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Abstract

How to suppress the influence of noise on the estimation result has always been

an important issue in the field of signal processing and data processing which are

concerned in this thesis. The following are two important issues related to noise

reduction for speech enhancement and data analysis, respectively.

The first one is for speech enhancement. Speech is a fundamental method of

human communication. With advances in technology of digital signal processing,

speech processing equipment, likes cellular phones and professional mobile radio,

are an integral part of everyday life. Environmental noise is one of negative factors

which widely exist in speech processing equipment for signal processing, such as

traffic noise, train noise, office noise etc. Suppression of the acoustic background

noise is a relevant and challenging problem. Apart from reducing listener fatigue

and improving the quality and intelligibility of speech, noise reduction which can be

called speech enhancement, is crucial to obtain good performance of the speech signal

processing. For most speech enhancement algorithms, an estimate for the noise

spectrum is assumed to be available. Such an estimate is crucially important for

speech-enhancement performance. The noise estimate strongly affects the enhanced

signal quality. Annoying residual noise will be audible if the noise estimate is too

low. Alternatively, if the noise estimate is too high, then speech will be destroyed

possibly resulting in loss of intelligibility.

The other one is related to data analysis. As measuring a certain physical quan-

tity, the relatively small number of abnormal values or outliers, hereinafter referred

to as outliers, are included in the normal measured values that contain measure-
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ment noise. It is one of the frequently occurred works in science and engineering

to estimate the true statistical parameters of the physical quantity from these mea-

sured values including outliers. Because the measurement noise follows a Gaus-

sian distribution with mean zero in general, all the samples form the major cluster

are Gaussian-distributed around the true value. The problem mentioned above is

summarized to estimate the parameters of the major cluster, such as the mean,

covariance matrix, and the number of samples included in the major cluster.

In order to solve the problems above, the research focuses on the noise estimation

in speech enhancement for speech signal processing and the estimation of major

cluster for data analysis. And the construction of this thesis is summarized as

follows.

Chapter 1 is the introduction which describes developing and the main problems

both in speech enhancement and major cluster estimation. The motivation and

organization of the thesis is followed.

Chapter 2 contents the proposed noise estimation method for speech enhance-

ment based on quasi-Gaussian distributed power spectrum series by radical root

transformation. This contribution presents and analyzes the statistical regularity

related to the noise power spectrum series and the speech spectrum series. It also

undertakes a thorough inquiry of the quasi-Gaussian distributed power spectrum se-

ries obtained using the radical root transformation. Consequently, a noise-estimation

algorithm is proposed for speech enhancement. This method is effective for separat-

ing the noise power spectrum from the noisy speech power spectrum. In contrast

to standard noise-estimation algorithms, the proposed method requires no speech

activity detector. It was confirmed to be conceptually simple and well suited to

real-time implementations. Practical experiment tests indicated that our method is

preferred over previous methods.

Chapter 3 proposes a new estimation method for the major cluster by the mean-

shift with updating kernel. The mean-shift method which is known as a convenient

mode-seeking method. Utilizing a principle that the sample mean over an analysis

window, hereafter referred to the kernel according to custom, in the data space

where the samples are distributed is biased toward the densest direction of samples

from the center of the kernel, the mean-shift method tries to seek the densest point

of samples, or the sample mode, iteratively. A smaller kernel causes convergence

to a local mode appeared due to statistical fluctuation; on the other hand, a larger

kernel causes estimating a biased mode affected by other clusters, abnormal values,

or outliers if there are existing other than the major cluster. Therefore, the optimal
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selection of the kernel size, which is referred to the bandwidth in many references, is

an important problem. In this paper, under the assumptions that the major cluster

follows a Gaussian probability density distribution and the outliers do not affect

the sample mode of the major cluster, adopting Gaussian kernel, we proposed a

new mean-shift in which both the mean vector and covariance matrix of the major

cluster are estimated in each iteration, then the kernel size and shape are updated

adaptively. Numerical experiments indicate that the mean vector, covariance matrix

and the number of samples belonging to the major cluster can be stably estimated.

Because the kernel shape can be adjusted not only to an isotopic shape but also to

an anisotropic shape according to the sample distribution, the proposed method is

shown to have higher estimation precision compared to the general mean-shift.

Chapter 4 will draw the conclusion of the research. At the end of the thesis,

prospective ideas of future works will be explored.

Keywords: Spectrogram, power spectrum series, quasi-Gaussian distribution,

speech activity detector, power spectral density,

radical root transformation, mean-shift, mode estimation,

kernel bandwidth and shape, outliers, updating kernel
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Chapter 1

Introduction

Noise refers to unnecessary information or data other than the information of the

processing object. Measurement data may cause individual data to be unrealistic or

lost due to environmental interference or human factors during its acquisition and

transmission. These data are often referred to as noise or outliers. In order to re-

store the objective authenticity of the data in order to get better analysis results, it

is necessary to perform noise reduction analysis on the original data or to eliminate

outliers. How to suppress the influence of noise or outliers on the estimation result

has always been an important issue in the field of signal processing and data pro-

cessing which are concerned in this thesis. The following are two important issues

related to noise reduction for speech enhancement and data analysis, respectively.

The first one is for speech enhancement. Speech is a fundamental method of

human communication. With advances in technology of digital signal processing,

speech processing equipment, likes cellular phones and professional mobile radio,

are an integral part of everyday life. Environmental noise is one of negative factors

which widely exist in speech processing equipment for signal processing, such as

traffic noise, train noise, office noise etc. Suppression of the acoustic background

noise is a relevant and challenging problem. Apart from reducing listener fatigue

and improving the quality and intelligibility of speech, noise reduction which can be

called speech enhancement, is crucial to obtain good performance of the speech signal

processing. For most speech enhancement algorithms, an estimate for the noise

spectrum is assumed to be available. Such an estimate is crucially important for

speech-enhancement performance. The noise estimate strongly affects the enhanced

signal quality. Annoying residual noise will be audible if the noise estimate is too

low. Alternatively, if the noise estimate is too high, then speech will be destroyed

possibly resulting in loss of intelligibility.

The other one is related to data analysis. As measuring a certain physical quan-

1
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tity, the relatively small number of abnormal values or outliers, hereinafter referred

to as outliers, are included in the normal measured values that contain measure-

ment noise. It is one of the frequently occurred works in science and engineering

to estimate the true statistical parameters of the physical quantity from these mea-

sured values including outliers. Because the measurement noise follows a Gaus-

sian distribution with mean zero in general, all the samples form the major cluster

are Gaussian-distributed around the true value. The problem mentioned above is

summarized to estimate the parameters of the major cluster, such as the mean,

covariance matrix, and the number of samples included in the major cluster.

In order to solve the problems above, the research focuses on the noise estimation

in speech enhancement for speech signal processing and the estimation of major

cluster for data analysis.

1.1 Noise Estimation in Speech-Enhancement

For most speech-enhancement algorithms, an estimate for the noise spectrum is as-

sumed to be available. Such an estimate is crucially important for speech-enhancement

performance. The noise estimate strongly affects the enhanced signal quality. An-

noying residual noise will be audible if the noise estimate is too low. Alternatively, if

the noise estimate is too high, then speech will be destroyed possibly resulting in loss

of intelligibility. The simplest approach estimates and updates the noise spectrum

during the silent segments (e.g., during pauses) of the signal using a voice-activity

detection (VAD) algorithm [1].

Without using a speech activity detector [1], several noise-estimation algorithms

have been proposed for speech enhancement applications. Martin [2] proposed a

method for estimating the noise power spectral density based on tracking the min-

imum of recursively smoothed periodograms over a finite window from the noisy

speech. Doblinger [3] updated the noise estimate by tracking the minimum of the

noisy speech continuously in each frequency bin. Hirsch and Ehrlicher [4] improved

the noise estimate by comparing the noisy speech power spectrum to a prior noise

estimate. Cohen [5] proposed a minima-controlled recursive algorithm (MCRA),

which updates the noise estimate by tracking the noise-only regions of the noisy

speech spectrum. In the improved MCRA approach (Cohen [6]), a different method

was proposed to track the noise-only regions of the spectrum based on the estimated

speech-presence probability. This probability is controlled by the minima.

In brief, the previously described noise-estimation algorithms [2]–[6] developed
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for speech enhancement algorithms are all based on the Minimum Statistics quoted

in Martin’s method [2]. Although the smoothing factor and the window length

strongly influence the noise estimation performance using Martin’s method [2], no

good criteria exist to ascertain the optimal value of the parameters. Therefore, the

estimation accuracy of these methods [2]–[6] is poor.

Yokota and Ye [7] proposed the radical root, or r-th root, transform of the power

spectrum series such that the transformed series follow a quasi-Gaussian distribu-

tion. Furthermore, a power spectrum estimation method robust for sudden noise

was proposed. Considering using the speech and the background noise instead of

the abrupt noise and the stationary Gaussian stochastic process, respectively, we

can estimate the background noise power spectrum for speech enhancement by ap-

plying Yokota’s method in principle. However, in Yokota’s method, the proportion

of the time of the abrupt noise to the whole signal is small, whereas in the case of

speech enhancement, the speech segment is usually much longer. When we estimate

the noise power spectrum, it is strongly affected by the speech power spectrum.

Therefore, it is impossible to apply Yokota’s method under this condition directly.

In this paper, we approximate the probability density distribution of the speech

power spectrum series with the super-Gaussian distribution and calculate the range

of the necessary optimal parameter r of the radical root transformation to make the

probability density distribution normal distributed. By using the optimal parameter

r, we present that both the power spectrum series of the speech and the background

noise can be quasi-normalized. Therefore, after applying the radical root transforma-

tion to the mixed power spectrum series consisting of the speech and the background

noise, the mixed power spectrum series follow a mixed Gaussian distribution. It is

possible to estimate the parameters of each distribution by using the EM algorithm.

This is proposed as a noise power spectrum estimation method aiming at speech

enhancement. Practical experiments conducted with different noise types confirm

the validity of the proposed method.

1.2 Estimating the Major Cluster by Mean-Shift

with Updating Kernel

When measuring a certain physical quantity, a few abnormal values, hereinafter

designated as outliers, are included among the normal measured values, thereby

exacerbating measurement noise. Frequently in science and engineering, some effort
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is necessary to estimate the true statistical parameters of the physical quantity

from these measured values and the included outliers. Because the measurement

noise generally follows a Gaussian distribution with mean zero, all samples from

the major cluster are Gaussian-distributed around the true value. The problem

described above is summarized to estimate the parameters of the major cluster,

such as the mean, covariance matrix, and the number of samples included in the

major cluster.

Because the mean equals the mode in a Gaussian distribution, if the outliers

do not affect the sample mode of the major cluster, then the problem above can be

replaced by a mode-seeking problem of the major cluster. Fukunaga and Hostetler [8]

first proposed the mean-shift method, which was subsequently generalized by Cheng

[9]. It is therefore known as a convenient iterative method for mode-seeking. The

mean-shift was shown to be equivalent to the method that seeks a local maximum

by the steepest gradient algorithm for the probability density distribution estimated

using the kernel method [10,11]. Therefore, the bandwidth, which is the size of the

used kernel, deeply affects both the estimation accuracy and precision in the mean-

shift as well as in kernel density estimation [12].

