion cells is as follows.

( (2, 2, 1, 0)︸ ︷︷ ︸
inversion cells

| (2, 2, 2, 2)︸ ︷︷ ︸
full

| (2, 2, 2, 0)︸ ︷︷ ︸
1st bit

| (2, 2, 1, 2)︸ ︷︷ ︸
4th bit

| (0, 2, 2, 1)︸ ︷︷ ︸
2nd bit

).

Then the cell is in the inverted mode and the stored bits are (0, 1, 0, 1), that is, the data
are (1, 0, 1, 0). Suppose that the data are changed from (1, 0, 1, 0) to (0, 1, 1, 1). Since the
Hamming distance between (1, 0, 1, 0) and (0, 1, 1, 1) is 3, from Theorem 1, rule 1 is applied,
that is, the storing mode is changed to the normal mode and the stored bits (0, 1, 0, 1)
are changed to (0, 1, 1, 1). However, rule 1 cannot be applied because there is not a slice
representing the changed third bit and no empty slices exist. On the other hand, rule 2 can
be applied, that is, the stored bits (0, 1, 0, 1) can changed to the inverted data (1, 0, 0, 0) as
follows.

( (2, 2, 1, 0)︸ ︷︷ ︸
inversion cells

| (2, 2, 2, 2)︸ ︷︷ ︸
full

| (2, 2, 2, 1)︸ ︷︷ ︸
1st bit

| (2, 2, 2, 2)︸ ︷︷ ︸
full

| (0, 2, 2, 2)︸ ︷︷ ︸
2nd bit

).

As shown in this example, the number of block erasures can be reduced by ensuring that if
the rule that minimizes the total number of cell level changes cannot be applied but another
rule can be applied during encoding, the latter rule is applied before erasure takes place.
Therefore, in this section it is assumed that block erasure takes place if neither of the two
rules can be applied during encoding. Under this assumption, we derive another lower bound
on the number of writes. This lower bound cannot simply be compared with the first lower
bound because, as will be seen, the number of inversion cells is different from that for the
case described in the previous section.

3.4.1 Maximum number of unused cell levels

In this subsection, we determine the maximum number of unused cell levels when block
erasure takes place. We show a necessary and sufficient condition for the next write operation
to cause block erasure when new data are given.

Theorem 5. For the state of slices (y1 | y2 | · · · | ym), let β1 be the number of bits that do
not have a corresponding slice, and let β2 be the number of empty slices. Then block erasure
may take place if and only if �β1/2� > β2.

Proof. Necessity: We show that if �β1/2� ≤ β2 holds, then either rule 1 or rule 2 can be
applied without erasure during the encoding of any new data.

When some new data are given, let l be the number of bits without any corresponding
slice that are changed on the data (not on the sequence stored in the slices), where 0 ≤ l ≤ β1.
Then rule 2 can be applied if the changes to l such bits can be stored in l empty slices. On
the other hand, the number of bits without any slice that are not changed on the data is
β1 − l. Therefore, rule 1 can be applied if the changes to β1 − l such bits can be stored in
β1 − l empty slices.
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When l ≤ �β1/2� holds:

The inequality l ≤ β2 determines that the changes that are made to l bits can be stored in
l slices from among β2 empty slices. Hence, rule 2 can be applied. On the other hand, the
inequality β1 − l > β2 may hold. If this inequality holds, although the level of one inversion
cell can be increased, rule 1 cannot be applied because the number of empty slices is less
than the number of bits for which an empty slice should be reserved.

When l > �β1/2� holds:

If β1 is even,
β1 − l < β1 − β1/2 = �β1/2� ≤ β2. (3.19)

If β1 is odd,
β1 − l < β1 − (β1 − 1)/2 = (β1 − 1)/2 + 1 = �β1/2�+ 1.

That is,
β1 − l ≤ �β1/2� ≤ β2. (3.20)

Hence, from (3.19) and (3.20), the changes related to (β1 − l) bits can be stored in (β1 − l)
slices from among β2 empty slices. Therefore, rule 1 can be applied.

The above discussion shows that either rule 1 or rule 2 can be applied during encoding if
�β1/2� ≤ β2.

Sufficiency: We show that if �β1/2� > β2 holds, then neither rule 1 nor rule 2 can be
applied during the encoding of some new data.

Let v be the current data and let v′ be the new data. We consider β1 bits without any
corresponding slice among k data bits v. It is assumed that v′ is the data after �β1/2� bits
among β1 such bits in v have been changed. We show that neither rule 1 nor rule 2 can be
applied during the encoding of v′.

When rule 2 is applied, the number of bits for which an empty slice should be reserved is
�β1/2�. The inequality �β1/2� > β2 determines that rule 2 cannot be applied because there
is a bit for which a slice cannot be reserved. On the other hand, when rule 1 is applied, the
number of bits for which an empty slice should be reserved is β1 − �β1/2�. If β1 is even,

β1 − �β1/2� = β1/2 = �β1/2� > β2. (3.21)

If β1 is odd,

β1 − �β1/2� = β1 − (β1 − 1)/2 = (β1 − 1)/2 + 1 = �β1/2�+ 1 > �β1/2� > β2. (3.22)

From (3.21) and (3.22), β1 − �β1/2� > β2. Hence, since there is a bit for which an empty
slice cannot be reserved, rule 1 cannot be applied.

The above discussion indicates that neither rule 1 nor rule 2 can be applied during en-
coding if �β1/2� > β2 when the new data v′ are given.

The number of unused cell levels is as follows:

k−β1∑
i=1

(k(q − 1)− wt(yji)) + β2 · k(q − 1), (3.23)

where yj1 , ˇ. . .,yjk−β1
are (k − β1) active slices, that is, 1 ≤ wt(yji) ≤ k(q − 1) − 1. When

�β1/2� > β2 holds, we derive the maximum number of unused cell levels. For fixed values of β1
and β2, the number of unused cell levels is maximized when wt(yji) = · · · = wt(yjk−β1

) = 1.
Hence, the maximum is expressed as follows.

(k − β1) (k(q − 1)− 1) + β2 · k(q − 1).
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When β1 is even:

When β1 is even, β1/2 > β2 holds. For fixed β1, when β2 = β1/2 − 1, the maximum is
expressed as follows.

β1 (1− k(q − 1)/2) + k ((k − 1)(q − 1)− 1) . (3.24)

Since 1− k(q− 1)/2 ≤ 0 and β1/2− 1 = β2 ≥ 0 hold, when β2 = 0 and β1 = 2, the maximum
is as follows.

(k − 2) · k(q − 1)− k + 2. (3.25)

When β1 is odd:

When β1 is odd, (β1− 1)/2 > β2 holds. For a constant value of β1, when β2 = (β1− 1)/2− 1,
the maximum is expressed as follows.

β1 (1− k(q − 1)/2) + (k − 3/2) · k(q − 1)− k.

Similarly, since (β1 − 1)/2− 1 = β2 ≥ 0 holds, when β2 = 0 and β1 = 3, the maximum is as
follows.

(k − 3) · k(q − 1)− k + 3. (3.26)

From (3.25) and (3.26), we have the following theorem.

Theorem 6. In the I-ILIFC(n, k, q, r), when block erasure takes place, the number u of
unused cell levels satisfies the following inequality:

u ≤ (k − 2) · k(q − 1)− k + 2.

3.4.2 Another lower bound on the number of writes

In this subsection, we derive another lower bound on the number of writes. From Theorem
6, we obtain the minimum number of used cell levels when block erasure takes place.

Theorem 7. In the I-ILIFC(n, k, q, r), when block erasure takes place, the number u′ of used
cell levels satisfies the following inequality:

u′ ≥ (�(n− r)/k� − k + 2) · k(q − 1) + k − 2.

Proof. Let (y1 | y2 | · · · | ym) be the state of slices. From Theorem 6,

m∑
j=1

(k(q − 1)− wt(yj)) ≤ (k − 2) · k(q − 1)− k + 2.

Therefore,

u′ =
m∑
j=1

wt(yj) ≥ (m− k + 2) · k(q − 1) + k − 2,

where m = �(n− r)/k�.
From Theorem 7, we have a sufficient condition for the next write operation to be possible

for any new data.
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Corollary 2. If the number u′ of used cell levels satisfies the inequality

u′ < (�(n− r)/k� − k + 2) · k(q − 1) + k − 2,

then the next write operation for any new data can be executed without erasure.

Proof. This is the contraposition of Theorem 7.

For given n, k, and q, we define

U2(r) = (�(n− r)/k� − k + 2) · k(q − 1) + k − 2,

U ′
2(r) = ((n− r)/k − k + 2) · k(q − 1) + k − 2.

Then U2(r) ≤ U ′
2(r). We define

t2(r) = �(U2(r)− U1(r)− δ(k) + 1)/(k − 1)	.

Clearly, t2(r) > 0. Let r∗2 be the minimum integer r that satisfies

r(q − 1) ≥ U ′
1(r)

δ(k)
+

U ′
2(r)− U ′

1(r)− δ(k) + 1

k − 1
+ 2.

That is, r∗2 is the integer r that satisfies R2 ≤ r < R2 + 1, where

R2 =
1

δ(k) + 1
×

(
n− k2 + k +

k + δ(k)

q − 1
+

kδ(k)

k − 1
− δ(k)

(q − 1)(k − 1)

)
. (3.27)

From the restriction on the I-ILIFC(n, k, q, r∗2) scheme, n ≥ k2 + r∗2 should hold. This
inequality is satisfied if

n ≥ k2 +R2 + 1. (3.28)

We substitute (3.27) for R2 in (3.28) and arrange the inequality so that n appears only on
the left side. The result is

n ≥ k2 +
1

δ(k)

(
k +

k + δ(k)

q − 1
+

kδ(k)

k − 1
− δ(k)

(q − 1)(k − 1)

)
+

δ(k) + 1

δ(k)
. (3.29)

In the following, we consider only values of n, k, and q that satisfy (3.29). Then, from (3.27)
and (3.29), R2 > 0; that is, r∗2 ≥ 1. From Corollary 2, we obtain another lower bound on the
number of writes by I-ILIFC(n, k, q, r∗2).

Theorem 8. Suppose that (3.29) is satisfied. Let t∗2 be the number of writes by I-ILIFC
(n, k, q, r∗2). Then

t∗2 ≥ t1(r
∗
2) + t2(r

∗
2).

Proof. We use induction on the number of writes t to prove this theorem.

Since (3.29) is satisfied, the first write operation for any new data can be executed.

For t < t1(r
∗
2), we suppose that each of t write operations for any data sequence of length

t can be executed by applying the rule that minimizes the total number of cell level changes.
Let (b | y1 | y2 | · · · | ym) be the state of inversion cells and slices after t writes. Then

wt(b) ≤ t < t1(r
∗
2) < t1(r

∗
2) + t2(r

∗
2). (3.30)
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From the definitions,

t1(r
∗
2) + t2(r

∗
2) =

⌈
U1(r

∗
2)

δ(k)

⌉
+

⌈
U2(r

∗
2)− U1(r

∗
2)− δ(k) + 1

k − 1

⌉

<

(
U1(r

∗
2)

δ(k)
+ 1

)
+

(
U2(r

∗
2)− U1(r

∗
2)− δ(k) + 1

k − 1
+ 1

)

≤ U ′
1(r

∗
2)

δ(k)
+

U ′
2(r

∗
2)− U ′

1(r
∗
2)− δ(k) + 1

k − 1
+ 2

≤ r∗2(q − 1). (3.31)

From (3.30) and (3.31),

wt(b) < r∗2(q − 1).

Hence, r∗2 inversion cells are not used in their entirety. Additionally,

m∑
j=1

wt(yj) < U1(r
∗
2).

(See the proof of Theorem 4 for the details.) Therefore, according to Corollary 1, the next
(t+1)-th write operation for any new data can be executed by applying the rule that minimizes
the total number of cell level changes.

The above discussion indicates that each of t1(r
∗
2) write operations for any data sequence

of length t1(r
∗
2) can be carried out by applying the rule that minimizes the total number of

cell level changes.

Let (b′ | y′
1 | y′

2 | · · · | y′
m) be the state of inversion cells and slices after t1(r

∗
2) writes.

Then

m∑
j=1

wt(y′
j) ≤ δ(k) · t1(r∗2) = δ(k) ·

⌈
U1(r

∗
2)

δ(k)

⌉

< δ(k) ·
(
U1(r

∗
2)

δ(k)
+ 1

)
= U1(r

∗
2) + δ(k).

Hence,
m∑
j=1

wt(y′
j) ≤ U1(r

∗
2) + δ(k)− 1. (3.32)

For t1(r
∗
2) ≤ t′ < t1(r

∗
2)+t2(r

∗
2), we suppose that t

′ write operations for any data sequence
of length t′ can be carried out by applying rule 1 or rule 2. Let (b′′ | y′′

1 | y′′
2 | · · · | y′′

m) be
the state of inversion cells and slices after t′ writes. Then, from (3.31),

wt(b′′) ≤ t′ < t1(r
∗
2) + t2(r

∗
2) < r∗2(q − 1).

Therefore, r∗2 inversion cells are not used in their entirety. We consider the sum δ′ of the data
cell level changes when a write operation is executed by applying rule 1 or rule 2. The write
operation such that δ′ = k is not executed because such a write operation can be executed
only by changing the mode. Hence, δ′ ≤ k − 1. Therefore,

m∑
j=1

wt(y′′
j ) ≤

m∑
j=1

wt(y′
j) + (k − 1) · (t′ − t1(r

∗
2)). (3.33)
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From t′ − t1(r
∗
2) < t2(r

∗
2),

(k − 1) · (t′ − t1(r
∗
2)) ≤ (k − 1) · (t2(r∗2)− 1)

= (k − 1) ·
(⌈

U2(r
∗
2)− U1(r

∗
2)− δ(k) + 1

k − 1

⌉
− 1

)

< (k − 1) · U2(r
∗
2)− U1(r

∗
2)− δ(k) + 1

k − 1
= U2(r

∗
2)− U1(r

∗
2)− δ(k) + 1. (3.34)

From (3.32) and (3.34),

m∑
j=1

wt(y′
j) + (k − 1) · (t′ − t1(r

∗
2)) < (U1(r

∗
2) + δ(k)− 1) + (U2(r

∗
2)− U1(r

∗
2)− δ(k) + 1)

= U2(r
∗
2). (3.35)

From (3.33) and (3.35),
m∑
j=1

wt(y′′
j ) < U2(r

∗
2).

