Vulnerability and Connectivity Evaluation

of Road Network by Topological Analytics

Hiroe Ando

Mechanical and Civil Engineering Division

Graduate School of Engineering

Gifu University
2020



Contents

Chapter 1 INEroduction ...oceceseceneceneeeseeeseeeseesseesseeenne

1.1.  Background and Research Objective.........

1.2.  Organisation of Thesis

Chapter 2 Related Works and Study Focus
2.1, Related WOTKS ...ccoeerecreernresssesssessssesssssssssssessssessssessssssssssssssssssssssssssssssesss

2.1.1. Performance evaluation metrics of transportation system

2.1.2. Road network reliability

2.1.3.  Vulnerability analytics ......cmeinenernneenn.

2.1.4.  Topological vulnerability methods.......cccoceseerreereens

2.1.5.  Centrality measures

2.1.6.  Spectral partitioning method.............
2.2, StUAY FOCUS v ssssssssssssssssssssssssssssssssssssssssssssssssssnes
Chapter 3 Topological Analytics for Road Network Evaluation
K700 SR 4 U /o T 13Tt 0 0) o N0
3.2.  Construction of weighted network ...............
3.3.  Spectral Partitioning Method ..............
3.3.1. Derivation process of partition...........

3.3.2. Partition result on test network

3.4. Eigenvector Centrality

3.4.1. Definition and derivation of eigenvector centrality

3.4.2. Eigenvector centrality analysis on test network.

3.5. Evaluation Objectives by Weighted Network

3.6.  Concluding REMATKS......ooeeneenerneesssssssssssssessssssessssssssssssssssssssssssssssssssssssssssssssns
Chapter 4 Network Vulnerability Analytics by Topological Indicators

2308 IR 0510 ¢ 6 10 ot 1o ) o W00E PP

4.2.  Comparison with Conventional Methods.....

4.2.1. Maximum flow in capacitated networks

4.2.2. Sioux Falls NetworkK .....nencensssencsnn.

4.2.3.  The partition results by both methods

4.2.4.  Effect of the weight

4.3. Application to Practical Road Network.

4.4. Impact of Weight Setting ......c..ccoeconeenrernrernnernneenne
4.4.1. Reserve capacity..........
4.4.2.  Link disruption probability ...

4.4.3.  Spectral partitioning method by three weighted networks




4.5.  Test for Larger ROAd NETWOTKS ....vreeesesssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssessssssssssnns 42
4.6. Concluding REMAIKS....comememeemernerneinenssiss s ssssssssssssssssssssssssssssssssnns 45
Chapter 5 Network Connectivity Analytics by Topological Indicators 49
EST00 SRR {4 U /o T 10 ot 0 o) o 00PN 49
5.2, Comparison with Other Methods.......cssssss s sssssssssssssssssssssssssns 49
5.2.1. Eigenvector centrality with other centrality MEaASUIES ... 49
5.2.2. Comparison of eigenvector centrality and the number of non-overlapping routes............... 52
5.3. Application to Practical ROAd NEetWOTK ... ssssssssssssssssssssns 55
5.3.1. Capacity weighted eigenvector CENTIAlILY ......oeeeeeseesseessesssessesssesssssssssssssssssssssssessssssssssssssnes 55
5.3.2. Gifu prefecture road NETWOTK ... sssesssesssesssssssesssssssssssssssesssesssssssessssssssssssssns 55
5.3.3.  Strongly and weakly CONNECtEd PATES .....cvereomemermermresnesessesssssesssssssssssssssssssss s ssssssssssssssssssseens 56
5.3.4. BoUNAArY effeCt..eeeeseiseessessessssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssnes 58
5.4.  Verification of Weight Settings......cunemeieiseessssssssssssssssssssssssssssssssssssssssssnes 61
5.4.1. Comparison of unweighted and capacity weighted eigenvector centrality .........ccoeenseereeen. 61
5.4.2. Traffic INAICATOTS e sssesssssssanes 63
5.4.3.  R0AA NETWOTIK .. sss s ssss s s s sanes 64
5.4.4. ECevaluation by various traffic indices 65
5.4.5.  Characterisation of the road network by a factor analysis.......eieeeesen. 67
5.4.6. Hierarchal clustering by the COMMON fACtOTS.....cu e sesssssssssssssaes 69
5.5.  Test for Larger ROAA NETWOTKS ....coiriesssesssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssesssssssessssssssssns 71
5.6.  Application to Detailed Network et R RS RRERREeEEen 75
5.7. Concluding REMATKS......couneememrenssessessesssssssssessssssssssssssssssssssssssssssssssssssssnns 84
Chapter 6 Evaluation of Long-term Road Improvements by Connectivity Analytics 87
LT00 SR {4 U /o T 10 ot 0 o) o 00PN 87
6.2.  Eigenvector Centrality and Weight SEtHNE ... sssssssssssssssssssssns 87
6.3.  Long-Term Network Changes in Gifu PrefeCture...... s ssssssssssns 88
6.4. Connectivity Analytics in Long-term Changes of Road NetWorks ......ccccnenenenncnnenenensesnseenseenn: 92
6.4.1.  Application to multi-year road NEWOIK ... ssssssssssssens 92
6.4.2.  Effect of expansion to 4-1anes 0N EXPreSSWaYS. .. eeemeesnssssssssssssssssssssssssssssssssssssssssns 94
6.5. The Impact of Road Improvements Based on Demand and SUPPLY .....cccovenenennennennernsensesnsesnnessseenne 97
6.6.  Concluding REMATKS......couuruneeeeseeseissssssssessesssssssssssssssssssss s sssssssssssssssssssssssns 102
Chapter 7 L000) 3 ol 10 E] 1) s 130000 105
7.1, SUMMATY Of CONTIIDULIONS w.cvurerrerrereeeseeseessessessessesssessssssssssssssss s sssssssssssssssssssssssesssssssssssesssssssssssesssees 105

T2 FULUIE WOTKS .ttt s s bbb s b e b e b b b b bbb e e bt 108




List of Figures

Figure 1.1 Outline of thesis 3

Figure 3.1 Undirected test network 18
Figure 3.2 The cut set of test network 25
Figure 3.3 The cut set determined arbitrarily ... sssssssens 25
Figure 3.4 Directed teSt NETWOTIK ... ererrrsrissessessesssesssessessesssssssssssssss s ssssssssssssssssnns 27
Figure 4.1 The cut set on the Sioux Falls network 35
Figure 4.2 The distribution of OD traffic VOIUIME ... ssssssssssssssssssssssssens 35
Figure 4.3 The cut set by tWo METROAS ... ssees 36
Figure 4.4 The partition by unweighted spectral analysis......eessssssssseens 37
Figure 4.5 The cut set by traffic capacity Weighted ... 38
Figure 4.6 The cut set when links are weighted according to reserve capacity 39
Figure 4.7 Effects of different values of K 0N CUL SEt....enencnesccscseseecssssss s sssssssssssssssssesens 40
Figure 4.8 The probability and the CUL SEt....eeessssss s sssssssssssssssssssssssessans 41
Figure 4.9 The partition in BerliN ... sisssseesssssssssssssssssssssssssssseens 43
Figure 4.10 The partition in Birmingham ... sssssssssssssssssssssssssssens 44
Figure 4.11 The partition in Philadelphia.......cccscsessss s sssssssssssssssssssssssssssssens 44
Figure 4.12 The partition 0N GOId COASt. ... sssssssssssssssssssssssssns 44
Figure 4.13 The partition 0N SYANeY ......cenenenenenenensssesssessessssssssssssssssssns 45
Figure 4.14 The partition 0N ChiCago .......coemenememenenenenssnesssssssssssssssesssssssssssssssssnns 45
Figure 5.1 Gifu City road NETWOTK ... sssssssssssssssssssssssssnns 50
Figure 5.2 Centrality measures on road network in Gifu City ... 51
Figure 5.3 Non-overlapping routes between node A and B ... 53
Figure 5.4 Comparison of evaluation results 54
Figure 5.5 The scatter plot of EC and average number of non-overlapping routes 54
Figure 5.6 The distribution of traffic CApaCILY ....coemeimermeimenensese s sseens 56
Figure 5.7 The capacity-weighted EC in Gifu Prefecture road network.......ccoeneinensensensensesnsssnseenne 57
Figure 5.8 The rank of eigenvector centrality (LOgarithim)......conenencnencncnenesesesessesseesssesseeens 58
Figure 5.9 EXtended NEtWOTK.....eenenessesseesseseessssssssssssssssssssssssssssssssssssssssssssssssssens 59
Figure 5.10 The normalised eigenvector centrality on the extended network .60
Figure 5.11 The rank of eigenvector CENTIAlItY ... sssssssssssssesssssssssens 60
Figure 5.12 Capacity weighted and Unweighted EC 0n 108-SCale .....couenenenenerncnencinesnesseesssesssesssesseeens 62
Figure 5.13 The number of nodes in €ach LEVEL......ncnennscc s sseeens 62
Figure 5.14 Logarithm values of EC on both networks 63
Figure 5.15 The difference of level between both NEtWOTKS ... sseseeens 63
Figure 5.16 Gifu Prefecture road network 65

Figure 5.17 Eigenvector Centrality by traffic indices

Figure 5.18 Factor loadings of three factors




Figure 5.19 Node clustering in Gifu PrefeCtUre ... sssssesssssssssssssssssens 70

Figure 5.20 EC in log scale for €ach NETWOTK ... ssssssesssssssssssssssssssssens 74
Figure 5.21 Node share in the six city networks et 75
Figure 5.22 Capacity weighted EC distribution in detailed road network.........ccoonenenrennennenserssesnneenn. 76
Figure 5.23 The location of three cities (Gero, Gujo and Gifu City) ... 77
Figure 5.24 The relative rate of EC (GEI0) ..o eeeneessssssnsessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssns 79
Figure 5.25 The population in Gero city eSS R AR 79
Figure 5.26 Heat map of EC in detailed NETWOTK ..ot sssssssssssssssssssens 79
Figure 5.27 Heat map of EC in SiIMpPle NetWOIK ... sssssssssssssssssssssens 79
Figure 5.28 The relative rate of EC (Gujo) 80
Figure 5.29 The population iN GUJO CILY ... sssssssssssssssssssssssssssssssssns 80
Figure 5.30 Heat map of EC in detailed NETWOTK ... sssssssssssssssssssssns 81
Figure 5.31 Heat map of EC in SiIMpPle NetWOIK ... sssssssssssssssssssssens 81
Figure 5.32 The change ration of EC based on minimum value 82
Figure 5.33 The enlarged view inside black square in Figure 5.3 1. e 82
Figure 5.34 The population in Gifu CILY ....eeeenesessesssssssssssssssssssssssssssssssssssees 83
Figure 5.35 Heat map of EC in detailed NEtWOTK.....ceenenenenesescs s ssssssssssssssssens 83
Figure 5.36 Heat map of EC in SiMpPle NetWOIK ... sssssssssssssssssssssens 83

Figure 6.1 The location of “New three motorways” (Gifu Pref. official HP, English captions are added

DY the QULROT )i ss s s s s s s bbb R s 89
Figure 6.2 The distribution of 1ength in 2010 ... ssssssssens 91
Figure 6.3 The distribution of capacity in 2010 ... sssssssssssssssssesssssens 91
Figure 6.4 The distribution of EC by the road networks in each year ... 93
Figure 6.5 The transition of EC rate and Weigh Values ... sssssssssssssseens 94
Figure 6.6 The situation and plan fOr 4 Janes ... sssssssssssssssssssssssssssssns 96
Figure 6.7 The distribution of 10g-Scaled EC........cneninncncencssssssssssss s sssssssssssssssssssssssssssens 97
Figure 6.8 The distribution of EC by both weights in the long-term road networks.........ccoernenecen. 99
Figure 6.9 Scatter plot in EC on both weights et AR 101

Figure 6.10 The number of N0des in €aCh [EVEL...... e ssssssesssssssssssesssees 101




List of Tables

Table 2.1 The definition and qualitative literatures of three metrics (Faturechi and Miller-Hooks,

20715) cteeuueeeuseeesseeessseeeess e eessse e ss s AR R SRR RS RS R SRR RS RR SRR RR AR AR RS RS 5
Table 2.2 Representative CeNtrality MEASUTES ... ereemeesmesseesssessessssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnns 9
Table 3.1 Largest eigenvalue and eigenvector CENTIAlILY .....eeeeeeeseesesssesssssssesssssssssssssssesssesssessees 28
Table 3.2 Evaluation objectives based on Weight SETtINGS .....coureeeneeeenreneesseseesessessssssssssssssssessssssessees 31
Table 4.1 Evaluation objectives of spectral partitioning method based on weight settings ........c......... 42
TADIE 4.2 NEEWOTKS coouveeuseemeeesseeessessssessssessssesssseesssesssssssssessssssssessssessssesss s ssses s s s 43
Table 5.1 Correlation COEffiCIENt ... ssssesseenns 52
Table 5.2 The result of no correlated test (rank correlation) ... 55
Table 5.3 Features of the Gifu Prefecture road NEtWOTIK......oereeeneeeeeseesseesessssesssessesssssssssssens 65
Table 5.4 The Correlation MatriX Of INAICES ... sssssssssssssssssssssssssens 69
Table 5.5 SUMMATY Of CIUSEETING wvuvveeereereeseeserseeseeseesesssssessssssesssssssssssssssssssssssssssssseses 70
Table 6.1 The construction history of Tokai-Hokuriku and Tokai-Kanjo EXpressway......n 90
Table 6.2 Networks of each year-....... et 91
Table 6.3 Calculation cases for 4 lanes and evaluation reSUILS ... 96

Table 6.4 Correlation coefficients of both WeIghts......ncn e 102






Chapter 1

Introduction

1.1. Background and Research Objective

In recent years, the impact of natural disasters such as floods, landslides caused by heavy rains and
typhoons has been increasing because of climate and social changes such as global warming, depopulation,
land use change and so on. Also, there is always a risk of earthquakes in Japan. Thus, increasing societal
resilience is an important issue. Normal urban activities rely heavily on transport systems, especially the
road network, which are not completely disaster-proof. After a disaster, the road network actually
becomes more important than other transportation modes (IATSS, 2000) because of the extensive road
coverage and the network’s robustness in maintaining the connectivity of urban systems. Furthermore,
people rely on road network more in depopulated areas where the public transport system is insufficient
and transportation modes are limited. To construct robustness of road networks, it is important to identify
critical locations which have a significant impact on the overall performance in the network failure and
disruption. Lots of studies have been carried out to evaluate the robustness of the road network, and they
can be categorised into two study groups; network reliability analysis and network vulnerability analysis.
The network reliability analysis in general evaluates a network based on the expected loss of the system

under given probability of disruptions (eg, Bell and lida, 1997), whereas vulnerability analysis evaluates

the network by the consequence of the event regardless of its occurrence probability (eg, Berdica, 2002;

D’Este and Taylor, 2003).

Conventional network reliability evaluation methods use the probability of link disruption
caused by various hazards such as landslide, rock falling, serious accidents and so on is adequate if it is
available. However, the estimation of such probability is in general very difficult, since such hazard does
not occur frequently and, moreover, the probability of occurrence may depend on geographical,
meteorological and social conditions. For these issues, vulnerability analysis evaluates the magnitude of
the disaster impact regardless of the occurrence probability. Vulnerability is an indicator of network
weakness from the loss of accessibility, connectivity, demand and so on. Some of vulnerability evaluation
methods use the demand data such OD traffic volume information and attractiveness of locations. When
the traffic demand data is available from the traffic assignment or survey, it is evaluated based on that
demand data. However, in reality, there are many cases where such accurate demand data is not available,
like at disaster or in the future planning stage. The problem is that the evaluation results depend heavily
on probability and OD data that are difficult to obtain accurately. Also, almost all evaluation methods of
reliability and vulnerability requires a calculation with high computational loads such as shortest path
search, path enumeration or traffic assignment. Therefore, the scale or detail of the network to analyse is

limited.



To relax these limitations, this study attempts to evaluate vulnerability and connectivity of road
network by using topological indicators. One advantage of this approach is to be computationally tractable
for large networks because traffic assignment and shortest path search are not required. The calculation
of the network topological indicator has low computational loads and the evaluation result can be
obtained easily and quickly. Another advantage is that it does not need any assumptions such as perfect
information (if deterministic user equilibrium is assumed) and perfect control (system optimal be all
users following the administrator) because it focuses only on the network structure. In addition, the road
network topology is analysed without using probability or demand data.

The proposed method which is tractable for large-scale networks enables evaluation
independent of the detail level of network. The vulnerability and connectivity evaluation including small
city roads in wide-scale network has a potential to identify critical vulnerable parts that cannot be
identified in the aggregated networks. Moreover, because the proposed method evaluates networks that
do not depend on demand data, it can identify the critical parts in future network plans that are
particularly difficult to estimate the demand. Thus the proposed method is helpful for the road network
improvement policy.

The objective of this study is to add a new perspective to the field of road network evaluation by
showing analytics using network topological indicator that can extract critical parts that was difficult to
find due to the limitations of conventional methods. Specifically, the contribution of this thesis are,

- Proposal for road network evaluation method using network topological indicators,

- Confirmation of suitability of the proposed method to road network evaluation by comparing with
the conventional methods,

- Confirmation of the easiness for applying onto the large-scaled road networks,

- Verification of the usefulness of the proposed method via practical application results.

1.2. Organisation of Thesis

The outline of the thesis is shown in Figure 1.1. This thesis has two topics, vulnerability analytics and
connectivity analytics.

Chapter 1 explains the background and research objective. Chapter 2 introduces road network
evaluation methods related to this study that are classified into each concept. Based on the issues shown
by the literature review, the study focus indicates the position of this study in the road network evaluation
research field. Chapter 3 organises the challenges and objectives of evaluation using each weighted
network. The weighted network is represented matrix considering the measured values of traffic function
as weights. As the methods for weighted network analytics, network topological indicators are introduced.
Chapter 4 proposes a network vulnerability evaluation method by using topological indicators. The
suitability of the proposed method for road network evaluation is confirmed by comparison with the

conventional method. Moreover, the proposed method is applied to a practical road network. The



interpretation of the evaluation results is discussed. Chapter 5 proposes a network connectivity evaluation
method by using topological indicators. Same as Chapter 4, the proposed method is compared with the
conventional connectivity evaluation method and the method is further applied to practical networks. As
one example of the application, the evaluation results by several different weights are verified. Both two
proposed methods in Chapters 4 and 5 are verified to work on large-scaled road networks. In Chapter 6,
the connectivity evaluation method is applied to road networks for different years to analyse the impact

of road improvements. Chapter 7 concludes this study and indicates future works.

Chapter 1 Introduction
- Background and research objective

) 4

Chapter 2 Related works and study focus
- Road network reliability

- Vulnerability analysis

- Topological vulnerability methods

- Study focus

4

Chapter 3 Topological Analytics for Road Network Evaluation
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Chapter 7 Conclusions
- Outcomes of this research
- Future works

Chapter 4

Network Vulnerability Analytics by
Topological Indicators

- Comparison with conventional method
- Application to a practical road network
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- Test for large-scaled road network
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Chapter 2
Related Works and Study Focus

This study attempts to propose a method to evaluate a connectivity improvement of road networks so that
the network can be robust against possible natural/man-made disasters. For this purpose, it is necessary
to identify sufficient and insufficient parts in terms of connectivity in road networks. Various researches
related to network evaluation methods have been proposed. Among them, this research proposes effective
and efficient methods that can easily and quickly evaluate in any size of network. In this chapter, these

researches are summarised, and the focus of this study is described.

2.1. Related Works

2.1.1. Performance evaluation metrics of transportation system
Many metrics have been proposed to analyse and evaluate the impact of disaster on transportation system.
The disaster includes natural disaster, human error like traffic accidents and man-made attacks. Faturechi

and Miller-Hooks (2015) classified such metrics into seven general indicators, risk, vulnerability,

reliability, robustness, flexibility, survivability and resilience. Among them, this research evaluates the
road network connectivity based on reliability and vulnerability metrics to construct a robust road
network system. Identifying critical and susceptible parts on the connectivity is useful information for
efficient and effective road improvement for robustness. Among the seven metrics of transportation
system mentioned above, the definition and qualitative conceptualisation literatures of robustness,
vulnerability and reliability are summarised in Table 2.1. The following sections will review existing

studies on reliability and vulnerability.