Usually in kernel density estimation, the bandwidth is determined such that the

difference between the true distribution and the estimated distribution is minimized

[13–15]. In mean-shift, because the normalized norm affects the convergence speed,

a method for determining the bandwidth is proposed for the isotropic kernel [16] and

anisotropic kernel [17] such that the norm of the mean-shift vector normalized by

the bandwidth is maximized. A method for selecting the most stable bandwidth was

also proposed [17, 18]. Moreover, mean-shift with bandwidth that varies depending

on the coordinate in data space was proposed [16,18]. Nevertheless, these methods

entail high calculation costs because they require some provisional estimate of the

probability density distribution, which is described as the pilot or initial estimate

in some reports of the literature. Other theoretical studies of mean-shift, such

as convergence, have been further proven. Li [19] proved its convergence by further

imposing some commonly acceptable conditions. Ghassabeh [20] modified the mean-

shift to guarantee its convergence. Although the mean-shift has been used widely

in many applications [21–23], the use of bandwidth for mean-shift has been largely

ignored in studies reported in the literature.

As described herein, we propose a new mean-shift method by which adopting the

multi-dimensional Gaussian kernel, the kernel bandwidth and shape are updated to

fit the major cluster size and shape in each iteration with no provisional estimation.
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We first derive a calculation equation for calculating the variance (or covariance

matrix) of a major cluster from the sample variance in the kernel (or the sample

covariance matrix in the multi-dimensional case) around the mode. Then, as the

update progresses in the mean-shift method, the variance (or covariance matrix) of

a major cluster is estimated using this calculation equation. In addition, the kernel

bandwidth and shape are adjusted adaptively based on this estimated value. There-

fore, we propose the mean-shift method with such an updating kernel. The proposed

mean-shift requires no predetermination of the kernel bandwidth as necessitated by

the general mean-shift method.
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Chapter 2

Noise Estimation for Speech

Enhancement Based on

Quasi-Gaussian Distributed Power

Spectrum Series by Radical Root

Transformation

2.1 Quasi-Gaussian distributed power spectrum

series of noise and speech

2.1.1 Power spectrum series

Considering a stochastic process x(t), the short-time Fourier spectrum centering on

the time t with a suitable window length is denoted as X(t, f). Here, f represents

the frequency. Let Xf (t) ≡ X(t, f) be denoted as the spectrum series if frequency f

is fixed. Applying the non-steady-state analysis of the stochastic process, the spec-

trogram P (t, f) = |X(t, f)|2 denotes the power of the short-time Fourier spectrum

X(t, f). Because the frequency f is fixed, Pf (t) will be designated as the power

spectrum series.

7



8 2.1. Quasi-Gaussian distributed power spectrum series of noise
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2.1.2 Probability density distribution of the power spec-

trum series

Power spectrum series of the noise

The spectrum series Xf (t) is a complex stochastic series. If x(t) is a Gaussian

stochastic process, then the real part Re[Xf (t)] and the imaginary part Im[Xf (t)]

will both follow a Gaussian distribution with a zero mean and equal variance. In

other words, Xf (t) follows a two-dimensional Gaussian distribution centered at 0+0i

with a covariance matrix σ2I on the complex plane. Here I denotes the identity

matrix. Also, σ2 denotes the variance of the real part Re[Xf (t)]; the imaginary part

is Im[Xf (t)].

To confirm that the noise power spectrum series Xf (t) of real environment noise

actually follows two-dimensional Gaussian distribution in the complex plane, we

make pulse code modulation (PCM) recordings for the air-conditioning noise and

the vacuum cleaner noise. We then calculate Xf (t) with a Hamming window length

of 10 ms, achieving a 50% overlap between adjacent frames using short-time Fourier

transformation.

Here, the mean vector of Re[Xf (t)] and Im[Xf (t)] is defined as

(
mean(Re[Xf (t)])

mean(Im[Xf (t)])

)
.

Furthermore, the covariance matrix related to Re[Xf (t)] and Im[Xf (t)] is defined

as

(
cov(Re[Xf (t)],Re[Xf (t)]) cov(Re[Xf (t)], Im[Xf (t)])

cov(Im[Xf (t)],Re[Xf (t)]) cov(Im[Xf (t)], Im[Xf (t)])

)
. The mean vectors for

air-conditioning noise and vacuum cleaner noise are, respectively,

(
0.0001

0.0000

)
and(

0.0026

0.0034

)
. All mean vectors are close to the zero vector, which implies that the

mean of Xf (t) on the complex plane is approximately 0 + 0i. The covariance ma-

trices of Re[Xf (t)] and Im[Xf (t)] for air-conditioning noise and vacuum cleaner

noise are, respectively,

(
0.0047 0.0000

0.0000 0.0047

)
and

(
12.3382 −0.0004

−0.0004 12.3566

)
. The covari-

ances between Re[Xf (t)] and Im[Xf (t)] are clearly close to zero. Therefore, real

part Re[Xf (t)] and imaginary part Im[Xf (t)] are non-correlated. We plot the two-

dimensional Gaussian distribution consisting of the mean vectors and the covariance

matrices compared to the actual histogram of spectrum series Xf (t). Scattergrams

of spectrum series Xf (t) for the noises of two types are depicted in Fig. 2.1(a) and

Fig. 2.1(b). Fig. 2.1(c) and Fig. 2.1(d) present histograms of spectrum series Xf (t).
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and result fitted with two-dimensional Gaussian distribution: (a) Scattergram re-
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Using the two-dimensional distribution to fit Fig. 2.1(c) and Fig. 2.1(d), the fitting

results are presented in Fig. 2.1(e) and Fig. 2.1(f). Comparisons between Figs.

2.1(c) and 2.1(d) and Figs. 2.1(e) and 2.1(f), respectively reveal that the actual

noise power spectrum series follows the two-dimensional Gaussian distribution.

Normalizing the variance σ2 to one, the power spectrum series Pf (t) = |Xf (t)|2 =

Re[Xf (t)]
2 + Im[Xf (t)]

2 follows a χ2 distribution with the degree of freedom k = 2.

In general, the probability density distribution of the χ2 distribution with the degree

of freedom k is expressed as

p(x; k) =
(1/2)k/2

Γ(k/2)
xk/2−1e−x/2, (2.1)

where Γ(·) is the gamma function, and the expectation of this distribution is equal

to the degrees of freedom k. Then the probability density distribution of the power

spectrum series Pf (t) is

p(x; 2) =
1

2
e−

1
2
x, (2.2)

as the degree of freedom k = 2.

Power spectrum series of the speech

The speech signal is a non-stationary signal that the spectrum is changing markedly

over time. Lotter and Vary [25] proposed a spectral amplitude estimator with a

parametric super-Gaussian speech model for approximating the probability density

distribution of the real speech spectral amplitudes Af (t) = |Xf (t)|. The power

spectrum series Pf (t) will be determined as Pf (t) = A2
f (t) . The Probability Density

Function (PDF) p(a) of the speech spectral amplitudes Af (t) can be approximated

by the following parametric function in super-Gaussian speech model as

p (a) =
µv

Γ(v)

av−1

σvs
exp

(
−µ a

σs

)
, (2.3)

where σ2
S denotes the variance of the PDF. Parameters µ and v determine the

PDF shape. µ gives the slope of the decay to higher values, whereas v strongly

influences the value of the PDF at small values. For brevity, let β = u
σs

. Thereby,

Eq. (2.3) can be simplified as

p (a) =
βv

Γ(v)
av−1 exp(−βa) . (2.4)

To confirm that it is always possible to approximate the real PDF of the speech

spectral amplitudes Af (t) with Eq. (2.4), the following experiments were conducted.
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For these experiments, we used the voice files of the standard language with about

one hour speech related to both Chinese and Japanese including in the database

from textbooks with CDs [26]–[27]. To estimate the PDF of the speech spectral

amplitudes Af (t), we calculate Af (t) with a Hamming window length of 10 ms,

achieving a 50% overlap between adjacent frames by short-time Fourier transforma-

tion. Then we approximate the real PDF of the speech spectral amplitudes Af (t)

with Eq. (2.4).

Fig. 2.2 shows the goodness of the approximation to the real PDF of speech spec-

tral amplitudes. Fig. 2.2(a) portrays a histogram of Chinese speech spectral ampli-

tudes and the best fitted approximation by Eq. (2.4) with the optimal parameter set

(β, µ) = (1.0303, 1.2587). Speech is divisible into numerous voiced and unvoiced re-

gions. The classification of speech signals as voiced–unvoiced provides a preliminary

acoustic segmentation for speech processing applications such as speech synthesis,

speech enhancement, and speech recognition. The Japanese voiced–unvoiced part is

chosen here to verify the approximation performance for special speech signals. Sim-

ilarly, Figs. 2.2(b), 2.2(c), and 2.2(d) present corresponding results for the Japanese

speech signal, Japanese voiced part, and Japanese unvoiced part. Fig. 2.2 implies

that the super-Gaussian distribution represented by Eq. (2.4) always provides an

extremely good approximation for the real speech spectrum amplitude series.

2.1.3 Box–Cox transformation [24] and radical root trans-

formation [7]

Noise power spectral series and speech spectrum series are not normally distributed.

Therefore, it is difficult to distinguish noise power spectral series from speech spec-

trum series. To make the two distributions more normal distribution-like, we use

radical root transformation [7], which is based on the framework of the Box–Cox

transformation [24].

The one-parameter Box–Cox transformation [24] is defined as

f(x) =


xλ − 1

λ
λ 6= 0,

log(x) λ = 0.
(2.5)

This transformation holds for x > 0. Under the situation of λ 6= 0, when λ tends

to zero, the limit of the formula above in Eq. (2.5) is equal to the following in Eq.

(2.5). For this reason, such a form of formula exists in Box–Cox transformation
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under the situation of λ 6= 0. However, the purpose of this study is to make χ2

distribution and super-Gaussian distribution normally distributed. Therefore, it is

unnecessary to consider the situation of λ = 0. For such a purpose, the Box–Cox

transformation is fundamentally equivalent to f(x) = xλ, although the average and

the variance differ. In this formula, using a substitution r ≡ 1
λ
, one can obtain the

radical root transformation [7] as

f(x) = x
1
r , 0 < r <∞. (2.6)

The radical root transformation [7] can be regarded as the brief modified form of

the Box–Cox transformation [24].

2.1.4 Probability density distribution after radical root trans-

formation [7]

Generally, by applying the probability density distribution p(x) of a random variable

x, the probability density distribution q(y) after transformation y = f(x) is

q(y) = p(g(y))
dx

dy
, (2.7)

based on the transform relation q(y)dy = p(x)dx. In Eq. (2.7), x = g(y) is the

inverse function of y = f(x).