Therefore, Corollary 2 implies that the next (t′ +1)-th write operation for any new data can
be executed.

Therefore, (t1(r
∗
2) + t2(r

∗
2)) write operations for any data sequence of length (t1(r

∗
2) +

t2(r
∗
2)) can be carried out by applying rule 1 or rule 2.

From the definitions,

t1(r
∗
2) + t2(r

∗
2) =

⌈
U1(r

∗
2)

δ(k)

⌉
+

⌈
U2(r

∗
2)− U1(r

∗
2)− δ(k) + 1

k − 1

⌉

≥ U1(r
∗
2)

δ(k)
+

U2(r
∗
2)− U1(r

∗
2)− δ(k) + 1

k − 1

>
Ulb1(r

∗
2)

δ(k)
+

k(q − 1) + δ(k)− 2− δ(k) + 1

k − 1

=
Ulb1(r

∗
2)

δ(k)
+

k(q − 1)− 1

k − 1

>
Ulb1(R2 + 1)

δ(k)
+

k(q − 1)− 1

k − 1
. (3.36)

We define

t∗lb2 =
Ulb1(R2 + 1)

δ(k)
+

k(q − 1)− 1

k − 1
.

Let t∗w2 be the worst-case number of writes by I-ILIFC(n, k, q, r∗2). From (3.36), t∗w2 ≥ t1(r
∗
2)+

t2(r
∗
2) > t∗lb2. Therefore, t

∗
lb2 is the lower bound on t∗w2. t

∗
lb2 is as follows. If k is even,

t∗lb2 =
2

k + 2

(
n− k2 +

k3 − 6k2 + 2k + 4

2k(k − 1)

)
(q − 1) +

k2 − 6k + 4

(k − 1)(k + 2)
. (3.37)

If k is odd,

t∗lb2 =
2

k + 3

(
n− k2 +

k3 − 4k2 + k + 6

2(k + 1)(k − 1)

)
(q − 1) +

k2 − 7k + 4

(k + 3)(k − 1)
. (3.38)
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Table 3.1: Our lower bounds and experimental results for I-ILIFC(n, 4, 4, r∗2)
n 22 38 54 70 86 102

Lower bound 4.9 20.9 36.9 52.9 68.9 84.9

Experimental result 14 25 43 61 73 91

If t∗lb2 > tub, the worst-case performance of I-ILIFC(n, k, q, r∗2) is better than that of
ILIFC(n, k, q). For k ≥ 4, we can show that t∗lb2 > tub if and only if n > p2. From (3.1),
(3.37), and (3.38), the threshold p2 is as follows.

p2 =

{
2k4−3k3+6k2−2k−4

(k−1)(k−2) − k(k2−6k+4)
(k−1)(k−2)(q−1) (k is even)

k(2k4−k3+2k2−k−6)
(k+1)(k−1)(k−3) − k(k2−7k+4)

(k−1)(k−3)(q−1) (k is odd)
. (3.39)

From (3.18) and (3.39),

p1 − p2 =

{
k3(q−1)−3k2+2k
(k−1)(k−2)(q−1) (k is even)
(k4+2k3+k2)(q−1)−3k3−2k2+k

(k+1)(k−1)(k−3)(q−1) (k is odd)
.

Therefore, for k ≥ 4, we have p1 − p2 > 0, that is, p1 > p2. This result shows that I-
ILIFC(n, k, q, r∗2) improves the worst-case performance of ILIFC(n, k, q) also for p2 < n ≤ p1.

Table 3.1 shows our lower bounds on I-ILIFC(n, 4, 4, r∗2) and experimental results for some
values of n. In our experiments for this dissertation, the write operation, in which two bits
randomly selected from four data bits are changed, was repeated until 100,000 block erasures
took place, and the minimum number of writes was calculated. Therefore, the worst-case
number of writes may be less than the experimental result.

3.5 Asymptotic analysis

In this section, we use our lower bound on the number of writes to analyze the asymptotic
performance for q = 2.

In this dissertation, multiple data bits can be changed by each write. Therefore, the
I-ILIFC in this dissertation is actually a write-once memory (WOM) code instead of a flash
code. As stated in Chapter 1, WOM code is a coding scheme that permits writing data bits
into binary cells several times without decreasing the levels, which is exactly the I-ILIFC in
this dissertation when q = 2.

We compare the asymptotic performance of the I-ILIFC and the WOM code. The sum-
rate of the WOM code that stores k data bits in n binary cells t times is kt/n. Then,

kt

n
≤ log2(t+ 1) (3.40)

For fixed k, let tn be the maximum integer t that satisfies (3.40) for each n. Then tn is an
upper bound on the worst-case number of writes for the code rate k/n.

Let q = 2. From (3.37) and (3.38), for fixed k, there exists α such that t∗lb2 < αn for
sufficiently large n. Therefore,

tn
t∗lb2

=
tn/n

t∗lb2/n
>

tn/n

α
≈ log2(t+ 1)/k

α
(3.41)

As n increases, tn also increases. That is, from (3.41), t∗lb2 is much smaller than tn even if the
code length n goes to infinity. Unfortunately, it can be seen that the asymptotic performance
of the I-ILIFC is not better than that of the WOM code.
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3.6 Conclusion

We have presented our derivation of the lower bound on the number of write operations by
the I-ILIFC and specified the threshold for the code length that determines whether the I-
ILIFC improves the worst-case performance of the ILIFC. The results show that the I-ILIFC
performance is better than that of the ILIFC in the worst case if the code length is sufficiently
large. Additionally, we have considered whether another rule should be applied if the rule
selected during encoding cannot be applied. Then, we have derived another lower bound
thereon. Consequently, the threshold was able to be made smaller than that in the first lower
bound.
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Chapter 4

Parallel Random I/O Codes

As described in Chapter 1, in multilevel flash memory, on the average, more than a single
read threshold is required to read a single logical page. In order to solve this problem, random
I/O (RIO) code was proposed by Sharon and Alrod [11]. This chapter describes write-once
memory (WOM) codes [11], of which construction is equivalent to that of RIO codes. RIO
codes and parallel RIO (P-RIO) codes [13], which is a family of RIO codes, are also described.
Then, our construction of P-RIO codes using coset coding is described.

4.1 Preliminaries

We first present some preliminary definitions and notation. For a positive integer n, we
define [n] = {1, . . . , n}. In addition, for two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn),
we denote x ≤ y if xi ≤ yi for any i ∈ [n]. For a binary vector x = (x1, . . . , xn), we define
I(x) = {i | i ∈ [n], xi = 1}. For a positive integer n and any j ∈ [n], we define ej ∈ {0, 1}n
such that I(ej) = {j}.

4.1.1 WOM Code

In a WOM, a cell represents one of two levels {0, 1}, and the level of each cell can only
increase. Rivest and Shamir proposed a WOM code that allows writing into WOM multiple
times [12].

Definition 1. An [n, l, t] WOM code is a coding scheme that permits the writing of l data
bits into n binary cells t times without decreasing the levels. This scheme is defined by t pairs
of encoding and decoding maps (Ei,Di) for i ∈ [t]. Encoding map Ei is defined by

Ei : {0, 1}l × Im(Ei−1) → {0, 1}n,

where Im(E0) = {(0, . . . , 0)}. For all (d, c) ∈ {0, 1}l × Im(Ei−1) with i ∈ [t], c ≤ Ei(d, c).
Further, decoding map Di is defined by

Di : Im(Ei) → {0, 1}l,

such that Di(Ei(d, c)) = d for all (d, c) ∈ {0, 1}l × Im(Ei−1) with i ∈ [t].

Example 1. Rivest and Shamir presented the [3, 2, 2] WOM code, which is shown in Table
4.1 [12]. For example, when the first and second data are 10 and 01, respectively, from Table
4.1, E1(10, 000) = 010, E2(01, 010) = 011.
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Table 4.1: [3, 2, 2] WOM code [12]

Data bits First write Second write

00 000 111

01 100 011

10 010 101

11 001 110

4.1.2 Coset Coding

In this dissertation, a linear binary code of length n and dimension k is referred to as an
(n, k) code. Coset coding with an (n, k) code C is used to construct an [n, n − k, t] WOM
code, where t depends on C [14].

Let H be the parity check matrix of C. For all (d, c) ∈ {0, 1}n−k × Im(Ei−1) with i ∈ [t],
encoding map Ei is as follows.

Ei(d, c) = c+ x,

where x ∈ {v ∈ {0, 1}n | vHT = d− cHT , I(c) ∩ I(v) = ∅}. Further, for all c ∈ Im(Ei) with
i ∈ [t], the decoding map Di is

Di(c) = cHT .

The following theorem was proven in [14].

Theorem 9. When using coset coding with (7, 4) Hamming code, the [7, 3, 3] WOM code can
be constructed. Furthermore, a [2r − 1, r, 2r−2 + 2] WOM code can be constructed via coset
coding with a (2r − 1, 2r − r − 1) Hamming code for r ≥ 4.

4.1.3 RIO Code

In this chapter, it is assumed that each cell of the flash memory represents one of (t+1) levels
{0, 1, . . . , t}. These levels are distinguished by t read thresholds. For each i ∈ [t], we denote
a read threshold between levels (i − 1) and i by the i-th threshold. Let v = (v1, . . . , vn) ∈
{0, . . . , t}n be the state of n cells. The operation of reading the i-th threshold from v is
denoted by RTi(v) and is defined as follows:

RTi(v) = (r1, . . . , rn) ∈ {0, 1}n,
where for each j ∈ [n], rj is 1 if vj ≥ i, and 0 otherwise. The next proposition is obtained
from the definition of this operation.

Proposition 1. For any c1, . . . , ct ∈ {0, 1}n such that c1 ≤ c2 ≤ · · · ≤ ct, the following
property holds: For each i ∈ [t],

RTt+1−i

⎛
⎝ t∑

j=1

cj

⎞
⎠ = ci.

RIO code is a coding scheme that permits reading one page using a single read threshold
[11]. In RIO codes, t pages are stored in (t+ 1)-level cells as follows. For each i ∈ [t], if the
codeword of the (i− 1)-th page is ci−1 ∈ {0, 1}n, the data of the i-th page is encoded into a
codeword ci ∈ {0, 1}n such that ci−1 ≤ ci, where c0 = (0, . . . , 0). Then, the state of the cells
is

∑t
j=1 cj ∈ {0, . . . , t}n. From Proposition 1, the i-th page is read using the (t + 1 − i)-th

threshold from the state of the cells.
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Table 4.2: [3, 2, 2] RIO code

Data of page 2
Data of page 1

00 01 10 11

00 000 211 121 112

01 100 200 021 012

10 010 201 020 102

11 001 210 120 002

Definition 2. An [n, l, t] RIO code is a coding scheme in which t pages of l data bits are
stored into n (t+1)-level cells such that each page is read using a single read threshold. This
scheme is defined by t pairs of encoding and decoding maps (Ei,Di) for i ∈ [t]. Encoding map
Ei is defined by

Ei : {0, 1}l × Im(Ei−1) → {0, 1}n,
where Im(E0) = {(0, . . . , 0)}. For all (di, ci−1) ∈ {0, 1}l × Im(Ei−1), ci = Ei(di, ci−1) ≥ ci−1

is satisfied. The cell state is
∑t

j=1 cj. Further, decoding map Di is defined by

Di : Im(Ei) → {0, 1}l,
such that Di(ci) = Di(Ei(di, ci−1)) = di for all (di, ci−1) ∈ {0, 1}l × Im(Ei−1). The data di

is read using ci = RTt+1−i(
∑t

j=1 cj).

From Definitions 1 and 2, the construction of an [n, l, t] RIO code is clearly equivalent to
that of an [n, l, t] WOM code [11].

Example 2. The [3, 2, 2] RIO code based on the [3, 2, 2] WOM code in Example 1 is shown
in Table 4.2. As an example, let the data of pages 1 and 2 be 10 and 01, respectively. From
Example 1, the data 10 of page 1 are encoded into c1 = 010, and then the data 01 of page 2
are encoded into c2 = 011 such that c1 ≤ c2. The state of the cells is c1 + c2 = 021.

4.1.4 P-RIO Code

In RIO codes, the encoding of each page depends on the data of the page and the previous
pages. However, if the data of all pages are known in advance, the information of those data
can be leveraged to encode each page. P-RIO code is a family of RIO codes in which the
encoding of each page depends on the data of all pages [13].

Definition 3. An [n, l, t] P-RIO code is an [n, l, t] RIO code in which the encoding of each
page is performed in parallel. This P-RIO code is defined by encoding map E and t decoding
maps Di, i ∈ [t]. The encoding map E is defined by

E :

t∏
j=1

{0, 1}l →
t∏

j=1

{0, 1}n.

For all (d1, . . . ,dt) ∈ ∏t
j=1{0, 1}l, c1 ≤ c2 ≤ · · · ≤ ct is satisfied, where (c1, . . . , ct) =

E(d1, . . . ,dt). For each i ∈ [t], decoding map Di is defined by

Di : {0, 1}n → {0, 1}l

such that Di(ci) = di for all (d1, . . . ,dt) ∈
∏t

j=1{0, 1}l, where (c1, . . . , ct) = E(d1, . . . ,dt).
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An algorithm to construct P-RIO codes was proposed in a previous study [13], and was
run to yield P-RIO codes in which two pages are stored with moderate code lengths. These
codes have parameters for which RIO codes do not exist [13]. In this dissertation, we use
coset coding to construct P-RIO codes. When using coset coding with (7, 4) and (15, 11)
Hamming codes, from Theorem 9, [7, 3, 3] RIO code and [15, 4, 6] RIO code based on WOM
codes are constructed, respectively. Then, we leverage the information of the data of all pages
to construct P-RIO codes in which more pages are stored than these RIO codes. Note that
the number of levels that each cell can represent must be increased when the number of pages
increases.