Table 2.1 The definition and qualitative literatures of three metrics (Faturechi and Miller-Hooks, 2015)

Concept General definition
Ability to withstand or absorb disturbances and remain intact when exposed to
Robustness _ _
disruptions
Reliability Probability that a system remains operative at a satisfactory level post-disaster

Vulnerability Susceptibility of the system to threats and incidents causing operational degradation

2.1.2. Road network reliability
Various methods and theories have been developed to measure network reliability with a view to
improving the robustness of transportation systems. As a method to evaluate the performance of a

transportation system without considering traffic demand, Wakabayashi and lida (1992) proposed




connectivity reliability, which is the probability that a specific pair of nodes remains connected when a
network is subject to disruptions with given probabilities. Connectivity reliability gained significance
following the catastrophic Kobe earthquake in 1995. The connectivity reliability considers whether the
node is connected or not regardless of the quality of connection.

However, in discussing transport system the level of service, such as travel time or congestion level,
should be considered. For this purpose, travel time reliability and capacity reliability have been proposed.
Travel time reliability is the probability that a trip can reach its destination within a given period at a given

time of day (Bell and lida, 1997). Federal Highway Administration in the United States uses travel time

reliability as a key performance index. This index is evaluated by experienced network users and defines
the level of service offered by the road network. Travel time variability can be considered as an indicator

of demand satisfaction in congested situation. Fosgerau and Karlstrém (2010) considered the value of

reliability to be the value of a change in the standard deviation of trip duration. This paper revealed that
standard deviation of a distribution of trip durations has relationship with the cost of scheduling model
formulated as an opportunity cost per minute of starting early and a greater cost per minute of finishing
late relative to some fixed deadline. However, there are assumptions that the decision maker knows that

travel time distribution. Also, travel time fluctuates by time-of-day and day-of-week (van Lint and van

Zuylen, 2005). Moreover, in addition to considering other factors such as weather and seasons, demand
information is necessary to estimate travel time reliability. Many of travel time reliability studies are
analysed based on uncertain source like that, and methods to relax them have been studied. They are
introduced below. Most of travel time reliability researches assume probability distributions explicitly. In
real life, however, such distribution might not be available. In order to relax this assumption, Ng et al.
(2011) proposed an approach that only requires the specification of the first Nth moments of travel time
and a set of finite intervals in which the random quantities are hypothesised to reside. In case that the
uncertainty sources are statistically independent, the upper bounds on the tail probabilities that are valid
under all conceivable probability distributions are obtained. The worst-case bounds of travel time
reliability are found without exact probability distribution. Furthermore, reliability model with link
disruption often assumes the degradation probability is independent among links. However, multiple links
are frequently disrupted due to the same cause such as floods and earthquakes. Therefore, it can cause

over-optimistic estimate. Sumalee and Watling (2003) proposed a method for estimating travel time

reliability under dependent link failures, which operates by identifying those network states with large
probabilities. This approach is designed for scenarios that have high probabilities, and Sumalee and

Watling (2008) proposed cause-based approach that defines the independent link degradation

probabilities under each cause of failure. The dependent link degradation under each failure is
represented by the causal tree structure of the failures. As described, some studies have been researched
to deal with uncertain demand and probability, relaxing assumptions is one of the main challenges in
reliability analysis.

On the other hand, Chen et al. (2002) presented capacity reliability as a performance measure for

aroad network. It is defined as the probability that road network capacity is sufficient for the demand at

a required level of service, while accounting for driver route choice. Capacity reliability is based on the



concept of reserve capacity which indicates unused link capacity. This assumes that every OD pair will

have uniform growth or decline in its OD demand pattern. To relax this assumptions, Chen et al. (2013)

proposed two alternative approach, ultimate and practical capacity which allow non-uniform growth in
the spatial distribution of the OD demand pattern. These approaches make it possible to evaluate both

changes in demand volume and variations in demand pattern. Also, Sumalee and Kurauchi (2006) adopted

the capacity reliability index that introduces the randomness of the link capacities to represent random
effects of the disaster assuming emergency or resource activity after the initial period of the disaster. This
enables to evaluate the performance of different traffic management strategies under the randomly
degraded network condition after a major disaster.

There are other reliability metrics of transport system regardless of the road, for instance

encountered reliability (Bell and Schmoécker, 2002) measures the probability of users trip successfully

without encountering link disruption, and travel demand satisfaction reliability (Heydecker et al., 2007)

defined by the probability that the road network can accommodate a given latent travel demand.

2.1.3. Vulnerability analytics

Reliability analysis mentioned above is calculated based on the probability estimation, like link disruption
probability. The probability estimation is, however, often very difficult especially when we need to handle
extremely rare events such as natural disasters, and the result heavily relies on its probability. For this
reason, a measure that does not rely on probability estimation, called vulnerability, has been proposed.
The vulnerability analysis evaluates the consequence of a disruption regardless of its probability.
Vulnerability in the road transportation system is defined as the susceptibility to incidents that result in

significant reductions in road network serviceability (Berdica, 2002). D’Este and Taylor (2003) also

presented vulnerability as an indicator of “network weakness”. This indicator measures the potential loss
of node accessibility due to link disruptions based on Hansen (1957)’s measure of accessibility. The
definition by Berdica (2002) and the definition by D’Este and Taylor (2003) are related. They are used for

network failure of “short-term” (hours-days-weeks) and “long-term” (weeks-month-year), respectively
(Taylor, 2017). In term of indicator proposal and application based on the vulnerability concept, Taylor et
al. (2006) identified the critical sections by the changes in generalised travel cost and accessibility
indicator caused by degradation between cities using the Australia main road network. Also, Jenelius et al.
(2006) derives the link importance indices and site exposure indices based on the increase in generalised

travel cost when links are closed. These indices are applied to the road network of northern Sweden.

Mattson and Jenelius (2015) also identified two approaches to vulnerability analysis: system-
based vulnerability analysis and topological vulnerability analysis. The system-based vulnerability analysis
considers the interaction between supply and demand found by a comprehensive transport model. The
topological vulnerability analysis looks at the topology of the network only. Since this paper seeks for the
connectivity of nodes, we adopt the latter approach. The topological vulnerability analysis does not need
to use any traffic assignment or shortest path search algorithm but rather uses graph theory to analyse a
network based on indicators describing the connections between the nodes. The topology vulnerable

analysis which this paper belongs will be described in a later section. The studies of system-based



vulnerability analysis are reviewed here.

Nagurney and Qiang (2007) defined the importance indices based on the reciprocals of the travel

costs. This is the demand weighted generalisation of the network efficiency indicator. Moreover, Nagurney

and Qiang (2012) demonstrates that well-defined system optimised network model by using general
travel cost functions understand not only critical system part but also the underlying behaviour of
decision-makers, the resulting flows, and incused costs in reality of demands for resources. About the

vulnerability by the characteristics of target road network for studies, Balijepalli and Oppong (2014)

applied four indicators; change in generalised cost measure (Taylor et al. 2006), network efficiency

measure (Nagurney and Qiang, 2007), importance measure (Jenelius et al. 2006), network robustness

index (Scott et al. 2006), and new vulnerability indicator which considers serviceability and link priority
reflecting road rank to a dense network in urban areas. The results show that vulnerability indices based
on distances are not suitable for the dense urban networks. The proposed vulnerable indicator means a
relatively higher loss of capacity has a greater significance to the vulnerability measure than a similar road
with relatively lower loss of capacity will have.

Another approach to identify vulnerable links is through the game theory, where a demon aims
to maximise total driving time by failing links while drivers minimise their driving time subject to expected

link failures (Bell, 2000). In the Nash mixed strategy equilibrium, the probability that a demon chooses a

link to fail measures its vulnerability, as the demon would prefer to fail links that cause drivers’ maximum
loss. This takes into account both driver preference for links and the individual drivers’ loss in the event
of a failure. Stochastic user equilibrium is assumed to estimate drivers’ preference for route choice and
thus the method is computationally intensive. As methods using linear programming, Kurauchi et al.
(2009) evaluated road network vulnerability by counting the number of distinct paths that do not share a
link. Node pairs connected by few distinct paths are more vulnerable. Their vulnerability evaluation
heavily relies on the level of detail and boundary situation of the network, and the computationally
tractable method that can handle all roads without any approximation is preferable.

The optimisation techniques are also in mathematical modelling approach. Matisziw and Murray

(2009) proposed an evaluation method of flow loss by link disruptions using an integer programming
formulation. The application to the road network in Ohio shows that the result of integer program is
equivalent to the result of path-based approach which requires enumeration of all paths. Also, Ho et al.
(2013) formulates bi-level vulnerability analysis using a continuum traffic equilibrium model to identify
vulnerable locations. It assumes traffic equilibrium under the degraded situation as a lower-level problem,
and an upper-level problem finds the most vulnerable locations that reduces the accessibility index. The
travel costs and traffic flows at the lower-level are determined by the vulnerable locations given from the
upper-level. The result of numerical example test shows that accessibility which depends on land use

pattern affects the road network vulnerability.

2.1.4. Topological vulnerability methods
Taylor (2017) mentioned a topological method to evaluate vulnerability identifies critical locations in the

network where failure or disconnection will have the maximum impact on network performance.



Topological vulnerability analysis has mainly two aspects; one is a network efficiency and another is a node

centrality. Latora and Marchiori (2001) defined network efficiency as a measure of information exchange

which is the average across all node pairs of the reciprocal of the distance between each node pair. This

achieves a maximum when using Euclidian distance. Mattson and Jenelius (2015) presented a global

efficiency index, which indicates how direct the connections are between all node pairs by comparing the
Euclidean distances with the shortest network distances.
Most of the centrality measures used for topological vulnerability are betweenness centrality

(Freeman, 1979). In an idea of vulnerability that identify important locations, betweenness centrality,

evaluating by the number of nodes or links included in the shortest path, has attracted many researchers.

For example, Demsar et al. (2008) confirmed that node betweenness centrality and cut node methods are

useful to identify critical locations of the network. Since node centrality is directly related to this study,

existing works concerning about centrality measures will be discussed later.

2.1.5. Centrality measures

Centrality measures originated from the social sciences fields (Newman, 2010). Centrality is a value that

indicates which node or link is ‘central’ in the network, and there are various definitions of centrality. The
idea of centrality was firstly applied in social networks to understand human community structure in

small groups (Bavelas, 1949). Subsequently, this concept has been adopted in various fields such as

diffusions of infectious diseases, information and communication systems, economics, engineering and so

on. Table 2.2 shows the summary and reference of representative centrality measures with reference to

Newman (2010). In the table, x; represents a centrality value of node i, N: the number of nodes, d;;:

distance betweennode i andnode j, nl,:the number of shortest paths from s to t thattraverses node

[, g+ the total number of shortest paths from s to t and q;; : an element of the adjacency matrix A,

k;’”t:the out degree of node j and e, §3: the positive constants.

Table 2.2 Representative centrality measures

Centrality measure Reference Formulation Definition
. n
Degree Centrality Procto(rl;&ﬂlioonus X = Z}_ aij The number of links connected to the node.
Closeness Centrality Beauchamp X = _n The mean distane from a node to other nodes using the
(1965) L shortest path through a network between two vertices.
. . Bonacich - A node's importance in a network is increased by having
E tor Centrali =), A _ :
genvector Centrality (1972) ' Zl o connections to other nodes that are themselves important.
. Freeman n, The extent to which a node lies on the shortest paths
Betw: Centrali x; = —
ctweenness Centrality 1977) Zst Ist between other nodes.
. x: . . .
Page Rank Brinand Page |y, =qo Z Ay kTZt +p |Based .on tl.le. concept O.f eigenvector centrality, their
(1998) J J centrality divided by their out-degree.

The simplest measure is the degree centrality (DC) which is defined as the number of links

connected to each node (Proctor and Loomis, 1951). An extension of the DC is eigenvector centrality (EC).

EC (Bonacich, 1972) is the concept that node importance is increased by having connections to other



nodes that are themselves important. As for centrality measures using the geographical distance,

closeness centrality (CC) (Beauchamp, 1965) measures how close each node is to all other nodes and

betweenness centrality (BC) (Freeman, 1977) determines the number of shortest paths that traverses a

particular node or link.

For road network evaluations by centrality analysis, Duan et al. (2014) evaluated the stability of

urban road network robustness by three different granularities, segment stroke and community level,
using the degree and betweenness centrality. They found that the level of robustness varies by observation
granularity, and that centrality measures can effectively represent the robustness of the network. For
instance, the segment level is robust to degree centrality based attack, while the stroke level is extremely

vulnerable to target attacks. Zhang et al. (2011) concluded that the betweenness centrality is the best

measure among degree, closeness and betweenness centralities when partitioning a road network into

several traffic analysis zones. Lammer et al. (2006) showed that the frequency distribution of the

betweenness centrality based on travel time follows the power law. This means that the number of
important nodes with high betweenness centrality values are limited in the whole network, indicating a
clear hierarchical order of the roads. Additionally, the distribution of travel time budget and reachable
nodes under that travel time budget follows the scaling law. From this distribution, the existence of arterial
roads dramatically expands the reachable area within a given travel time. The hierarchy of road networks

is indicated by travel times. Jiang et al. (2004) adopted a special notation method where each node

represents a street name and links are created if there is an intersection between two streets. Three
centrality measures are applied to characterise the urban areas and identify important streets: degree,
closeness and betweenness centrality. They clarified the characteristics of centrality measures, how
degree centrality gives a sense of each street's integration with respect to its neighbouring street, how the
closeness centrality reflects the way a street is integrated to all other streets, and how the betweenness
centrality shows s bridge role of a street between other streets. Other studies also evaluate road networks
with measures of centrality, degree, closeness, betweenness, straightness, and information (ex. Crucitti et
al.,, 2006).

Centrality measures can give the results of all nodes in the network. Among them, the

eigenvector centrality (EC) does not restrict to shortest paths and thus each node affects all of its
neighbours simultaneously. EC is therefore ideally suited for “influence type” processes that
simultaneously assume multiple “paths” such as spread of trends and information (Borgatti, 2005).
Moreover, compared with CC and BC which require the shortest path search, EC with small computational
load is suitable for the evaluation in large-scaled network which is one of the advantages of network
topological analytics. The limitation of the EC is that the size of the eigenvector is undetermined, and it is
often normalised with the length of the vector as one. It means that the values of EC are relatively scored
and the values of EC can only be comparable within the same network. Another limitation is that the values

are often extremely concentrated onto a few large hubs in a network. Martin et al. (2015) attempted to

relax this problem by changing the expression of adjacency matrix. However, this limitation is not
important for the road networks because road networks in general do not have large hubs.

Examples of EC being used in society are introduced here. The mechanism of EC is the origin of
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Page Rank (PR) (Brin & Page, 1998) used in Google web search engine to generate lists of useful web pages.

To evaluate web sites, PR has been modified to emphasise the importance of incoming links. A web site
linked from many pages is very valuable. On the other hand, even the site links to many pages, it is strange
that high centrality of the site transits to all connected pages. Thus, the measure of PR divides the
centrality of those nodes by their out-degree. In this way, the measure which modified the EC is used in
web search system. Furthermore, in research professionals’ relationships using the co-author data of
published papers, EC is more suited for finding key authors than other centrality measures. The reason is
the authors are highly qualified and they have relations with other highly qualified researchers and then
have a probability to publish good quality papers (Bihari & Pandia, 2015). Many other kinds of social

networks have been conceptually or empirically analysed what type of centrality measures are suited (for

example, Landherr et al., 2010; Borgatti, 2005). Centrality measures in social network have been well

studied but much less work has been done on applications of EC for road networks.

2.1.6. Spectral partitioning method

Partitioning is one of the network topological indicator other than centrality. The links that have a
significant impact on the road networks when that links are disrupted are recognised as critical links.
Improving critical links lead to reduce the vulnerability of the network. This study attempts to find critical
links for vulnerability of network by using spectral partitioning method in graph theory. Spectral
partitioning divides the nodes of network efficiently based on specific functions characterised as weights.
This involves findings clusters of nodes which have rich intra-cluster connections and poor inter-cluster
connections. When such clusters do not overlap, their boundaries define the partitioning of network

(Tsiatas et al., 2013). It is known that spectral analysis of the normalised graph Laplacian can reveal

important structural properties of a network. In particular, the eigenvalues of the Laplacian matrix of a
network are closely related its connectivity. Therefore, bounds for the smallest nonzero eigenvalue of the
graph Laplacian provides information on how well connected the network is (Spielman, 2015). This is
closely related to finding bottlenecks in a network, since a partition can often be found by dividing the
network at its bottlenecks. Recently, spectral analysis has been used in various fields. For example, Ma et

al. (2009) have utilised spectral bisection technique to group adjacent intersections with similar traffic

flow characteristics into one sub-network. Also, Khan et al. (2016) have proposed an energy efficient
network design and management system by using the spectral clustering approach to reduce energy

consumption of network infrastructure.

2.2. Study Focus

As is mentioned in Chapter 1 and explained in the related works, it is essential to identify critical parts
where failure or disruption will have the most important effect in the road networks. This is a valuable

information for road improvement policy decision and leads to construct a robust network efficiently. To
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identify the critical parts, this study focuses on vulnerability and connectivity analytics. By D’Este and
Taylor (2003), vulnerability of node is defined as “A network node is vulnerable if loss of a small number of
links significantly diminishes the accessibility of the node, as measured by a standard index of accessibility.”
The potential impacts of nodes by link disruption and degradation on the whole of network is evaluated
by vulnerability analysis.

As methods for evaluating the impact of link disruptions, reliability analysis shown in 2.1.2
evaluates by probability. However, it is difficult to estimate the disaster occurrence probability or link
disruption probability accurately. Moreover, it is particularly difficult to understand user behaviour such
as the travel time distribution in disaster and congestion situation. Therefore, some studies have been
proposed methods to relax such uncertainties. In such a trend, vulnerability analysis that does not use the
probability has been actively discussed in recent years. Vulnerability analysis evaluates the consequence
of a disruption regardless of its probability. As mentioned in 2.1.3, there are many types of vulnerability
indicators such as network efficiency and node centrality (topological) and generalised costs and
mathematical models such as game theory (system-based). However, most of these studies require a high
computational calculation load such as the shortest path search, enumerating routes and traffic
assignment. Furthermore, it is difficult to obtain accurate demand data when the demand needs to be
considered, and it may have assumptions such as perfect information and perfect control. Thus, methods
that can evaluate the network without using route information are effective among the topological
vulnerability analysis which can be evaluated by the network configuration. Nevertheless, there is no clear
knowledge about the relationship between the evaluation by network topological indicators and
traditional vulnerability analysis. By showing the usefulness of network topological indicators as road
network evaluation methods, the value of that indicators can be confirmed. Another advantage of

evaluation by network topological indicators which are not independent on the network size is that it can

be applied to highly detailed road networks. As Duan et al. (2014) shows, the evaluation may differ
depending on the resolution level of the road network. Hence, there are evaluations that can be obtained
by analysing a network that includes roads of all ranks like small city roads.

Based on these backgrounds, the objective of this study is to add a new perspective to the field of
road network evaluation by showing analytics using network topological indicators that can extract
critical parts that was difficult to find due to the limitations of conventional methods. This study proposes
the vulnerability analytics and connectivity analytics methods using spectral partitioning method and
eigenvector centrality method. By comparing the proposed method with the traditional method, the
usefulness of the proposed methods is verified. Because these methods do not require high computational
calculation loads, it can be applied to large-scaled road networks.