Power spectrum series of the noise

Considering the noise power spectrum series, the probability density distribution

p(x) is represented by Eq. (2.2). After substituting f(x) = x1/r in Eq. (2.7), the

transformed probability density distribution q(y) is given as

q(y; r) =
1

2
e−

1
2
yrryr−1. (2.8)

The expectation m′y(r) and variance σ
′2
y (r) of the distribution q(y; r) are, respec-

tively, [7],

m′y(r) = 2
1
r Γ

(
r + 1

r

)
, (2.9)

σ′2y (r) = −2
r+2
r Γ

(
r + 1

r

)2

+4
1
r Γ

(
r + 1

r

)2

+ 4
1
r Γ

(
r + 2

r

)
. (2.10)
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Eq. (2.9) and Eq. (2.10) are derived under circumstances in which the expectation of

the χ2 distribution matches k = 2 degrees of freedom. When the expectation of the

χ2 distribution is mx, the expectation my(r) and variance σ2
y(r) of the transformed

distribution q(y; r) can also be derived [7]. Furthermore, the relation between the

expectations before and after radical root transformation are derived [7] as

mx =

 my(r)

Γ

(
r + 1

r

)

r

. (2.11)

Power spectrum series of the speech

Because the speech spectral amplitude series follow a super-Gaussian distribution

approximately, the probability distribution p(a) is represented by Eq. (2.4). After

substituting f(x) = x1/r in Eq. (2.7), the transformed probability density distribu-

tion q(y) is

q(y; r) =
rβv

Γ(v)
yvr−1 exp(−βyr) . (2.12)

The expectation m′y(r) and variance σ
′2
y (r) of the transformed distribution q(y; r)

are

m′y(r) =

∫ ∞
0

yq(y; r)dy

=
1

β
1
r

Γ
(
v + 1

r

)
Γ(v)

, (2.13)

σ′2y (r) =

∫ ∞
0

(y −my(r))
2q(y; r)dy

=

∫ ∞
0

y2q(y; r)dy − (

∫ ∞
0

yq(y; r)dy)2

=
1

β
2
r

Γ(v + 2
r
)

Γ(v)
− (

1

β
1
r

Γ(v + 1
r
)

Γ(v)
)2. (2.14)

2.1.5 Evaluation of the normality about the power spectrum

series after radical root transformation [7]

Power spectrum series of the noise

The expectation is equal to the mode in normal distribution. Under conditions where

the mode and expectation of the converted distribution are equal, the optimal value

of parameter r in radical root transformation can be obtained approximately using
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numerical analysis [7]. The first derivative of the probability density distribution

q(y; r) represented by Eq. (2.8) is

q′(y; r) = −r
4
e−

1
2
yr(ry2r−2

−2ryr−2 + 2yr−2). (2.15)

When q′(y; r) = 0, the mode of the distribution is inferred as

Modey(r) =

(
2r − 2

r

) 1
r

. (2.16)

If the mode is equal to the expectation Modey(r) = m′y(r), then the optimal value

of parameter r∗ is determined [7] as

r∗ ' 3.312. (2.17)

Power spectrum series of speech

In probability theory and information theory, the Kullback–Leibler divergence is

a non-symmetric measure of the difference between two probability distributions.

The KL divergence between the probability density distribution q(y; r) shown in

Eq. (2.12). The Gaussian distribution pg(y) is

DKL(pg ||q) =

∫ ∞
−∞

pg(y) log
pg(y)

q(y; r)
dy, (2.18)

where the mean of the Gaussian distribution pg(y) is m′y(r) represented by Eq.

(2.13), and the variance is σ
′2
y (r) represented by Eq. (2.14). One can ascertain the

optimal value of parameter r under the condition that the KL divergence between

the two distributions reaches the minimum.

In Section 2.2.2, we have used a super-Gaussian distribution to approximate the

real PDF of speech spectral amplitudes obtained from the Chinese speech signal,

Japanese speech signal, Japanese voiced part, and Japanese unvoiced part. The

fitted parameter sets are (β, v) = (1.0303, 1.2587), (β, v) = (1.2946, 5.0000), (β, v) =

(1.0151, 1.5648), and (β, v) = (1.9803, 1.4802). Because of the test of the Chinese

speech signal, Japanese speech signal, Japanese voiced part, and Japanese unvoiced

part, the range of the choice of the parameter sets (β, v) can be ascertained. This

study only examines the situation under the condition (0 < β < 5, 0 < v < 5).

We can obtain the numerical solution by setting the condition. Each parameter set

(β, v) gets one optimal value of parameter r.
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Using r-th radical root transformation, the range of KL divergences between

the transformed probability density distribution and the corresponding Gaussian

distribution is [5.1306 ∗ 10−5, 0.0406]. The KL divergences between them are ex-

tremely small, which implies that the probability density distribution transformed

from super-Gaussian distribution obeys the Gaussian distribution.

To present the performance of r-th radical root transformation, we apply rad-

ical root transformation to the super-Gaussian distributions corresponding to 16

parameter sets (β, v). Then we plot the transformed probability distribution and

the corresponding Gaussian distribution. The top panel in Fig. 2.3 presents the

relation between the transformed probability density distribution corresponding the

optimal transformation parameter r and the Gaussian distribution. That relation

implies that the super-Gaussian distribution after r-th radical root transformation

can be quasi-Gaussian distributed.

The optimal value of transformation parameter r∗ = 3.312 related to the noise

power spectrum series is discussed in Section 2.5.1. Because of Pf (t) = A2
f (t),

applying radical root transformation to the speech spectral amplitude series

P
1
r∗
f (t) = A

1
r∗/2
f (t), (2.19)

the transformation parameter is r = r∗/2 = 1.656. Using radical root transfor-

mation related to parameter r = 1.656, the range of KL divergences between the

transformed probability density distribution and the corresponding Gaussian distri-

bution is [0.0039, 0.1496]. The KL divergences are also small. Therefore, for all the

parameter sets under the condition (0 < β < 5, 0 < v < 5), using the common trans-

formation parameter r = 1.656, the transformed probability density distribution can

also be converted approximately into the corresponding Gaussian distribution.

To confirm that the super-Gaussian distributions after the radical root transfor-

mation related to common transformation parameter r = 1.656 are quasi-Gaussian

distributed, we plot the super-Gaussian distributions after radical root transfor-

mation related to the same 16 parameter sets (β, v) used before, as well as the

corresponding Gaussian distribution. The bottom panel of Fig. 2.3 presents the

relation between the transformed probability density distribution corresponding the

common transformation parameter r = 1.656 and the Gaussian distribution. Com-

pared to the parameter sets (β, v) obtained from different speech signals, it indicates

that the speech power spectrum series after radical root transformation can be quasi-

Gaussian distributed approximately.
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2.2 Proposed noise estimation algorithm based on

the quasi-Gaussian distributed power spec-

trum series

As discussed earlier, using the radical root transformation with the same parameter

r∗ = 3.312, the transformed noise power spectrum series and the transformed speech

power spectrum series can be quasi-Gaussian distributed. The proposed method

relies on one basic assumption: The noise power spectrum series and the speech

power spectrum series are independent in a noisy speech signal. That is,

Pf (t) = |Xf (t)|2 + |Df (t)|2, (2.20)

where Pf (t), |Xf (t)|2 and |Df (t)|2 respectively denote the power spectrum of noisy

speech, clean speech, and noise. In addition, f and t respectively stand for the

frequency index and time index. Therefore, the mixed power spectrum series after

the radical root transformation follows a two-dimensional Gaussian mixture distri-

bution. The parameters of the Gaussian mixture model can be computed easily

using the EM algorithm. Therefore, we can separate the transformed noise power

spectrum series from the total transformed power series. The following concludes

the process of the proposed noise estimation algorithm:

(1) (2-1) (1) Obtain the power spectrogram P (t, f) from the noisy speech

signal. We choose a PCM recording of noisy speech signal for analysis and compute

the spectrogram with a Hamming window length of 10 ms, achieving a 50% overlap

between adjacent frames by short-time Fourier transformation. Fig. 2.4(a) presents

an example of a noisy speech signal for analysis and the corresponding spectrogram.

(2) Perform the following process for each frequency f :

(2–1) Use the radical root transformation in the power spectrum series Pf (t)

with the transformation parameter r∗ = 3.312, and obtain the new quasi-Gaussian

distributed power spectrum series P
1/r∗

f (t). Fig. 2.4(b) depicts a histogram of the

power spectrum series at f = 512Hz before the transformation.

(2–2) Compute the Gaussian mixture model parameters using the EM algorithm.

Consequently, the weights, the means, and the variances of two Gaussian distribution

in the Gaussian mixture model are obtained. Here, we assume that the noise is

stationary and that the sound is intermittent. Based on this assumption, the two

Gaussian distributions appear because of the existence of noise-only segment and

noise-speech mixture segment (not speech-only segment). The power of the noise-
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only segment is markedly smaller than the power of noise-speech mixture segment.

Therefore, the Gaussian distribution with smaller mean in the Gaussian mixture

model corresponds to noise. Then put the smaller mean as the corresponding time

average value Pnoise(f) of the noise power spectrum series. Fig. 2.4(c) plots a

histogram of the transformed power spectrum series at f = 512Hz and the related

Gaussian mixture model.

(2–3) According to Eq. (2.11), compute the time average value P (f) of the

noise power spectrum series from the time average value Pnoise(f) as

P (f) =

 Pnoise(f)

Γ

(
r∗ + 1

r∗

)

r∗

. (2.21)

(3) Get P (f) as the estimation of the noise power spectral density.

2.3 Experimental results

2.3.1 Typical conventional noise estimation: Martin’s min-

imum trackingalgorithm [2]

Martin’s method [2] is based on minimum statistics and smoothing of the noisy

speech power spectral density. This method relies on two major observations. The

first is statistical independence of speech and noise represented by Eq. (2.20). The

second is that the noisy speech power spectrum often becomes equal to the noise

power spectrum. This happens during speech pauses and also between words and

syllables. Therefore, the estimate of noise power spectral density is obtained by

tracking the minimum of the noisy speech in each frequency separately. For searching

the minimum, a first-order recursive version of the noisy speech power spectrum

series is used as

P̄f (t) = αP̄f (t− 1) + (1− α)Pf (t), (2.22)

where α is the smoothing constant. Later, the minimum is tracked for each window

as

P̄min(f, t) = min[P̄f (t), P̄f (t+ 1),

..., P̄f (t+ L− 1)], (2.23)
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where L denotes the window length. This minimum is always smaller than (or in

trivial cases equal to) the average value of noise power. Therefore, a bias correction

is necessary. Finally, the minimum value is multiplied using a bias correction factor

Bf (t) which depended mainly on the variance of the noisy signal. It is given as

σ2
N(f, t) = Bf (t)P̄min(f, t). (2.24)

When the frequency f is fixed, the estimated noise power spectrum is

P̂f (t) =
1

T

T∑
t=0

σ2
N(f, t), (2.25)

where T is the signal length.

2.3.2 Characteristic of the Martin’s minimum tracking al-

gorithm

The choice of the window length L is based on the notion that it would encompass

at least one silence period of the noisy speech. It can be expected to track at least

one frame of the noise-only region. However, no method exists to adjust L based

on the speech peak width. Actually, L is chosen as sufficiently large to encompass

the broadest peak possible in any speech waveform generally. In contrast, the value

of the smoothing constant α strongly affects the noise power spectrum estimation

results. Ideally, for better noise tracking, α should be close to zero when speech is

present. To date, no appropriate criteria exist to select the optimal parameters for

window length L and smoothing constant α.