4.2 Construction of P-RIO Codes using Coset Coding

Prior to the construction of P-RIO codes using coset coding, we discuss several properties.

4.2.1 Properties

We have the following theorem:

Theorem 10. Let H be the patiry check matrix of (n, k) code C. A sufficient condition
that ensures the construction of an [n, n − k, t] P-RIO code using coset coding with code C
is as follows: For any s1, . . . , st ∈ {0, 1}n−k, there exist x1, . . . ,xt ∈ {0, 1}n that satisfy the
following conditions:

1. For all i ∈ [t], xiH
T = si;

2. For all i, i′ ∈ [t] with i �= i′, I(xi) ∩ I(xi′) = ∅.

Proof. For any d1, . . . ,dt ∈ {0, 1}n−k, we define si = di − di−1 for each i ∈ [t], where
d0 = (0, . . . , 0). Suppose that there exist x1, . . . ,xt ∈ {0, 1}n that satisfy the above conditions
for s1, . . . , st. We define ci =

∑i
j=1 xj for each i ∈ [t]. Then, we have ciH

T = di for each
i ∈ [t] and c1 ≤ c2 ≤ · · · ≤ ct. Therefore, an [n, n − k, t] P-RIO code can be constructed,
where E(d1, . . . ,dt) = (c1, . . . , ct) and D(ci) = ciH

T .

For r ≥ 3, we denote the parity check matrix of the (2r − 1, 2r − r− 1) Hamming code by

H =
(
hT
1 hT

2 · · · hT
2r−1

)
,

where hj ∈ {0, 1}r \ {(0, . . . , 0)} for all j ∈ [2r − 1] and hj �= hj′ for all j, j
′ ∈ [2r − 1] with

j �= j′. Note that for any s ∈ {0, 1}r \ {(0, . . . , 0)}, there exists a unique integer j ∈ [2r − 1]
such that ejH

T = hj = s and there exist (2r−1 − 1) pairs of j1 ∈ [2r − 1] and j2 ∈ [2r − 1]
such that (ej1 + ej2)H

T = hj1 + hj2 = s. For any s ∈ {0, 1}r \ {(0, . . . , 0)}, we define
V (s) = {I(v) ⊆ [2r − 1] | v ∈ {0, 1}2r−1,vHT = s, |I(v)| ≤ 2}. We have the following
theorem:

Theorem 11. Let r be an integer such that r ≥ 3. For any s1, s2, s3, s4 ∈ {0, 1}r \
{(0, . . . , 0)}, where si �= si′ for all i, i′ ∈ [4] with i �= i′, we have the permutation σ of
[2r − 1], which satisfies the following conditions:
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Case 1: r ≥ 4 and s1, s2, s3, and s4 are linearly independent.

V (s1)

= {{σ(1)}, {σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}} ∪ (
2r−3−1⋃
i=1

{{σ(8i), σ(8i+ 1)},

{σ(8i+ 2), σ(8i+ 3)}, {σ(8i+ 4), σ(8i+ 5)}, {σ(8i+ 6), σ(8i+ 7)}}),
V (s2)

= {{σ(2)}, {σ(1), σ(3)}, {σ(4), σ(6)}, {σ(5), σ(7)}} ∪ (

2r−3−1⋃
i=1

{{σ(8i), σ(8i+ 2)},

{σ(8i+ 1), σ(8i+ 3)}, {σ(8i+ 4), σ(8i+ 6)}, {σ(8i+ 5), σ(8i+ 7)}}),
V (s3)

= {{σ(4)}, {σ(1), σ(5)}, {σ(2), σ(6)}, {σ(3), σ(7)}} ∪ (

2r−3−1⋃
i=1

{{σ(8i), σ(8i+ 4)},

{σ(8i+ 1), σ(8i+ 5)}, {σ(8i+ 2), σ(8i+ 6)}, {σ(8i+ 3), σ(8i+ 7)}}),
V (s4)

= {{σ(8)}, {σ(1), σ(9)}, {σ(2), σ(10)}, {σ(3), σ(11)}, {σ(4), σ(12)}, {σ(5), σ(13)},

{σ(6), σ(14)}, {σ(7), σ(15)}} ∪ (

2r−4−1⋃
i=1

{{σ(16i), σ(16i+ 8)}, {σ(16i+ 1), σ(16i+ 9)},

{σ(16i+ 2), σ(16i+ 10)}, {σ(16i+ 3), σ(16i+ 11)}, {σ(16i+ 4), σ(16i+ 12)},
{σ(16i+ 5), σ(16i+ 13)}, {σ(16i+ 6), σ(16i+ 14)}, {σ(16i+ 7), σ(16i+ 15)}}).

Case 2: s1 + s2 = s3.

V (s1)

= {{σ(1)}, {σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}} ∪ (
2r−3−1⋃
i=1

{{σ(8i), σ(8i+ 1)},

{σ(8i+ 2), σ(8i+ 3)}, {σ(8i+ 4), σ(8i+ 5)}, {σ(8i+ 6), σ(8i+ 7)}}),
V (s2)

= {{σ(2)}, {σ(1), σ(3)}, {σ(4), σ(6)}, {σ(5), σ(7)}} ∪ (

2r−3−1⋃
i=1

{{σ(8i), σ(8i+ 2)},

{σ(8i+ 1), σ(8i+ 3)}, {σ(8i+ 4), σ(8i+ 6)}, {σ(8i+ 5), σ(8i+ 7)}}),
V (s3)

= {{σ(3)}, {σ(1), σ(2)}, {σ(4), σ(7)}, {σ(5), σ(6)}} ∪ (

2r−3−1⋃
i=1

{{σ(8i), σ(8i+ 3)},

{σ(8i+ 1), σ(8i+ 2)}, {σ(8i+ 4), σ(8i+ 7)}, {σ(8i+ 5), σ(8i+ 6)}}),
V (s4)

= {{σ(4)}, {σ(1), σ(5)}, {σ(2), σ(6)}, {σ(3), σ(7)}} ∪ (

2r−3−1⋃
i=1

{{σ(8i), σ(8i+ 4)},

{σ(8i+ 1), σ(8i+ 5)}, {σ(8i+ 2), σ(8i+ 6)}, {σ(8i+ 3), σ(8i+ 7)}}).
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Case 3: s1 + s2 = s3 + s4.

V (s1)

= {{σ(1)}, {σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}} ∪ (
2r−3−1⋃
i=1

{{σ(8i), σ(8i+ 1)},

{σ(8i+ 2), σ(8i+ 3)}, {σ(8i+ 4), σ(8i+ 5)}, {σ(8i+ 6), σ(8i+ 7)}}),
V (s2)

= {{σ(2)}, {σ(1), σ(3)}, {σ(4), σ(6)}, {σ(5), σ(7)}} ∪ (

2r−3−1⋃
i=1

{{σ(8i), σ(8i+ 2)},

{σ(8i+ 1), σ(8i+ 3)}, {σ(8i+ 4), σ(8i+ 6)}, {σ(8i+ 5), σ(8i+ 7)}}),
V (s3)

= {{σ(4)}, {σ(1), σ(5)}, {σ(2), σ(6)}, {σ(3), σ(7)}} ∪ (

2r−3−1⋃
i=1

{{σ(8i), σ(8i+ 4)},

{σ(8i+ 1), σ(8i+ 5)}, {σ(8i+ 2), σ(8i+ 6)}, {σ(8i+ 3), σ(8i+ 7)}}),
V (s4)

= {{σ(7)}, {σ(1), σ(6)}, {σ(2), σ(5)}, {σ(3), σ(4)}} ∪ (

2r−3−1⋃
i=1

{{σ(8i), σ(8i+ 7)},

{σ(8i+ 1), σ(8i+ 6)}, {σ(8i+ 2), σ(8i+ 5)}, {σ(8i+ 3), σ(8i+ 4)}}).

Example 3. Let r = 4 and

H =
(
hT
1 hT

2 · · · hT
15

)

=

⎛
⎜⎜⎝

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎞
⎟⎟⎠ .

Suppose s1 = 0110, s2 = 1100, s3 = 1101, and s4 = 0010. Note that s1, . . . , s4 are linearly
independent (Case 1). Let σ(1) = 6, then

eσ(1)H
T = h6 = 0110 = s1.

Let σ(2) = 3, then

eσ(2)H
T = h3 = 1100 = s2.

Let σ(3) = 5, then

(eσ(2) + eσ(3))H
T = h3 + h5 = 0110 = s1,

(eσ(1) + eσ(3))H
T = h6 + h5 = 1100 = s2,

and

eσ(3)H
T = h5 = 1010 �= s3.

Let σ(4) = 11, then

eσ(4)H
T = h11 = 1101 = s3.

Let σ(5) = 13, then

(eσ(4) + eσ(5))H
T = h11 + h13 = 0110 = s1
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and
(eσ(1) + eσ(5))H

T = h6 + h13 = 1101 = s3.

Let σ(6) = 8, then
(eσ(4) + eσ(6))H

T = h11 + h8 = 1100 = s2

and
(eσ(2) + eσ(6))H

T = h3 + h8 = 1101 = s3.

Let σ(7) = 14, then
(eσ(6) + eσ(7))H

T = h8 + h14 = 0110 = s1,

(eσ(5) + eσ(7))H
T = h13 + h14 = 1100 = s2,

(eσ(3) + eσ(7))H
T = h5 + h14 = 1101 = s3,

eσ(5)H
T = h13 = 1011 �= s4,

eσ(6)H
T = h8 = 0001 �= s4,

and
eσ(7)H

T = h14 = 0111 �= s4.

Let σ(8) = 4, then
eσ(8)H

T = h4 = 0010 = s4.

Similarly, we can obtain σ(9), . . . , σ(15). The permutation σ is obtained as follows:

(σ(1), . . . , σ(15)) = (6, 3, 5, 11, 13, 8, 14, 4, 2, 7, 1, 15, 9, 12, 10).

V (s1) is obtained as follows:

V (s1) = {{σ(1)}, {σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}, {σ(8), σ(9)}, {σ(10), σ(11)},
{σ(12), σ(13)}, {σ(14), σ(15)}}

= {{6}, {3, 5}, {11, 13}, {8, 14}, {4, 2}, {7, 1}, {15, 9}, {12, 10}}.

Similarly, V (s2), . . . , V (s4) are obtained as follows:

V (s2) = {{3}, {6, 5}, {11, 8}, {13, 14}, {4, 7}, {2, 1}, {15, 12}, {9, 10}},
V (s3) = {{11}, {6, 13}, {3, 8}, {5, 14}, {4, 15}, {2, 9}, {7, 12}, {1, 10}},
V (s4) = {{4}, {6, 2}, {3, 7}, {5, 1}, {11, 15}, {13, 9}, {8, 12}, {14, 10}}.

Proof of Theorem 11. Suppose that r ≥ 4 and s1, s2, s3, and s4 are linearly independent.
Let σ(1) ∈ [2r − 1] such that

eσ(1)H
T = hσ(1) = s1.

Let σ(2) ∈ [2r − 1] \ {σ(1)} such that

eσ(2)H
T = hσ(2) = s2.

Let σ(3) ∈ [2r − 1] \ {σ(1), σ(2)} such that

(eσ(2) + eσ(3))H
T = hσ(2) + hσ(3) = s1.

Then,

(eσ(1) + eσ(3))H
T = hσ(1) + hσ(3) = hσ(1) + hσ(2) + (hσ(2) + hσ(3)) = s1 + s2 + s1 = s2.
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In addition,

eσ(3)H
T = hσ(3) = hσ(1) + (hσ(1) + hσ(3)) = s1 + s2 �= s3.

Let σ(4) ∈ [2r − 1] \ {σ(1), σ(2), σ(3)} such that

eσ(4)H
T = hσ(4) = s3.

Let σ(5) ∈ [2r − 1] \ {σ(1), . . . , σ(4)} such that

(eσ(4) + eσ(5))H
T = hσ(4) + hσ(5) = s1.

Then,

(eσ(1) + eσ(5))H
T = hσ(1) + hσ(5) = hσ(1) + hσ(4) + (hσ(4) + hσ(5)) = s1 + s3 + s1 = s3.

Let σ(6) ∈ [2r − 1] \ {σ(1), . . . , σ(5)} such that

(eσ(4) + eσ(6))H
T = hσ(4) + hσ(6) = s2.

Then,

(eσ(2) + eσ(6))H
T = hσ(2) + hσ(6) = hσ(2) + hσ(4) + (hσ(4) + hσ(6)) = s2 + s3 + s2 = s3.

Let σ(7) ∈ [2r − 1] \ {σ(1), . . . , σ(6)} such that

(eσ(6) + eσ(7))H
T = hσ(6) + hσ(7) = s1.

Then,

(eσ(5) + eσ(7))H
T = hσ(5) + hσ(7) = (hσ(4) + hσ(5)) + (hσ(6) + hσ(7)) + (hσ(4) + hσ(6))

= s1 + s1 + s2 = s2.

In addition,

(eσ(3) + eσ(7))H
T = hσ(3) + hσ(7) = (hσ(2) + hσ(3)) + (hσ(6) + hσ(7)) + (hσ(2) + hσ(6))

= s1 + s1 + s3 = s3.

Here,

eσ(5)H
T = hσ(5) = hσ(1) + (hσ(1) + hσ(5)) = s1 + s3 �= s4.

eσ(6)H
T = hσ(6) = hσ(2) + (hσ(2) + hσ(6)) = s2 + s3 �= s4.

eσ(7)H
T = hσ(7) = hσ(1) + (hσ(1) + hσ(3)) + (hσ(3) + hσ(7)) = s1 + s2 + s3 �= s4.