It is very useful to identify critical parts that affect significantly to the vulnerability of road
networks. When these critical nodes or links are disrupted, the evaluation measure of parts that are easily
affected or not easily affected is connectivity analytics. The weak parts of connectivity in term of network
topology should be heavily affected by failure and disruption in a disaster. Conversely, the effect of parts
where network topological connectivity is stable will be small. Therefore, the connectivity analytics to

understand areas with weakly and strongly connected is important.
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This chapter summarised the studies of road network evaluation for each metrics, indicated the
issues of them, and clarified the position and objective of this research. In addition, the reasons for
adopting the two network topological indicators used for vulnerability and connectivity analysis in this
study were described. In vulnerability and connectivity analysis, the one of the new point of this study is
network topological analytics considering the measured values of traffic function by weight settings. For
the interpretation of results, the challenges and objectives of the analytics with each weight are

summarised in the next chapter.
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Chapter 3

Topological Analytics for Road Network Evaluation

3.1. Introduction

The road network is basically regarded and evaluated as their physical connection structure and the flow
on the network. Many evaluation methods have been researched however the network topological
analytics have advantages such as low calculation loads and no assumptions as mentioned in the section
of Study Focus in Chapter2. Therefore, this research attempts to evaluate the road network by topological
analytics. Chapter 3 proposes the road network evaluation methods based on the network topological
analytics by considering the measured values of traffic function as weights. The process for adding the
traffic function features value as weight will be described. Moreover, the vulnerability and connectivity
indicators, which evaluate the road networks by analysing weighted network is introduced.

One advantage of analytics by network topological indicators using graph theory is that weights
can be selected depending on what you want to evaluate. It is necessary to organised what can be
evaluated by analysing the network considering the weight. In this study, various weights are applied
according to the research objective. The challenges that are expected to be solved by weight setting and

the objectives to be clarified by analysis and evaluation using weighted network are indicated.

3.2. Construction of weighted network

The weight values are given to each link in the network. Figure 3.1 shows undirected test network
consisting of 4 nodes and 5 links. The values on each link indicate weights. By adopting various feature
values such as distance, travel time, traffic volume, and so on as weights, weighted network analysis is
based on each feature. Therefore, the weight settings changes depending on the objective of analysis.

In graph theory, a network is represented as a matrix, and the characteristics of the graph are
understood by analysing the matrix. An adjacency matrix, degree matrix, Laplacian matrix and normalised
Laplacian matrix using in this research are defined as follows. These matrices of the network in Figure 3.1

are shown as an example.
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Figure 3.1 Undirected test network

Adjacency Matrix

An adjacency matrix represents the connection relationship on network. Consider an undirected network
G = (V,E,w), where V isasetofnodes, E isasetoflinks and w is a vector of link weights. Let A; a
weighted adjacency matrix for network G. The dimension of this matrix is n X n, where n = |V|. The

elements of A; are

w, if e=(u,v) €E

3.1
0 otherwise (31)

auvz{

where w, € w, link e = (u,v) € E and nodes u,v €V

The weight w, corresponding to the link e is set to a non-negative value as network indicators. If the
weights are not considered (i.e. unweighted graph), w, = 1. For an undirected graph, the adjacency
matrix is symmetric.

An adjacency matrix of test network is

A= sl (3.2)

Degree Matrix

A degree matrix is a diagonal matrix composed of the degree of each node (i.e. the number of links flowing
into/out from each node). In case of weighted network, a sum of connected link weights represents the
value. The degree matrix D, is a diagonal n X n matrix for network G. The diagonal elements are

shown as follows and the other elements are zero.

a if u=vev
dyy = {Zv w f (33)

0 otherwise
A degree matrix of test network is
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65 0 0 0
[0 4 0 o0
D¢ = 0 0 35 0 (34)
0 0 0 7

Laplacian Matrix

A Laplacian matrix L; for network G isdefined as follows using the adjacency matrix and degree matrix.
L; =D; — Ag (3.5)

By definition. the column or row sum of a Laplacian matrix is zero.

A Laplacian matrix of test network is

65 -—-15 =2 -3
-1.5 4 0 —2.5

L=\ 2 0o 35 -1i5 (36)
-3 =25 -15 7
Normalised Laplacian Matrix
A normalised Laplacian matrix N; is normalised so that diagonal elements is 1. It is defined as,
N; = D;%°L;D;0%5 (3.7)
A normalised Laplacian matrix of test network is
1 —-0.29 —-042 -0.44
_ [ —0.29 1 0 -0.47
Ne=\_042 o0 1 -0.3 (3:8)

—-044 -047 -03 1

Analysis using these matrices of weighted network shows the characteristics of network considering the

measured values of traffic function.

3.3. Spectral Partitioning Method

This section describes the spectral partitioning method, one of the graph partitioning methods. The
spectral partitioning method finds a cut set that divides the network evenly while minimising the weights
included in the cut set. By applying this method to a weighted road network, the evaluations based on each
viewpoint are performed. For example, the parts that are easy to become bottlenecks and the parts that
have potential to be affected at the disaster. The relationship between the interpretation of these
evaluations and the weight settings will be described later. In here, the derivation and characteristics of

the spectral partitioning method is explained.
3.3.1. Derivation process of partition

Eigenvalue and Eigenvector of a Laplacian Matrix

Note that for undirected networks A, is symmetric, and therefore L; is also symmetric. According to
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the Spectral Theorem (see Spielman, 2015), when the elements of L; is a real and symmetric matrix,
there exist non-negative real A, ...,4,, known as eigenvalues, and n mutually orthogonal unit vectors
@4, ..., P,, known as eigenvectors. While the eigenvalues are unique, the eigenvectors are not. It follows

from the definition of a Laplacian matrix (see von Luxburg, 2007) that

XTLGX = E Xy (duu - auv)xv = E xlztduu - E XXy Ayy
u,vev uev Uu,veV
= 0.5( E x2d,, — 2 E Xy Xy Ay + E x2d,,) (3.9)
uev U,veV vev

=0.5 Z Ay (X, — x,)% = O.SZ We (X, —x,)2 =0
u,vev e=(u,v)EE

where X is a vector of n elements.

Thus, a Rayleigh quotient of vector x for the Laplacian can be written as

xTLgx

xTx
By definition, if ¢ is a unit eigenvector of the Laplacian, then the following equation holds,

T
L
L oL =2 (3.10)

where A is the corresponding eigenvalue.

Second smallest eigenvalue
Label the eigenvalues in an order of size as follows:
/113/1233/1,1

It follows (see Spielman, 2015) that

xTLgx
A= min — (3.11)
Xl@q,...0i-1 X'X
where
xTLgx
.= ar min ) 3.12
(pl ng_(pl,...,tpi_l XTX ( )
implying that the eigenvectors are required to be mutually orthogonal. Therefore,
_ XTLgx ~xTLgx (3.13)
A, = min 7 = min——,
xlg; X'X x11 X°X

where @; = {1/+/n,...,1/4/n}, as the eigenvector corresponding to the smallest eigenvalue is a unit
vector with all equal elements. As will be shown next, the second smallest eigenvalue of the Laplacian is
intimately related to the strength of the connection between any sub-network and the rest of the network.
When the Laplacian has two zero eigenvalues, there is a sub-network which is disconnected from the rest

of the network.

Lower bound of network connectivity

Consider a sub-network S < V. One way to measure how connected S is to the rest of the network is to
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focus on the boundary of S, namely:

aS)={(w,v) EE:ueS,veV —S} (3.14)
This boundary is referred to as the cut, as it partitions the network into two sub-networks with node sets
S and V — S respectively.

Consider vector xg with elements:

1/m if ues
xS(u)_{l/(m—n) ifuev-S (3.15)
where |S| = m. Itis easy to see thatxg L 1 since: xL1 = 0.
It follows from (3.9) and (3.13) that
A < xng,st S Z W, (3.16)
XsXs m(n —m) Laeea(s)

Let us define the right hand side of (3.16) as the connectivity of the sub-network to the rest of the network.
Hence the second smallest eigenvalue provides a lower bound for the connectivity of any sub-network. If
A, > 0, all sub-network within a network must be well connected. Hence the second smallest eigenvalue

of the Laplacian offers a measure of the connectedness of a network.

Normalised Laplacian
To measure the sub-network by the number of links rather than the number of nodes, normalised
Laplacian shown in (3.9) is used.

By a variable transformation,

y = Dg%%x. (3.17)
Then,
y'Ley  x"D;%5L;D;%%x  x"Ngx (3.18)
y'D;y xTx oxTx

Let the eigenvalues of the normalised Laplacian be
0=V1 SVZ < - Svn, (319)

and d%5 be a vector whose u" elementis ./d,,,. The eigenvalues for v; = 0 is d%° since

Ngd®® = D;%°LeD~*°d%5 = D;%°Ls1 = D50 = 0. (3.20)
Hence,
x"Ngx TL
Vv, = min = miny Gy. (3.21)
xLd%s xTx y11 yTD.y
Spectral Partitioning

Consider the following network partitioning problem.

P
m}}ny L;y (3.22)

subject to
y € {a, b}" (3.23)
y'1=0 (3.24)
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y'Dey=1 (3.25)

By the optimality condition, the coefficients a and b for obtaining the optimal solution are,

(n — m)? 05
a= , (3.26)
(n —m)2d(S) + m?d(V —S)
2 0.5
b=-— m . (3.27)
(n —m)2d(S) + m2d(V - 5)
As (3.21) omits (3.21, it is a relaxation of (3.22), following that
T 2
Ys LgYs n Z
v, < = W,, 3.28
2= yTDys  (n— m)2d(S) + m2d(V = 5) Luecors) (5:28)

where the elements of ys are

_ aifues
ys(u) = {_b FueV—s (3.29)

Hence the second smallest eigenvalue of the normalised Laplacian matrix provides a lower bound for a
measure of the connection of sub-network S to the rest of network S — V. This is the normalised cut by

Bandeira (2015). In this case, the normalisation reflects the number of links either side of the cut rather

than the number of nodes.

Cheeger’s cut, constant and inequality
The eigenvalues of adjacency matrix, Laplacian matrix and normalised Laplacian matrix enables to show

the upper and lower bounds of indicators related to the connections. The literature on spectral analysis

invariably refers to Cheeger’s cut, constant and inequality. Cheeger’s cut (see Bandeira, 2015) is defined

as

1
h(s) = min[d(S),d(V - S)] Zeea(s)we' (3-30)

The right hand side of (3.30) is referred by Spielman (2015) to conductance and is an alternative measure

of how well sub-network S is connected to the rest of the network. The Cheeger’s constant for network
G with sub-network S that minimise h(S) is
he = min h(S). (3.31)
From the Cheeger’s inequality, the Cheeger’s constant has its upper and lower bounds defined by the
second smallest eigenvalue of the normalised Laplacian matrix as
0.5vy < hg <4/ 2v,. (3.32)
It can be shown that

2

n z < dv) "
(n —m)2d(S) + m2d(V — 8) Luceas) ©~ d(S)d(V —S) Luceacs) © (333)
1 1 '
- (d(S) T S))Zeea(s)we < 2h(S).
From (3.17),
nZ
vy, < = m)2d(s) + m2dV —5) zeea(s)we < 2h(S). (3.34)
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To better understand inequality (3.33), consider
1

(1= 6)2d(5) + 6%d(V - 5) (3:35)
where 0 < 0 < 1. This fraction achieves a maximum when 6 = d(S)/d(V).
Hence,
2
(n— m)zd(S)n+ m2d(V - 5) = d(S)Ccii((Il//)— S) (3-36)
From (3.28) and (3.36),
dV)
= T 5 Laers ™ (557

Let us define the right hand side of (3.37) as a connectivity of the sub-network to the rest of the network.
From the meaning of minimising the right hand side, the second smallest eigenvalue designates the cut
set minimising the sum of the weights on the boundary while dividing the sum of degrees into two equal

parts.

Procedure to partition the network
A natural question to ask is, given v,, where in the network does the corresponding sub-network

boundary 9(S) lie. Von Luxburg(2007) suggests that a natural basis for a boundary is the sign of the

elements of ,; nodes with a non-negative eigenvector lie on one side of the boundary while nodes with

a negative eigenvector lies on the other. This research adopts this approach.

From the above, the procedure of the spectral partitioning method can be summarised as follows,

1. select alink weight that is appropriate for the research objective,

2. derive the normalised Laplacian matrix of the network to be analysed,

3. obtain the second smallest eigenvalue of the normalised Laplacian matrix. If the second smallest
eigenvalue is 0, find the smallest non-zero eigenvalue, and

4. partition the network according to the sign of the eigenvector corresponding to the smallest non-zero
eigenvalue.

The cut set is the set of links that partition the network based on the sum of the smallest weights such that

the weight densities of each sub-network are approximately equal. Links in the cut set are critical as they

are easy to disconnect the network.

3.3.2. Partition result on test network
The second smallest eigenvalue of the normalised Laplacian matrix of a test network find the cut set. The
cut set in a test network divided into a subnetwork including nodel, node3 and another subnetwork
including node2, node4 (Figure 3.2). This cut is given by the second smallest eigenvalue of normalised
Laplacian matrix as shown in (3.37), the contents of right hand side of (3.37) in this partition result are
shown.

The right hand side of (3.37) minimise the sum of the weights on the partition while dividing the

sum of degree evenly. The sum of weights in cut set of test network is
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Z W, =w; +ws +wg =15+3+15=60, (3.38)
e€d(s)

the degree of each node is represented by a degree matrix shown in (3.2). Therefore, the sum of degree

contained in each subnetwork are shown follows.

d(S) = 10, (3.39)
d(v —5) =11, (3.40)
d(V) = 21. (3.41)

The value of (3.41) do not depend the cut set because this is the sum of degree in whole of network. By
the result from (3.39) to (3.41), the relationship of the sum of degree in two subnetwork is

L =0.191, (3.42)
dS)dw —-35)
the right hand side of (3.37) is
d(V)
d(S)d(V = 5) Luceas)

The detailed of property that minimises the sum of the weights on the cut set while dividing the sum of

w, = 1.145 (3.43)

degrees into two equal parts were shown using test network.
If the network is divided by different cut set, the value on the right hand side of (3.37) is as
follows. Figure 3.3 shows position of the cut set determined arbitrarily by author. In this case, the sum of

weight is small,
2 W, =w, +w, =2+ 15 =35, (3.44)
e€d(s)

the sum of degree of two sub network is far from equal,

alv)

a0 =5 - 0.343, (3.45)

therefore, the right hand side of (3.37) based on an arbitrary cut set is

d(S)d(V = ) Luceas) ¢ (3.46)
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Figure 3.3 The cut set determined arbitrarily

The cut set shown in Figure 3.3 is not evenly divided even though the sum of weights is small. The right
hand side of (3.43) is larger than that of the cut set obtained by minimising the second smallest eigenvalue
of normalised Laplacian matrix. Although only one example of other cut set was introduced, the cut set
obtained by minimising the second smallest eigenvalue realises equal division of the subnetwork and

minimisation of the sum of weight by this details.
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3.4. Eigenvector Centrality

As another network topological indicator, the eigenvector centrality is introduced in this section. The
eigenvector centrality (EC) gives each node an evaluation value. A specific node is highly evaluated in cases
where important nodes are connected to adjacent nodes of that specific node. Therefore, the parts of the
network where important nodes connect one another becomes more important, while the part where less
important nodes connect one another become less important. EC analysis in weighted networks evaluates

the strength and weakness of connectivity based on the measures of traffic function set as weights.

3.4.1. Definition and derivation of eigenvector centrality

As mentioned in Chapter 2, EC defined by Bonacich (1972) is one of the network topology indicators. This

method can be applied to directed network and does not require an adjacency matrix to be symmetric.
Here the mathematical characteristics of EC will be described. Let,
Ax = x, (3.47)

where X is an eigenvector, 1 is an eigenvalue and A is a weighted adjacency matrix with elements,

@ = {weight of the link from node i to node j
Y 0 otherwise

The Rayleigh quotient is
_ XTAX _ Zi,j xl-aijxj

- = , 4
R (3.48)

I am interested in the largest eigenvalue (demoted by*)
2 o may SAX _XTAXT Xy xiayx e Xiagg e

x xTx  xTx* %2 IR PR T R

(3.49)

Proposition 1: The eigenvector corresponding to the largest eigenvalue is non-negative and the largest
eigenvalue is positive.

Proof1: x* = 0 would imply 1" = 0. However, (3.49) shows that x; > 0 and x; > 0 would guarantee
A >0 if a;; > 0,so,since a;; > 0 for some pair of nodes i and j, atleast two elements of X" mustbe
positive and A* > 0. Hence 1* > 0 and x* = 0. QED.

Proposition 2: If every node can be reached from any other node in the network, then x* >0 (or
alternatively x* < 0).

Proof 2: Suppose that x; > 0 for somenode j for which a;; >0 for some node i.It follows from (3.47)

that x; = # > 0. If it is possible to get from any node to node j and if it is possible to get from node

j toany node then by induction x* > 0. Similarly, if x;/ < 0 and the network is connected it follows that

x* < 0.QED.

If Proposition 2 is true, then A is said to be irreducible. Note that neither Proposition 1 nor
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Proposition 2 requires A to be symmetric. This is in contrast to spectral partitioning, which does require
symmetry.

Note furthermore that a large value of a;; leads to large values of x; and x; from (3.49),
countered by the denominator, which grows faster than the numeratoras x; or x; getlarger. Since x; =

.
Xjaix;
*

Fral the eigenvector element for node i isalinear combination of the adjoining eigenvector elements,

weighted by elements in both directions. Hence nodes i for which x; > 0 constitute a strongly

connected community and A* offers a measure of the strength of connection in the network as a whole.

3.4.2. Eigenvector centrality analysis on test network
The network shown in Figure 3.4 is used as an example of EC analysis. Since the EC analysis supports

directed network, the test network was changed directed. An adjacency matrix of this directed test

network is
0 15 2 3
|0 0 0 o0
A= 05 0 0 0 (3:50)
25 25 15 0

By using this adjacency matrix A, the eigenvector corresponding the largest eigenvalue that satisfies
(3.47) is the eigenvector centrality. Table 3.1 shows the largest eigenvalue and the corresponding
eigenvectors on each node. Since there are scalar multiple eigenvectors corresponding to the largest
eigenvalue satisfying (3.47) in scalar time, the values of EC are normalised so that the sum of EC in the
network become 1. In small network, it is difficult to clarify the effects of propagation by adjacent nodes
connect to critical nodes. Node 4 with the inflow of large weight link is highly evaluated. Conversely, the
evaluation of node 3 is smaller than that of node 2 despite the inflow link from node 4. This may be because
the weight of inflow link from node 4 is not so large. In this way, EC analyses the connectivity considering

weights in directed network.

Figure 3.4 Directed test network
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Table 3.1 Largest eigenvalue and eigenvector centrality

A Largest eigenvalue 4.691
X1 EC on nodel 0.277
Xy EC on node2 0.256
X3 EC on node3 0.067
Xy EC on node4 0.400

3.5. Evaluation Objectives by Weighted Network

This research attempts to analyse the road network by network topological indicators using weighted
network. Notation method for weighted network by matrix was introduced, and two network topological
indicators analysed by weighted network, spectral partitioning method and eigenvector centrality method
were described. This section shows the measured values of traffic function that are considered as weight.
Moreover, the evaluation objective by weighted network analytics depending on each measured value is
summarised.

Table 3.2 is organised for comprehensive weight settings. In this research, 10 types of traffic
measured values are set as weight and that weighted networks are analysed. The challenges the weighted
network to evaluate are roughly divided into four:

- The evaluation of road improvement

- Characterise the region on road network

- Understanding the traffic conditions which flow on the road network

- The evaluation of disaster impact on the road network

The road network is evaluated by the analytics that set the measured values of traffic function according
to each challenge. Furthermore, the combine the evaluation results by analytics with each weight setting
may make a deeper discussion about these challenges. Based on the type of traffic function, measured
values such as road use situations, construction conditions and environmental conditions (like hazard
risk) are set. Notes on these settings and data information to be used are mentioned in the parts where
the analytics and evaluation are performed.