Although the noise power estimator σ2
N(f, t) is amended by the bias correction

factor Bf (t), it is still not an unbiased estimator. Noise power estimation is still

smaller than the actual mean noise power. To demonstrate the performance of Mar-

tin’s method [2], we make PCM recordings in practical for an ambient noise and

a noisy speech signal under this noise. We then use Martin’s method [2] to obtain

the noise power spectrum. Fig. 2.5 presents the power spectrum of noisy speech

and the estimated noise power spectrum of noisy speech with the parameter set as

(L = 100, α = 0.9). The estimated noise spectrum is compared with the true noise

spectrum for the same example. Fig. 2.5(a) portrays the power spectrum and noise

estimation P̄min(f, t) for a noisy speech signal. Fig. 2.5(b) presents a comparison

between the true noise power σ2
f and the estimated noise power P̂ (f) for the same

noisy speech signal, which implies that Martin’s method [2] does not perform well
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in practice. The true noise power spectrum is estimated directly from the noise-only

segment of the experimental recordings. However, in proposed method and Martin’s

method, noise power spectrum is estimated from the overall experimental recordings

without distinguishing between the noise-only segment and the noise-speech mix-

ture segment. Therefore, neither method requires a voice-activity detection (VAD)

algorithm [1].
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Figure 2.5: Top panel: Plot of noisy speech power spectrum and noise estimate for

noisy speech at f=500 Hz. Bottom panel: Plot of true and estimated noise power

spectrum for the same noisy speech at f=500 Hz.

2.3.3 Comparison of results obtained using the proposed

method and Martin’s minimum tracking algorithm

To compare the performance of the proposed method and Martin’s method [2], this

study uses PCM recordings of dialogues between two people under three noise con-

ditions. Speech signal data in PCM recordings is not compressed, and has no power

consumption. Table 2 presents the recording condition. Three noise conditions are

air-conditioning noise, vacuum cleaner noise (low gear), and vacuum cleaner noise

(high gear). We obtain noise power spectrum density of three noisy speech signals

using two methods. The top panel in Fig. 2.6(a) portrays a noisy speech signal

for recordings under the air-conditioning noise and the corresponding spectrogram.
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Table 2.1: Comparison of the KL divergence between the true noise spectrum and

noise estimation.
XXXXXXXXXXXXXXXXXX
Method

Noise condition Air Vacuum cleaner Vacuum cleaner

conditioner (low gear) (high gear)

Proposed method 0.1324 0.1105 0.1280

Martin’s method 2.8492 2.4134 1.0693

Table 2.2: Recording condition

Sampling frequency 44.1 (kHz)

Quantization accuracy 16(bit)

The bottom panel in Fig. 2.6(a) presents a comparison of noise estimation between

the proposed method and Martin’s method [2] for noisy speech signal under air-

conditioning noise. Fig. 2.6(b) presents results related to the noisy speech signal

under vacuum cleaner noise (low gear). Fig. 2.6(c) presents corresponding results

about for the noisy speech signal under vacuum cleaner noise (high gear).

From comparison of the noise power spectrum estimation between proposed

method and Martin’s method [2], one can find that the proposed method has higher

accuracy than Martin’s method [2]. After using the proposed method and Martin’s

method [2], the KL divergences between true noise power spectrum and noise estima-

tion can be computed. Table 1 presents KL divergences between the true noise power

spectrum and noise estimation using two methods. Under three noise conditions,

the KL divergences between the true noise power spectrum and noise estimation

with proposed method are 0.1324, 0.1105, and 0.1280. The KL divergences between

the true noise power spectrum and noise estimation with Martin’s method [2] are

2.8492, 2.4134 and 1.0693. Therefore, the KL divergences between the true noise

power spectrum and noise estimation obtained using the proposed method are much

smaller. Therefore, the proposed method has consistent performance compared to

Martin’s method [2].

2.4 Discussion

The experimentally obtained results demonstrate that the estimation accuracy of

proposed method is higher than that of Martin’s method under a single noise con-
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Figure 2.6: Noisy speech signal under the condition noise, the corresponding spectro-

gram and the comparison between the proposed method and the Martin’s method [2]

for the noisy speech signal under condition noise: (a) air-conditioning noise, (b) vac-

uum cleaner noise (low gear), (c) vacuum cleaner noise (high gear).
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dition. Moreover, our method can track the fluctuation of power spectrum peak

more effectively. Here, we approach the application feasibility of our method un-

der a multiple mixed noise condition. For the proposed method it is fundamentally

important, that noise is assumed to be stationary; speech is assumed to be is inter-

mittent. Even if two or more noises exist, if they are all stationary, then their sum

can be regarded as a single noise. In this case, because two mixed distributions are

observed, one can apply the proposed method directly.

Our method relies strongly on the premise that noise is stationary. Nevertheless,

noise might change in real environments. When applying the proposed method to

real environments, it seems that the algorithms such as updating the estimate of

noise power spectrum by repeating noise estimation at regular intervals is necessary.

Because the noise estimation accuracy influences these algorithms strongly, it is

difficult to address this point in the present study. However, many speech enhance-

ment systems and noise estimation systems can be achieved as an online system

with small delay such as one frame delay. Our method is based on the statistical

characteristics of the noise power spectrum and the speech power spectrum in the

frequency domain. The temporal variation result cannot be obtained in the noise

estimate power spectrum. It requires several seconds for the noisy speech signal.

Consequently, it is difficult to use our method as an online system with small de-

lay, although Martin’s method is useful as an online system with one frame delay.

Therefore, this restriction in the proposed method is notably severe for commercial

uses such as mobile phones. In experimental results, the PCM recordings are about

40 seconds. It takes about 6 seconds (Intel(R) Core(TM) i7-3537U CPU @2.00GHz

2.50GHz) to estimate the background noise power spectrum. Therefore, it involves

a delay of at least 46 seconds for speech enhancement. However, under the condition

that the background noise power spectrum does not change frequently, we can apply

our method to speech enhancement after 46 seconds immediately from the beginning

until the background noise changes. If we allow the performance degradation due to

applying the background noise power spectrum before change, we believe that the

proposed method can be applied online as well.

2.5 Conclusion

The study described in this paper has addressed noise estimation for speech en-

hancement of noisy speech. Based on our previous work [7], we extended the sta-

tistical characteristics analysis for a noise spectrum and a speech spectrum. The
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noise estimate was obtained in each frequency bin of the noisy speech spectrum.

Our experiments assessing various types demonstrate that our method improves the

noise estimation accuracy compared to Martin’s method. However, unlike other

methods, our method is not dependent on fixed parameters such as window length

and smoothing constant. The algorithm turns out to be fairly generic. In experi-

ments using different noise types, we did not observe a need to return the algorithm

parameters to a single-noise condition. Under multiple noise conditions, we also

examined the application feasibility of our method. These results were confirmed

by formal experimentation, which indicated superior performance of our proposed

method compared to Martin’s method.



Chapter 3

Estimating the Major Cluster by

Mean-Shift with Updating Kernel

3.1 General Mean-Shift Method

3.1.1 General Mean-Shift Method

Assuming that the major cluster of NN points follows a Gaussian distribution with

mean µN and standard deviation σN , we are considering the problem of estimating

the mean µN of the major cluster when a fewer outliers of NO points exist in the

sample of N = NN + NO points. If the mode of the sample is not biased from the

mean µN under the influence of outliers, then the mean µN can be estimated as the

mode. The mean-shift is a simple and iterative method to estimate the mode of the

major cluster. Letting the sample be xn, n = 1, . . . , N , then the general mean-shift

method is realized using the following iterative process:

1. Letting the mean µx of sample xn, n = 1, . . . , N be the initial value of the

mean estimator µ̂N of major cluster, then

µ̂N ← µx. (3.1)

2. Consider a Gaussian distribution p(x;µW , σW ) with the mean µW and standard

deviation σW as the kernel function in the value direction. Here, the mean µW

of kernel function is found by the mean estimator of major cluster

µW ← µ̂N . (3.2)

The standard deviation σW is assigned to be an appropriate size as discussed

later in Section 3.1.2.

27
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3. Weight an, n = 1, . . . , N for each sample xn, n = 1, . . . , N weighted by such

a Gaussian kernel is

an =
1

A
p(xn;µW , σW ). (3.3)

However, A in Equation (3.3) above is a normalization coefficient for which

the sum of the weight an is equal to 1, as

A =
N∑
k=1

p(xk;µW , σW ). (3.4)

We use this weight an to calculate the sample mean µx with xn, n = 1, . . . , N

as

µx =
N∑
n=1

anxn. (3.5)

4. The value of mean estimator µ̂N of the major cluster is updated by the fol-

lowing equation:

µ̂N ← µx. (3.6)

5. If the variation of the value of mean estimator µ̂N is equal to or less than the

predetermined fixed value, then the update process is terminated. Otherwise,

return to 2 and repeat the iteration.

3.1.2 Shortcomings and Solution of the General Mean-Shift

Method

The general mean-shift method estimates the modes of the underlying probability

density function. From the definition of a probability density, if the random variable

X of N data points xi, i = 1, 2, 3, . . . , N in one-dimensional space R has density f ,

then

f(x) = lim
h→0

1

2h
P (x− h < X < x+ h). (3.7)

For any given h (bin bandwidth or kernel bandwidth), we can estimate P (x−h <
X < x + h) by the proportion of the sample falling in the interval (x − h, x + h).

Thus, a natural estimator f̂ of the density is given by choosing a small h and setting

f̂(x) =
1

2h

Nx

N
. (3.8)
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Here, Nx denotes the number of samples falling in the interval (x−h, x+h). To

express the estimator more transparently, define the weight function ω(x;h) by

ω(x;h) =

 1
2h
|x| < h,

0 others.
(3.9)

The estimator can be expressed as below [28]:

f̂(x) =
1

N

N∑
i=1

ω(x− xi;h). (3.10)

Replace the weight function ω by a general kernel function K(x;σ) with standard

deviation σ, which satisfies the condition∫ ∞
−∞

K(x)dx = 1, (3.11)

and the kernel estimator for the probability density function f̂(x) at point x can be

expressed as

f̂(x) =
1

N

N∑
i=1

K(x− xi;σ). (3.12)

The general mean-shift is an attempt to ascertain the local modes of density

function f̂(x), which correspond to the zeros of the gradient5xf̂(x) = 0. Therefore,

the type of kernel function K(x;σ) and the kernel bandwidth σ both directly affect

the performance of general mean-shift method. Fixing the type of kernel function

to Gaussian kernel, we specifically examine the influence of the pre-set of the kernel

bandwidth in general mean-shift.

To confirm the influence of fixed kernel bandwidth on estimation accuracy in

a general mean-shift method, we set various fixed kernel bandwidths in advance.

Here, we summarize the numerical and experimentally obtained results for general

mean-shift method as discussed in Section 3.3. Figure 3.1a presents the bias error

between the estimated value in a general mean-shift method and the true value when

we select various kernel bandwidths in advance. The horizontal axis shows a selection

of different kernel bandwidths. The vertical axes respectively show the bias error

between the estimated value for the mean and the true mean value, and the variance

of the mean value. While selecting different fixed kernel bandwidths, we estimated

the mean of the major cluster, which is distributed as shown in Figure 3.2 for 1000

trials. Furthermore, we computed the bias errors using the equation described in
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Section 3.3.2. Figure 3.1a shows that, when we enlarge the fixed kernel bandwidth,

the mean estimator is more susceptible to outliers. The bias error in general mean-

shift method increases. Otherwise, when we decrease the kernel bandwidth, the

number of samples involved in the mean estimation decreases. The local mode

can easily become the convergence point of the iterative process. In addition, the

bias error in general mean-shift method increases. The kernel bandwidth should

be set in the range of 0.5–1.5. As shown in Figure 3.1b, with enlargement of the

kernel bandwidth, the estimation variance in general mean-shift method decreases.