Let σ(8) ∈ [2r − 1] \ {σ(1), . . . , σ(7)} such that

eσ(8)H
T = hσ(8) = s4.

Similarly, we obtain σ(9), . . . , σ(2r − 1).

In the other two cases, we note that s1, s2, s3, and s4 are linearly dependent and obtain
the permutation σ that satisfies the conditions in a similar manner.
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4.2.2 Construction of [7, 3, 4] P-RIO Code

We construct [7, 3, 4] P-RIO code using coset coding with the (7, 4) Hamming code. Let H
be the parity check matrix of the (7, 4) Hamming code. First, we encode some data of four
pages using coset coding.

Example 4. The parity check matrix H is as follows:

H =

⎛
⎝ 1 0 1 0 1 0 1

0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞
⎠ .

Let the data of pages 1–4 be d1 = 001, d2 = 111, d3 = 011, and d4 = 010, respectively. Then,
s1 = d1 = 001, s2 = d2 − d1 = 110, s3 = d3 − d2 = 100, and s4 = d4 − d3 = 001. For these
s1, s2, s3, s4, we obtain x1,x2,x3,x4 ∈ {0, 1}7 that satisfy the conditions of Theorem 10. For
each i ∈ [4], V (si) is as follows:

V (s1) = V (s4) = {{4}, {1, 5}, {2, 6}, {3, 7}},
V (s2) = {{3}, {1, 2}, {4, 7}, {5, 6}},
V (s3) = {{1}, {2, 3}, {4, 5}, {6, 7}}.

Let I(x1) = {4}, I(x2) = {3}, I(x3) = {1}, and I(x4) = {2, 6}. That is, x1 = e4,x2 =
e3,x3 = e1, and x4 = e2 + e6. Then, the codewords of pages 1–4 are c1 = x1 = 0001000,
c2 = x1+x2 = 0011000, c3 = x1+x2+x3 = 1011000, and c4 = x1+x2+x3+x4 = 1111010,
respectively.

Now, we show that for any s1, s2, s3, s4 ∈ {0, 1}3, we can obtain x1,x2,x3,x4 ∈ {0, 1}7
that satisfy the conditions of Theorem 10. In this dissertation, we show that we can obtain
I(x1), I(x2), I(x3), I(x4) ⊆ [7] such that

1. I(xi) ∈ V (si) for all i ∈ [4]

2. I(xi) ∩ I(xi′) = ∅ for all i, i′ ∈ [4] with i �= i′

instead of x1,x2,x3,x4. If si = 000 for some i ∈ [4], let I(xi) = {} (xi = 0000000) such
that xiH

T = si and I(xi) ∩ I(xi′) = ∅ for any i′ ∈ [4] \ {i}. In the following, we assume
si �= 000 for any i ∈ [4]. We consider the following three cases. Note that s1, . . . , s4 are
sorted if needed.

Case 1: si �= si′ for any i, i′ ∈ [4] with i �= i′.
Let I(xi) = {ji} ∈ V (si) for each i ∈ [4].

Case 2: For some m ∈ {2, 3, 4}, s1 = · · · = sm and si �= si′ for any i, i′ ∈ {m, . . . , 4} with
i �= i′.

Let I(xi) = {ji} ∈ V (si) for each i ∈ {m, . . . , 4}. From Theorem 11, we have the
permutation σ of [7] such that

V (s1) = {{σ(1)}, {σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}}.

Then I(x1), . . . , I(xm−1) ∈ {{σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}}. We obtain (m− 1) sets
I(x1), . . . , I(xm−1) ∈ V (s1) such that I(xi) ∩ (I(xm) ∪ · · · ∪ I(x4)) = ∅ for any i ∈ [m −
1] as follows. Here, σ(1) = jm because {σ(1)} ∈ V (s1) and {jm} ∈ V (sm) = V (s1).
Hence, there are at least (m−1) tuples (σ(α1), σ(α1+1)), . . . , (σ(αm−1), σ(αm−1+1)), where
α1, . . . , αm−1 ∈ {2, 4, 6}, such that {σ(αi), σ(αi+1)}∩{jm+1, . . . , j4} = ∅ for any i ∈ [m−1],
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because |{(σ(2), σ(3)), (σ(4), σ(5)), (σ(6), σ(7))}| = 3 and |{jm+1, . . . , j4}| = 4−m. Then, let
I(x1) = {σ(α1), σ(α1 + 1)}, . . . , I(xm−1) = {σ(αm−1), σ(αm−1 + 1)}.
Case 3: s1 = s2, s3 = s4, and s1 �= s3.

From Theorem 11, we have the permutation σ of [7] such that

V (s1) = {{σ(1)}, {σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}},
V (s3) = {{σ(2)}, {σ(1), σ(3)}, {σ(4), σ(6)}, {σ(5), σ(7)}}.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, I(x3) = {σ(4), σ(6)}, and I(x4) = {σ(5), σ(7)}.
From the above, we have x1, . . . ,x4 for any s1, . . . , s4. Note that x1, . . . ,x4 are sorted as

necessary.

Therefore, from Theorem 10, the [7, 3, 4] P-RIO code can be constructed. In this code,
more pages are stored than the [7, 3, 3] RIO code, which is constructed using the same (7, 4)
Hamming code.

4.2.3 Construction of [15, 4, 8] P-RIO Code

In a similar manner, we construct [15, 4, 8] P-RIO code using coset coding with the (15, 11)
Hamming code. Let H be the parity check matrix of the (15, 11) Hamming code. We
show that for any s1, . . . , s8 ∈ {0, 1}4, we can obtain x1, . . . ,x8 ∈ {0, 1}15 that satisfy
the conditions of Theorem 10. As with the previous section, we show that we can obtain
I(x1), . . . , I(x8) ⊆ [15] such that

1. I(xi) ∈ V (si) for all i ∈ [8]

2. I(xi) ∩ I(xi′) = ∅ for all i, i′ ∈ [8] with i �= i′

instead of x1, . . . ,x8. Without loss of generality, we assume si �= 0000 for any i ∈ [8]. We
consider the following five cases:

Case 1: si �= si′ for any i, i′ ∈ [8] with i �= i′.
Let I(xi) = {ji} ∈ V (si) for each i ∈ [8].

Case 2: For some m ∈ {2, 3, . . . , 8}, s1 = · · · = sm and si �= si′ for any i, i′ ∈ {m, . . . , 8}
with i �= i′.

Let I(xi) = {ji} ∈ V (si) for each i ∈ {m, . . . , 8}. From Theorem 11, we have the
permutation σ of [15] such that

V (s1) = {{σ(1)}, {σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}, {σ(8), σ(9)}, {σ(10), σ(11)},
{σ(12), σ(13)}, {σ(14), σ(15)}}.

Then

I(x1), . . . , I(xm−1) ∈ {{σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}, {σ(8), σ(9)}, {σ(10), σ(11)},
{σ(12), σ(13)}, {σ(14), σ(15)}}

Clearly, σ(1) = jm. Hence, we obtain distinct I(x1), . . . , I(xm−1) such that

I(xi) ∩ {jm+1, . . . , j8} = ∅

for any i ∈ [m− 1].

Case 3: For some m1,m2 ∈ {2, 3, . . . , 6}, where m1 ≥ m2, s1 = · · · = sm1 , sm1+1 = · · · =
sm1+m2 , and si �= si′ for any i, i′ ∈ {m1,m1 +m2,m1 +m2 + 1, . . . , 8} with i �= i′.
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Let I(xi) = {ji} ∈ V (si) for each i ∈ {m1 +m2 + 1, . . . , 8}. From Theorem 11, we have
the permutation σ of [15] such that

V (s1) = {{σ(1)}, {σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}, {σ(8), σ(9)}, {σ(10), σ(11)},
{σ(12), σ(13)}, {σ(14), σ(15)}},

V (sm1+1) = {{σ(2)}, {σ(1), σ(3)}, {σ(4), σ(6)}, {σ(5), σ(7)}, {σ(8), σ(10)}, {σ(9), σ(11)},
{σ(12), σ(14)}, {σ(13), σ(15)}}.

We obtain m1 sets I(x1), . . . , I(xm1) ∈ V (s1) and m2 sets I(xm1+1), . . . , I(xm1+m2) ∈
V (sm1+1) such that I(xi)∩{jm1+m2+1, . . . , j8} = ∅ for any i ∈ [m1+m2] and I(xi)∩I(xi′) = ∅
for any i, i′ ∈ [m1 +m2] with i �= i′. Clearly, {σ(1), σ(2)} ∩ {jm1+m2+1, . . . , j8} = ∅. We de-
fine A1 = {ji | i ∈ {m1 +m2 + 1, . . . , 8}, ji ∈ {σ(3), . . . , σ(7)}}, A2 = {ji | i ∈ {m1 +m2 +
1, . . . , 8}, ji ∈ {σ(8), . . . , σ(15)}}, a1 = |A1|, and a2 = |A2|. Then, a1 + a2 = 8−m1 −m2.
Case 3-1: m1 = m2 = 2.
Case 3-1-1: a1 = 0 and a2 = 4.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, I(x3) = {σ(4), σ(6)}, and I(x4) = {σ(5), σ(7)}.
Case 3-1-2: a1 = 1 and a2 = 3.

Let I(x1) = {σ(1)} and I(x2) ∈ {{σ(4), σ(5)}, {σ(6), σ(7)}} such that A1 ∩ I(x2) = ∅.
Let I(x3) = {σ(2)} and I(x4) ∈ {{σ(8), σ(10)}, {σ(9), σ(11)}, {σ(12), σ(14)}, {σ(13), σ(15)}}
such that A2 ∩ I(x4) = ∅.
Case 3-1-3: a1 = a2 = 2.

Let I(x1) = {σ(1)} and I(x2) ∈ {{σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}} such that A1 ∩
I(x2) = ∅. Let I(x3), I(x4) ∈ {{σ(8), σ(10)}, {σ(9), σ(11)}, {σ(12), σ(14)}, {σ(13), σ(15)}}
such that A2 ∩ I(x3) = ∅, A2 ∩ I(x4) = ∅, and I(x3) ∩ I(x4) = ∅.
Case 3-1-4: a1 = 3 and a2 = 1.

Let I(x1) = {σ(1)} and I(x2) ∈ {{σ(8), σ(9)}, {σ(10), σ(11)}} such that A2 ∩ I(x2) = ∅.
Let I(x3) = {σ(2)} and I(x4) ∈ {{σ(12), σ(14)}, {σ(13), σ(15)}} such that A2 ∩ I(x4) = ∅.
Case 3-1-5: a1 = 4 and a2 = 0.

Let I(x1) = {σ(1)}, I(x2) = {σ(8), σ(9)}, I(x3) = {σ(2)}, and I(x4) = {σ(12), σ(14)}.
Case 3-2: m1 = 3 and m2 = 2.
Case 3-2-1: a1 = 0 and a2 = 3.

Let I(x1) = {σ(1)}, I(x2) = {σ(4), σ(5)}, and I(x3) = {σ(6), σ(7)}. Let I(x4) =
{σ(2)} and I(x5) ∈ {{σ(8), σ(10)}, {σ(9), σ(11)}, {σ(12), σ(14)}, {σ(13), σ(15)}} such that
A2 ∩ I(x5) = ∅.
Case 3-2-2: a1 = 1 and a2 = 2.

Let I(x1) = {σ(1)} and I(x2), I(x3) ∈ {{σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}} such that
A1 ∩ I(x2) = ∅, A1 ∩ I(x3) = ∅, and I(x2) ∩ I(x3) = ∅. Let

I(x4), I(x5) ∈ {{σ(8), σ(10)}, {σ(9), σ(11)}, {σ(12), σ(14)}, {σ(13), σ(15)}}

such that A2 ∩ I(x4) = ∅, A2 ∩ I(x5) = ∅, and I(x4) ∩ I(x5) = ∅.
Case 3-2-3: a1 = 2 and a2 = 1.

Let I(x1) = {σ(1)} and I(x4) = {σ(2)} If A2 ⊂ {σ(12), σ(13), σ(14), σ(15)}, I(x2) =
{σ(8), σ(9)}, I(x3) = {σ(10), σ(11)}, and I(x5) ∈ {{σ(12), σ(14)}, {σ(13), σ(15)}} such that
A2 ∩ I(x5) = ∅. If A2 ⊂ {σ(8), σ(9), σ(10), σ(11)}, I(x2) = {σ(12), σ(13)}, I(x3) =
{σ(14), σ(15)}, and I(x5) ∈ {{σ(8), σ(10)}, {σ(9), σ(11)}} such that A2 ∩ I(x5) = ∅.
Case 3-2-4: a1 = 3 and a2 = 0.

Let I(x1) = {σ(1)}, I(x2) = {σ(8), σ(9)}, I(x3) = {σ(10), σ(11)}, I(x4) = {σ(2)}, and
I(x5) = {σ(12), σ(14)}.
Case 3-3: m1 = m2 = 3.
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Case 3-3-1: a1 = 0 and a2 = 2.

Let I(x1) = {σ(1)}, I(x2) = {σ(4), σ(5)}, and I(x3) = {σ(6), σ(7)}. Let I(x4) =
{σ(2)} and I(x5), I(x6) ∈ {{σ(8), σ(10)}, {σ(9), σ(11)}, {σ(12), σ(14)}, {σ(13), σ(15)}} such
that A2 ∩ I(x5) = ∅, A2 ∩ I(x6) = ∅, and I(x5) ∩ I(x6) = ∅.
Case 3-3-2: a1 = a2 = 1.