The main parts of this study on both methods are network topological analytics using capacity
weighted network. Thus, the evaluation of capacity weighted network by both methods are explained.
Capacity weighted spectral partitioning finds the vulnerable partition considering traffic capacity. The
links in the cut set must have been composed of small capacity roads. This means that this cut consists of
potential bottlenecks. Because it is likely to become a bottleneck regardless of demand if small capacity
roads construct a cut set. Traditionally, the bottlenecks have been identified by traffic assignment based

on OD traffic volume data. However, it is difficult to obtain accurate traffic demand data in the disaster or
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in the future. Also, the evaluation results may be different depending on the magnitude of the uncertain
demand. As a proxy of the analysis based on demand data, this study proposes using capacity as a weight.
With regard to EC analysis, unweighted EC shows the connectivity purely in terms of network topology. In
many cases, however, the practitioners may also want to consider the “weakness” of infrastructure in
identifying the vulnerable areas. In general, the probability of link disruption caused by various hazards
should be considered, but it is very difficult to estimate it accurately since the occurrence of hazards may
depend on geography, meteorological and social conditions. It is supposed here that capacity weighted EC
shows the connectivity considering the difficulty of link disruption, because the link disruption may not
easily happen on larger capacity roads. As a proxy of such probability, this study proposes to use link
capacity as a weight. Even the same capacity weighted analysis, the interpretation of evaluation is different,
the spectral partitioning which evaluates the likelihood to become bottlenecks and EC which considers
the ease of links disruption.

In Chapter 6, long-term road networks with changes are analysed to evaluate the impact of road
network improvement. The weight settings are adopted capacity-length as supply side weight and traffic
volume as demand side weight. These weights are applied only to the EC analysis for the connectivity
evaluation. The capacity-length is calculated as a multiplication of length and capacity of each link, and it
represents the “magnitude of road areas”. The capacity-length weighted EC evaluates the connectivity of
road supply performance. By considering the length, it is possible to understand the relationship with
road improvement costs. Traffic-volume sets the number of vehicles on each link which is one of the
demand side characteristics as weights. The traffic volume weighted EC evaluates the level of traffic
concentration based on the actual usage.

Basically, each weighted network is applied to the spectral partitioning analysis or EC analysis
or both. The objectives and targets to evaluate by both methods are depending on the measured values as
organised in this section. For the spectral partitioning analysis, reserve capacity and link disruption
probability are used as weights in addition to capacity weighted. The reserve capacity represents the space
of links by the difference between capacity and traffic volume. If the traffic volume exceeds the capacity,
all of those values are 1. The analysis using reserve capacity weighted network attempts to identify the
cut set which is likely to become bottlenecks by finding the parts with no remaining capacity. The parts
where are likely to become bottlenecks due to the small available road network capacity can be said
vulnerable. The analysis using link disruption probability weighted network attempts to identify the cut
set which divides the network by link disruptions at the disaster. The identified cut set consists of links
that have a high risk of being degraded at the same time.

For the EC analysis, speed, BPR function, travel time, distance, and congestion rate are used as
weights in addition to capacity, road area and traffic volume. The measured values of speed use the speed
limits of links. The EC analysis using speed weighted network represents the connectivity distribution of
links with high and low speed limits. The speed limits of links should correlate with the road rank of links.
The BPR function is the travel time considering the congestion. Therefore, the EC analysis using BPR
function weighted network represents the connectivity distribution of links with short and long travel

time considering congestion. On the travel time weighted network, the travel times as weights use travel
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times of links for the survey data. The EC analysis using distance weighted network represents the spatial
density of network by the connectivity of length on each link. When roads with long distances are
connected, the network must be sparse. Hence, in the parts where the connectivity of roads with long
distances is high, even if there are detour options at the link disruption, it can be said that the detour rate
is often high. The measured values of congestion rate are the traffic volume divided by the capacity. The
congestion rate can also indicate the value that the traffic volume exceeds the capacity. The EC analysis
using congestion rate weighted network represents the concentration and distribution of crowded roads.
The contents of analysis according to each objective and target will be introduced in each chapter of this
thesis. Analytics using the spectral partitioning method is described in Chapter 4, and analytics using EC
is described in Chapter 5 and Chapter 6. The location mentioned in this paper in Table 3.2 shows the

detailed section.
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Table 3.2 Evaluation objectives based on weight settings
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3.6. Concluding Remarks

This chapter showed the properties of weighted networks, their analysis methods and the evaluation
objectives. The notation method using the matrix for weighted networks was presented. Then, I
introduced various kinds of matrices used in graph theory for cases that consider the values as weights.
As methods for analysing the characteristics of network using weighted networks, this chapter mentioned
about the spectral partitioning method and eigenvector centrality method.

Spectral partitioning method is one of the graph partitioning method by using graph theory. This
method identifies the cut set that divide the network evenly and are easy to cut into two subnetworks.
Described the derivation process and definition, and the interpretation of the partition obtained by this
method was explained using derived formulations. Further, the example network calculations made
clearly the details of partition result obtained by spectral partitioning method. Eigenvector centrality
method is another analysis method for weighted networks introduced in this chapter. EC method tends to
get higher evaluation if they have adjacency nodes that connect to important nodes. Hence, the strength
of connectivity based on the measured value of traffic function that are considered as weights. The
definition and derivation are described and the directed example network was calculated. The evaluation
result of directed example network indicated the characteristics of considers the weights.

This research attempt to evaluate the road network by using these network analytics indicators
based on the weighted networks. Applicability to road networks, evaluation results, discussions and
utilisations, etc. will be performed in later chapter for each network analytics indicator and weight settings.
For the interpretation of those analytics, the challenges that are expected to be solved by weight settings
and the objectives to be clarified by network evaluations using weighted networks were indicated. The
contents summarised in this chapter will assist in the interpretation of subsequent analysis and

evaluations.
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Chapter 4

Network Vulnerability Analytics by Topological Indicators

4.1. Introduction

Chapter 4 verifies the road network vulnerability analysis by network topology indicator. Identification of
critical parts of the network where connectivity is significantly reduced is very important for the
vulnerability of road networks. The improvement of critical parts helps to construct a robust road network
efficiently. As shown in the Chapter 2, a lot of methodologies and literatures have been studied to evaluate
the vulnerability of the road network. Most of them require estimates of demand and traffic assignment.
Thus, they have some assumptions and restrictions of the target network such as perfect information (if
deterministic user equilibrium is assumed), and perfect control (system optimal be all users following the
administrator). The analysis based on the network topology indicator does not require to calculate with
large computation loads, and it is valuable to be able to identify vulnerable parts easily and quickly.

In this chapter, the vulnerability of road network is evaluated by using the spectral partitioning
method which is one of the graph partitioning method. The definition and details of derivation process
were given in Chapter 3. The objective of this chapter is to validate that the usefulness of the evaluation
method based on the network topology indicator and to demonstrate the tractability of the proposed
method onto large-scaled practical road networks.

The method proposed by Bell et al. (2017) is used in Chapters 3 and 4. This is the first paper

applying the spectral partitioning method to transport network while the method has been studied for

many kinds of other networks (ex; von Luxburg, 2007; Bandeira, 2015; Spielman, 2015).

4.2. Comparison with Conventional Methods

To test its usefulness, spectral partitioning method described in 3.3 is applied to the Sioux Falls road
network. Moreover, the validity of the method will be confirmed by comparing with a maximum flow
problem, which is one of the conventional road network evaluation methods.

Here, following to Bell et al. (2017), a traffic capacity is used as weight. Because the cut set

obtained by the second smallest eigenvalue of capacity weighted Laplacian has the least capacity and
therefore could constitute a network bottleneck. From the comparison results, if the capacity weighted
spectral analysis can identify the critical bottleneck in a network, it means that spectral analysis is useful

measure of transport network vulnerability.
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4.2.1. Maximum flow in capacitated networks
As a conventional road network evaluation method, a maximum flow problem is adopted. This method

uses the theory of capacitated user equilibrium assignment with right-angle function (Bell and lida, 1997).

The maximum link traffic volume is obtained by solving a total travel time minimisation problem. For the
links that may overflow, a delay time is added as a shadow price to express the principle of equal travel
time.

The formulation is as follows.

mfo (4.1)
subject to
—Z3Gia ifie0
Yacin(i) Xad — Lacout(i) Xad = {Zjek—d Zgj; ifi=d ,vdeD (4.2)
0 otherwise
2 Xgg < Sq Va€EE (4.3)
deD
Xqqa =0 Va€eEdeD (4.4)
where,
Z :  Total trip production (unknown variable, network capacity)
Xqd :  Destination-specific link traffic volume (unknown)
Jod : A probability that a traffic is originated from o and destined to d(},4 9,4 = 1, known
as OD probability)
Sq : A capacity of link a
In(i) : Asetof links flowing into node i
Out(i) : Asetoflinks flowing out from node i
0 :  Asetoforigins
D :  Asetof destinations
E :  Asetoflinks.

Shadow prices of link capacity constraints should be positive if a link overflows. Therefore, the cut set that
causes overflow is obtained by connecting the links that have positive shadow prices. It assumes here that

OD pattern is given and unchangeable.

4.2.2. Sioux Falls Network

The Sioux Falls road network (Bar-Gera, Transportation Networks) shown in Figure 4.1 has 24 nodes and

76 directed links. Traffic capacity indicated by the values on links in Figure 4.1 is same in both directions.
Figure 4.2 shows the distribution of OD traffic volume, and the maximum and minimum OD traffic volume
are 4,400 and 100 (vehicles), respectively. The partition produced by capacity weighted spectral analysis
is compared with the partition produced by the active link capacity constraints of the maximum flow

problem.

34



=== Spectral Partitioning Method
=== Maximum flow problem

bt
r 4
8| 25900 2
S <
~ll k17111 4 23403 4948 ;
_ﬁ—r—
r 3 = = 4
.Illg‘ llll-lll-g am
§‘ 8‘ : allls 5050 :
B &, R .
T g :
4124909 }41110000 7y 4855 "
~ - B
™~ Py <
00 R o \@\
00« R |
o o ) 1
u 3 o
: “ -
8‘ - 5128 | ks 14565
[e2] .
Lﬂl LY
[o¥] | I |
| I |
"o
-
. =
| | | |
-
- n
n n
3 5898

Figure 4.1 The cut set on the Sioux Falls network
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Figure 4.2 The distribution of OD traffic volume

4.2.3. The partition results by both methods

The dotted lines in Figure 4.1 show the partition produced by capacity weighted spectral analysis and
maximum flow problem. They are similar but not totally the same. The reason is that the partition
produced by the maximum flow problem depends on the OD pattern traffic volume, whereas the partition
produced by capacity weighted spectral analysis is derived only from the network topology and traffic

capacity. Then, traffic capacity sensitivity is analysed by iterative calculations with fixed OD traffic volume
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and fluctuated traffic capacity.

In this case, a uniform random number, y = [0,1], is created for each link and traffic capacity is
changed to (0.5 + y) X s,. This means that the traffic capacity fluctuates uniformly from 50% to 150%.
99 sets of fluctuated traffic capacity are prepared, and 100 calculation results including original case are
obtained. By connecting links that are included many times in the cut set, it is possible to find the cut set
which is likely to occur regardless of the fluctuations of traffic capacity. Figure 4.3 shows the partition
connecting the links that are included many times within the 100 instances. The result indicates that the
most likely cut sets by the fluctuation of traffic capacity are same regardless of the methods. Moreover, in
the Spectral Partitioning method, there are many links that are frequently selected as the cut. This means
that the cut set produced by the Spectral Partitioning method is more stable than the cut set produced by
the maximum flow problem. This comparison result of both methods shows that the Spectral Partitioning

method can identify the potential bottleneck.

= 20-40 times = 20-40 times
= 40-60 times > 40-60 times

60-80 times 60-80 times
~ 80-100 times 4
]

S
o k1 o

(a) Spectral Partitioning method (b) Maximum flow problem

Figure 4.3 The cut set by two methods

4.2.4. Effect of the weight

In this section, the critical bottlenecks of road network are identified by capacity weighted spectral
partitioning analysis. To confirm the effect of the weight in this analysis, the partition produced by the
Spectral Partitioning method with unweighted (w, = 1) is shown in Figure 4.4. The partition result that
depends only on the network topology divide almost evenly up and down. Because the trend is different
from the partition considering the traffic capacity, it is confirmed that a weight setting provides a large

impact on the extraction of critical parts of the network.
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Figure 4.4 The partition by unweighted spectral analysis

4.3. Application to Practical Road Network

To test a usefulness of the spectral partitioning analysis for a practical road network, the Gifu Prefecture
road network shown in Figure 4.5 is analysed. This network, which includes intercity expressways,
national highways and the prefectural roads, contains 1,468 nodes and 2,348 links. The normalised
Laplacian is used for the identification of the critical cut. The cut corresponding to the second smallest
eigenvalue indicates where network capacity poses a potential vulnerability.

The cut set consists of red links shown in Figure 4.5. The result indicates that the cut set
connecting urban area including Gifu City (the western area of Gifu Prefecture) where the network is
dense and the eastern area where the network is rather sparse and has the weakest connectivity. Since
the cut setlies on a ‘constricted area’ within the Prefecture, it makes sense. As mentioned above, there are
nodes with positive values of eigenvector on one side of the boundary and nodes with negative values of
eigenvector on the other side. In this case, the number of nodes with non-negative eigenvectors is
767(52%), and the number of nodes with negative values is 701(48%). The boundary divides the network
into two almost evenly by a cut set with a small total traffic capacity. Application to the Gifu Prefecture
road network reveals that the spectral partitioning analysis can identify a set of vulnerable links and

critical parts even in practical road networks.
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Figure 4.5 The cut set by traffic capacity weighted

4.4. Impact of Weight Setting

One of the advantages of spectral partitioning is that the link weights can be selected according to the
research objective. Capacity weighted spectral analysis can be used to identify potential bottlenecks in the
network. Other weight definitions would lead to different network partitions. This section tests the
changes in the characteristics of the cut set according to different weight definitions by the spectral

partitioning analysis on the Gifu Prefecture road network.

4.4.1. Reserve capacity

According to Wong and Yang (1997), reserve capacity is the difference between link capacity and actual

traffic volume. In this case, the spectral partitioning method are applied by considering the weight of links
by their reserve capacity. The traffic volume survey data is used to determine the reserve capacity

(National road traffic census survey, 2005). As the spectral partitioning method does not allow negative

weights, we set the link weight to 1 in the cases where the link traffic volume exceeds its capacity.
Figure 4.6 shows the resulting cut set. This method partitioned a very small area. This may be
because the cut set includes only links with traffic volumes exceeding their link capacity. There are only

22 partitioned nodes in the sub-network. It may be needed to consider how much the traffic exceeds the
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Figure 4.6 The cut set when links are weighted according to reserve capacity

Therefore, an exponential transformation of the reserve capacity is applied with sensitivity

parameter k, as is shown in (4.5).
w, = exp(kr,), (4.5)

where 7, is the reserve capacity of link e and k is the sensitivity parameter.

If k = 0, the weight is 1 regardless of the reserve capacity. As k increases, the weighting varies more as
the reserve capacity varies. The effect of using different values of k on the cut set is shown in Figure 4.7.
As k increases, the cut set gradually moves to the west. The network is denser and more congested in the
western part of Gifu Prefecture, including Gifu City and Ogaki City. This may be why the cut shifts to west.
When we further increase k, the result became unstable, so we could not obtain a proper cut set. This
may be because as k increases, as the weights of the over-capacitated links tend towards 0, the network

are divided into several sub-networks. Further work is required to determine the use of reserve capacity
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indicator to the spectral partitioning method.

— Cut Set k=0
— Cut Set k=0.0001
— Cut Set k=0.0002

— Cut Set k=0.0003
— Cut Set k=0.0004

Figure 4.7 Effects of different values of k on cut set

4.4.2. Link disruption probability

To determine the reliability of the network, it is useful to consider how easily links can become
disconnected. We can do this by weighing links by link disruption probabilities. When the link disruption
probability, p, of a specificlink is independent from other links, a probability that links will be disrupted
simultaneously can be calculated by multiplying these probabilities. We then take a logarithm of these and

write a function for the cut set with the maximum probability of disruption as

max In 1_[ =maxz In =min<z —In ) 4.6
a(s) ( eea(S)pe) 9(S) Lieea(s) Pe = 318) e€d(s) Pe (4:6)

Therefore, the cut set with the maximum probability of disruption can be extracted by setting w, to
—Inp,.
The Gifu Prefecture has many slopes with a high risk of landslides and rock falls when heavy rain

occurs. Honjo et al.(2011) and Koita et al.(2010) estimated a probability of landslides or rock falls within

Hida that is located in the northern area of Gifu. To evaluate the part of the network where there is a risk
of disconnection due to landslides and rock falls, we set link weights on the link disruption probabilities

estimated by Honjo et al. (2011). Note that we have the link disruption probabilities of 103 links only

within the Hida area, the link disruption probabilities in other areas were set to 0.

Figure 4.8 shows the resulting cut set together with links with non-zero disruption probabilities.
Even if the disruption probability is considered, the result that critical partition is composed of links with
no probability. This result depends on the network topology rather than the disruption probability of links.
The reason why the link disruption probabilities do not have large effects is considered to be the
characteristics of the data. Links with non-zero disruption probability in Figure 4.8 are located only north
part in Gifu prefecture, and more links have no probability. If the weight of each link in the network were

set, the results may differ significantly. However, the cut set is different from both cases of capacity
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weighted (Figure 4.5) and unweighted (Figure 4.7, k = 0). The result of this case study showed that the

analysis with the probability values as weights is possible.
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Figure 4.8 The probability and the cut set

These three examples (including the case of traffic capacity) show that different weight scenarios result
in different cut sets. Therefore, when using the spectral partitioning method, it is important to select
proper weights that reflect the objectives of the analysis. Nonetheless, the Gifu network tends to be cut
around Mino area, which is the constricted area in the middle of the network. This finding suggests that

connections to this area should be strengthened.

4.4.3. Spectral partitioning method by three weighted networks

Table 4.1 is extracted from Table 3.2 that was analysed by the spectral partitioning method in this chapter.

Three kinds of weighted network with different weight types were applied. The evaluation by spectral

partitioning using capacity weighted network showed consistency with the maximum flow problem.

Hence, it is effective to identify the part that could easily become bottlenecks. The bottleneck on the road

network was identified by finding a cut set with extremely small capacity. The knowledges from the

application of Gifu prefecture road network are described.

- High potential bottleneck part is at the connection between the western area where urban cities are
located and the eastern area where there are many mountain areas.

- Improvement of west-east connection in Gifu prefecture road network can be expected by the
construction of Tokai Ring Road in the future.

- In the topology of Gifu prefecture, the cut set is located in the places where it is difficult to improve
the connection with multiple large capacity roads.

The analysis using reserve capacity weighted network attempted to identify the cut set which is likely to
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become bottlenecks by finding the parts with no remaining capacity. From the result of sensitivity analysis,
as the effect of reserve capacity became larger, the cut set moved to urban areas. Compared with the cut
set by capacity weighted network without traffic volume data, the cut set by reserve capacity weighted is
located in heavy traffic area such as Ogaki city and Gifu city. The high potential bottleneck parts move to
the area where congestion is likely to occur by considering the traffic volume. Although, the cut set
connects the west and east sides of the prefecture.

The analysis using link disruption probability weighted network attempted to identify the cut
set which divides the network by link disruptions at the disaster. However, all links included in the cut set
of Gifu prefecture do not have link disruption probability data. Hence, it was not possible to identify the
cut set in which the network is divided by the links that easily disruption in practical road network. Since
the spectral partitioning method using the probability values as weights was able to analyse, it is
considered that the problem of this result is insufficient data of the link disruption probability. As future

tasks, the analysis that considers the data acquisition situation and target area will be required.

Table 4.1 Evaluation objectives of spectral partitioning method based on weight settings

Classification of
Challenges

Challenges Weight type Weight Spectral Partitioning

The evaluation of road
improvement How is the supply function improved as a network
based on the viewpoint of "movement" which is the
basic supply function of roads ? Where are
Characterised the region on|insufficient improvement areas ?

the road network

Vulnerable parts that are easy to
become bottlenecks

Supply Capacity

Vulnerable parts that are easy to
become bottlenecks because the
available road network capacity
is small.