Therefore, the optimal kernel bandwidth is 1.5. Because the maximum value of

these variances is very small and, because it does not exceed 0.06, if we select

the kernel bandwidth within this range of 0.5–1.5, we can ensure the unbiasedness

and consistency of the mean estimator in general mean-shift method. However, not

knowing the true mean of the major cluster beforehand, we cannot calculate the bias

error in general mean-shift method. Therefore, we cannot choose the appropriate

kernel bandwidth based on the comparison result shown in Figure 3.1a. Indeed, the

proper pre-set of the kernel bandwidth constitutes an important difficulty.

0 1 2 3 4 5
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0.05

0.1

0.15

0 1 2 3 4 5

0
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0.06

Figure 3.1: Bias error and estimation variance for various fixed kernel bandwidth

σ2 in a general mean-shift method.

The optimal kernel bandwidth depends on the existence range of outliers, the

number of samples belonging to the major cluster and the distribution that the major

cluster follows. In the absence of prior knowledge, the kernel bandwidth is often fixed

as appropriate to 1/2 the time of the standard deviation of the whole sample when

the whole sample contains the major cluster and the outliers in signal processing [29].

For clustering in image processing or other multiple applications, it is still difficult
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to preset the kernel bandwidth properly in a general mean-shift method. When

the kernel bandwidth is inappropriate, the kernel bandwidth becomes a factor that

degrades the estimation accuracy.

As follows, based on the general mean-shift method, we propose a method to

change the kernel bandwidth adaptively in accordance with simultaneous estima-

tion of the mean (for a multi-dimensional case, the mean vector) and the standard

deviation (for a multi-dimensional case, the covariance matrix) of a major cluster

at each iteration. We need not set the kernel bandwidth properly in advance.

3.2 One-Dimensional Mean-Shift with Updating

Kernel

3.2.1 Derivation of Major Cluster Standard Deviation σN

from Sample Standard Deviation σx

Here, the Gaussian distribution with mean µ and standard deviation σ is represented

by p(x;µ, σ). It is abbreviated as p(x;σ) especially for µ = 0. We use the two

following equations for the two Gaussian distributions:∫ ∞
−∞

p(x;σW )p(x;σN)dx =
1√

2π
√
σ2
W + σ2

N

, (3.13)

∫ ∞
−∞

x2p(x;σW )p(x;σN)dx =
σ2
Wσ

2
N√

2π(σ2
W + σ2

N)
3
2

. (3.14)

We assume that the influence of outliers is small such that the sample mode is

not biased from the mean µN . If the general mean-shift method with the sufficiently

small fixed kernel bandwidth decided by the standard deviation of the kernel starts

the iteration from an appropriate initial value, then the influence of the outliers on

estimation decreases gradually as the estimate converges. Therefore, it is sufficient

to consider only the samples from the major cluster xn, n = 1, . . . , NN when the

estimate converges to their true value. In addition, the mean µN of the major cluster

and the mean µW of the Gaussian kernel coincide near the convergence point. Even

if coordinate transformation is performed so that both are 0, generality is not lost.

Therefore, we let µN = µW = 0 here for analysis. The variance σ2
x of the sample

xn, n = 1, . . . , NN weighted by an, n = 1, . . . , NN is

σ2
x =

NN∑
n=1

anx
2
n. (3.15)
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Weight an is a Gaussian kernel given by Equations (3.3) and (3.4). In addition,

N is replaced by NN .

The expected value of the sample variance σ2
x is calculated after substituting

Equation (3.3) into Equation (3.15) as

E[σ2
x] = E

[
1

A

NN∑
n=1

p(xn;σW )x2n

]
. (3.16)

The variance of
1

A
is sufficiently smaller than the dispersion of other parts.

Therefore, it can be approximated to the following equation based on the assumption

that the major cluster follows a Gaussian distribution, as

E[σ2
x] '

1

E[A]
E

[
NN∑
n=1

p(xn;σW )x2n

]
. (3.17)

The approximation is discussed later in Appendix B. Here, we calculate the

expected value of A by Equations (3.4) and (3.13) as

E[A] = E

[
NN∑
k=1

p(xk;σW )

]

=

NN∑
k=1

E[p(xk;σW )]

= NN

∫ ∞
−∞

p(x;σW )p(x;σN)dx

=
NN√

2π
√
σ2
W + σ2

N

. (3.18)

The expected value of other part becomes

E

[
NN∑
n=1

p(xn;σW )x2n

]

=

NN∑
n=1

E[p(x;σW )x2]

= NN

∫ ∞
−∞

x2p(x;σW )p(x;σN)dx

=
NNσ

2
Wσ

2
N√

2π(σ2
W + σ2

N)3/2
(3.19)

according to Equation (3.14). In other words, after being weighted by a Gaussian

kernel with mean 0 and standard deviation σW , the expected value of variance σ2
x
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of the sample which follows a Gaussian distribution with mean 0 and standard

deviation σN is

E[σ2
x] =

σ2
Wσ

2
N

σ2
W + σ2

N

(3.20)

according to Equations (3.18) and (3.19). Equation (3.20) above can be transformed

to

σ2
N =

σ2
WE[σ2

x]

σ2
W − E[σ2

x]
. (3.21)

This expression shows that standard deviation σN can be estimated from the

standard deviation σx of the sample, which is weighted using a Gaussian kernel with

mean 0 and standard deviation σW as

σ̂N =

√
σ2
Wσ

2
x

σ2
W − σ2

x

. (3.22)

In addition, using Equation (3.18), the number NN of samples belonging to the

major cluster can be estimated as

N̂N = A
√

2π
√
σ2
W + σ̂2

N . (3.23)

Adaptive change of the standard deviation σW of the kernel related to the esti-

mated value σ̂N of the standard deviation is sufficient for each update because the

mean µN of the major cluster and the standard deviation σN can also be estimated.

Specifically, the standard deviation σW of the kernel is assigned to be r times the

estimated value σ̂N , although it depends on the existence range of outliers. We

designate this r as a scale factor. Regarding appropriate r, we will examine this

point in a numerical experiment discussed later.

3.2.2 Mean-Shift with Updating Kernel

Based on the discussion presented in Section 3.2.1, at each iteration of the gen-

eral mean-shift method, the standard deviation σN is estimated simultaneously in

addition to the mean value µN . Therefore, we propose a new mean-shift method

that adaptively changes the standard deviation σW of the kernel. The algorithm is

summarized as presented below:

1. Let the mean µx of sample xn, n = 1, . . . , N be the initial value of the mean

estimator µ̂N of the major cluster and let standard deviation σx of this sample



34 3.2. One-Dimensional Mean-Shift with Updating Kernel

be the initial value of the standard deviation estimator σN of the major cluster

as

µ̂N ← µx, (3.24)

σ̂N ← σx. (3.25)

2. Consider a Gaussian distribution p(x;µW , σW ) with mean µW and standard

deviation σW as the kernel function in the value direction. Here, the mean µW

and the standard deviation σW are given respectively by the estimated value

µ̂N of the mean and the estimated value σ̂N of the standard deviation of the

major cluster:

µW ← µ̂N , (3.26)

σW ← rσ̂N . (3.27)

Here, mean µW and variance σW of the Gaussian kernel are not estimators,

although they change when the kernel updates.

3. Weight an, n = 1, . . . , N for each sample xn, n = 1, . . . , N weighted by such

a Gaussian kernel p(x;µW , σW ) is calculated using Equations (3.3) and (3.4).

We use this weight an to calculate the sample mean µx and standard deviation

σx with xn, n = 1, . . . , N as shown below:

µx =
N∑
n=1

anxn, (3.28)

σx =

√√√√ N∑
n=1

an(xn − µx)2. (3.29)

4. The values of mean estimator µ̂N , standard deviation estimator σ̂N , and num-

ber of samples estimator N̂N of the sample are updated, respectively, by the

following equations:

µ̂N ← µx, (3.30)

σ̂N ←

√
σ2
Wσ

2
x

σ2
W − σ2

x

, (3.31)

N̂N ← A
√

2π
√
σ2
W + σ̂2

N . (3.32)

5. If the variations of the values of these estimators are equal to or less than the

predetermined fixed value, then the update process is terminated. Otherwise,

return to 2 and repeat the iteration.
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3.3 Numerical Experiment

3.3.1 Update Process of Mean-Shift with an Updatable Ker-

nel

For the proposed method, we use iteration to confirm the process by which the

estimated values of the mean vector, the covariance matrix, and the number of

samples converge to true values of the major cluster. Although no restriction is made

of the dimension of data to which the proposed method is applicable, to illustrate

and explain the distribution of data and update process, two-dimensional data are

targeted for analysis. Herein, we obtain the major cluster with NN = 3000 points

generated in two-dimensional normal distribution with the mean vector µN = (0, 0)T

and variance covariance matrix as

CN =

(
3 2

2 3

)
.

The outliers with NO = 200 points are distributed uniformly within the range of

x1 ∈ [−2,−1], x2 ∈ [3, 4]. Figure 3.2 shows an example of the generated sample

in (x1, x2) space. Symbol • in the figure represents the coordinates of each point.

The points spreading in the central elliptical shape belong to the major cluster.

Other points distributed in a square shape on the upper left are outliers. In the

figure, the solid ellipse represents a contour line where 99% of the M-dimensional

normal distribution defined by the mean vector µN and the covariance matrix CN

fall within it. Later, we present the mean vector µN and covariance matrix CN , or

their estimates.
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Figure 3.2: Example of a sample set for numerical experiments.
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In general, as discussed in Appendix C.2, the initial estimated value of the mean

µ̂N and covariance matrix ĈN for major cluster can be assigned respectively to the

mean and covariance matrix of all samples. However, we set the initial kernel having

mean vector µ̂N = (−2, 3)T and covariance matrix

ĈN =

(
1.25 −0.75

−0.75 1.25

)

intentionally to be located and shaped sufficiently apart from the major cluster. To

demonstrate how the estimated value converges to the true value with updating, the

scale factor is r = 1.0. The update ends when it satisfies all conditions for which

the sum of squares of the change amount µ̂N is 0.01 or fewer, the sum of squares of

the change amount of ĈN is 0.01 or fewer, and the square of the change amount of

N̂N is 30 or less.

As described earlier, the solid ellipse shown in Figure 3.3 represents the estimated

value of mean vector µ̂N , covariance matrix ĈN , and number N̂N of samples for each

update in the proposed method. In Figure 3.3, the estimated values µ̂N , ĈN , N̂N

are shown to converge to the true values µN ,CN , NN corresponding to Figure 3.2

as the update progresses, although they start from more or less bad initial values.

Here, for the estimated value N̂N , we have accuracy to one decimal place.

3.3.2 Influence of Kernel Bandwidth on Estimation Accu-

racy (Unbiasedness)

An exceedingly important property required for estimators is unbiasedness: a prop-

erty by which the expected value of the estimated value coincides with the true

value. If no statistical bias in the estimated value exists, then it represents that

the estimation is accurate. Assuming that the parameter is θ, we investigate the

unbiasedness of the estimator θ̂. If parameter θ is a scalar, then the bias error is

the difference E[θ̂] − θ between the expected value and the true value θ of the es-

timator. Otherwise, if parameter θ is a vector or matrix, then the bias error is the

square root

√
‖E[θ̂]− θ‖2 of the sum of squares over all the elements. It can be

evaluated whether the bias error is zero. As explained below, it demonstrates that

the initial value of the kernel bandwidth has less influence on the unbiasedness of

the estimated value in the proposed method discussed in Appendix C than in the

general mean-shift method introduced in Appendix A.