Let I(x1) = {σ(1)} and I(x2), I(x3) ∈ {{σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}} such
that A1 ∩ I(x2) = ∅, A1 ∩ I(x3) = ∅, and I(x2) ∩ I(x3) = ∅. Let I(x4), I(x5), I(x6) ∈
{{σ(8), σ(10)}, {σ(9), σ(11)}, {σ(12), σ(14)}, {σ(13), σ(15)}} such that A2 ∩ I(xi) = ∅ and
I(xi) ∩ I(xi′) = ∅ for any i, i′ ∈ {4, 5, 6} with i �= i′.
Case 3-3-3: a1 = 2 and a2 = 0.

Let I(x1) = {σ(1)}, I(x2) = {σ(8), σ(9)}, I(x3) = {σ(10), σ(11)}, I(x4) = {σ(2)},
I(x5) = {σ(12), σ(14)}, and I(x6) = {σ(13), σ(15)}.
Case 3-4: m1 = 4 and m2 = 2.

Case 3-4-1: a1 = 0 and a2 = 2.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, I(x3) = {σ(4), σ(5)}, and I(x4) = {σ(6), σ(7)}.
Let

I(x5), I(x6) ∈ {{σ(8), σ(10)}, {σ(9), σ(11)}, {σ(12), σ(14)}, {σ(13), σ(15)}}
such that A2 ∩ I(x5) = ∅, A2 ∩ I(x6) = ∅, and I(x5) ∩ I(x6) = ∅
Case 3-4-2: a1 = a2 = 1.

Let I(x1) = {σ(1)} and I(x2) ∈ {{σ(4), σ(5)}, {σ(6), σ(7)}} such that A1 ∩ I(x2) =
∅. Let x5 = {σ(2)}. If A2 ⊂ {σ(12), σ(13), σ(14), σ(15)}, I(x3) = {σ(8), σ(9)}, I(x4) =
{σ(10), σ(11)}, and I(x6) ∈ {{σ(12), σ(14)}, {σ(13), σ(15)}} such that A2 ∩ I(x6) = ∅. If
A2 ⊂ {σ(8), σ(9), σ(10), σ(11)}, I(x3) = {σ(12), σ(13)}, I(x4) = {σ(14), σ(15)}, and I(x6) ∈
{{σ(8), σ(10)}, {σ(9), σ(11)}} such that A2 ∩ I(x6) = ∅.
Case 3-4-3: a1 = 2 and a2 = 0.

Let I(x1) = {σ(1)}, I(x2) = {σ(8), σ(9)}, I(x3) = {σ(10), σ(11)}, and

I(x4) ∈ {{σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}}

such that A1 ∩ I(x4) = ∅. Let I(x5) = {σ(12), σ(14)} and I(x6) = {σ(13), σ(15)}.
Case 3-5: m1 = 4 and m2 = 3.

Case 3-5-1: a1 = 0 and a2 = 1.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, I(x3) = {σ(4), σ(5)}, and I(x4) = {σ(6), σ(7)}.
Let I(x5), I(x6), I(x7) ∈ {{σ(8), σ(10)}, {σ(9), σ(11)}, {σ(12), σ(14)}, {σ(13), σ(15)}} such
that A2 ∩ I(xi) = ∅ and I(xi) ∩ I(xi′) = ∅ for any i, i′ ∈ {5, 6, 7} with i �= i′.
Case 3-5-2: a1 = 1 and a2 = 0.

Let I(x1) = {σ(8), σ(9)}, I(x2) = {σ(10), σ(11)}, I(x3) = {σ(12), σ(13)}, and I(x4) =
{σ(14), σ(15)}. Let I(x5) = {σ(2)} and

I(x6), I(x7) ∈ {{σ(1), σ(3)}, {σ(4), σ(6)}, {σ(5), σ(7)}}

such that A1 ∩ I(x6) = ∅, A1 ∩ I(x7) = ∅, and I(x6) ∩ I(x7) = ∅.
Case 3-6: m1 = m2 = 4.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, I(x3) = {σ(4), σ(5)}, I(x4) = {σ(6), σ(7)},
I(x5) = {σ(8), σ(10)}, I(x6) = {σ(9), σ(11)}, I(x7) = {σ(12), σ(14)}, and

I(x8) = {σ(13), σ(15)}.

Case 3-7: m1 = 5 and m2 = 2.

Case 3-7-1: a1 = 0 and a2 = 1.

44



Let I(x1) = {σ(1)}, I(x2) = {σ(4), σ(5)}, I(x3) = {σ(6), σ(7)}, and I(x6) = {σ(2)} If
A2 ⊂ {σ(12), σ(13), σ(14), σ(15)}, I(x4) = {σ(8), σ(9)}, I(x5) = {σ(10), σ(11)}, and I(x7) ∈
{{σ(12), σ(14)}, {σ(13), σ(15)}} such that A2 ∩ I(x7) = ∅. If A2 ⊂ {σ(8), σ(9), σ(10), σ(11)},
I(x4) = {σ(12), σ(13)}, I(x5) = {σ(14), σ(15)}, and I(x7) ∈ {{σ(8), σ(10)}, {σ(9), σ(11)}}
such that A2 ∩ I(x7) = ∅.
Case 3-7-2: a1 = 1 and a2 = 0.

Let I(x1) = {σ(1)}, I(x2) = {σ(8), σ(9)}, I(x3) = {σ(10), σ(11)}, I(x4) = {σ(12), σ(13)},
and I(x5) = {σ(14), σ(15)}. Let I(x6) = {σ(2)} and I(x7) ∈ {{σ(4), σ(6)}, {σ(5), σ(7)}}
such that A1 ∩ I(x7) = ∅.
Case 3-8: m1 = 5 and m2 = 3.

Let I(x1) = {σ(1)}, I(x2) = {σ(4), σ(5)}, I(x3) = {σ(6), σ(7)}, I(x4) = {σ(8), σ(9)},
I(x5) = {σ(10), σ(11)}, I(x6) = {σ(2)}, I(x7) = {σ(12), σ(14)}, and I(x8) = {σ(13), σ(15)}.
Case 3-9: m1 = 6 and m2 = 2.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, I(x3) = {σ(4), σ(5)}, I(x4) = {σ(6), σ(7)},
I(x5) = {σ(8), σ(9)}, I(x6) = {σ(10), σ(11)}, I(x7) = {σ(12), σ(14)}, and

I(x8) = {σ(13), σ(15)}.

Case 4: For some m1,m2,m3 ∈ {2, 3, 4}, where m1 ≥ m2 ≥ m3, s1 = · · · = sm1 , sm1+1 =
· · · = sm1+m2 , sm1+m2+1 = · · · = sm1+m2+m3 , and si �= si′ for any i, i′ ∈ {m1,m1+m2,m1+
m2 +m3,m1 +m2 +m3 + 1, . . . , 8} with i �= i′.

Let I(xi) = {ji} ∈ V (si) for each i ∈ {m1 +m2 +m3 + 1, . . . , 8}.
Case 4-1: s1 + sm1+1 �= sm1+m2+1

From Theorem 11, we have the permutation σ of [15] such that

V (s1) = {{σ(1)}, {σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}, {σ(8), σ(9)},
{σ(10), σ(11)}, {σ(12), σ(13)}, {σ(14), σ(15)}},

V (sm1+1) = {{σ(2)}, {σ(1), σ(3)}, {σ(4), σ(6)}, {σ(5), σ(7)}, {σ(8), σ(10)},
{σ(9), σ(11)}, {σ(12), σ(14)}, {σ(13), σ(15)}},

V (sm1+m2+1) = {{σ(4)}, {σ(1), σ(5)}, {σ(2), σ(6)}, {σ(3), σ(7)}, {σ(8), σ(12)},
{σ(9), σ(13)}, {σ(10), σ(14)}, {σ(11), σ(15)}}.

We obtain m1 sets I(x1), . . . , I(xm1) ∈ V (s1), m2 sets I(xm1+1), . . . , I(xm1+m2) ∈ V (sm1+1),
and m3 sets I(xm1+m2+1), . . . , I(xm1+m2+m3) ∈ V (sm1+m2+1) such that

I(xi) ∩ {jm1+m2+m3+1, . . . , j8} = ∅

for any i ∈ [m1 +m2 +m3] and I(xi) ∩ I(xi′) = ∅ for any i, i′ ∈ [m1 +m2 +m3] with i �= i′.
Clearly, {σ(1), σ(2), σ(4)}∩{jm1+m2+m3+1, . . . , j8} = ∅. We define A1 = {ji | i ∈ {m1+m2+
m3 + 1, . . . , 8}, ji ∈ {σ(3), σ(5), σ(6), σ(7)}}, A2 = {ji | i ∈ {m1 +m2 +m3 + 1, . . . , 8}, ji ∈
{σ(8), . . . , σ(15)}}, a1 = |A1|, and a2 = |A2|. Then, a1 + a2 = 8−m1 −m2 −m3.
Case 4-1-1: m1 = m2 = m3 = 2.
Case 4-1-1-1: a1 = 0 and a2 = 2.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, I(x3) = {σ(4), σ(6)}, and I(x4) = {σ(5), σ(7)}.
Let I(x5), I(x6) ∈ {{σ(8), σ(12)}, {σ(9), σ(13)}, {σ(10), σ(14)}, {σ(11), σ(15)}} such that

A2 ∩ I(x5) = ∅, A2 ∩ I(x6) = ∅,

and I(x5) ∩ I(x6) = ∅.
Case 4-1-1-2: a1 = a2 = 1.
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Let I(x1) = {σ(1)}, I(x3) = {σ(2)}, and I(x5) = {σ(4)}.
Case 4-1-1-2-1: A2 = {σ(8)} or A2 = {σ(15)}.

Let I(x2) = {σ(10), σ(11)}, I(x4) = {σ(12), σ(14)}, and I(x6) = {σ(9), σ(13)}.
Case 4-1-1-2-2: A2 = {σ(9)} or A2 = {σ(14)}.

Let I(x2) = {σ(12), σ(13)}, I(x4) = {σ(8), σ(10)}, and I(x6) = {σ(11), σ(15)}.
Case 4-1-1-2-3: A2 = {σ(10)} or A2 = {σ(13)}.

Let I(x2) = {σ(8), σ(9)}, I(x4) = {σ(12), σ(14)}, and I(x6) = {σ(11), σ(15)}.
Case 4-1-1-2-4: A2 = {σ(11)} or A2 = {σ(12)}.

Let I(x2) = {σ(14), σ(15)}, I(x4) = {σ(8), σ(10)}, and I(x6) = {σ(9), σ(13)}.
Case 4-1-1-3: a1 = 2 and a2 = 0.

Let I(x1) = {σ(1)}, I(x2) = {σ(8), σ(9)}, I(x3) = {σ(2)}, I(x4) = {σ(12), σ(14)},
I(x5) = {σ(4)}, and I(x6) = {σ(11), σ(15)}.
Case 4-1-2: m1 = 3 and m2 = m3 = 2.

Case 4-1-2-1: a1 = 0 and a2 = 1.

Let I(x1) = {σ(1)}, I(x2) = {σ(4), σ(5)} I(x3) = {σ(6), σ(7)}, and I(x4) = {σ(2)}.
Case 4-1-2-1-1: A2 = {σ(8)} or A2 = {σ(10)}.

Let I(x5) = {σ(12), σ(14)}, I(x6) = {σ(9), σ(13)}, and I(x7) = {σ(11), σ(15)}.
Case 4-1-2-1-2: A2 = {σ(9)} or A2 = {σ(11)}.

Let I(x5) = {σ(13), σ(15)}, I(x6) = {σ(8), σ(12)}, and I(x7) = {σ(10), σ(14)}.
Case 4-1-2-1-3: A2 = {σ(12)} or A2 = {σ(14)}.

Let I(x5) = {σ(8), σ(10)}, I(x6) = {σ(9), σ(13)}, and I(x7) = {σ(11), σ(15)}.
Case 4-1-2-1-4: A2 = {σ(13)} or A2 = {σ(15)}.

Let I(x5) = {σ(9), σ(11)}, I(x6) = {σ(8), σ(12)}, and I(x7) = {σ(10), σ(14)}.
Case 4-1-2-2: a1 = 1 and a2 = 0.

Let I(x1) = {σ(1)} and I(x2), I(x3) ∈ {{σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}} such that
A1 ∩ I(x2) = ∅, A1 ∩ I(x3) = ∅, and I(x2) ∩ I(x3) = ∅. Let I(x4) = {σ(8), σ(10)},
I(x5) = {σ(12), σ(14)}, I(x6) = {σ(9), σ(13)}, and I(x7) = {σ(11), σ(15)}.
Case 4-1-3: m1 = m2 = 3 and m3 = 2.

Let I(x1) = {σ(1)}, I(x2) = {σ(4), σ(5)}, I(x3) = {σ(6), σ(7)}, I(x4) = {σ(2)}, I(x5) =
{σ(8), σ(10)}, I(x6) = {σ(12), σ(14)}, I(x7) = {σ(9), σ(13)}, and I(x8) = {σ(11), σ(15)}.
Case 4-1-4: m1 = 4 and m2 = m3 = 2.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, I(x3) = {σ(4), σ(5)}, I(x4) = {σ(6), σ(7)},
I(x5) = {σ(8), σ(10)}, I(x6) = {σ(12), σ(14)}, I(x7) = {σ(9), σ(13)}, and

I(x8) = {σ(11), σ(15)}.

Case 4-2: s1 + sm1+1 = sm1+m2+1

From Theorem 11, we have the permutation σ of [15] such that

V (s1) = {{σ(1)}, {σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}, {σ(8), σ(9)},
{σ(10), σ(11)}, {σ(12), σ(13)}, {σ(14), σ(15)}},

V (sm1+1) = {{σ(2)}, {σ(1), σ(3)}, {σ(4), σ(6)}, {σ(5), σ(7)}, {σ(8), σ(10)},
{σ(9), σ(11)}, {σ(12), σ(14)}, {σ(13), σ(15)}},

V (sm1+m2+1) = {{σ(3)}, {σ(1), σ(2)}, {σ(4), σ(7)}, {σ(5), σ(6)}, {σ(8), σ(11)},
{σ(9), σ(10)}, {σ(12), σ(15)}, {σ(13), σ(14)}}.