How is the available traffic capacity located ?
Are there locations where are easy to become Demand Reserve capacity
bottlenecks because of no traffic capacity to spare.

The usage situation of road
network

The links that have high risk of
being degradated at the same
time due to a disaster, and the
disruption of their links divide
the network.

How are links susceptible to damage at the disaster
The evaluation of disaster |distributed ? Identify parts that have the potential to Disaster Link disruption
impact give a significant impact for the whole of network at probability

the disaster.

4.5. Test for Larger Road Networks

As is explained, the Spectral Partitioning method makes it possible to identify critical links without traffic
assignment or route enumeration. This section therefore shows the usefulness of spectral partitioning
analysis using large-scale road networks where any conventional vulnerability methods such that requires
traffic assignment cannot be applied because of high computational load.

Table 4.2 shows a summary of large-scale road networks in 6 regions around the world (Bar-

Gera. H, Transportation Networks) that we analysed. The largest network is Sydney network and the
smallest network is Gold Coast network. Here, the Spectral Partitioning method is applied to two cases:

unweighted and capacity weighted. Figure 4.9 to Figure 4.14 shows the partitioning results. The cut set
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produced by unweighted spectral analysis shows the critical part which is identified only from the
viewpoint of the network topology. On the other hand, the cut set produced by capacity weighted spectral
partitioning analysis extracts vulnerable parts that are critical in terms of capacity for each city. Some
cities, such as Gold Coast and Chicago, have almost same partitioning results for weighted and unweighted
cases, while other cities such as Berlin and Sydney, have significant changes depending on the weight
setting. These are significant related to the construction status of large-capacity roads and geographical
conditions such as whether the regions are inland or seaside. For example, if there is a large difference in
the results between capacity weighted and unweighted, the cut set may be a part where small capacity
links are significantly connected though that is not vulnerability in term of network topology. Detailed
discussion requires consideration of the link capacity distribution and geographical features in each
region however it is clear that such differences in characteristics affect the critical cut set results by the
capacity weighted spectral analysis in large-scale road networks from the example calculations. These
results demonstrate that the spectral partitioning method works well for large-scale road networks.
Moreover, the calculation times (PC: Intel Xeon 3.50Ghz *2, 32GB, 0S: Windows10, 64bit) are also shown
in Table 4.2. It was possible to obtain the cut set for all cases and the calculation time is not very long even

for the largest network, Sydney (201.85 min).

Table 4.2 Networks

City Country Number of links Number of nodes | Calculation time (min)
Berlin Germany 28,449 12,981 12.25
Birmingham UK 33,867 14,578 17.31
Philadelphia USA 40,003 13,389 13.03
Gold Coast Australia 11,140 4,779 0.6
Sydney Australia 75,379 33,113 201.85
Chicago USA 39,018 12,979 12.49

Unweighted Capacity Weighted

Figure 4.9 The partition in Berlin
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w:capacity

Unweighted Capacity Weighted
Figure 4.10 The partition in Birmingham

w:capacity

Unweighted Capacity Weighted
Figure 4.11 The partition in Philadelphia

‘w:capacity

Unweighted Capacity Weighted

Figure 4.12 The partition on Gold Coast
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w:capacity

Unweighted Capacity Weighted
Figure 4.13 The partition on Sydney

w:capacity

Unweighted Capacity Weighted
Figure 4.14 The partition on Chicago

4.6. Concluding Remarks

This chapter used the spectral partitioning method with the traffic capacity weighted to identify the parts
of the network that are significantly weak, i.e. vulnerable parts of road network. The vulnerable parts of a
capacity weighted network are likely to become bottlenecks where the capacity is significantly small. The
knowledges obtained from the analysis results are summarised below.

First, the comparison with the conventional road network evaluation method and capacity
weighted spectral partitioning method clarified the advantage of spectral partitioning method for the road
network evaluation. The capacitated links obtained from the maximum flow problem and the links within
the cut set produced by the Spectral Partitioning method are almost same. This comparison result showed
that the Spectral Partitioning method which does not require OD pattern traffic volume can identify the
potential bottleneck easily.

Next, to test the usefulness of the spectral partitioning method for a practical road network, the
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Gifu Prefecture road network is analysed. The proposed method identified the vulnerable part of the
network and the result are reasonable considering the characteristics of the Gifu Prefecture. Also, other
weight cases were examined. The examples of weight settings are link disruption probability and link
reserve capacity. By the analysis of link disruption probability, it was confirmed that probability values
can be used for the weights. Since different partition results were obtained depending on the weights,
further discussion is needed how to apply various link features as weights.

Finally, the proposed method is applied to a large-scale network, which is the main advantage of
this method. The results of applying the proposed method to the practical large-scale road networks in 6
cities revealed that the Spectral Partitioning method works well even for such large network. The
characteristics of vulnerable parts may vary from city to city, and different result may be obtained by
changing the different weight settings. The result of partitioning may also be affected significantly by
geographical conditions and social factors such as land use and population. Relationship between network

features and other indicators should be investigated.
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Chapter 5

Network Connectivity Analytics by Topological Indicators

5.1. Introduction

Chapter 5 verifies road network connectivity analytics by topological indicators. As | mentioned in Chapter
2, methods to evaluate connectivity of road network have been well studied. In case of traffic accidents
and disasters, disruption of some links may affect extensively to road network. In order to evaluate the
affected magnitude, it is considered that the parts where the connectivity is weak in term of network
topology is easily affected by the disruption at the disaster. On the other hand, parts with strong
connectivity of network are not easily affected by such failures. Therefore, it is very important to
understand areas with weakly and strongly connected. In Chapter 4, the spectral partitioning method with
capacity weighted was introduced to identify the critical bottlenecks as network vulnerability analytics by
topology indicators. This chapter attempts to identify weak areas where its connectivity is easily affected
by bottlenecks and strong areas where its connectivity is not affected as network connectivity analytics
by topology indicators.

Recently detailed road network can be used freely, and such detailed network data may provide
different insights on network connectivity analysis. Computationally tractable methods are thus required
to analyse of detailed networks including the small road. This research uses the eigenvector centrality
method shown in 3.4 as indicator to analyse the network connectivity. The eigenvector centrality (EC) is
one of the evaluation methods based on network topology with a small computational load. Another
approach EC is that it shows the strength of the connection of a node to its neighbours, taking into account
the strength of the connection.

The objective of this chapter is to validate that the usefulness of the EC evaluation method.
Moreover, it is important to understand the characteristics of the EC evaluation on the road networks. The

computational tractability, which is one the great advantages of the proposed method, is also tested.

5.2. Comparison with Other Methods

5.2.1. Eigenvector centrality with other centrality measures
To understand similarities and differences among them in the application of the road network, centrality

measures other than EC are verified here. Degree Centrality (DC) defined by Proctor and Loomis (1951),

Closeness Centrality (CC) defined by Beauchamp (1965), Betweenness Centrality (BC) defined by

Freeman (1977) and Eigenvector Centrality (EC) are compared. Weights of CC and BC are set as link length,
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and as for EC both unweighted and capacity-weighted cases are compared.

A small-scale road network shown in Figure 5.1 is used to compare some centrality measures.
This Gifu City network is a part of Gifu Prefecture network that was used to test the usefulness of Spectral
Partitioning method in the previous chapter. The network only contains major roads including national
highways and prefectural roads, and there are no expressways in this area. The number of nodes and
directed links are 177 and 554, respectively. At first, let us explain the geographical situation of Gifu City.
The thickness of links in Figure 5.1 represents link capacity. The urban area in this city is located around
Gifu Station indicated by a yellow star in Figure 5.1. Also, there are bypass roads of national highway R21
with larger capacity in the southern area (shown in red circle). Conversely, density of roads becomes
sparse to the north. There are mountains in the northern part and road network is limited around there.
It is therefore expected that the network in the middle is strongly connected whereas the connectivity is

low in the northern area.

Gifu Station
@ Gifu City Hall
Traffic capacity of links (Vehicle)
1000 - 14000
14000 - 24000
— 24000 - 39000
= 39000 - 68000

Bypass Roads

Figure 5.1 Gifu City road network

Figure 5.2 shows the results of different centrality calculations. Nodes in each centrality measure
are classified into five levels with equal number of nodes, except for the DC which has only five values from
1 to 5. Table 5.1 summarises the statistical correlation among the five measures. Although the CC and
capacity-weight EC use different weights, they have similar tendencies. Both measures evaluate the nodes
in the city centre as high, and the nodes in the northern mountain area as low. Spearman’s rank correlation
among them is also very high. This means that the EC without using the index of “shortest path length”
can get the similar tendency to CC that requires the calculation of the shortest distance between all nodes.
Also, unweighted EC has similar tendencies and high rank correlation to CC. As for the DC, nodes connected
with only one or two degrees are located at the edge of network. Conversely, there are a few nodes
connected to five links in the middle of network. Because of the feature of road network that the maximum
degree may be around five or six at most, the degree centrality cannot be used to highlight the connectivity
of the road network.

BC counts the number of node pairs whose shortest path traverses the node. Parts with high
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centrality other than central urban areas seem to be located where the network can be easily divided. This
means that the important links determined by the BC are evaluated as the links whose centrality decrease
in other centrality measures, and by the disruption of such links can be ‘critical’ based on the definition of

Taylor et al. (2006). In particular, links in the black circle in Figure 5.2 (c) may divide the network is they

are disconnected. These nodes have high BC values whereas the values of CC and EC are low. From this
observation, the CC and EC can identify the vulnerable nodes whose connectivity may reduce by the
disruption of any critical links.

EC has an advantage of applicability to large-scale networks than the CC and BC that require
shortest path search among all node pairs. As conclusion compared with other centrality measures on the
road network in Gifu City, EC can show similar tendencies to CC. Moreover, the different tendencies against
BC suggest that the evaluation results by EC can identify vulnerable nodes, as shown in the previous
paragraph. These results lead to the conclusion that the contribution of road network evaluation using EC

is large.
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Figure 5.2 Centrality measures on road network in Gifu City
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Table 5.1 Correlation coefficient

Spearman's rank Degree Closeness Betweenness Eigenvec.tor Eigenvec.tor
lati Centralit Centralit Centralit Centrality Centrality
correlation entrality entrality entrality (Unweighted) | (Capacity weighted)
Degree 1
Centrality
Closeness
Centrality 0.5004 .
Bet
o WeETess 0.5554 0.5132 1
Centrality
Eigenvector Centrality
(Unweighted) 0.5717 0.7679 0.3546 1
Eigenvector Centrality 0.4974 0.9263 0.4646 0.8405 1
(Capacity weighted)

5.2.2. Comparison of eigenvector centrality and the number of non-overlapping routes
To test the suitability of the eigenvector centrality for road network connectivity evaluation, the method
is compared with the conventional evaluation results by using the same road network. As a conventional

method, the number of non-overlapping routes proposed by Kurauchi et al. (2009), which is one of the

connectivity vulnerability evaluation methods, is adopted. The number of non-overlapping routes counts
independent routes that do not share a link between origin and destination. If a node pair has Nth non-
overlapping routes, connectivity between a node pair is secured even if the N — 1 links are disrupted as
the worst case. To compare this method with EC, the average number of non-overlapping routes from node
n; to all nodes is used as the connectivity vulnerability evaluation of node n;. The non-overlapping route
needs to count the number of distinct routes between any node pairs, and if the EC can give a similar result
with the non-overlapping route, connectivity evaluation by EC will be greatly supported.

This problem is formulated as an optimisation problem to maximise the number of non-

overlapping routes as follows;

max Ny (5.1)
subject to
2 Xq = Nij, Xq =0 (5.2)
acout(i) a€in(i)
Z X, = o,z Xa = Ny (5.3)
acout(j) a€in(j)
Z X, =0-— Z Xq=0Vke{keVk=ij} (5.4)
acout(k) acin(k)
xq ={0,1},k € V,k # i,j, (5.5)
where,
N;; :  The number of non-overlapping routes between node i and node j
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Vv . Asetofnodes

Xq : A control variable 0-1 (1: in non-overlapping route 1, if not 0)
k :  Anode that components the non-overlapping routes
in(k) : Asetoflinks flowing into node k
out(k) : Asetoflinks flowing out from node k
N :  The number of nodes.

By solving this optimisation problem, the number of routes that do not share links between all node pairs
is obtained. For example, in the network shown in Figure 5.3, the number of non-overlapping routes
between the pairs of nodes A and B is 2. The average between all node pairs is adopted to evaluate the
whole of network. The average number of non-overlapping routes, R;, between anode and all other nodes
evaluates connectivity in the network. Nodes that have many destination nodes without overlap have
higher connectivity. R; is obtained for each node as follows,

Y jziev Nij
_j j

e (5.6)

R;

Figure 5.4 shows evaluations by the average of non-overlapping routes and unweighted EC.
Nodes are divided into four levels with equal number of nodes for each level. In the middle area of the
network where many links are connected to one another, both evaluations are high. The connectivity
evaluations by both methods are high in the middle area of network where Gifu Station and Gifu City Hall
are located, as shown in Figure 5.1. This area including Bypass Road has many links are highly connected
to one another. In the EC evaluation, the top-level nodes are gathered in these areas and the connectivity
gradually decreases toward the outside area. Conversely, in the average number of non-overlapping routes,
upper than 50% level nodes are rather mixed, and the size of area where they are located is larger than
EC. Also, nodes in the northern area in Gifu City and at the edge of network are evaluated as low
connectivity in both evaluations. Next paragraph analyses the relationship between these evaluation

results.

(A) O

O ®

Figure 5.3 Non-overlapping routes between node A and B
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(a) The average of non-overlapping routes (b) EC

Figure 5.4 Comparison of evaluation results

Figure 5.5 shows the scatter plot of EC and the average number of non-overlapping routes. There
are nodes with low connectivity on EC evaluation and high connectivity on the average number of non-
overlapping routes. However, there are no nodes with high connectivity on EC evaluation and low
connectivity on the average number of overlapping routes. At least there seems to be a relationship
between both evaluations.

Table 5.2 shows the result of no correlated test about Speaman’s rank correlation. Since it is difficult to
compare by values, the rank of value is compared. The p-value is less than 1%. There is a statistically
significant correlation between EC and the average number of non-overlapping routes evaluations. Also,
the rank correlation coefficient is 0.741. Thus, it is concluded that EC is useful for evaluating connectivity

of road networks.
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Figure 5.5 The scatter plot of EC and average number of non-overlapping routes
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Table 5.2 The result of no correlated test (rank correlation)

t-value 14.582
df 175
p-value 2.2e-16
Correlation 0.741

5.3. Application to Practical Road Network

In the previous section, it is revealed that EC can evaluate connectivity of road networks. This section
attempts to calculate the values of EC to the practical road networks. In applying to practical road
networks, capacity weighted EC is used to consider road serviceability in addition to connectivity
evaluation by unweighted EC. Compared with the unweighted EC, which evaluates connectivity based on
only the network topology, capacity weighted EC evaluates connectivity considering the supply ability of

roads.

5.3.1. Capacity weighted eigenvector centrality
In EC, the evaluation result depends largely on the weight for each link. The weights can be set as any non-
negative values. The links on road networks have many features, such as distance, travel time, traffic
volume and so on. These indices can be selected as a weight depending on what you want to evaluate. This
research seeks for strongly and weakly connected part as a service provided by the road network.
Therefore, this research proposes to use link capacity as a weight. Nodes connected with motorways or
national highways with high capacity can be highly evaluated by the proposed method.

It was revealed that unweighted EC can evaluate the impact of link disruption based on the
relationship with the average number of non-overlapping routes. In addition, I believe that capacity
weighted EC can consider the ease of link disruption, because links that have large capacity are generally

difficult to disrupt. EC can indicate the diffusion effect of such easiness of disconnections.

5.3.2. Gifu prefecture road network

To test the usefulness of capacity-weighted EC measure, the Gifu Prefecture road network shown in Figure
5.7 is analysed. The Gifu Prefecture road network, which includes intercity expressways, national
highways and prefectural roads contains 1,460 nodes and 4,578 directed links. The elements of the
adjacency matrix are directional capacities as mentioned earlier. In this network, the minimum and

maximum link capacities given by National Road Traffic Census (2005) are 1,000 and 80,000 vehicles per

day, respectively. Figure 5.6 shows the distribution of traffic capacities. Most of links have traffic capacity
less than 20,000 vehicles per day. The reason for this is that Gifu Prefecture has large mountain area with

narrow roads. Also, there are many narrow roads even in the city area, like collecting/distributing roads.
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A few links with large capacities are located on expressways or national highways. For the calculation, this

paper uses MATLAB ver. R2017b using eigs function. The eigenvector corresponding to the largest

eigenvalue by MATLAB is normalised by the L2-norm, that is defined as ||x||, = ’Zixiz. The sum of

squared EC value is thus equal to 1 on every network. The example of practical city road networks shown

in 4.6 also used the squared eigenvector values.
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Figure 5.6 The distribution of traffic capacity

5.3.3. Strongly and weakly connected parts

Figure 5.7 shows the distribution of the EC. EC is an evaluation by relative values in the network, and there
is no definition of how much to consider strongly connected nodes and how much to consider weakly
connected nodes. Hence, it is necessary to set an arbitrary threshold. The characteristic of EC distribution
depends on the network, for example, there are a few nodes with extremely large EC. Figure 5.8 shows the
logarithm EC values (in descending order) in Gifu Prefecture road network. This study decides the
threshold of EC level for five intervals so that the range of log-scaled EC values divided equally. Each level
on the distribution and the percentage of included nodes are shown in Figure 5.8. Based on this threshold
rule, nodes included in Level 1 have extremely strong connectivity and nodes included in Level 2 have
strong connectivity. Conversely, nodes included in Level 4 have weak connectivity and nodes included in
Level 5 have extremely weak connectivity. Figure 5.7 shows the geographical distribution of nodes
classified into each level in Gifu Prefecture road network.

First, the strongly connected part of the network is discussed. The number of nodes included in
the level with EC larger than the one-fifth of the value range (Level 1) is 220, which is 15% of total nodes
(shown in red). From Figure 5.8, most of these nodes are located in the centre (urbanised area) of the Gifu
Prefecture around Gifu City. Moreover, nodes in Levels 1 and 2 spread around the urbanised area or along
expressways shown by bold black lines in Figure 5.7. From the definition of capacity-weighted EC, it is

understandable that higher values can be obtained along roads with higher capacities, but it is interesting
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to say that such effect does not spread out if the adjacent links do not have enough capacity. For example,
the node representing Hida-Kiyomi Interchange (IC) on Tokai Hokuriku Expressway has Level 2 EC value
and its effect has spread to the east via Chubu-Jukan Expressway, but this effect may not spread beyond
Takayama IC. Moreover, the node representing Shirakawago IC is ranked as Level 3 although it is along the
Expressway and some of nodes around it are often ranked as Level 4 (less connected). Most of sections on
Tokai Hokuriku Expressway have two lanes for each direction, whereas there is only 1 lane for each
direction in Tokai Hokuriku Expressway between Hida-Kiyomi IC and Shirakawago IC as well as Chubu-
Jukan Expressway from Hida-Kiyomi IC to Takayama IC. This is a reason why the effect of high capacity on
Tokai Hokuriku Expressway may spread up to Hida-Kiyomi IC, but its effect does not spread beyond them.
Capacity-weighted EC thus can evaluate the nodes connected with higher capacity links, but its effect may

not spread over when nodes are connected with lower capacity links.
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Figure 5.7 The capacity-weighted EC in Gifu Prefecture road network
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Figure 5.8 The rank of eigenvector centrality (Logarithm)

Next, the weakly connected part is discussed. The number of nodes in the lowest connectivity
level (Level 5, shown in blue) are 43 (3% of the total nodes) and are mainly located at the edge of the
network. Note that the connectivity of edge nodes should be low since a network is cut off from the
surrounding network. We will check the effect of the boundary in the next section. Figure 5.7 also shows
that the values in the north-eastern part are small (Level 4) even though the corresponding nodes are not
near the boundary. The degree of the nodes in this area is enough, but the influence of important roads
with large capacity does not spread out, and the connectivity of these nodes may be limited by the narrow
roads. As a concrete example, in western Japan torrential rain occurred in July 2018, the residents in Hida
and Gero City shown by the rectangular shapes in Figure 5.7 were isolated due to road disruptions (Gifu

Pref., 2018). Several road disruptions may result in isolation in areas when the connectivity is poor. Gifu

Prefectural Government specially identifies such districts where such isolation is expected and has been

investing roads to improve the connectivity (Gifu Pref., 2019). Thus, capacity-weighted EC analysis can

identify the threatened areas.