The distributions that major cluster and outliers follow, the numbers of samples
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Figure 3.3: Updates of the estimated major cluster.
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NN , NO, scale factor r, and update ending condition are the same as those described

in Section 3.3.1. The initial estimated value of mean vector µ̂N is the mean vector

of all samples. The initial estimated value of covariance matrix is assigned to ĈN =

σ2I. In the general mean-shift method, the covariance matrix of the kernel is CW =

σ2I. Under the conditions presented above, the mean vector µN , the covariance

matrix CN , and the number NN of samples are estimated using the general mean-

shift method and the proposed method. In addition, because it is impossible to

obtain the expected value in numerical experiments, the expected value is replaced

by the average value of the estimated values for 1000 trials that change the random

number.

In the proposed method, σ2 is the initial value of the kernel bandwidth. It

corresponds to the pre-set value of the kernel bandwidth in a general mean-shift

method. When this σ2 is changed to various values, the bias errors of the estimated

value of the mean vector µN , covariance matrix CN , and number NN of samples are

calculated. Results are presented respectively in Figure 3.4a–c. The horizontal axis

shows the selection of different kernel bandwidth. The vertical axes respectively

show the bias errors for estimators µN , CN , and NN . In this figure, symbol ©
corresponds to the proposed method. The symbol 4 represents the bias errors in

a general mean-shift method. However, because the covariance matrix and number

of samples cannot be estimated in a general mean-shift method, only the results

obtained using the proposed method are shown in Figure 3.4b,c. The scale on the

vertical axis of the figures is fixed to represent 10% of errors at full scale. In the

following figures, the same scale applied to these figures will be used unless specified

otherwise.

Figure 3.4a shows that the bias error increases linearly and that the unbiasedness

is lost when the kernel bandwidth σ2 approximately exceeds the range of 0.5–1.5

represented by symbol ↓ in a general mean-shift method because, as the kernel

becomes larger, the outliers fall within the range of the kernel, which greatly affects

the mean estimation of the major cluster. For this reason, the proper set of the kernel

bandwidth is an important difficulty in a general mean-shift method. However, the

kernel bandwidth is adjusted according to the estimated value of covariance matrix

of a major cluster at each iteration in the proposed method. Therefore, it is less

susceptible to the influence of initial value σ2. Furthermore, in Figure 3.4b,c, it is

the same situation in the estimations of covariance matrix CN and number NN of

samples.

While maintaining the ratio of the number NN of samples of major cluster and
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Figure 3.4: Bias errors for various initial kernel bandwidths σ2 in the proposed

method and the general mean-shift method.

the number NO of samples of the outliers to 3000:200 and changing the number

N = NN +NO of samples from 1000 to 90,000, the variance of each estimate value of

the mean vector µN , covariance matrix CN , and number NN of samples are obtained

using our proposed method, as shown in Figure 3.5. The horizontal axis shows the

selection of different numbers of samples corresponding to the whole samples. The

vertical axes respectively represent the bias errors for estimators µN , CN , and NN .

Because the proposed method is independent of the initial value σ2, the initial value

σ2 is fixed to 1.5. Figure 3.5 shows that these estimators are unbiased for a finite

number of samples.

3.3.3 Influence of the Scale Factor r Value on Estimation

Accuracy

In the proposed method, we need not select the initial value of kernel bandwidth in

advance because the kernel bandwidth is changed adaptively. The pre-set of the ini-

tial value shows some difficulty in influencing the estimation accuracy. Instead, the

problem of optimal setting of the scale factor r occurred. Scale factor r represents
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Figure 3.5: Bias errors for various numbers N of samples in the proposed method.

the ratio of the kernel bandwidth (standard deviation) to the major cluster width

(standard deviation). Therefore, the smaller the scale factor, the smaller the kernel

bandwidth (standard deviation) is set with respect to the major cluster width (stan-

dard deviation). From the viewpoint of estimation accuracy, the kernel bandwidth

(standard deviation) should be sufficiently large but not cover the outliers. In other

words, if the outliers exist at the distance from the mode of major clusters more than

three times the standard deviation of the major cluster, according to three-sigma

rule of thumb, the kernel bandwidth should be the same as the standard deviation

of major cluster, which means r = 1. Otherwise, if there are a certain number of

outliers within a standard deviation away from the mode of the major cluster, the

kernel bandwidth is expected to be 1/3 of the standard deviation of the major clus-

ter, which means r = 1/3. If the distribution of the major cluster and the outliers

is specified completely, then it is possible to derive the theoretical formula of the

optimal scale factor r as a parameter. However, because the purpose is to estimate

the distribution of the major cluster and the outliers, then, even if a theoretical

formula for scale factor r is derived, it cannot be used for estimation. Derivation of

the theoretical formula for scale factor r has no great value. Therefore, as described

below, we investigate the influence of the selected value of this scale factor on the

estimation accuracy.
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The distributions that major cluster and outliers follow, number NN , NO of sam-

ples, and update ending condition are the same as those in Section 3.3.1. As shown

in Section 3.3.2, the initial values of the estimated value of mean vector and co-

variance matrix µ̂N , ĈN are given, respectively, by the mean vector and covariance

matrix of the whole samples. We select scale factor r to be various values and esti-

mate the mean vector µN , covariance matrix CN , and number NN of samples using

the proposed method. The bias errors of each estimated value is presented in Figure

3.6a,c. The horizontal axis represents the selection of various scale factors r. The

vertical axes respectively represent the bias errors for estimators µN , CN , and NN .
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Figure 3.6: Bias errors for various scale factors r in the proposed method.

Figure 3.6 shows that the bias errors of any estimate increases and that the

unbiasedness is lost when scale factor r is selected as a value larger than a certain

value because, when the kernel bandwidth increases, it becomes more susceptible

to outliers, as with the general mean-shift method shown in Figure 3.6. However,

when scale factor r is selected as a small value, the bias error is increased extremely.

The unbiasedness is lost relative to the covariance matrix CN and number NN of

samples, although it is not readily apparent on mean vector µN . The reason for this

is explainable as presented below.

If we select scale factor r as a value smaller than one, the kernel bandwidth
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becomes small because of a lack of the practical number of samples that contribute

to the estimation. For that reason, the estimation precisions of mean vector µx and

standard deviation σx,m are deteriorated. The deterioration of this estimation accu-

racy results from the small number of samples. Consequently, the estimated error

has normality, but does not include bias error. As shown in Equation (A32), the es-

timated value µ̂N of the mean vector is the sample mean vector µx. The estimation

equation of the standard deviation σ̂N and number N̂N of samples is a nonlinear

function of the sample standard deviation σx,m, as shown in Equations (A19) and

(A20). In general, normality is lost by a nonlinear transformation. Therefore, the es-

timation errors of both the standard deviation σ̂N and the number N̂N of samples are

converted to the bias errors by the nonlinear transformations, even if the estimation

error of the sample standard deviation σx,m had normality.

Figure 3.6 shows that the appropriate value of the scale factor r is in the range of

0.5 ≤ r ≤ 1.5, but it depends on the characteristic of the target data. For example,

the lower limit increases when the number of samples is small. The upper limit

decreases when the outliers approach a major cluster. Comparing the bias error

with the general mean-shift indicates that the selection of scale factor r need not be

the same as the situation of kernel bandwidth as shown in Figure 3.4 because the

range in which the bias error can be kept low is wide.

3.3.4 Verification of Consistency

The goodness of the estimator is evaluated by accuracy and precision. Accuracy

is evaluated as the bias error, as discussed in Section 3.3.2, whereas the precision

is evaluated by the variance of estimated values. Before comparing the estimation

precision of a general mean-shift method with the proposed method, one must con-

firm the consistency of the estimated values in both methods. Consistency is an

important property required for the estimator. It indicates the characteristics by

which the variance of the estimated values approaches 0 as the number of samples

used for estimation increases.

The distributions that major cluster and outliers follow, in addition to the update

ending conditions, are the same as those described in Section 3.3.1. As shown in

Appendix C.2, the initial values µ̂N , ĈN of the estimate values of the mean vector

and covariance matrix are given respectively by mean vector µx and covariance

matrix Cx of the whole samples. To ensure that the estimator is unbiased, we select

the scale factor as r = 1.0 based on the discussion of the proposed method in
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Section 3.3.3, and the kernel as CW = σ2I, σ2 = 1.5 based on the discussion for a

general mean-shift method in Section 3.3.2.

While maintaining the ratio of the number NN of samples of major cluster and

the numberNO of samples of the outliers to 3000 : 200 and changing the numberN =

NN +NO of samples from 1000 to 90,000, the variance of each estimate value of the

mean vector µN , covariance matrixCN , and number NN of samples is obtained using

both methods. The estimation variance is replaced by the sample variance of each

estimate for 1000 trials as the sample number changes. The estimation variances

Var[µ̂N ], Var[ĈN ], Var[N̂N ] are shown in Figure 3.7a–c. The horizontal axis shows

the logarithm of various numbers of samples N̂N . The vertical axes respectively

show logarithms for estimation variances Var[µ̂N ], Var[ĈN ], Var[N̂N ]. In this figure,

symbol © corresponds to the proposed method. Symbol 4 represents the general

mean-shift method. Because the covariance matrix and number of samples can not

be estimated in the general mean-shift method, only the results obtained using the

proposed method are presented in Figure 3.7b,c.
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Figure 3.7: Variance of the estimates µ̂N , ĈN , N̂ for various numbers N of samples

in the proposed method and the general mean-shift method.

From Figure 3.7a–c, it is readily apparent that the variance Var[·]→ 0 for sample

number N →∞. Therefore, estimators µ̂N , ĈN , N̂N have consistency. Figure 3.7a–

c are drawn as a logarithmic graph; the slope should be −1 in fact. Therefore,

the relation between the sample number of samples and the estimation variance is
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approximated using a linear polynomial with the slope fixed at −1. The straight line

represented by the approximate linear polynomial is superimposed by a solid line in

these figures. These results demonstrate the validity of the approximation. Here, we

simply define the estimation variance as the 0-order coefficient of the approximate

linear polynomial or the virtual estimation variance corresponding to sample number

N = 1. Regarding to the estimation variance, we compare the estimation precision

of proposed method with the general mean-shift method.

3.3.5 Estimation Precisions of the Proposed and General

Mean-Shift Methods

The distributions that major cluster and outliers follow, the number NN , NO of

samples, and the update ending condition are the same as those described in Section

3.3.1. As shown in Appendix C.2, the initial values of the estimated value of mean

vector and covariance matrix µ̂N , ĈN are given, respectively, by the mean vector µx

and covariance matrix Cx of the whole samples.

We select scale factor r to be various values and use the proposed method to

estimate the mean vector µN , covariance matrix CN , and number NN of samples.

Figure 3.8a–c respectively present the estimation variances corresponding to the es-

timated values of the mean vector µN , covariance matrix CN , and number NN of

samples. The horizontal axis shows the logarithm of various scale factor r. The ver-

tical axes respectively show the estimation variances Var[µ̂N ], Var[ĈN ], Var[N̂N ].

Similarly, letting the covariance matrix of kernel be CW = σ2I, we estimate the

mean vector µN using the general mean-shift method while the kernel bandwidth

σ2 is changed to various values. The estimation variance of estimated value µ̂N is

presented in Figure 3.9.