As with Case 4-1, we obtain m1 sets

I(x1), . . . , I(xm1) ∈ V (s1),
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m2 sets

I(xm1+1), . . . , I(xm1+m2) ∈ V (sm1+1),

and m3 sets

I(xm1+m2+1), . . . , I(xm1+m2+m3) ∈ V (sm1+m2+1)

such that the conditions described in Case 4-1 are satisfied. Clearly, {σ(1), σ(2), σ(3)} ∩
{jm1+m2+m3+1, . . . , j8} = ∅. We define A1 = {ji | i ∈ {m1 + m2 + m3 + 1, . . . , 8}, ji ∈
{σ(4), σ(5), σ(6), σ(7)}}, A2 = {ji | i ∈ {m1 +m2 +m3 + 1, . . . , 8}, ji ∈ {σ(8), . . . , σ(15)}},
a1 = |A1|, and a2 = |A2|. Then, a1 + a2 = 8−m1 −m2 −m3.

Case 4-2-1: m1 = m2 = m3 = 2.

Case 4-2-1-1: a1 = 0 and a2 = 2.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, I(x3) = {σ(4), σ(6)}, and I(x4) = {σ(5), σ(7)}.
Let I(x5), I(x6) ∈ {{σ(8), σ(11)}, {σ(9), σ(10)}, {σ(12), σ(15)}, {σ(13), σ(14)}} such that

A2 ∩ I(x5) = ∅, A2 ∩ I(x6) = ∅,

and I(x5) ∩ I(x6) = ∅.
Case 4-2-1-2: a1 = a2 = 1.

Let I(x1) = {σ(1)} and I(x2) ∈ {{σ(4), σ(5)}, {σ(6), σ(7)}} such that A1 ∩ I(x2) = ∅.
Let I(x3) = {σ(2)} and I(x4) ∈ {{σ(8), σ(10)}, {σ(9), σ(11)}, {σ(12), σ(14)}, {σ(13), σ(15)}}
such that A2 ∩ I(x4) = ∅. Let I(x5) = {σ(3)} and
I(x6) ∈ {{σ(8), σ(11)}, {σ(9), σ(10)}, {σ(12), σ(15)}, {σ(13), σ(14)}} such that A2 ∩ I(x6) =
∅ and I(x4) ∩ I(x6) = ∅.
Case 4-2-1-3: a1 = 2 and a2 = 0.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, I(x3) = {σ(8), σ(10)}, I(x4) = {σ(9), σ(11)},
I(x5) = {σ(12), σ(15)}, I(x6) = {σ(13), σ(14)}.
Case 4-2-2: m1 = 3 and m2 = m3 = 2.

Case 4-2-2-1: a1 = 0 and a2 = 1.

Let I(x1) = {σ(1)}, I(x2) = {σ(4), σ(5)}, I(x3) = {σ(6), σ(7)}, I(x4) = {σ(2)}, and
I(x5) ∈ {{σ(8), σ(10)}, {σ(9), σ(11)}} such that A2 ∩ I(x5) = ∅. Let I(x6) = {σ(3)} and
I(x7) ∈ {{σ(12), σ(15)}, {σ(13), σ(14)}} such that A2 ∩ I(x7) = ∅.
Case 4-2-2-2: a1 = 1 and a2 = 0.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, and I(x3) ∈ {{σ(4), σ(5)}, {σ(6), σ(7)}}
such that A1 ∩ I(x3) = ∅. Let I(x4) = {σ(8), σ(10)}, I(x5) = {σ(9), σ(11)}, I(x6) =
{σ(12), σ(15)}, and I(x7) = {σ(13), σ(14)}.
Case 4-2-3: m1 = m2 = 3 and m3 = 2.

Let I(x1) = {σ(1)}, I(x2) = {σ(4), σ(5)}, I(x3) = {σ(6), σ(7)}, I(x4) = {σ(2)}, I(x5) =
{σ(8), σ(10)}, I(x6) = {σ(9), σ(11)}, I(x7) = {σ(3)}, and I(x8) = {σ(12), σ(15)}.
Case 4-2-4: m1 = 4 and m2 = m3 = 2.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, I(x3) = {σ(4), σ(5)}, I(x4) = {σ(6), σ(7)},
I(x5) = {σ(8), σ(10)}, I(x6) = {σ(9), σ(11)}, I(x7) = {σ(12), σ(15)}, and

I(x8) = {σ(13), σ(14)}.

Case 5: s1 = s2, s3 = s4, s5 = s6, s7 = s8, and si �= si′ for any i, i′ ∈ {1, 3, 5, 7} with i �= i′.
Case 5-1: s1, s3, s5, and s7 are linearly independent.
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From Theorem 11, we have the permutation σ of [15] such that

V (s1) = {{σ(1)}, {σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}, {σ(8), σ(9)}, {σ(10), σ(11)},
{σ(12), σ(13)}, {σ(14), σ(15)}},

V (s3) = {{σ(2)}, {σ(1), σ(3)}, {σ(4), σ(6)}, {σ(5), σ(7)}, {σ(8), σ(10)}, {σ(9), σ(11)},
{σ(12), σ(14)}, {σ(13), σ(15)}},

V (s5) = {{σ(4)}, {σ(1), σ(5)}, {σ(2), σ(6)}, {σ(3), σ(7)}, {σ(8), σ(12)}, {σ(9), σ(13)},
{σ(10), σ(14)}, {σ(11), σ(15)}},

V (s7) = {{σ(8)}, {σ(1), σ(9)}, {σ(2), σ(10)}, {σ(3), σ(11)}, {σ(4), σ(12)}, {σ(5), σ(13)},
{σ(6), σ(14)}, {σ(7), σ(15)}}.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, I(x3) = {σ(4), σ(6)}, I(x4) = {σ(9), σ(11)},
I(x5) = {σ(8), σ(12)}, I(x6) = {σ(10), σ(14)}, I(x7) = {σ(5), σ(13)}, and

I(x8) = {σ(7), σ(15)}.
Case 5-2: s1 + s3 = s5.

From Theorem 11, we have the permutation σ of [15] such that

V (s1) = {{σ(1)}, {σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}, {σ(8), σ(9)}, {σ(10), σ(11)},
{σ(12), σ(13)}, {σ(14), σ(15)}},

V (s3) = {{σ(2)}, {σ(1), σ(3)}, {σ(4), σ(6)}, {σ(5), σ(7)}, {σ(8), σ(10)}, {σ(9), σ(11)},
{σ(12), σ(14)}, {σ(13), σ(15)}},

V (s5) = {{σ(3)}, {σ(1), σ(2)}, {σ(4), σ(7)}, {σ(5), σ(6)}, {σ(8), σ(11)}, {σ(9), σ(10)},
{σ(12), σ(15)}, {σ(13), σ(14)}},

V (s7) = {{σ(4)}, {σ(1), σ(5)}, {σ(2), σ(6)}, {σ(3), σ(7)}, {σ(8), σ(12)}, {σ(9), σ(13)},
{σ(10), σ(14)}, {σ(11), σ(15)}}.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, I(x3) = {σ(4), σ(6)}, I(x4) = {σ(5), σ(7)},
I(x5) = {σ(8), σ(11)}, I(x6) = {σ(12), σ(15)}, I(x7) = {σ(9), σ(13)}, and

I(x8) = {σ(10), σ(14)}.
Case 5-3: s1 + s3 = s5 + s7.

From Theorem 11, we have the permutation σ of [15] such that

V (s1) = {{σ(1)}, {σ(2), σ(3)}, {σ(4), σ(5)}, {σ(6), σ(7)}, {σ(8), σ(9)}, {σ(10), σ(11)},
{σ(12), σ(13)}, {σ(14), σ(15)}},

V (s3) = {{σ(2)}, {σ(1), σ(3)}, {σ(4), σ(6)}, {σ(5), σ(7)}, {σ(8), σ(10)}, {σ(9), σ(11)},
{σ(12), σ(14)}, {σ(13), σ(15)}},

V (s5) = {{σ(4)}, {σ(1), σ(5)}, {σ(2), σ(6)}, {σ(3), σ(7)}, {σ(8), σ(12)}, {σ(9), σ(13)},
{σ(10), σ(14)}, {σ(11), σ(15)}},

V (s7) = {{σ(7)}, {σ(1), σ(6)}, {σ(2), σ(5)}, {σ(3), σ(4)}, {σ(8), σ(15)}, {σ(9), σ(14)},
{σ(10), σ(13)}, {σ(11), σ(12)}}.

Let I(x1) = {σ(1)}, I(x2) = {σ(2), σ(3)}, I(x3) = {σ(4), σ(6)}, I(x4) = {σ(5), σ(7)},
I(x5) = {σ(8), σ(12)}, I(x6) = {σ(11), σ(15)}, I(x7) = {σ(9), σ(14)}, and

I(x8) = {σ(10), σ(13)}.
From the above, we have x1, . . . ,x8 for any s1, . . . , s8. Therefore, the [15, 4, 8] P-RIO

code, in which more pages are stored than in the [15, 4, 6] RIO code, can be constructed.
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4.2.4 Non-existence of [7, 3, 4] RIO code and [15, 4, 8] RIO code

In this subsection, we show the non-existence of [7, 3, 4] RIO code and [15, 4, 8] RIO code
that have the same parameters as we constructed.

As described in Subsection 4.1.3, the existence of [n, l, t] RIO code is equivalent to that
of [n, l, t] WOM code. For any l and t, Rivest and Shamir derived a lower bound Z(l, t) on n
for which an [n, l, t] WOM code exists [12].

Theorem 12 (Rivest and Shamir [12]). Let

δ(l,m) = min

{
h

∣∣∣∣∣
h∑

i=0

(
m+ h

i

)
≥ 2l

}
.

Suppose that for any l, t, Z(l, t) satisfies Z(l, 0) = 0, and for t ≥ 0,

Z(l, t+ 1) = Z(l, t) + δ(l, Z(l, t)).

Then, if an [n, l, t] WOM code exists,

n ≥ Z(l, t).

From Z(3, 4) = 8 and Z(4, 8) = 16, [7, 3, 4] WOM code and [15, 4, 8] WOM code, that is,
[7, 3, 4] RIO code and [15, 4, 8] RIO code do not exist. Our [7, 3, 4] P-RIO code and [15, 4, 8]
P-RIO code have parameters for which RIO codes based on WOM codes do not exist.

4.3 Conclusion

In this dissertation, we constructed P-RIO codes using coset coding with Hamming codes of
length 7 and 15. In our P-RIO codes, more pages are stored than in RIO codes constructed
via coset coding with the same Hamming codes. Our P-RIO codes have parameters for which
RIO codes cannot be constructed using any technique, including coset coding.

Zhang, Yaakobi, and Etzion verified that when using coset coding with (31, 26) Hamming
code, [31, 5, 16] P-RIO code can be constructed [23]. It can be seen that [31, 5, 16] RIO code
does not exist.

P-RIO codes with parameters for which RIO codes do not exist could be constructed using
Hamming codes of length (2r − 1) for r ≥ 6. The number of pages in such a P-RIO code
would increase with r because [2r − 1, r, 2r−2 + 2] RIO codes can be constructed from WOM
codes. However, in our approach, the number of cases required for the encoding increases
with the number of pages. Therefore, we should consider developing another approach to
encoding or checking whether the sufficient condition ensuring construction of a P-RIO code
holds. Additionally, we should explore other linear codes to construct P-RIO codes with
higher rates than previous codes. Through coset coding by using the (23, 12) Golay code, a
[23, 11, 3] WOM code was constructed in [14]. However, it is unknown whether a [23, 11, 4]
P-RIO code can be constructed.
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Chapter 5

Generalized Cayley distance

This chapter describes the generalized Cayley distance, which is one of distances considered
in permutation codes [19]. Then, the derivation of our upper bound on the generalized Cayley
distance is described.

5.1 Preliminaries

For a positive integer n, we define [n] = {1, 2, . . . , n}. We define Sn as the set of all permuta-
tions on [n]. For any σ ∈ Sn, we denote the permutation σ by a vector (σ(1), σ(2), . . . , σ(n)).
The identity permutation (1, 2, . . . , n) is denoted by e. Let σ ◦ π denote the composi-
tion of two permutations σ, π ∈ Sn. That is, σ ◦ π = (σ(π(1)), σ(π(2)), . . . , σ(π(n))).
We denote the inverse permutation of σ by σ−1. For any 1 ≤ i ≤ j ≤ n, we define
σ[i; j] = (σ(i), σ(i+ 1), . . . , σ(j)).

5.1.1 Generalized Cayley Distance

A generalized transposition φ(i1, j1, i2, j2) ∈ Sn is defined as follows:

φ(i1, j1, i2, j2) = (1, . . . , i1 − 1, i2, . . . , j2, j1 + 1, . . . , i2 − 1, i1, . . . , j1, j2 + 1, . . . , n),

where 1 ≤ i1 ≤ j1 < i2 ≤ j2 ≤ n. This is a permutation obtained by swapping two
subsequences, e[i1; j1] and e[i2; j2] of the identity permutation e. We define Tn as the set of
all generalized transpositions in Sn. For each π ∈ Sn and φ(i1, j1, i2, j2) ∈ Tn, π◦φ(i1, j1, i2, j2)
is the permutation obtained by swapping two subsequences π[i1; j1] and π[i2; j2] of π. That
is,

π ◦ φ(i1, j1, i2, j2) = (π(1), . . . , π(i1 − 1), π(i2), . . . , π(j2), π(j1 + 1),

. . . , π(i2 − 1), π(i1), . . . , π(j1), π(j2 + 1), . . . , π(n)).

Definition 4. For any π1, π2 ∈ Sn, the generalized Cayley distance dG(π1, π2) is the minimum
number of generalized transpositions required to transform π1 into π2:

dG(π1, π2) = min{k | π2 = π1 ◦ φ1 ◦ φ2 ◦ · · · ◦ φk, φ1, φ2, . . . , φk ∈ Tn}.