5.3.4. Boundary effect

To check the effect of the boundary, an extended network is analysed so that the boundary nodes become
inner nodes. Figure 5.9 shows the extended network containing the original Gifu Prefecture network. The
colour of nodes in Figure 5.9 shows the rank of EC values by using this extended network. Only nodes
within original Gifu Prefecture network are analysed to compare with the result obtained from the original
network. The value of ECs is normalised only by nodes in Gifu, and Figure 5.11 shows the result. As shown
in Figure 5.10, the connectivity around Hida and Gero areas remains low, like as the result of the original
network. The distribution of strongly and weakly connected areas on larger network is very similar to the
original one. This may be because high mountains lie between Gifu and Nagano Prefectures, the roads
connecting between them are limited and their capacity is low. Hence, the proposed method can identify
such weakly connected nodes even they are not located around the network boundary.

Further, the rank of EC values for both networks are compared. The difference between the rank
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of EC values for the extended network (Figure 5.10) and its original network (Figure 5.7) shows the impact
of the boundary. Only overlapping nodes in both networks are extracted, normalised and ranked. The
number of nodes to compare is 1,460. Figure 5.11 shows the relationship of the rank of EC values between
both networks in descending order. If the rank of node in the extended network is similar to the original
one, the corresponding plot should lie roughly along the 45-degree line. However, several nodes are far
different from the line. Nodes with particularly significant rank differences are picked up, they are named
as ‘specific nodes’ and are shown by stars in Figure 5.10. The colour of the star represents the level of
connectivity. As Figure 5.11 shows, all specific nodes have relatively low ranks in the original Gifu
Prefecture network but are ranked high in the extended network. All specific nodes are located at the
western edge of the original network. This is because there is 4-lane expressway to the west of them,
Meishin Expressway. This means that large rank differences may occur if there are high capacity roads in
the outside areas that are close from the boundary of the network. If there are, such links should be
included in the evaluation.

Tokai-Hokuriku

b Express
— Link in extended network Xpr?sw—/e—l—yr‘ e 3

Original Gifu Prefecture

Hokuriku J Ay
Expressway, «—_ / {
| — Chuo
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Figure 5.9 Extended network
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Figure 5.10 The normalised eigenvector centrality on the extended network

By the application to Gifu Prefecture road network, it was confirmed that the proposed method
can identify the weakly connected part of network and the result coincides with the recently isolated areas.
It was also confirmed the effect of boundary and the boundary should be selected so as to avoid the biased
estimation of outer links. Besides, the calculation only requires 0.239 seconds (PC: Intel Xeon, 32GB, OS:
Windows10, 64bit) and the computational advantage is quite large. To confirm this advantage, the

proposed model will be applied to larger networks in a later section.
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Figure 5.11 The rank of eigenvector centrality
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5.4. Verification of Weight Settings

In the previous section, it was confirmed that capacity weighted EC can identify the strongly and weakly
connected area of a practical road network. As mentioned above, the weights can be set any nonnegative

values. This section attempts to verify the impact of weight settings by applying several indices as weights.

5.4.1. Comparison of unweighted and capacity weighted eigenvector centrality
At first, to test the impact of weight setting, unweighted and capacity weighted EC are compared. This road
network does not correspond completely with the network applied in the previous section. To avoid the
effect of network boundary, it is calculated by using the extended network, and the results in Gifu
Prefecture are picked up and normalised again. In Gifu Prefecture road network, the number of nodes and
links are 1,783 and 4,780, respectively. The traffic capacity data is based on National Road Traffic Census
(2005) as with analysis in 4.4.

Figure 5.12 shows the distribution of capacity weighted and unweighted log-scaled EC. The

range of the EC values after taking logarithm transformation is categorised into five intervals divided
equally by the range of the values. This is a same rule as 4.4. The pure topology of the road network can
be evaluated by the unweighted case. From Figure 4.11 (b), Level 1 nodes are located in the western part
of Gifu Prefecture. From there, the connectivity is gradually becoming weaker towards the east. On the
other hand, the result of the capacity weighted network (Figure 4.11(a)) shows that Level 1 nodes are
located in further eastern side than the unweighted case, and the nodes with better connectivity spread
along the expressways that has larger link capacities. This difference is the impact of considering road
capacity on eigenvector centrality.

Figure 5.13 shows the number of nodes in each level. This is similar in both networks. The level
with the greatest number of nodes is Level 2, and one with the lowest number of nodes is Level 5. However,
Figure 5.14 shows the existence of nodes with different levels in both networks. There are several nodes
with a high level in unweighted network and low level in capacity weighted network, and vice versa. Where
are the nodes with the large level difference located? Figure 5.15 shows the nodes with large level
difference between two networks. At first, nodes with lower levels in unweighted network than in capacity
weighted network are obviously located along the expressway. This means that the capacity weighted
eigenvector centrality clearly shows the influence of the large capacity road like expressways. Moreover,
nodes which have large level difference are not only lying on the expressways but also spread to adjacent
nodes. From this result, the capacity weighted network can take into account the ripple effect of roads
with larger capacities (expressways). On the other hand, nodes with a higher level in unweighted network
than the level in capacity weighted network, especially nodes with a difference of 2 levels or more are
located mainly in the western mountainous area. Gifu Prefecture, however, also have large mountain areas
in the northern part. Therefore, the reasons why these areas are picked up is not only because of this. It
can be said that although these areas have high connectivity from the topological point of view, they are

insufficient from the viewpoint of capacity. If the road network improvement is considered, the capacity
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expansion may be more effective than adding a new link.

By the comparison result of two weight settings, it was found that the level of difference between
capacity weighted and unweighted network mainly occurs along the expressway in the case of Gifu
Prefecture. Since this result makes sense for the real road situation, the capacity weighted EC can evaluate
effect of connectivity considering traffic capacity. Also, it was confirmed that weight setting has a large

impact on EC evaluation by verification using the practical road network.
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5.4.2. Traffic indicators
A large impact of weight settings to EC evaluation was confirmed by comparing unweighted and capacity
weighted network. As a next step, seven traffic indices are used as weights to understand the

characteristics of the road networks from the difference in evaluations by weight settings.
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Seven traffic indices obtained by traffic survey data are used. They are traffic volume (the
number of vehicles passing a road section), traffic capacity, congestion rate (traffic volume/traffic
capacity), speed (km/h), distance (km), travel time (min) and travel time calculated by the Bureau of
Public Roads (BPR) function. The congestion rate and the BPR function are represented by (5.7) and (5.8).

The coefficients for BPR function are set as @=0.15 and S=4.

BPR, = to; {1+ aP!} (5.7)
P, = E (5.8)
Ce
where,
P, :  Congestion rate on link e
/A :  Traffic volume on link e
C. :  Traffic capacity on link e
toe :  Free flow travel time on link e (min)
a, B . Coefficients.

These data were obtained from the Road Traffic Census in Japan, which is a nationwide statistical
survey collecting basic data on road planning, construction, management and so on. Data from the 2005
Census were used in this study. Traffic volume is the total number of vehicles passing an observed cross-
section within a 24-hour period. ‘Speed’ is set as a speed limit on each link. The weights as traffic volume
can represent the area where the traffic demand gathers, and the weights as capacity represent how roads
are well connected. The weights as a congestion rate take into account not only demand but also
congestion. This indicates whether crowded road is concentrated. The weights as speed represent how
roads with a higher speed limit are connected. The speed limit has some relationship with the rank of
roads. The weights as distance represent road density since when roads with long distances are connected,
the network must be sparse. The travel time is the required time for each road. Basically, the longer the
distance, the longer travel time takes. However, some of roads with short distance but long time (such as
narrow roads in mountain area), and some with long-distance but short time (such as expressways) exist.
This has a relationship with distance and speed limit. The BPR function is the travel time considering the
congestion as shown in the above equations. The BPR function is used since this value represents the

congestion level well by the relationship of travel speed, capacity and traffic volume.

5.4.3. Road network

EC with seven weights are applied to the Gifu Prefecture road network shown in Figure 5.16. This road
network is same as the network indicated in 5.5.1. Traffic indices described in the previous section are set
as link weights. Table 5.3 summarises the features on the network. The most unique characteristic of Gifu
Prefecture is the combination of both urban and mountainous areas. The five cities shown in Figure 5.16
are the highly populated cities in the region. Because these five cities are located in the south, and the
southern part of the prefecture is urbanised with a larger population and economy with richer transport

services. Although the northern part of the prefecture is rather mountainous with a sparse population, it

64



still needs to maintain urban functions and the connectivity of the road network should also be guaranteed.

The dotted lines in Figure 5.16 represent expressways.
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Expressway
E ==+ Tokai Kanjo
Expressway
F === Chuo Expressway
===+ Meishin Expressway
Gifu City
G Ogaki City
Kakamigahara City
H Tajimi City
Kani City
Figure 5.16 Gifu Prefecture road network
Table 5.3 Features of the Gifu Prefecture road network
Unit Min Max Median
Traffic Volume Vehicle 39 76,247 7138
Capacity Vehicle 1000 80,000 10,000
Congestion Rate % 0.0056 9.46 0.71
Speed km/h 20 100 35
Distance Km 0.038 10 0.83
Travel Time Minute 0.016 13.33 0.42
BPR Function Minute 0.076 7923.53 3.02

5.4.4. EC evaluation by various traffic indices

The results must be interpreted carefully because the network is evaluated as better in some indices when
the value of the eigenvector centrality is larger, but not in the other indices. For example, the network is
evaluated as better when travel time is low, but not when speed is low. Figure 5.17 presents the results of
eigenvector centrality analysis by each traffic index. The comparative evaluation is carried out based on
the rank of eigenvector centrality because the number of nodes in each case is identical. The nodes are
equally divided into five classes with 20% (ranked from 1st to 5th from the highest). Hence, the number

of nodes in each class is equal in all classes and in all cases. The findings are summarised as follows:

Traffic Volume

The regions with a high centrality of traffic volume (meshes G2 and G3 in Figure 5.17) are only located in
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urban areas (Gifu and Ogaki City in Figure 5.16). From this result, the impact of traffic volume is

concentrated in the urban area. There are no areas ranked in the first level other than Gifu and Ogaki City.

Traffic Capacity

The evaluation by traffic capacity is greatly affected by the expressways. The nodes ranked in the 1st level
are located both in urban areas and around the cross-point of the Tokai Kanjo and Tokai Hokuriku
Expressways. Furthermore, the highly ranked nodes spread to the north along the Tokai Hokuriku

Expressway.

Congestion Rate

A high centrality value means a concentration of excess demand links. In addition to areas identified by
above indices, meshes F2 and F3 have higher centrality values. Nodes in these places are included in the
2nd rank (20-40%) by traffic volume evaluation but are ranked in the first level since the capacity is not

significantly high.

Speed

The evaluation result by speed is easy to interpret. Basically, the maximum speed limit of the surface road
is 60 km/h and that of the expressway is 100 km/h in this area. Therefore, the centrality value along the
expressway becomes inevitably larger. The result shows that the areas where the expressway routes cross
have a particularly high value. Interestingly, since we don’t have expressways within Gifu City, the value of

this weight is rather low.

Distance

The centrality by distance is highest in the north. It decreases towards the south and the values are low in
most of the urban areas. A large centrality by distance means that the road network density is low. These
results show that the network in the north is rather sparse and that the urban area has a dense road

network.

Travel Time

There is a positive correlation between distance and travel time of links. The distribution of the nodes
however differs somewhat. Some of the nodes included in the rank of top 20% by distance are located in
meshes D3, D4, E3 and E4, whereas nodes in the evaluation by travel time are located in meshes E5, E6,
F5 and F6. Travel time of the links in the latter area is rather long, although the distance is not very long.
This is a feature of a steep mountain route in the mountainous area. A combined evaluation of distance

and travel time is therefore effective.
BPR Function

The evaluation by the BPR function gives an interesting insight: the higher centrality areas are scattered

to each city. Areas with large centrality, like meshes C5, C6, G2, G3 and G5 are urbanised area. Unlike other
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indices, the large centrality area does not form a giant cluster. The appearance of several small clusters
with large centrality values is a characteristic of the BPR function evaluation and this may happen because

the congestion rate is nonlinearly evaluated by the power of £5.

From these results, the eigenvector centrality gives different results based on the different
weights. Strong and weak areas of the network can be identified from various aspects. There are some
indices whose evaluations have similar trends, and combination with other indices is sometimes useful.

In the next chapter, the relationship of eigenvector centrality by different weights is verified.
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Figure 5.17 Eigenvector Centrality by traffic indices

5.4.5. Characterisation of the road network by a factor analysis
Figure 5.17 presented seven case studies of eigenvector centrality analysis. These all evaluate the same
Gifu Prefecture road network. However, the previous chapter shows that the evaluation results vary
depending on the indices. This chapter attempts to find common factors within the evaluation results.
Factor analysis can be used to find hidden factors leading to these results. The logarithm of the eigenvector
centrality is used for the factor analysis, as it is suitable to highlight the small changes on this scale. The
logarithm values are always negative because all components of eigenvectors are less than 1 by
normalising the size of the eigenvector as 1.

Factor analysis is a statistical method that estimates unobserved variables (‘factors’) that
describe the variability of experimental or observed data. It can be used to identify common factors, and

factor loadings are used to evaluate the influence of common factors on each observed variable. These
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relationships are represented by the following formula(5.9). A unique factor is a factor that affects only on

one observed variable.

Y=Af+¢ (5.9)
where,
Y :  Asetof observed variables
A :  Asetof factor loadings of each variable and each factor
f :  Asetof common factors
€ :  Asetofunique factors.

In this analysis, we used the maximum likelihood estimation method for factor extraction, as well as a
varimax rotation. At first, the number of factors is determined by scree plot criteria. A scree plot is used
to plot the eigenvalues of the correlation matrix in descending order, and the rank of eigenvalues apart
from the trend line determines the number of factors. Here, the number of factors is set at 3 by a scree plot
based on the correlation matrix shown in Table 5.4.

Figure 5.18 represents the factor loadings of three common factors. In the first factor, congestion
rate, traffic volume and BPR function have large positive loadings. Conversely, travel time and distance
have negative large loadings. The large positive loading factors (congestion rate, traffic volume, BPR
function) relate to the traffic demand. In contrast, the indices whose magnitude of the loadings are less
than 0.5 do not have this relationship. The first factor can therefore be interpreted as the “traffic demand
factor.” The second factor has particularly large positive loadings of both travel time and distance. These
indices are correlated (cc=0.794) as shown in Table 5.4. Nodes with large centrality of these indices lie in
areas with a sparse road network. Additionally, traffic volume, capacity, congestion rate and the BPR
function have large negative loadings. These indices tend to have small values on dense road network
areas. Therefore, the second factor can be interpreted as the “road sparsity factor.” The third factor has
three effective indices; other than these, the magnitude of factor loadings is small. The three indices have
larger values on capacity, speed and BPR function. The values for these three indicators may increase for
trunk roads such as expressways and national highways. Hence, the third factor is interpreted as the “road
rank factor.” If the value is large, the road should be highly ranked such as expressways and highways,
whereas the road may be lowly ranked such as narrow prefectural roads when the value is small.

Thus, the evaluation of seven eigenvector centrality measures is summarised into three common
factors. The cumulative contribution rates of the common factors from the first to third factors are 0.305,
0.567, and 0.805, respectively. The findings reveal that more than 80% can be represented by these three
common factors. It is possible to clarify the three main network evaluation elements by using the data

only from the National Road Traffic Survey.
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Table 5.4 The Correlation Matrix of Indices

Tratfic Capacity Congestion Speed Distance Trjavel BPR
volume rate time
Traffic
Volume 1.000
Capacity 0.389 1.000
Congestion
Rate 0.900 0.407 1.000
Speed -0.178 0.585 -0.029 1.000
Distance -0.516 -0.151 -0.457 0.374 1.000
Travel o516 -0304 0414 0266 0794 1000
BPR 0.463 0.621 0.621 0.317 -0.284 -0.247 1.000
1 0.964 1 1
04 0.912 0.86
0.8 0.8 0.8 0.786
0.6 0.542 0.6 0.6 0518
0.4 0.4 0. 344 0.4
0. 256
0.2 0.2 0.2 o 066 0. 134 0. 098
0 -0. 062 I 0 -O.g66
x 3 O @6 Sy 4 S \.\ @ QQ-
-0. 240 ¢§°} o Q\c} ‘§ -0. 2\\0\ @ . \rb“ < <O27128 02 @Q chfa & Q\é & ?
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1) First factor loading 2) Second factor loading 3) Third factor loading

Figure 5.18 Factor loadings of three factors

5.4.6. Hierarchal clustering by the common factors

Next, the nodes in the network can be classified using the three common factors. This analysis is carried
out to characterise the geographical distributions of nodes by common network features. Characterising
the current road network may help in identifying the required levels and functions of road networks. The
factor score for each node is used for clustering. This clustering analysis adopts a hierarchical method
based on the furthest neighbour method in Euclidean distance. The number of clusters must be
determined in advance in the case of the hierarchical clustering. In this study, the nodes are classified into
five clusters.

Table 5.5 lists the number of nodes with its percentage included in each cluster. The share of the
largest cluster (Cluster 4) is 38%, so there is no giant cluster. Although Clusters 3 (8%) and 5 (7%) are
slightly smaller, they still contain more than 100 nodes. Table 5.5 also lists the average factor scores in
each cluster, which reveal the characteristics of the cluster. Positive scores in the “traffic demand,” “road
sparsity,” and “road rank” factors mean high demand, sparse roads, and higher rank roads, respectively.
Additionally, Figure 5.19 shows the geographical distribution of clusters. The characteristic of each cluster

is summarised as follows:
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Figure 5.19 Node clustering in Gifu prefecture

Table 5.5 Summary of clustering

Average factor Average factor Average factor
The number
Cluster of nodes Percentage score 1 score 2 score 3
“Traffic demand” “Road sparsity” “Road rank”
1 472 26% -0.376 0.348 -0.830
2 372 21% 0.378 -1.267 -0.729
3 140 8% 0.247 2.252 -0.541
4 678 38% 0.479 0.060 0.861
5 121 7% -2.665 -0.402 1.281
Cluster 1

Nodes in Cluster 1 are located in sparse areas and the edge of the network. This cluster can be called as
the “rural part cluster.” This set of nodes has low demand and low road rank. Also, the roads in this cluster
area is sparse. Therefore, the mountainous areas with insufficient road improvement are indicated by this

Cluster.

Cluster 2

Nodes in Cluster 2 are located in the southwestern part of Gifu Prefecture around Ogaki City. This cluster
can be called as the “western urban part cluster.” From the average factor score, this set of nodes has a
large demand, a low sparsity, and an insufficient road rank. Therefore, the western urban part needs to

reinforce roads with higher ranks such as expressways.
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Cluster 3

Nodes in Cluster 3 are located in the areas around Takayama City in the north. Takayama City is the largest
city in the north of Gifu Prefecture. This cluster can be called as the “northern urban part cluster.” The
average factor scores also represent the characteristics of urban areas in the north of Gifu Prefecture; the
road network is rather sparse consisting of lower rank roads. Since the road density is sparse the new

high-rank road investment may be needed.

Cluster 4

Nodes in Cluster 4 are mainly located around Gifu City, and also in a region that can be moved from Gifu
City within a short time by using expressways and national highways. This cluster can be called as the
“central urban part cluster.” The values of three loading factors are well balanced and this cluster

represents the ‘average’ feature of this network.