From Figure 3.8a–c, the estimation variance of each estimated value of the mean

vector µN , covariance matrix CN , and number NN of samples decreases with respect

to r, monotonically. If r is small, then the kernel bandwidth decreases. The number

of substantial points involved in the estimation decreases. Therefore, the estimation

precision deteriorates. On one hand, if r is large, then the estimation precision

decreases. Because bias error occurs as shown in Figure 3.6, it is not desirable as an

estimator. However, the estimation variance related to general mean-shift method

decreases monotonically with respect to kernel bandwidth σ2, as shown in Figure

3.9. The reason is exactly the same as in the case of the proposed method.

Finally, the estimation precision of a general mean-shift method and that of
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the proposed method are compared. Regarding the general mean-shift method, the

estimation is unbiased if σ2 ≤ 1.5, as shown in Figure 3.4. However, the estimation

precision increases as σ2 becomes larger, as shown in Figure 3.9. In the general

mean-shift method, the optimal selected value of the kernel bandwidth is σ2 = 1.5.

The estimation variance at kernel bandwidth σ2 = 1.5 is read from Figure 3.9: its

value is shown by a horizontal dotted line in Figure 3.8a. In the proposed method,

0.5 ≤ r ≤ 1.5 is the suitable range of the scale factor r. In this range, the estimation

variance of the proposed method is half or less than half of that of the general mean-

shift method. The proposed method has higher estimation precision than the general

mean-shift method that has the optimal kernel bandwidth for the following reason.

In the general mean-shift method, the kernel shape is expressed as an isotopic shape

because the covariance matrix of the kernel is represented as a diagonal matrix in

which all diagonal elements are equal. Otherwise, in the proposed method, the

kernel shape can take an arbitrary anisotropic shape because the covariance matrix

of the kernel can take an arbitrary matrix that satisfies the condition as a covariance

matrix. The practical number of samples that contribute to the estimation can be

maximized by adjusting the kernel shape to the distribution of samples.
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Figure 3.8: Estimating the variance of the estimates µ̂N , ĈN , N̂ for various scale

factors r of the proposed method.
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Figure 3.9: Estimating the variance of the estimate µ̂N for various kernel bandwidths

σ2 in the general mean-shift method.

3.3.6 Discussion

Numerical experiments in two-dimensions described in Sections 3.3.2, 3.3.3 and 3.3.4

yield results for the major cluster and outlier model shown in Figure 3.2. The

purpose of our numerical experiment is to confirm whether the estimators (mean,

covariance, number of sample of the major cluster) in the proposed method are

unbiased and consistent without a proper pre-set of kernel bandwidth. If these

estimators are consistent unbiased estimators, then the proposed method can achieve

accurate estimation of the mean, covariance, and the number of samples of the major

cluster. We chose the two-dimensional numerical experiment to observe the dynamic

changes of the kernel more intuitively during the iteration. The iteration process

is shown in Figure 3.3. In the numerical experiments described herein, the major

cluster follows the Gaussian distribution. If the proposed method performs well on

other distributions, then the scope of application of the proposed method can be

expected to expand. We discuss the scope of application of the proposed method in

two aspects as presented below.

For a one-dimensional signal processing field, the assumption of normality is not

regarded as being such a severe strong assumption. Yokota and Ye [7] proposed the

radical root, or r-th root, transform of the power spectrum series that follows the

chi-square distribution, such that the transformed series follows a quasi-Gaussian

distribution. Lotter and Vary [25] proposed a spectral amplitude estimator with

a parametric super-Gaussian speech model for approximating the probability den-

sity distribution of the real speech spectral amplitudes. In fact, the parametric

super-Gaussian distribution can approximate the Rayleigh–Laplace–Gamma distri-
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bution or other distributions exactly. Ye and Yokota [31] applied the radical root

transformation to the super-Gaussian distributions. Thereby, they confirmed that

the super-Gaussian distribution after r-th radical root transformation can be quasi-

Gaussian distributed. By radical root transformation [7], the proposed method is

applicable for major clusters that follow different distributions other than a Gaussian

distribution. However, for clustering in image processing or other multiple dimen-

sional applications, the major cluster following a Gaussian distribution is truly a

strong assumption.

In addition to the problem addressed in this paper, many methods exist to solve

this problem other than the mean-shift method. They have been discussed as de-

scribed below. Under the normality assumption, Grubbs’ test [31–33] and Thompson

Tau test [34] are known as methods for testing whether the sample farthest from the

sample mean is an outlier. These tests are applied sequentially from the samples

that are outermost from the sample mean, but the number of outliers is only valid

at most to several. Moreover, applying the tests to multi-dimensional data are not

easy. If the outliers follow a Gaussian distribution and if the number of clusters in

which the outliers are distributed is known, then, by applying a Gaussian mixture

model [35–37], the mean and covariance matrix of major cluster can be estimated

easily using the Expectation-maximization(EM) algorithm [38, 39]. However, such

an assumption cannot be applied generally to the outliers.

In fact, selection of the kernel bandwidth is an important issue that strongly

affects the result of the general mean-shift algorithm compared to setting of the

kernel type. Therefore, we only used the Gaussian kernel to make a presumption

here. However, there are many commonly used kernel functions in addition to

the Gaussian kernel, such as the Epanechnikov Kernel, the Uniform Kernel, the

Quartic Kernel, and the Triweight Kernel. Application of it to other kernel functions

according to the derivation of this article will undoubtedly make this research more

comprehensive and general. Such application is expected to be an important part

of our future research.

3.4 Application

Considering a stochastic process x(t), the short-time Fourier spectrum centering

on time t with a suitable window length is denoted as X(t, f). Here, f represents

the frequency. Let Xf (t) ≡ X(t, f) be denoted as the spectrum series if frequency

f is fixed. By applying the non-steady-state analysis of the stochastic process,
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the spectrogram P (t, f) = |X(t, f)|2 denotes the power of the short-time Fourier

spectrum X(t, f). Because the frequency f is fixed, Pf (t) will be designated as the

power spectrum series.

Yokota and Ye [7] proposed a power spectrum estimation method robust for

sudden noise. The method uses the radical root transformation to quasi-Gaussian

distribution. The following concludes the process of the noise estimation algorithm

proposed by Yokota and Ye [7]:

(1) Obtain power spectrogram P (t, f) from the noisy signal. We chose a pulse

code modulation(PCM) recording of a noisy signal that contains a certain amount of

sudden noise for analysis and computes the spectrogram with a Hamming window

length of 10 ms achieving a 50% overlap between adjacent frames by short-time

Fourier transformation. Figure 3.10a presents an example of a noisy signal for

analysis and the corresponding spectrogram.

(2) Perform the following process for each frequency f :

(2-1) Use the radical root transformation in the power spectrum series Pf (t) with

the transformation parameter r∗ = 3.314. Thereby, obtain the new quasi-Gaussian

distributed power spectrum series P
1/r∗

f (t). Figure 3.10b portrays a histogram of

the power spectrum series at f = 512 Hz before the transformation.

(2-2) Compute the mode value of transformed power spectrum series P
1/r∗

f (t) by

kernel density estimation [12]. Then, put the mode value as the corresponding time

average value Pnoise(f) of the noise power spectrum series. Figure 3.10c depicts a

histogram of the transformed power spectrum series at f = 512 Hz, the kernel den-

sity estimation [12] with proper kernel bandwidth and the major cluster estimation

using our proposed method.

(2-3) Compute the time average value P (f) of the noise power spectrum series

from the time average value Pnoise(f) as

P (f) =

 Pnoise(f)

Γ

(
r∗ + 1

r∗

)

r∗

. (3.33)

(3) Obtain P (f) as an estimation of the noise power spectral density.

In the noise estimation algorithm [7], the mode estimation accuracy directly

affects the noise estimation result. As Figure 3.10c shows, kernel density estimation

[12] can be replaced by our proposed method for comparison. The proper pre-setting

of kernel bandwidth is also important in kernel density estimation [12]. It exhibits a

strong influence on the resulting estimate similarly to the general mean-shift method.
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Figure 3.10: (a) example of a noisy signal for analysis and the corresponding spec-

trogram; (b) histogram of the power spectrum series of the noisy signal at f = 512

Hz; (c) histogram of the transformed power spectrum series of the noisy signal at

f = 512 Hz.
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To illustrate its effects, we obtained the noise power spectrum series from the PCM

recording, which is shown in Figure 3.10a, for analysis. Figure 3.11 portrays the

relation between the kernel bandwidth and kernel density estimation. The histogram

shows the true density. The broken curve is under-smoothed because it includes

too many spurious data artifacts arising from use of 0.000001 bandwidth, which

is too small. The dotted curve is over-smoothed because using 0.0001 bandwidth

obscures much of the underlying structure. The solid curve with 0.00003 bandwidth

is regarded as optimally smoothed because its density estimate is close to the true

density.
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Figure 3.11: Relation between kernel bandwidth and kernel density estimation.

To assess the performance of the proposed method, general mean-shift method,

and kernel density estimation for a noise estimation algorithm [7], this study uses

PCM recordings of air-conditioning noise with some sudden noise, as shown in Fig-

ure 3.10a and without sudden noise, respectively, as test data and the true value.

Noisy signal data in PCM recordings are not compressed. They have no power con-

sumption. Figure 3.12 presents comparison results for noise estimation using the

proposed method and kernel estimation. Here, we preset the kernel bandwidth as

0.0001. As Figure 3.12 shows, in the case in which an inappropriate kernel bandwidth

is set in advance, noise estimation using our proposed method closely approximates

the true noise, but the estimation accuracy using the kernel estimation is not high.

3.5 Conclusions

The study described in this paper has addressed the problem of proper pre-setting

for the fixed search kernel in a general mean-shift method. To improve the estima-
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Figure 3.12: Comparison of the proposed method to kernel estimation for noise

estimation.

tion accuracy, a new mean-shift method was proposed in which the mean vector and

covariance matrix of the major cluster are estimated at each iteration. Then, the

kernel bandwidth and shape are adjusted corresponding to the estimates. In numeri-

cal experiments, we compared the estimation accuracy and precision of the proposed

method and of the general mean-shift method. The experimentally obtained results

demonstrate that the estimation accuracy and precision of the proposed mean-shift

are higher than those of a general mean-shift method. Moreover, the proposed

mean-shift can estimate the covariance matrix and the number of samples of major

clusters effectively and correctly. Neither can be estimated using the general mean-

shift method. These results were confirmed through formal experimentation, the

results of which indicated the superior performance of our method compared to that

of the general mean-shift method.



52 3.5. Conclusions



Chapter 4

Conclusions and Future Works

4.1 Conclusions

In this dissertation, for speech enhancement, based on Gaussian analysis of noise

power spectrum and speech power spectrum, we have proposed a simple noise es-

timation algorithm to accurately estimate the noise power spectrum. In addition,

we have also propose a mean-shift algorithm with updating kernel to accurately

estimate the mean, standard deviation and number of samples of the major cluster.

Both methods can effectively suppress the influence of outliers.

4.2 Future Works

The research topic on speech enhancement has been ended. The author’s plans

for the estimation of the major cluster by mean-shift with updating kernel are as

following:

• To comparison of accuracy and calculation cost of proposed method with other

mainstream algorithms which are mentioned in this dissertation for details.

• To confirm the validity of proposed method by applying other target data.