Theorem 13 (Chee et al. [19]). For all π1, π2, π3 ∈ Sn, dG satisfies the following conditions:

1. dG(π2, π1) = dG(π1, π2).

2. dG(π3 ◦ π1, π3 ◦ π2) = dG(π1, π2).
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3. dG(π1, π3) ≤ dG(π1, π2) + dG(π2, π3).

An algorithm for calculating the generalized Cayley distance is demonstrated [21].

Theorem 14 (Christie [21]). For any π ∈ Sn, let c(π) be the number of cycles in the directed
graph that satisfies the following conditions:

• The vertex set is {0, 1, . . . , n}.
• For any 0 ≤ i ≤ n, an edge connects vertex i to vertex π(π−1(i+1)−1), where π(0) = 0
and π(n+ 1) = n+ 1.

Then, for any π1, π2 ∈ Sn,

dG(π1, π2) =
1

2
(n+ 1− c(π−1

2 ◦ π1)).

The exact value of the generalized Cayley distance is complicated to compute. In order
to construct order-optimal permutation codes with the generalized Cayley distance, a new
distance called block permutation distance was introduced [20].

5.1.2 Block Permutation Distance

A permutation π ∈ Sn is called a minimal permutation if π(i + 1) �= π(i) + 1 for any
1 ≤ i ≤ n− 1. We denote the set of all minimal permutations in Sn by Dn.

Definition 5. For any π1, π2 ∈ Sn, the block permutation distance dB(π1, π2) is defined as d
if for some 0 = i0 < i1 < · · · < id < id+1 = n and σ ∈ Dd+1 it holds that

π1 = (ψ1, ψ2, . . . , ψd+1),

π2 = (ψσ(1), ψσ(2), . . . , ψσ(d+1)), (5.1)

where ψk = π1[ik−1+1; ik] for 1 ≤ k ≤ d+1. Then, σ is called the characteristic permutation
between π1 and π2.

Theorem 15 (Yang et al. [20]). The block permutation distance dB also satisfies the three
conditions described in Theorem 13.

Definition 6. For any π ∈ Sn, the characteristic set A(π) is defined as follows:

A(π) = {(π(i), π(i+ 1)) | 1 ≤ i ≤ n− 1}.

Definition 7. For any π ∈ Sn, the block permutation weight wB(π) is defined as follows:

wB(π) = |A(π) \A(e)|,

where e is the identity permutation.

Theorem 16. For any π ∈ Sn,

π ∈ Dn if and only if wB(π) = n− 1

and

π = e if and only if wB(π) = 0.
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Theorem 17 (Yang et al. [20]). For all π1, π2 ∈ Sn, it holds that

dB(π1, π2) = |A(π2) \A(π1)| = |A(π1) \A(π2)|.
Theorem 18 (Yang et al. [20]). For all π ∈ Sn, it holds that

wB(π) = dB(e, π) = dB(π, e).

Yang, Schoeny, and Dolecek derived the following relation between dG and dB.

Theorem 19 (Yang et al. [20]). For all π1, π2 ∈ Sn,

1

4
dB(π1, π2) ≤ dG(π1, π2) ≤ dB(π1, π2).

In this dissertation, we derive a tighter upper bound on dG, using dB.

5.2 A Tighter Upper Bound on the Generalized Cayley Dis-
tance

First, we derive an upper bound on the generalized Cayley distance dG(π, e) between any
minimal permutation π ∈ Dn and the identity permutation e. The following theorem shows
that for any minimal permutation, there exists a generalized transposition that decreases the
block permutation weight by at least two.

Theorem 20. Let n ≥ 3. For any π ∈ Dn, there exists φ ∈ Tn such that

wB(π ◦ φ) ≤ wB(π)− 2.

To prove Theorem 20, we demonstrate the following lemma.

Lemma 1. Any π ∈ Dn satisfies at least one of the following conditions:

1. For some 1 ≤ a ≤ n− 2,

π−1(a) < π−1(a+ 2) < π−1(a+ 1).

2. For some 1 ≤ a ≤ n− 2,

π−1(a+ 1) < π−1(a) < π−1(a+ 2).

3. For some 1 ≤ a ≤ n− 2,

π−1(a+ 2) < π−1(a+ 1) < π−1(a).

4. For some 1 ≤ b ≤ n− 1 and 2 ≤ c ≤ n,

π−1(c− 1) < π−1(b) < π−1(c) < π−1(b+ 1)

and π−1(c) = π−1(b) + 1.

5. For some 1 ≤ b ≤ n− 1 and 2 ≤ c ≤ n,

π−1(b) < π−1(c) < π−1(b+ 1) < π−1(c− 1)

and π−1(c) = π−1(b) + 1.
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Proof. If n = 3, then

π = (1, 3, 2) or π = (2, 1, 3) or π = (3, 2, 1)

because π ∈ D3. Thus, π satisfies one of the first three conditions.
Suppose that n = 4 and none of the first three conditions are satisfied. Then, since

π ∈ D4,
π = (3, 1, 4, 2).

Therefore, π satisfies the fourth condition.
In general, we show that one of the last two conditions is satisfied if none of the first three

conditions are satisfied.
If π−1(1) < π−1(2), then

π−1(1) < π−1(c(0)) < π−1(2)

and π−1(c(0)) = π−1(1) + 1

for some c(0), because π ∈ Dn. If π
−1(2) < π−1(1), then

π−1(2) < π−1(c(0)) < π−1(3) < π−1(1)

and π−1(c(0)) = π−1(2) + 1

for some c(0), because neither the second nor third condition is satisfied and π ∈ Dn. Hence,
for some 1 ≤ b(0) ≤ 2 and c(0),

π−1(b(0)) < π−1(c(0)) < π−1(b(0) + 1)

and π−1(c(0)) = π−1(b(0)) + 1

and “1” does not appear in π[π−1(c(0));π−1(b(0) + 1)− 1].
Next, we consider the location of “(c(0) − 1)”. Assume that b(0) = c(0) − 1. Thus,

π−1(c(0)) = π−1(c(0) − 1) + 1. That is, π �∈ Dn, which is a contradiction. Assume that
b(0)+1 = c(0)−1. That is, π−1(c(0)−2) < π−1(c(0)) < π−1(c(0)−1). Then, the first condition
is satisfied, which is also a contradiction. Therefore, b(0) �= c(0) − 1 and b(0) + 1 �= c(0) − 1.
Case 1: “(c(0) − 1)” does not appear in π[π−1(c(0)) + 1;π−1(b(0) + 1)− 1].

One of the last two conditions is clearly satisfied.
Case 2: π−1(b(0)) < π−1(c(0)) < π−1(c(0) − 1) < π−1(b(0) + 1).
Case 2-1: c(0) = n.

Because neither the first nor third condition is satisfied and π ∈ Dn, it holds that

π−1(b(0)) < π−1(n) < π−1(n− 2) < π−1(c(1)) < π−1(n− 1) < π−1(b(0) + 1)

and π−1(c(1)) = π−1(n− 2) + 1

for some c(1).
Case 2-2: c(0) �= n.

Because neither the second nor third condition is satisfied and π ∈ Dn,

π−1(b(0)) < π−1(c(0)) < π−1(c(1)) < π−1(c(0) + 1) < π−1(c(0) − 1) < π−1(b(0) + 1)

and π−1(c(1)) = π−1(c(0)) + 1

for some c(1).
Therefore, for some b(1) and c(1) it holds that

π−1(b(0)) < π−1(b(1)) < π−1(c(1)) < π−1(b(1) + 1) < π−1(b(0) + 1).
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Similarly, we can find b(j) and c(j) such that

π−1(b(j−1)) < π−1(b(j)) < π−1(c(j)) < π−1(b(j) + 1) < π−1(b(j−1) + 1)

for some j ≥ 2 if π−1(b(i)) < π−1(c(i)) < π−1(c(i)−1) < π−1(b(i)+1) for all 0 ≤ i ≤ j−1. Be-
cause the length of π[π−1(b(j));π−1(b(j)+1)] is shorter than that of π[π−1(b(j−1));π−1(b(j−1)+
1)] and π is a finite sequence, “(c(m) − 1)” is not located between “c(m)” and “(b(m) +1)” for
some m ≥ 1. Hence, one of the last two conditions is satisfied.

Proof of Theorem 20. From Lemma 1, we consider the following five cases.
Case 1: π−1(a) < π−1(a+ 2) < π−1(a+ 1), where 1 ≤ a ≤ n− 2.

Suppose that the generalized transposition applied to π is

φ(π−1(a+ 2), π−1(a+ 1)− 1, π−1(a+ 1), π−1(a+ 1))

if π−1(a+ 2) = π−1(a) + 1, and

φ(π−1(a) + 1, π−1(a+ 2)− 1, π−1(a+ 1), π−1(a+ 1))

otherwise.
Case 2: π−1(a+ 1) < π−1(a) < π−1(a+ 2), where 1 ≤ a ≤ n− 2.

Suppose that the generalized transposition applied to π is

φ(π−1(a+ 1), π−1(a+ 1), π−1(a+ 1) + 1, π−1(a))

if π−1(a+ 2) = π−1(a) + 1, and

φ(π−1(a+ 1), π−1(a+ 1), π−1(a) + 1, π−1(a+ 2)− 1)

otherwise.
Case 3: π−1(a+ 2) < π−1(a+ 1) < π−1(a), where 1 ≤ a ≤ n− 2.

Suppose that the generalized transposition applied to π is

φ(π−1(a+ 2), π−1(a+ 1)− 1, π−1(a+ 1) + 1, π−1(a)).

In any of the three cases stated above, we have that

(π ◦ φ)−1(a+ 1) = (π ◦ φ)−1(a) + 1

and (π ◦ φ)−1(a+ 2) = (π ◦ φ)−1(a+ 1) + 1.

Thus,
(a, a+ 1), (a+ 1, a+ 2) ∈ A(π ◦ φ) ∩A(e). (5.2)

Case 4: π−1(c − 1) < π−1(b) < π−1(c) < π−1(b + 1) and π−1(c) = π−1(b) + 1, where
1 ≤ b ≤ n− 1 and 2 ≤ c ≤ n.

Suppose that the generalized transposition applied to π is

φ(π−1(c− 1) + 1, π−1(b), π−1(c), π−1(b+ 1)− 1).

Case 5: π−1(b) < π−1(c) < π−1(b + 1) < π−1(c − 1) and π−1(c) = π−1(b) + 1, where
1 ≤ b ≤ n− 1 and 2 ≤ c ≤ n.

Suppose that the generalized transposition applied to π is

φ(π−1(c), π−1(b+ 1)− 1, π−1(b+ 1), π−1(c− 1)).
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In either of the two cases stated above,

(π ◦ φ)−1(b+ 1) = (π ◦ φ)−1(b) + 1

and (π ◦ φ)−1(c) = (π ◦ φ)−1(c− 1) + 1.

Hence,
(b, b+ 1), (c− 1, c) ∈ A(π ◦ φ) ∩A(e). (5.3)

From (5.2) and (5.3), in any of the above five cases it holds that |A(π ◦ φ)∩A(e)| ≥ 2. That
is,

wB(π ◦ φ) = |A(π ◦ φ) \A(e)|
= |A(π ◦ φ)| − |A(π ◦ φ) ∩A(e)|
≤ (n− 1)− 2 = wB(π)− 2.

Remark 1. For π ∈ Sn, we define

A′(π) = {(π(i), π(i+ 1)) | 0 ≤ i ≤ n},
where π(0) = 0 and π(n + 1) = n + 1. For any π ∈ Sn, the number b(π) of breakpoints is
defined as follows:

b(π) = |A′(π) \A′(e)|.
Note that the number of breakpoints is slightly different from the block permutation weight.
Theorem 20 is similar to the next theorem in [21].

Theorem 21 (Christie [21]). There exists φ ∈ Tn such that

b(π ◦ φ) ≤ b(π)− 2

for any π ∈ Sn.

Suppose that e is obtained from π by recursively applying the above generalized transposi-
tion k times. Christie showed that k is equal to the generalized Cayley distance dG(π, e) [21].
Whether the generalized transposition given in the proof of Theorem 20 has this property is
unknown.

The next theorem shows that the generalized Cayley distance between any permutation
and the identity permutation is bounded above by that between the characteristic permuta-
tion and the identity permutation. Recall from Definition 5 that the characteristic permuta-
tion between π1, π2 ∈ Sn is σ ∈ Dd+1, which satisfies (5.1), where d = dB(π1, π2).

Theorem 22. For any π ∈ Sn, let dB(e, π) = k, and suppose that σ ∈ Dk+1 is the charac-
teristic permutation between e and π. Then,

dG(π, e) ≤ dG(σ, e).

Proof. Suppose that dG(σ, e) = d. That is,

e = σ ◦ φ1 ◦ φ2 ◦ · · · ◦ φd,

where φ1, φ2, . . . , φd ∈ Tk+1. For 1 ≤ t ≤ d, let

φt = φ(i
(t)
1 , j

(t)
1 , i

(t)
2 , j

(t)
2 ),
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where 1 ≤ i
(t)
1 ≤ j

(t)
1 < i

(t)
2 ≤ j

(t)
2 ≤ k+1, and suppose that σ = (σ(0)(1), σ(0)(2), . . . , σ(0)(k+

1)) and

σ ◦ φ1 ◦ · · · ◦ φt = (σ(t)(1), σ(t)(2), . . . , σ(t)(k + 1)).

From Definition 5, it holds that

e = (ψ1, ψ2, . . . , ψk+1),

π = (ψσ(1), ψσ(2), . . . , ψσ(k+1)),

where ψi is a subsequence of e for 1 ≤ i ≤ k + 1. For 0 ≤ t ≤ d and 1 ≤ i ≤ k + 1, let l
(t)
i be

the length of ψσ(t)(i).