Cluster 5

Nodes in Cluster 5 are mainly located along the expressways. This cluster can be called as the “expressway
cluster.” Although this set of nodes has roads with a high road rank, the average factor score of traffic
demand is strongly negative. Because Cluster 5 has the considerable remaining capacity, the policies for

promoting the use of such roads are effective.

Nodes in Clusters 2, 3, and 4 are located around large cities such as Ogaki, Takayama and Gifu City. In
contrast, Clusters 1 and 5 have nodes that are similar in terms of geographical conditions and
environments. The node clustering method adopted in this study does not consider the geographical
locations. Nonetheless, except for some nodes within Clusters 1 and 5, the method classifies the nodes
mostly by geographical locations, like Clusters 2, 3 and 4.

Seven traffic indices obtained by traffic survey data were set as the weights. The evaluation
results using seven indices identify the areas with strong and weak impact from the viewpoint of each
index. Also, this section applied factor analysis to find the common factors among seven indices. These
common factors help explaining the characteristics of the road network. Moreover, by using the results of
the factor analysis, the nodes were categorised into five clusters. The distribution of nodes revealed that
the common factor represents characteristics of the nodes by regional situations and functions. EC
analysis with several weights can characterise and classify the road networks, and such categorisation can

further be used to decide future road investment policy.

5.5. Test for Larger Road Networks

To test the usefulness of the proposed method for larger road networks, road networks of six regions

around the world are analysed. These networks are from Bar-Gera. H, Transportation networks that is the
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same data used in the Chapter 3. A summary of large-scale road networks is shown in Table 3.1. The
traditional connectivity evaluation methods reviewed earlier are difficult to apply to such large networks
as the computational time and maximum memory make computation prohibitive. Using these practical
larger road network data, this paper seeks for the strongly and weakly connected areas using the capacity-
weighted EC method.

Figure 5.20 shows the distribution of the squared EC values on log scale in the six networks. As
with Gifu Prefecture road network, the nodes are classified into five levels by equal range of the log EC
values. Figure 5.21 illustrates the share of the nodes for five levels. Specific characteristics of each network

are described below.

Berlin, Germany

Figure 5.21 shows that lots of nodes are classified in Level 1. These nodes spread over the whole network
(Figure 5.20(a)). Moreover, about 94.0% of nodes belong to Level 1 and Level 2. This result shows that the
connectivity is uniformly strong across the network. On the other hand, nodes with connectivity at Level
3 are located in the east of the city and largely surrounded by more strongly connected areas. The area of

poor connectivity is most likely a relic of the old East Berlin.

Birmingham, United Kingdom

As is shown in Figure 5.21, both shares of Level 1 and Level 5 nodes are small. In the central area of the
Birmingham located in the middle of the map, there are many Level 1 nodes, and so as the city centre of
Wolverhampton and Coventry. The difference shows the scale and shape of the city; the connectivity of
central Birmingham area remains high. Weakly connected nodes are located rather in residential areas
and parks. Birmingham City has a green belt surrounding the urban area to control urban growth
(Birmingham Development Plan 2031 as of October 21, 2018, listed on Birmingham city council website).
As shown in Figure 5.20 (b) few nodes and roads are located in the green belt. The effect of high
connectivity in the central area cannot spread due to the green belt. In Birmingham, urban and residential
area are clearly segregated, and residential areas and parks are evaluated rather low with respect to

connectivity.

Philadelphia, United States

Delaware River crosses the middle part of the Philadelphia. Level 1 node is located only in the south. This
area is covered with a forest and the road network is rather sparse, but it was located between U.S.
National Interstate Highway 42 and U.S. Highway 30. Surrounded by large-capacity roads can be a reason
why this area is evaluated as strongly connected. Also, the urban central area located to the north of
Delaware River shows strong connectivity (Level 4). This effect spreads beyond the river to the south and
the contribution of bridges for spreading the connectivity is substantial. Weakly connected areas are only

located on the periphery of the network.
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Gold Coast, Australia

In the Gold Coast network, less than 4% of nodes are classified as Level 1, which are concentrated in one
region. This area is the most prosperous part of the Gold Coast. Conversely, Level 5 nodes are located in
largely residential areas. Level 1 and 5 nodes are located close to each other, and they are connected by
national roads Route 2 and Route 3, which have large capacities. Level 5 nodes area is close to the Level 1
nodes area and they are connected by high-capacity national highway 2 and 3. We found that the area
where nodes are evaluated as Level 5 is, although it is very close from the Level 1 area, there are many

canals that all houses are accessible by boat, and only the limited number of roads are available.

Sydney, Australia

In the Sydney network, the nodes in Level 1 exist only in a limited central area and along with parts of the
Motorway network and the links to the north. We found that links in the northern part are aggregated and
thus have large capacity. The influence of the strongly connected nodes does not spread out as is seen in
other cities. On the other hand, most nodes in the middle of the network belong to Level 2. Because of the
influence of aggregated links, only limited number of nodes with huge capacities are ranked as Level 1 and
most of the other nodes are ranked as Level 2. This could be a reason why we cannot identify strongly
connected areas. Nodes belonging to Level 5 are located at the end of a peninsula or on Central Coast,

where connectivity is known to be an issue for geographical reasons.

Chicago, United States

Chicago is located next to Lake Michigan. More than one-fifth nodes are classified in Level 1, and most of
them are located along Lake Michigan. It seems that connectivity gradually spreads from the lake shore to
the inland area. Even though some U.S. National Interstate Highways pass through both north-south and
east-west direction, the influence on connectivity is strong to the south but not strong to the north. Weakly
connected areas with Level 5 are only located in the north western part. There are lots of farms in these
areas with lower capacity roads. The most strongly connected areas are located in the CBD, and the

distribution in which the EC gradually decreases toward the north matches the characteristics of the

Chicago city identified from Zoning and Land use map (The Chicago Department of Planning & Economic

Development) and an aerial photograph.
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Figure 5.21 Node share in the six city networks

The results of six networks are compared. Figure 5.21 shows that the fraction of nodes in Level
1 in Berlin is the largest and it was followed by Chicago and Birmingham. However, the distributions of
nodes in Level 1 on the map are all different. Berlin has uniformly strongly connected across the whole
network, whereas Chicago exhibits a gradual transition from the weakly connected northern suburbs to
more connected southern suburbs. In Birmingham, the strongly and the weakly connected areas are
clearly segregated by the green belt. In Sydney, the fraction of nodes in Level 1 is small but the fraction of
nodes in Level 2 is very large. This classification is similar to that in Berlin as the whole network has high
connectivity. For cities like Berlin or Sydney, high connectivity seems to be maintained across the whole
network, with small pockets of weak connectivity. In the Gold Coast and Philadelphia, the fraction of nodes
in the strongly and the weakly connected areas can be small. It was found that all six networks describe
very different characteristics, and the natural, geographic, political and social conditions may lead such
differences. The computational time for Sydney (the largest size among six cities) is 1.828 seconds, and

the proposed method is still computationally tractable.

5.6. Application to Detailed Network

The main advantage of EC analysis is the ability to evaluate large-scaled networks to which the traditional
methods with high computational loads cannot be applied. The large-scaled network includes not only the
vast network but also highly detailed network which has a lot of nodes and links. This section
demonstrates the significance of detailed network analysis by using the evaluation results in a road
network including small city roads.

The detailed network of the Gifu Prefecture to analyse has 138,871 nodes and 399,438 directed
links. This network is named as “detailed network” in this section. The capacity weighted EC distribution

is shown in Figure 5.22. The nodes are equally divided into five classes with 20%. Detailed network
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includes all kinds of roads, therefore the difference of the evaluation results with and without omitting
small narrow roads can be discussed. The calculation of capacity weighted EC on the detailed network
only requires 57.98 seconds (PC:Intel Xeon, CPU:E5-1620v4@3.50GHz, memory:32GB, 0S: Windows10,
64bit). It is very easy to handle even such detailed networks.
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Figure 5.22 Capacity weighted EC distribution in detailed road network
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Since the level of detail is too high and the results of analysis shown in Figure 4.21 are not clear
on the whole Gifu prefecture, several cities are focused to discuss. The analysis of each city uses EC
normalised in the Gifu prefecture network. However, the EC values are very small and to make the
characteristics of distribution in each city more clearly, it is evaluated by the relative rate compared with
the minimum value of each city. Therefore, all values of nodes in each city are more than 1. The following
analyses in this section use this rule.

As an example, three cities (Gero city, Gujo city and Gifu city) are discussed with the comparison
of EC between simple network and detailed network. The location of these cities is shown in Figure 5.23.
Gero city and Gujo city are located in a mountainous area, and Gifu city is located in an urban area. The
simple version of Gifu prefecture road network is same as the one discussed in 4.4. The size of network is

1,460 nodes and 4,578 directed links. This network is called “simple network” in this section.

Gujo City

Figure 5.23 The location of three cities (Gero, Gujo and Gifu city)

Gero city
Figure 5.24 shows the relative rate of EC based on minimum value in Gero city. Gero city has no motorways,
and a national highway (Route 256) is connected from Tokai Hokuriku Expressway which passes the west
side of the Gero city. EC evaluation of simple network shown by orange triangle is high in the western and
southern part. This may be an effect of Tokai Hokuriku Expressway with sufficient capacity. On the other
hand, the evaluation around city centre where the city hall (green star in Figure 4.23) is located is not high.
In the simple network, an impact of roads with large capacity is strong, but it seems that it is difficult to
identify the strongly and weakly connected part at the small city level.

EC evaluation of the detailed network is shown in blue circles in Figure 5.24. There are high

connectivity areas just north and south of the city hall. Also, it is indicated that even the western and
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southern parts of the city with uniform high connectivity in the simple network have both strongly and
weakly connected areas. EC values in the detailed network are sparsely distributed across the city. This
may mean that the strength of connectivity in the city by small or narrow roads is represented. Figure 5.25
shows the population in Gero on 500m square mesh. This population data is obtained from the national
population census at same year as the road network used. As you can see the population distribution, the
detailed network almost covers the place where population exists. Moreover, EC in the detailed network
evaluates that the connectivity in the north-eastern area of the city with almost no population is very low.
On the other hand, there are areas where the connectivity is evaluated strongly although the population
isnotlarge (e.g. the edge of city in the south-eastern area). These areas may be influenced by neighbouring
cities. Because the area mentioned as example has a road connecting with Nakatsugawa City located in
the south, the connectivity is evaluated high. In this way, it shows that it is possible to consider the
evaluations of external connectivity even though this is an evaluation of Gero city in this section.

Heat maps based on the EC evaluation of the detailed and simple network are shown in Figure
5.26 and Figure 5.27. Compared to heat map of simple network where most areas with nodes except for
the north-eastern area of the city are represented uniformly, heat map of the detailed network has strongly
and weakly parts in the areas with nodes and extracts some villages by places where high connectivity is
concentrated. At the city centre of Gero, the EC evaluation by the detailed network that includes small city
roads is more remarkable than the EC evaluation by the simple network. This means that the city centre
is rather isolated because of insufficient connectivity. In simple network, areas that are not affected by
large-capacity roads tend to be not much different and have low connectivity. However, it was confirmed
that the detailed network can indicate the strongly and weakly connected parts even in areas where the
impact of large-capacity roads is not sufficient. As the network resolution level increase like a detailed
network, the connectivity of small narrow roads can be evaluated. Moreover, their connectivity

evaluations are the result considering the impact from outside of the city.
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Figure 5.26 Heat map of EC in detailed network Figure 5.27 Heat map of EC in simple network

Gujo City

Figure 5.28 shows the relative rate of EC. Tokai-Hokuriku Expressway lies in Gujo city. Therefore, EC
evaluation by both networks shows strong connectivity along the expressway. However, some nodes along
the motorway surrounded by the black dotted line in the detailed network have rather weak connectivity.
This may be the result of an area that is close to large capacity roads but has many low capacity roads.

Such an evaluation result obtained in the detailed network is not shown in the simple network because
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the simple network omits such small roads. The use of the detailed network indicates that not all areas
along the motorway have strong connectivity.

Let us look at the mountainous area where the road network is sparse. From the distribution of
ECin Figure 5.28 and heat maps of EC evaluation in Figure 5.30 and Figure 5.31, some villages (Meiho and
Wara) are picked up as an example in the mountainous area. In the simple network heat map shown in
Figure 5.31, the connectivity is high in the urban area around the city hall and along with large-capacity
roads and the connectivity is low in the mountainous with small population. In the detailed network, the
connectivity in similar places is high, but the connectivity in mountainous areas has also differences. Small
villages such as Meiho and Wara has shown in the detailed network heat map of Figure 5.30 are evaluated
as parts with high connectivity in the mountainous areas. Wara is relatively more strongly connected than
Meiho. This may be because National Highway 256 connecting Gujo with Gero lies along Wara. The
locations of villages in the detailed network are consistent with the populated data shown in Figure 5.29.
In this way, the detailed network analysis can evaluate connectivity in mountainous areas that do not

include large-capacity roads.

¥ CityHall

Simple
Top 20 % of rank
20-40%
L 40-60% . .
A 60-80% Population_Gujo
4 80-100% %0-585)
petat 500-1000
Top 20% of rank BB 1000 - 1500
20- 60% B 1500-1711
° 40-60%
* 60-80%
*+ 80-100%
&, 4 ¢
AN,
s !
4
.."2 . W0 .\\
o0 ifﬁ\/

e>_!/ ;’;( y
L < H
Figure 5.28 The relative rate of EC (Gujo) Figure 5.29 The population in Gujo city
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Gifu City

The purpose of discussion by using an example of Gifu city is to focus on connectivity in areas where roads
with small capacity are dense. In the case of Gujo city, there was an area where connectivity is weak by
many low capacity roads although they are close from large capacity roads. It is verified whether such
evaluation result occurs in Gifu city as well. Gifu city has few mountainous areas. In the simple network,
the eastern areas of the city are strongly connected. This is an effect of the large capacity roads by Tokai-
Hokuriku and Tokai-Kanjo Expressway which are located in the east of city. Conversely, the north-western
areas of the city are weakly connected. In the detailed network, the characteristics in the simple network
did not appear and nodes with strongly and weakly connected are sparsely distributed. For example, the
most north-east areas (black flame in Figure 5.32) are selected to understand the difference of evaluations
between the simple and detailed network. All nodes in the simple network are evaluated as strongly
connected. On the other hands, the strongly and weakly connected nodes scatters in the detailed network.
By the population data shown in Figure 5.34, some people live in this area. However, detailed network has
nodes that are evaluated very weakly connected. As a result of confirmation by using aerial photograph
shown in Figure 5.33, this area contains farmland and roads with low capacity. On the heat map of EC in
simple network shown in Figure 5.36, the EC evaluations in black flame are relatively high. However, on
the heat map of EC in detailed network shown in Figure 5.35, the EC evaluations in black flame are not too
high. In this example, there are many roads that are closely connected but their capacity is small, and the
connectivity may be evaluated as weak. By using the detailed network, it is possible to identify small areas
where roads are dense but not affected by the surrounding large capacity roads. In addition, in the simple
network, high EC evaluations are concentrated in the centre and east of the city, while in the detailed
network, high EC evaluations are also located in the west and south sides of the city. These differences

show the areas that are evaluated only by the detailed network.

81



4 Top 20% of rank
4 20-40%
4 40-60 %
4 60-80%
4 80-100 %
Detail

> Top 20% of rank
© 20-40%

© 40 - 60 %

+ 60 -80 %

< 80-100 %

Figure 5.33 The enlarged view inside black square in Figure 5.32

82



7 GifuCity
o 0.0-0.0

B — 0.0000 - 500

— 500 - 1000

B 1000 - 1500

Bl 1500 - 2686
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Figure 5.35 Heat map of EC in detailed network Figure 5.36 Heat map of EC in simple network

When the connectivity of road network in a small region is evaluated, it is necessary to consider
both the effects of expressways and national highways connecting cities and the effects of small roads in
the city. The analysis of the prefecture-wide scale and highly detailed road network revealed that there
are a lot of information that cannot be found without using this detail level of network. For example,

- identification of areas where connectivity is weakened by many small roads even around the large
capacity roads,

- identification of places where connectivity become strong by the effect of villages in areas where
connectivity is uniformly low in the road network limited to larger than prefectural roads,

- identification of areas where connectivity is evaluated to be weak in a road network limited to
prefectural roads compared to the detailed network including city roads. If a city facility such as a city
hall is located, the connectivity of that facility to the outside of the city is insufficient.

Hence, the ability to apply large-scaled networks is a huge advantage of the proposed EC analysis.
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5.7. Concluding Remarks

This chapter used the EC analysis which is one of the centrality measures as a method to identify the
strongly and weakly connected part of networks. At first in this chapter, the definition and derivation of
EC were described. Furthermore, characteristics of EC were explained by analysing the relationship with
other centrality measures. EC analysis can handle directed graphs, and all road networks to analyse in this
chapter have directed links. The knowledges obtained from the analysis results are summarised as follows.

The proposed capacity weighted EC analysis was confirmed to be a suitable method for road
network connectivity evaluation. The indicator of non-overlapping routes defined by Kurauchi et al.
(2009) is one of the conventional connectivity vulnerability evaluation methods for road network. The
comparison with EC evaluation and the number of non-overlapping route by using practical road network
revealed that they have a significant correlation.

Capacity weighted EC can also consider the ease of link disruption. The application results to the
Gifu prefecture network showed that the capacity weighted EC can identify the areas where have large
effect of higher capacity roads. Moreover, it was shown that the capacity weighted EC can identify high-
risk parts by the link disruption at the disaster. These results were discussed based on the actual situation
in Gifu prefecture. Furthermore, the effect of network boundary suggests that if there are roads with large
capacity nearby, the study network should be expanded to consider their effect.

The weight setting has a large impact for the EC evaluation. The analysis by using different
weights identified the common factors of road network, and factors help explaining the characteristics of
the road network. In particular, the factor analysis is carried out using the EC results. Nodes classified by
the results of the factor analysis revealed the characteristics of regional situations and functions.

The EC analysis is very useful for large-scaled networks, as same as the spectral partitioning
method discussed in the Chapter 3. The computational time for Sydney (the largest size among example
cities) is only 1.828 seconds. This computational time shows that EC is really trackable for large-scaled
network. Some examples of application to large-scaled network showed that EC method can identify the
strongly and weakly connected areas. The distribution of EC results is totally different depending on the
networks. These differences were discussed according to the characteristics of each city. However, the
road characteristics may depend on other factors such as land use, geographical structures and so on. As
a future study, understanding such differences of characteristics may include valuable information related
to land use and urban policies, that may also contribute to evaluate social sustainability.

The analysis of detailed networks has the large potential to find important information of road
networks. Applicability to large scaled networks is a huge advantage of EC. Because the analysis in detailed
network can reveal the characteristics which cannot be found on approximated networks. By comparing
the detailed network and simple network (approximated network) in Gifu prefecture, there were
characteristics that are identified only by the analysis of the detailed network. Specifically, there is a
weakly connected area near large capacity roads. It was shown that analysis independent of network

resolution is possible. Moreover, the analysis of the detailed network used the especially large road
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network (138,871 nodes and 399,438 directed links). The computation time is 57.98 seconds. This shows

that the EC evaluations in detailed network can be obtained very easy and quickly.
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Chapter 6
Evaluation of Long-term Road Improvements by

Connectivity Analytics

6.1. Introduction

The impacts of natural disasters have been increasing recently because of depopulation and climate such
as global warming. In the case of emergency, the road network actually becomes more important than

other transportation modes such as rail (IATSS, 2000) because of the extensive road coverage and

robustness in maintaining the connectivity of the systems. Even in ordinary periods, the road networks
play an important role in ensuring accessibility, and the road improvement is one of the urgent issues. In
japan, the 4t national development plan in 1987 aimed to spread high-speed transportation services

nationwide (4t national development plan, 1987). The objective of the plan was to construct 14,000 km

motorways at the beginning of 2000s. However, the achievement rate is still around 70% in 2011. It is still

necessary to improve road networks (Transition of high-standard road network planning).