53
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Appendix A

General Mean-Shift for a

Multi-Dimensional Situation

Even when the target for data are multi-dimensional, it is fundamentally the same as

the one-dimensional data. Sample xn, n = 1, . . . , N of the M -dimensional column

vector includes the major cluster of NN points and a few outliers. The major

cluster follows an M -dimensional Gaussian distribution with mean vector µN and

covariance matrix CN . Here, the mode of the major cluster is not biased from the

mean vector µN under the influence of NO point outliers. The iteration process in

the multi-dimensional mean-shift method is the following:

1. Let the mean vector µx of sample xn, n = 1, . . . , N be the initial value of the

mean estimator µ̂N of the major cluster

µ̂N ← µx. (A.1)

2. Consider a M -dimensional Gaussian distribution p(x;µW ,CW ) with mean

vector µW and covariance matrix CN as the kernel function in value direction.

Here, the mean mean vector µW of kernel function is ascertained by the mean

estimator of major cluster

µW ← µ̂N . (A.2)

In addition, covariance matrix CN is assigned to be an appropriate size as

discussed in Section 3.1.2.

3. The weight an, n = 1, . . . , N for each sample xn, n = 1, . . . , N weighted by

such a Gaussian kernel is

an =
1

A
p(xn;µW ,CW ). (A.3)
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However,

A =
N∑
k=1

p(xk;µW ,CW ). (A.4)

We use this weight an to calculate the sample mean vector µx with xn, n =

1, . . . , N as

µx =
N∑
n=1

anxn. (A.5)

4. The value of mean vector estimator µ̂N for the major cluster is updated using

the following equation:

µ̂N ← µx. (A.6)

5. If the value variation of mean vector estimator µ̂N is equal to or less than

the predetermined fixed value, the update process is terminated. Otherwise,

return to 2 and repeat the iteration.



Appendix B

Proof of Equation (3.17)

Equation (3.16) can be rewritten as

E[Cx] = E


1

NN

NN∑
n=1

p(xn;CW )x2n

1

NN

NN∑
k=1

p(xk;CW )

 . (B.1)

The denominator
1

NN

NN∑
k=1

p(xk;CW ) and numerator
1

NN

NN∑
n=1

p(xn;CW )x2n are both

random variables. Obviously, if the standard deviation of the denominator is suf-

ficiently small compared to the expected value of the denominator, Equation (16)

can be approximated as shown below because the denominator can be regarded as

a simple variable rather than a random variable

E[Cx] '
E

[
1

NN

NN∑
n=1

p(xn;CW )x2
n

]

E

[
1

NN

NN∑
k=1

p(xk;CW )

] , (B.2)

as shown in Equation (3.17). Hereafter, it is proved that the standard deviation can

be as small as possible with respect to the expected value of the denominator when

the number of samples NN →∞.

Proof. The denominator on the right side of Equation (B1) has the form of

y =
1

NN

NN∑
n=1

xn. (B.3)

� The expected value E(y) and the standard deviation σ(y) are

E(y) = E(xn) > 0, (B.4)

σ(y) =
1√
NN

σ(xn). (B.5)
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If the number NN of samples is sufficiently large, which means NN → ∞, σ(y)

for E(y) converges to 0. p(xn;CW ) is non-negative because it is a probability density

distribution. That is, since the random variable xn follows the probability density

distribution f(x) defined by x ≥ 0, the expected value E[xn] of xn is always positive.

Regardless of the number of samples NN , it becomes E[y] = E[xn], so that, with the

number of samples NN → ∞, the denominator can reduce the standard deviation

as much as possible relative to the expected value.

The expected values and standard deviations for various probability density dis-

tributions f(x) defined by x ≥ 0 are presented in Table B.1. The table shows that,

for all probability density distributions shown in this table, the standard deviation

σ(xn) does not become larger than the expected value E(xn) beyond the order. The

same is probably true for other probability density distributions not listed in this

table. Therefore, corresponding to the number of samples NN = 100, the stan-

dard deviation σ(y) can be about one-tenth of the expected value E(y). Practically

speaking, Equation (B2), i.e., the approximation of Equation (B1), holds.

Table B.1: Expected value and standard deviation of probability density distribution

f(x) defined by x ≥ 0.

f(x) Expectation S.D.

gamma kθ
√
kθ

χ2 k
√

2k

exponential 1/λ 1/λ

Erlang kµ
√
kµ

Rayleigh σ
√
π/2 σ

√
2− π/2

log-normal eµ+σ
2/2 eµ+σ

2/2
√

eσ2 − 1

Pareto
ab

a− 1

√
ab

(a− 1)
√
a− 2



Appendix C

Multi-Dimensional Mean-Shift with

Updating Kernel

C.1 Derivation of Standard Deviation of a Major

Cluster from the Sample

Here, we extend derivation of the estimated value for standard deviation σN in the

one-dimensional derived in Section 3.2.1 to multi-dimensional. The major cluster

is assumed to follow a multi-dimensional (M -dimensional) normal distribution. Al-

though the covariance matrix generally does not become a diagonal matrix, it is

possible to re-coordinate the coordinate axes so that the covariance matrix becomes

a diagonal matrix by appropriate orthogonal transformation. Furthermore, the co-

ordinate axes are shifted such that the mean vector becomes a zero vector. In this

section, we consider the variable (x1, . . . , xM) in such a transformed coordinate sys-

tem. We let the variables be x = (x1, . . . , xM)T and denote the standard deviation

of each variable by σN = (σN,1, . . . , σN,M)T . On the newly revised coordinate axes,

because the covariance is zero, a M -dimensional normal distribution is represented

as a direct product of the one-dimensional normal distribution of each variable as

p(x;σN) =
M∏
m=1

p(xm;σN,m). (C.1)

The kernel function in the value direction is also assumed to be a Gaussian

distribution with a mean zero vector and a diagonal covariance matrix. Because

the standard deviation of each variable is σW = (σW,1, . . . , σW,M)T , the Gaussian

distribution of kernel function is

p(x;σW ) =
M∏
m=1

p(xm;σW,m). (C.2)
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Using this Gaussian kernel, the weight an, n = 1, . . . , NN for the sample xn =

(x1,n, . . . , xM,n)T , n = 1, . . . , NN can be denoted as

an =
1

A
p(xn;σW ). (C.3)

However, A in the above equation is

A =

NN∑
k=1

p(xk;σW ). (C.4)

The sample variance σ2
x,m weighted by an is

σ2
x,m =

NN∑
n=1

anx
2
m,n, m = 1, . . . ,M. (C.5)

For the same reason, under the one-dimensional case, by substituting Equation

(C3) into Equation (C5), the expected value of the sample variance σ2
x,m can be

approximated as

E[σ2
x,m] ' 1

E[A]
E

[
NN∑
n=1

p(xn;σW )x2m,n

]
. (C.6)

Applying Equation (C1) to Equation (C4) and using Equation (13), the expected

value of A is found as

E[A] = E

[
NN∑
k=1

p(xk;σW )

]

=

NN∑
k=1

E[p(xk;σW )]

= NN

M∏
j=1

∫ ∞
−∞

p(xj;σW,j)p(xj;σN,j)dxj

=
NN

(2π)M/2

M∏
j=1

(σ2
W,j + σ2

N,j)
−1/2, (C.7)
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while using Equation (14), the remainder of Equation (C6) is

E

[
NN∑
n=1

p(xn;σW )x2m,n

]

=

NN∑
n=1

E[p(xn;σW )x2m,n]

= NN

M∏
j=1

∫ ∞
−∞

x2mp(xj;σW,j)p(xj;σN,j)dxj

=
σ2
W,mσ

2
N,m

σ2
W,m + σ2

N,m

NN

(2π)M/2

M∏
j=1

(σ2
W,j + σ2

N,j)
−1/2.

(C.8)

That is, according to Equation (C7) and Equation (C8), Equation (C6) becomes

E[σ2
x,m] =

σ2
W,mσ

2
N,m

σ2
W,m + σ2

N,m

. (C.9)

The equation above can be transformed to

σ2
N,m =

σ2
W,mE[σ2

x,m]

σ2
W,m − E[σ2

x,m]
. (C.10)

The standard deviation σN,m of a major cluster can be estimated as

σ̂N,m =

√
σ2
W,mσ

2
x,m

σ2
W,m − σ2

x,m

, (C.11)

when using the standard deviation σx,m of the sample weighted with a Gaussian

kernel with standard deviation σW . Furthermore, using Equation (C7), we can

estimate the number NN of samples belonging to a major cluster as

N̂N = A(2π)M/2

M∏
j=1

(σ2
W,j + σ̂2

N,j)
1/2. (C.12)

The standard deviation σW of the Gaussian kernel is assigned adaptively as

r times the estimated value σ̂N of the standard deviation at each iteration. The

appropriate value of the scale factor r is discussed later in relation to a numerical

experiment.



68 C.2. Mean-Shift Method with Updating Kernel

C.2 Mean-Shift Method with Updating Kernel

1. The mean vector µx and the covariance matrix Cx of the whole samples are

determined using the following equations:

µx =
1

N

N∑
n=1

xn, (C.13)

Cx =
1

N

N∑
n=1

(xn − µx)(xn − µx)T . (C.14)

The initial values of the mean vector µ̂N and the covariance matrix ĈN of the

major cluster are assigned as

µ̂N ← µx, (C.15)

ĈN ← Cx. (C.16)

2. One can consider a multi-dimensional Gaussian distribution p(x;µW ,CW )

with mean vector µW and covariance matrix CW as the kernel function in

the value direction. Here, the mean vector µW and covariance matrix CW of

the kernel function are determined as

µW ← µ̂N , (C.17)

CW ← r2ĈN . (C.18)

Actually, r2 in the above equation is derived from the fact that the covariance

matrix has the squared order of the standard deviation.

3. Weight an for each sample xn weighted by such a Gaussian kernel is calculated

using Equations (A3) and (A4). The mean vector µx and the covariance matrix

Cx are determined using the following equations:

µx =
N∑
n=1

anxn, (C.19)

Cx =
N∑
n=1

an(xn − µx)(xn − µx)T . (C.20)

4. The value of mean vector estimator µ̂N is updated using the following equation:

µ̂N ← µx. (C.21)
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Let

CW = VWΛWV
T
W (C.22)

be an eigenvalue decomposition of the covariance matrix CW , which can be

represented as a symmetric matrix of the kernel. The diagonal elements of the

diagonalized matrix ΛW are eigenvalues of CW ; they represent the variances

σ2
W,1, . . . , σ

2
W,M along the directions represented by each of the column vectors

of orthogonal matrix VW . In addition, the diagonal element of

Λx = V T
WCxVW (C.23)

is the variance σ2
x,1, . . . , σ

2
x,M of VW in the column vector direction in the sam-

ple covariance matrix Cx. According to Equation (C9), we can estimate the

number NN of samples belonging to the major cluster by the standard devi-

ation σN,1, . . . , σN,M , which is obtained by σ2
W,1, . . . , σ

2
W,M and σ2

x,1, . . . , σ
2
x,M

in Equation (C8). Let Λ̂N be the diagonal matrix that has the estimated

σ̂N,1, . . . , σ̂N,M as the diagonal elements. Using Λ̂N , the covariance matrix ĈN

is updated with the following equation:

ĈN ← VW Λ̂NV
T
W . (C.24)

The estimated value N̂N of the number of samples belonging to a major cluster

is updated using the following equation:

N̂N ← A(2π)M/2

M∏
j=1

(σ2
W,j + σ̂2

N,j)
1/2. (C.25)

5. If the value variations of µ̂N , ĈN , N̂N are equal to or less than the predeter-

mined fixed value, then the update process is terminated. Otherwise, return

to 2 and repeat the iteration.
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