For 1 ≤ t ≤ d, suppose that

φ′
t = φ(

i
(t)
1 −1∑
i=1

l
(t−1)
i + 1,

j
(t)
1∑
i=1

l
(t−1)
i ,

i
(t)
2 −1∑
i=1

l
(t−1)
i + 1,

j
(t)
2∑
i=1

l
(t−1)
i ).

Then,

(ψσ(t−1)(1), ψσ(t−1)(2), . . . , ψσ(t−1)(k+1)) ◦ φ′
t

= (ψσ(t)(1), ψσ(t)(2), . . . , ψσ(t)(k+1)).

Hence, it clearly follows that

e = π ◦ φ′
1 ◦ φ′

2 ◦ · · · ◦ φ′
d.

Therefore, dG(π, e) ≤ d = dG(σ, e).

From Theorem 20 and Theorem 22, for any π ∈ Dn an upper bound on dG(π, e) is derived
as follows.

Theorem 23. For any π ∈ Dn, it holds that

dG(π, e) ≤
⌈
1

2
(n− 1)

⌉
. (5.4)

Proof. We prove this by induction on n. Suppose that n = 2. Then, π = (2, 1) and dG(π, e) =
1, because e = π ◦ φ(1, 1, 2, 2). Thus, (5.4) is satisfied.

Next, suppose that n = 3. From Theorem 20, we have that for some φ ∈ T3

wB(π ◦ φ) ≤ wB(π)− 2 = 0

(Note that wB(π) = 2 for any π ∈ D3.) Hence, wB(π ◦ φ) = 0. That is, π ◦ φ = e. Therefore,
dG(π, e) = 1, which means that (5.4) is satisfied.

We assume that (5.4) is satisfied for n ≤ k. Suppose that n = k + 1. For any π ∈ Dk+1,
it follows from Theorem 20 that there exists φ ∈ Tk+1 such that

wB(π ◦ φ) ≤ wB(π)− 2 = k − 2. (5.5)

Let h = wB(π ◦ φ) = dB(e, π ◦ φ). Suppose that σ ∈ Dh+1 is the characteristic permutation
between e and π ◦ φ. From Theorem 22, it holds that

dG(π ◦ φ, e) ≤ dG(σ, e). (5.6)
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It follows from (5.5) that h ≤ k − 2. That is, h + 1 ≤ k − 1. For σ, it follows from the
induction hypothesis that

dG(σ, e) ≤
⌈
1

2
h

⌉
≤

⌈
1

2
(k − 2)

⌉
. (5.7)

It follows from (5.6) and (5.7) that

dG(π ◦ φ, e) ≤
⌈
1

2
(k − 2)

⌉
. (5.8)

It follows from Theorem 13 and (5.8) that

dG(π, e) ≤ dG(π, π ◦ φ) + dG(π ◦ φ, e)
≤ 1 +

⌈
1

2
(k − 2)

⌉
=

⌈
1

2
k

⌉
.

Thus, (5.4) is satisfied for n = k + 1.

Remark 2. Christie showed that inequality (5.4) holds for any π ∈ Sn [21, Section 5] but his
proof needs Theorem 21, which is similar to Theorem 20 and observations on a graph model
interpretation of permutations [21, Lemma 2 and Lemma 3].

Next, we generalize Theorem 23 to any permutation in Sn.

Theorem 24. For any π ∈ Sn, it holds that

dG(π, e) ≤
⌈
1

2
wB(π)

⌉
. (5.9)

Proof. Let h = wB(π) = dB(e, π). Suppose that σ ∈ Dh+1 is the characteristic permutation
between e and π. Then, we have from Theorem 22 that

dG(π, e) ≤ dG(σ, e). (5.10)

From Theorem 23, it holds for σ that

dG(σ, e) ≤
⌈
1

2
h

⌉
=

⌈
1

2
wB(π)

⌉
. (5.11)

From (5.10) and (5.11), any π ∈ Sn satisfies (5.9).

Finally, we derive a tighter upper bound on the generalized Cayley distance between any
two permutations in Sn.

Theorem 25. For any π1, π2 ∈ Sn, it holds that

dG(π1, π2) ≤
⌈
1

2
dB(π1, π2)

⌉
. (5.12)

Proof. For π3 = π−1
2 ◦ π1 ∈ Sn, it follows from Theorem 24 that

dG(π3, e) ≤
⌈
1

2
wB(π3)

⌉
=

⌈
1

2
dB(π3, e)

⌉
. (5.13)

It follows from Proposition 13 that

dG(π3, e) = dG(π2 ◦ π3, π2 ◦ e) = dG(π1, π2). (5.14)

Similarly, it follows from Proposition 15 that

dB(π3, e) = dB(π2 ◦ π3, π2 ◦ e) = dB(π1, π2). (5.15)

From (5.13), (5.14), and (5.15), we have that any π1, π2 ∈ Sn satisfy (5.12).
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We provide an example in which dG(π1, π2) = �12dB(π1, π2)	 is satisfied.

Example 5. Let π1 = (2, 8, 3, 1, 10, 5, 9, 4, 7, 6) and π2 = (3, 4, 10, 2, 7, 1, 5, 9, 6, 8). Then,
dB(π1, π2) = 8 and π−1

2 ◦ π1 = (4, 10, 1, 6, 3, 7, 8, 2, 5, 9). The directed graph of π−1
2 ◦ π1

described in Theorem 14 consists of the vertex set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the edge set

{(0, 10), (1, 8), (2, 6), (3, 0), (4, 2), (5, 1), (6, 3), (7, 7), (8, 5), (9, 4), (10, 9)}.
The cycles in this graph are as follows.

0 → 10 → 9 → 4 → 2 → 6 → 3 → 0, 1 → 8 → 5 → 1, 7 → 7

Therefore, the number c(π−1
2 ◦ π1) of cycles is 3. From Theorem 14,

dG(π1, π2) =
1

2
(11− c(π−1

2 ◦ π1)) = 4 =

⌈
1

2
dB(π1, π2)

⌉
.

In the next example, dG(π1, π2) = �12dB(π1, π2)	 is not satisfied.

Example 6. Let π1 = (9, 1, 6, 8, 5, 4, 10, 3, 2, 7) and π2 = (1, 5, 10, 2, 9, 6, 4, 8, 3, 7). Then,
dB(π1, π2) = 9. Suppose φ1 = φ(4, 5, 6, 6), φ2 = φ(2, 2, 3, 5), φ3 = φ(5, 7, 8, 8), and φ4 =
φ(1, 5, 6, 9). Then,

π1 = (9, 1, 6, 8, 5, 4, 10, 3, 2, 7),

π1 ◦ φ1 = (9, 1, 6, 4, 8, 5, 10, 3, 2, 7),

π1 ◦ φ1 ◦ φ2 = (9, 6, 4, 8, 1, 5, 10, 3, 2, 7),

π1 ◦ φ1 ◦ φ2 ◦ φ3 = (9, 6, 4, 8, 3, 1, 5, 10, 2, 7),

π1 ◦ φ1 ◦ φ2 ◦ φ3 ◦ φ4 = (1, 5, 10, 2, 9, 6, 4, 8, 3, 7).

Since π1 ◦ φ1 ◦ φ2 ◦ φ3 ◦ φ4 = π2, dG(π1, π2) ≤ 4. That is,

dG(π1, π2) �= 5 =

⌈
1

2
dB(π1, π2)

⌉
.

5.3 An Upper Bound on the Code Rate

In this section, we derive an upper bound on the optimal rate for codes with the generalized
Cayley distance.

For a subset C ⊆ Sn, we define

dG,min(C) = min{dG(π1, π2) | π1, π2 ∈ C, π1 �= π2}.
If a subset C ⊆ Sn satisfies

dG,min(C) ≥ 2t+ 1,

C is a code of length n that can correct t generalized transpositions. For n and t, the optimal
code CG,opt(n, t) is defined as follows.

CG,opt(n, t) ∈ arg max
C⊆Sn,dG,min(C)≥2t+1

|C|.

The optimal code rate RG,opt(n, t) for the code CG,opt(n, t) is defined as follows.

RG,opt(n, t) =
log |CG,opt(n, t)|

log n!
.
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We define

BG(n, t) = {π ∈ Sn | dG(e, π) ≤ t},
BB(n, t) = {π ∈ Sn | dB(e, π) ≤ t}.

Let bG(n, t) = |BG(n, t)| and bB(n, t) = |BB(n, t)|. Then, RG,opt(n, t) satisfies the following
inequality.

Proposition 2.

1− log bG(n, 2t)

log n!
≤ RG,opt(n, t) ≤ 1− log bG(n, t)

log n!
.

Yang et al. derived lower and upper bounds on bG(n, t) and bB(n, t).

Theorem 26 (Yang et al. [20]). For all n and t ≤ min{n−√
n− 1, n−1

4 },
(
n− 1

4t

)
(2t)!

2tt!
≤ bG(n, t) ≤

4t∏
k=0

(n− k).

Theorem 27 (Yang et al. [20]). For all n and t ≤ n−√
n− 1,

t∏
k=1

(n− k) ≤ bB(n, t) ≤
t∏

k=0

(n− k).

From Proposition 2 and Theorem 26, the following inequality is satisfied.

Theorem 28 (Yang et al. [20]). For all n and t ≤ min{n−√
n− 1, n−1

4 },

RG,opt(n, t) ≤ 1− log
(
n−1
4t

) (2t)!
2tt!

log n!
.

In this section, our upper bound on the generalized Cayley distance is employed to derive
another upper bound on RG,opt(n, t).

We first derive another lower bound on bG(n, t).

Theorem 29. For all n and t ≤ n−√
n−1
2 , it holds that

bG(n, t) ≥
2t∏

k=1

(n− k).

Proof. For every π ∈ BB(n, 2t), dB(e, π) ≤ 2t. From Theorem 25, we have that

dG(e, π) ≤
⌈
1

2
dB(e, π)

⌉
<

1

2
dB(e, π) + 1

≤ 1

2
· 2t+ 1 = t+ 1.

Hence, dG(e, π) < t+1, i.e., dG(e, π) ≤ t. That is, π ∈ BG(n, t). Thus, BB(n, 2t) ⊆ BG(n, t).

If 2t ≤ n−√
n− 1, i.e., t ≤ n−√

n−1
2 , it follows from Theorem 27 that

bG(n, t) ≥ bB(n, 2t) ≥
2t∏

k=1

(n− k).

60



When n and t satisfy t ≤ min{n−√
n−1
2 , n−1

4 } and

4t∏
k=2t+1

(n− k) < 2t · t! ·
4t∏

k=2t+1

k, (5.16)

our lower bound on bG(n, t) is tighter than the one given in Theorem 26.
From Theorem 29 and Proposition 2, another upper bound on RG,opt(n, t) can be derived.

Theorem 30. For all n and t ≤ n−√
n−1
2 , it holds that

RG,opt(n, t) ≤ 1−
∑2t

k=1 log(n− k)

log n!
. (5.17)

Our upper bound on RG,opt(n, t) is tighter than that in Theorem 28 when (5.16) is satisfied.

5.4 Conclusion

In this dissertation, we have derived the tighter upper bound on the generalized Cayley
distance. Our upper bound is equal to nearly half of the block permutation distance. Fur-
thermore, we employed our upper bound to derive an upper bound on the optimal rate for
codes with the generalized Cayley distance. Our upper bound on the rate is tighter than that
given by Yang et al. [20] when the code length is relatively small.

An explicit construction of order-optimal systematic codes with the generalized Cayley
distance was developed by Yang et al. [24]. However, in their scheme, the code length must
be sufficiently large. Our future work is to develop a construction of systematic codes with
short code lengths.
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Chapter 6

Concluding Remarks

In this dissertation, some kinds of coding schemes for flash memory applications are investi-
gated.

Index-less indexed flash code with inversion cells (I-ILIFC) is a coding scheme to prolong
the lifetime of flash memory. We analyzed the worst-case performance of I-ILIFC and specified
a threshold for the code length that determines whether I-ILIFC improves the worst-case per-
formance of index-less indexed flash code (ILIFC), which is the underlying scheme of I-ILIFC.
Additionally, we modified the encoding scheme of I-ILIFC and derived another threshold for
the code length comparing the performances of ILIFC and I-ILIFC. Consequently, we relaxed
the sufficient condition for improving the performance of ILIFC.

Parallel random I/O (P-RIO) code is a coding scheme to increase the reading speed of
multilevel flash memory. It is known that the construction of random I/O (RIO) code, which
is the underlying scheme of P-RIO code, is equivalent to that of well-studied write-once
memory (WOM) code. Coset coding is a technique to construct WOM codes using linear
binary codes. In coset coding, we leveraged information of all stored pages to construct P-
RIO codes that have parameters for which RIO codes do not exist. In this dissertation, we
used (7, 4) Hamming code and (15, 11) Hamming code as linear codes in coset coding. It is
difficult to generalize our approach to the general (2r − 1, 2r − r− 1) Hamming code or other
linear codes. This motivates us to develop another construction of P-RIO codes.

Permutation code is a coding scheme to correct errors in flash memory. In permutation
code, different distances depending on the kind of errors are considered. The generalized
Cayley distance is the number of generalized transposition errors that are needed to transform
one permutation to another. Generalized transpositions are swapping any two substrings of
a permutation and subsume some other errors such as transpositions and translocations.
Since the exact value of the generalized Cayley distance is complicated to compute, another
distance called block permutation distance was proposed to construct permutation codes
with the generalized Cayley distance. In this dissertation, we derived a tighter upper bound
on the generalized Cayley distance using the block permutation distance. Additionally, we
employed our upper bound to derive an upper bound on the optimal rate for codes with
generalized Cayley distance. An explicit construction of order-optimal systematic codes with
the generalized Cayley distance was developed by Yang et al. Our future work is to develop
a construction of systematic codes with short code lengths. Our theorem used to derive our
upper bound on the distance may be useful to construct such codes.
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