However, the road construction is very expensive, and it takes a long time. For efficient road
investment, it is essential to understand how the impact of road improvement is reflected in road services
and usage. This chapter evaluates the long-term change of road network where many roads have been

improved. The impact of about 30 years’ road improvements is verified by using connectivity analytics.

6.2. Eigenvector Centrality and Weight Setting

As the network connectivity analytics by topological indicator, eigenvector centrality (EC) which was
confirmed to be useful for road network evaluation in the previous chapter is used. To verify the impact
of on transportation ability for vehicle based on ease of connection, the traffic capacity of each link is
considered on the weights. Moreover, to distinguish between short links and long links with equivalent

traffic capacity, the multiplication of traffic capacity and link length is set as weights. The setting of weight

w, is
w, = L.C, (6.1)
where,
L, :  Alength oflink e (km)
C. : Atraffic capacity of link e (vehicle/day).

In this chapter, the weight based on the multiplication of length and capacity of links is representing the
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“magnitude of road areas” and used as an indicator of road improvement. The eigenvector centrality using
weighted adjacency matrix with these weight settings evaluates the connectivity of road supply

performance.

6.3. Long-Term Network Changes in Gifu Prefecture

In this study, a road network in Gifu Prefecture with roads ranked higher than prefectural roads are
considered, and study period is from 1985 to 2024. In Gifu Prefecture, as is the same as other areas of
Japan, based on the 14,000km high-standard road network plan decided in 1987 by the Japanese
Government, expressways have been vigorously constructed. Especially, Tokai-Hokuriku Expressway,
Tokai-Kanjo Expressway and Chubu-Jukan Expressway have been constructed and extended. Gifu
prefecture named these three expressways as “New three expressways” and they are regarded as effective
roads for activating tourism and economy, reducing the traffic congestion and securing emergency
transport roads at disasters. Figure 6.1 shows the locations of “New three expressways”. Table 6.1
summarises the construction histories and plans of the Tokai-Hokuriku Expressway and the Tokai-Kanjo
Expressway that have been actively developed. These expressways have been or will be extended to
neighbour prefectures such as Aichi, Mie, Toyama, Ishikawa and Nagano.

The Tokai Hokuriku Expressway, which was fully connected in 2008, has been continuously
developed since 1996. However, most of sections are provisionally constructed as two-lane roads, and it
has been gradually expanded to 4 lanes. On the other hand, the Tokai-Kanjo Expressway has opened the
eastern section from Toyota East JCT to Minoseki JCT at first in 2005. After that, a construction plan has
been established for the western section and is currently under construction. The Tokai-Kanjo Expressway
has a lot of provisional 2-lane roads, so it will be required to expand to 4 lanes in the future. In this way;,
road improvement projects have been carried out actively in Gifu Prefecture in the past 30 years, and
quickly and effective road improvements are also required in the future.

This chapter attempts to evaluate the effect of road network improvements by analysing network
connectivity. The improvement transition of the road network from 1985 to 2024 in Gifu prefecture is

used to analyse.
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Figure 6.1 The location of “New three motorways”

(Gifu Pref. official HP, English captions are added by the author)
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Table 6.1 The construction history of Tokai-Hokuriku and Tokai-Kanjo Expressway

(Gifu Pref. official HP, translated by the author)

Tokai-Hokuriku Motorways Tokai-Kanjo Motorways
1986 |Opened Gifu-KakamigaharalC~MinolIC L=19.1km (4Lanes)
1987
1988
1989
1990
1991
1992 |Opened FukumitsulC~Oyabe-TonamiJCTL=11.1km (2Lanes)
1993
1994 |0pened MinolC~MinamilC L=17.2km (2Lanes)
1995
1996 |0pened MinamilC~Gujo-HachimanIC L=10.2km (2Lanes)
Opened IChinomiya-KisogawalC~Gifu-KakamigaharalC L=5.6km
1997| (4Lanes)

Opened Gujo-HachimanIC~ShirotorilC L=16.6km (2Lanes)

Opened BiSAIIC~IChinomiya-KisogawalC L=3.8km (4Lanes)

1998 Opened IChinomiyaJCT~BiSAiIC L=3.9km (4Lanes)

1999 |Opened ShirotorilC~ShokawalC L=21.9km (2Lanes)

Opened GokayamalC~FukumitsulC L=16.3km (2Lanes)

2000 Opened ShokawalC~Hida-KiyomilC L=18.9km (2Lanes)
2001

2002 |Opened ShirakawagoIlC~GokayamalC L=15.2km (2Lanes)
2003

4 Lanes compLeted MinolC~Fukubegatake PA L=18.5km
South from ShirotorilC L=2.1km

2005 Opened Toyota-Higashi JCT~Mino-Seki JCT (L=73.0km)
2006
2007 |Hida tunneL opened

Opened Hira-Kiyomi IC~Shirakawago IC L=25.0km (2Lanes)
2008| [ALL Lanes opened]

4 Lanes compLeted Fukubegatake PA~Gujo-HachimanIC L=8.9km

2004

4 Lanes compLeted Gifu-YamatoIC~ShirotorilC L=10.4km

2009 4 Lanes compLeted Gujo-Hachiman IC~Gifu-YamatoIC L=6.2km

Opened Mino-Seki JCT~Seki-Hiromi IC (L=2.9km)

2010
2011
2012 Opened Ogaki-Nishi IC~Yoro JCT (L=5.7km)
2013
2014
2015
2016 Opened ToinIC~Shin-YokkalChi JCT (L=1.4km)
2017 Opened Yoro JCT~Yoro IC (L=3.1km)

4 Lanes compLeted Shirotori IC~Takasu IC L=8km
4 Lanes compLeted Hirugano-Kougen SA~Hida-Kiyomi IC L=26km

2018

Opened DaianIC~ToinIC (L=6.4km)
20194 Lanes compLeted Takasu IC~Hirugano-Kogen SA L=7km Plan : Ohno-GodolC~0ogakinishilC
Plan : Seki-HiromilC~TakatomilC
Plan : TakatomilC~Ohno-GodoIC
Plan : HokuseilC~DaianIC

2024

The target road networks are 8 year points in 1985, 1990, 1999, 2005, 2010, 2017 and 2024.
This chapter uses the approximated network whose road ranks are higher than prefectural level including
expressways and national highways. The network in 2024 is created based on the future road construction
plan. Table 6.2 shows the number of nodes and directed links on the network for each year. All network
data is obtained from the national road traffic census survey. As an example, Figure 6.2 and Figure 6.3
show the distribution of the length and capacity in 2010, the latest year of the road network that has real

data. The distances of most of the links are 5 km or less, but there are links with a length of 15 km or more.
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Most of them are links representing expressways. As for traffic capacity, most of the links have capacities
less than 20000 (vehicle/day), and some of them are even smaller than 10000. This is because substantial
number of links are narrow that are located in urban and mountainous areas. However, it can be seen that

there are some links with large capacity exceeding 40,000 (vehicle/day), representing expressways.

Table 6.2 Networks of each year
Year 1985 | 1990 | 1994 | 1999 | 2005 | 2010 | 2017 | 2024
Node 1716 | 1727 | 1745 | 1770 | 1791 | 1793 | 1796 | 1802

Link
(Ge;eral) 4470 | 4494 | 4514 | 4618 | 4717 | 4723 | 4728 | 4745
Link
! 31 | 35 | 40 | 52 | 69 | 73 | 78 | 89
(Motorway)
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Figure 6.2 The distribution of length in 2010
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Figure 6.3 The distribution of capacity in 2010
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6.4. Connectivity Analytics in Long-term Changes of Road Networks

6.4.1. Application to multi-year road network
Figure 6.4 shows the distribution of the EC at eight-year points. The values of EC are normalised so that
the size of the eigenvector becomes 1 for each network, and the EC takes a value between [0,1]. Since EC
value often takes very small value, Figure 6.4 uses the logarithm value of the EC to distinguish the micro
differences. The value of node i in Figure 6.4 is Inx;, which is always negative. Also, the nodes in every
network are classified into six levels according to the same thresholds of the value of Inx;, as is shown in
left upper part of the Figure 6.4. The bold black roads in the network indicate expressways.

The distribution of EC on the road network, nodes included in Level 1 are concentrated near the
Meishin Expressway, and the nodes included in Level 2 are is mainly located around Gifu city. After that,
the centrality of the nodes located in the north gradually increased according to the extension of Tokai-
Hokuriku Expressway. In 1999, the centrality along the Tokai-Hokuriku Expressway becomes high, and
most of the nodes included in Level 2 are located near the Tokai Hokuriku Expressway. Accordingly, the
centrality of the nodes located in the western part of Gifu Prefecture, which has shown high centrality so
far, is relatively decreased. Since 2005, the Tokai-Kanjo Expressway has been opened and extended. The
effects of the Tokai-Hokuriku Expressway have spread to the east, and the centrality of nodes located
around the existing Chuo Expressway increases as well as the nodes along the newly constructed roads.
In 2024, the westward and eastward roads of the Tokai-Kanjo Expressways are scheduled to be opened.
The range of nodes included in Level 2 is greatly expanded compared with the ones before all sections are
opened, and most of nodes except for ones located at the edge are included in Level 3. From these
discussions, road network improvements have a large effect on the connectivity in terms of road supply
performance. The evaluation that considers capacity and length as weights makes it possible to distinguish
the effects of high cost large road improvements with long-distance section. Hence, the spread of influence

is large when the expressways with long distance and large capacity are opened.

.+ 80 -- 4 b
+ -100--80 (Level 5) |
- -120--100 (Level 6)

(a) 1985 (b) 1990 (c) 1994 (d) 1999
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Figure 6.4 The distribution of EC by the road networks in each year

Figure 6.5 shows the rate of log-scaled EC and the total weights in each year. The total weights
are calculated by summing up the multiplication of length and capacity of links in each year. From the
figure, from 1999 to 2005, the rate of EC changes drastically along with the major changes in total weight.
The extension of Tokai-Hokuriku Expressway in 1999 increased the rate of nodes included in Level 1.
Moreover, by the impact of starting operation of the Tokai-Kanjo Expressway in 2005, the rate of nodes
with high centrality is maintained, and the rate of nodes included in Level 4, 5 and 6 decreases gradually.
The major road improvement from 2005 to 2010 is the opening of the Hida Tunnel located in the north
edge of Tokai-Hokuriku Expressway. Although the opening of Hida tunnel has a very small change in the
total road capacity, its effect must be significant in terms of connectivity of roads. However, the evaluation
based on the EC did not show much effects. This may be because we only evaluated the road network
within Gifu Prefecture. Since the Tokai Hokuriku Expressway is connected to the Hokuriku Expressway in
Toyama Prefecture, the opening of Hida Tunnel has a particularly large impact in the Hokuriku region. The
opening of the all sections of Tokai-Kanjo Expressway from 2017 to 2024 affects the rate of EC. Although
the weight has not increased so much, the rate of nodes included in Level 1 and 2 has increased. This
expressway must contribute much to the improvement of road supply performance connectivity on the
whole Gifu Prefecture.

Because EC values are normalised in the network of each year, increasing the value of EC over
year may not represent the connectivity improvement. It can be seen that the dispersion of EC increases
in the EC distribution shown in Figure 6.5 by the extension of the Tokai-Hokuriku motorway in 1999. A
rate of nodes included in Level 1 increases the rate of nodes included in Level 3, 4 and 5 also increases.
After that, the dispersion is resolved again as the construction of the Tokai-Kanjo Expressway was
extended. The EC distribution is roughly uniform when the connectivity of road network is equal
regardless of its level of connectivity. However, a multi-year analysis of actual road improvement based on
the EC weighted by the distance and capacity can identify the magnitude of improvement impacts by new

road constructions. The evaluation reveals increased network connectivity of road supply performance.
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Figure 6.5 The transition of EC rate and weigh values

6.4.2. Effect of expansion to 4-lanes on Expressways

There still exist provisional 2-lane sections on the Tokai-Hokuriku and the Tokai-Kanjo Expressways.
Figure 6.6 shows the current situation and plan for 4 lane expansions of expressways in Gifu prefecture.
Here, the effect in the EC evaluation by the improvement of such provisional 2 lanes to 4 lanes are
confirmed. To test the impact of link expansion, 5 improvement cases based on the road network in 2024
are prepared. Table 6.3 shows the calculation cases and some evaluation results. The expectation is the
expected value of log-scaled EC on the distribution which has six class and class frequency 20 shown in
Figure 6.7. The variance is based on the log-scaled EC of each case after improvement. Figure 6.7 illustrates
the number of nodes included in each level which is divided into 6 based on log-scaled EC. In all cases, the
number of nodes with high centrality increases and the number of nodes with low centrality decreases
compared with the state of no link expansion. Since there are no nodes included in Level 5 and 6 in any
cases, it can be said that the effect by expansion to 4 lanes in the entire road network is significant. Specific

comparison examples are shown below.

Case 1 and Case 2 (Tokai-Kanjo Expressway, eastward and westward)

To verify which expansion of Tokai-Kanjo Expressway, eastward or westward, is more effective, results of
Cases 1 and 2 are compared. Besides, the construction of the provisional 2 lanes road was started form
the eastward. From the comparison with both cases, there is no significant difference between two cases,
even though the total weights (Table 6.3) is larger in Case 2 (westward expansion). However, Casel has
slightly less nodes included in Level 3, and Casel has more nodes included in Level 1. Moreover, the
expectation of Case 1 is slightly larger than ones of Case 2. Therefore, it is more effective to expand the
eastward of Casel. However, the variance of both cases are almost same. Although the preference
improvement of Case 1 is more effective than Case 2, the difference is not significant. One of the reasons

for this result seems to be that the eastward sections already have roads with 4 lanes. The effects of
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expansion to 4 lanes may increase by connecting to the already 4 lanes used section even if the expansion
section to 4 lanes is short. Moreover, the effects of eastward improvements are expected to be greater than
the evaluation in Gifu prefecture since the eastward section connects the Tokai-Kanjo expressway in Aichi

prefecture which has 4 lanes completed.

Case 3 and Case 4 (Tokai-Hokuriku Expressway)

Two cases are compared for Tokai-Hokuriku Expressway. Case 3 represents an expansion from Shirotori
IC to Hida-Kiyomi IC, which has finished from March 2019. Case 4 assumes that all sections on Tokai-
Hokuriku Expressway has expanded to 4 lanes. Figure 6.7 shows that there is almost no difference
between Cases 3 and 4, although they have large difference in the change of total road area. Also, the
expectation and variance in Table 6.3 on both cases are almost same. It can be said that it is very effective
to expand to 4 lanes up to Hida-Kiyomi IC, which was finished by March 2019. From this comparison

results, the current improvement plan is a reasonable measure.

Case 5 (all expanded)

Finally, Case 5 expands all sections of Tokai-Hokuriku and Tokai-Kanjo Expressways to 4 lanes. The EC
evaluation result of Case 5 has a tendency that there are many nodes with high centrality and few nodes
with low centrality compared with the result in 2024. Compared to the other cases, the expectation
increases and the variance decreases. It is clear that an example of Case 5 is effective for improving the

supply performance of road network.

The verification by using 5 cases of 4-lane expansion did not include the construction of new
roads. It was revealed that the EC weighted by the traffic capacity and length is useful even in the case that
the network topology does not change. Also, the calculation of the partial capacity expansion showed the
difference of impact magnitude and range. This is helpful for prioritising the improvement plans of road

sections.
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Figure 6.6 The situation and plan for 4 lanes

Table 6.3 Calculation cases for 4 lanes and evaluation results

Target area for 4 lanes The total weight Expectation after  Variance after
after improvement improvement improvement
Casel Tokai-Kanjo motorway in
109,318,056 -27.558 195.582
eastward
Tokai-Kanjo motorway in
Case2 109,399,286 -28.413 195.082
westward
Tokai-Hokuriku motorway
Case3 109,100,682 -28.901 186.409
(Scheduled to 4 lanes in 2018)
Case4 All Tokai-Hokuriku motorway 110,945,426 -28.846 186.039
All Tokai-Kanjo motorway
Case5 116,003,250 -25.216 166.500

All Tokai-Hokuriku motorway
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Figure 6.7 The distribution of log-scaled EC

6.5. The Impact of Road Improvements Based on Demand and Supply

Previous section verified the impact of road network improvement on the connectivity. The calculation
result over years can show changes of connectivity by the road network improvement. The changes in
supply performance by road improvements can be assessed immediately after the opening of the new
road section. However, the effect of road investment may not emerge immediately because it takes a time
for people to adjust their activity to new infrastructure. This section attempts to analyse the impact of
road improvements on demand-side as well as supply-side. Focusing on the long-term changes of traffic
demand and supply by EC measures, how traffic demand follows the supply of the network is discussed.
The purpose of the supply-side analysis is to evaluate the connectivity of road supply
performance, and that of demand-side is to evaluate the concentration of traffic. This analysis uses both
supply-side and demand-side indicators of traffic conditions as weights of EC to verify the difference
between them. The supply-side indicator is traffic capacity (vehicle/day) and length (km) on each link,
same as the previous section. The demand-side indicator is traffic volume (vehicle/day) on each link. The

weights for supply-side is written as eq(6.1), and the weights for demand-side is represented as follows,
we =V, (6.2)

where,
/A :  Atraffic volume of link e (vehicle/day).
On the demand-side, to evaluate the level of traffic concentration based on the actual usage, traffic volume
is set as weights.
To verify the relationship between the road performance connectivity on the supply side and

changes in traffic conditions on the demand side, the EC using weights on both sides is applied to the
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practical road network. The road networks to analyse in this section focus on 4-year points (1990, 1999,
2005 and 2010). The number of nodes and links are shown in Table 6.2. A Traffic volume, traffic capacity
and length in each link used as weights are obtained from the national road traffic census survey for those
years in Japan (MLIT, 1990, 1999, 2005, 2010).

Figure 6.1 shows the distribution of the EC at four-year points. On the supply-side evaluation,
already described in 5.4.1, the area with many high centrality nodes changes by time along road network
improvements. Especially from 1999 to 2005, it is clear that the road network connectivity has become
stronger as a result of the new constructions of Tokai Kanjo Expressway, and it seems that an eastern part
of Gifu has become more connected with the central part. However, in 2010 the network connectivity did
not change much. On the other hand, it is interesting to say that the demand-side based on traffic volume
does not have large changes in the centrality distribution by the constructions of new roads. The area
where nodes with the highest level (in red) are located in 1990 is the most urbanised area of Gifu
Prefecture, and this tendency does not change much over time from 1990 to 2005. The EC values then
changed drastically from 2005 to 2010. It may be because of the lagged effect; the impact of previous road
investment may have appeared in these periods, or the instantaneous effect; the impact of road investment
between 2005 and 2010 is very large. The biggest change between then is the opening of Hida Tunnel, and
the centrality on demand-side in the northern area has increased. Therefore, the instantaneous effect may

have happened during these periods in the northern area.
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Further the lagged effect is examined. The scatter plot in Figure 6.9 shows the difference between supply-
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side and demand-side evaluations at the same nodes in same years. Different colour represents the values
in different years. For these plots, the slopes of regression lines passing through the origin of coordinates
are 0.808, 0.834, 0.737 and 1.002 for years 1990, 1999, 2005 and 2010, respectively. Therefore, the nodes
with high centrality evaluations on the supply-side are often evaluated as low on the demand-side. This
means that the supply-side connectivity has been improved, but from the demand-side the connectivity
has not become as much as it is in the supply-side. These characteristics are different depends on the year.
Table 6.4 shows the correlation coefficients among demand-side and supply-side EC values. It is
interesting to say that, although two EC measures are calculated with different weights, there may have
strong relationship up to 0.764 (between supply 1990 and demand 2010). This suggests the strong
relation of demand and supply sides. From the correlation analysis among different time periods we can
also examine the causal relationship; whether road network is improved because of the increase in
demand, or the demand increased by the result of road improvements. If the road network was improved
because of the increase in demand, there should be a correlation between past demand and future supply.
The correlation coefficients continually decrease when we evaluate the value from left to right direction,
suggesting that such relationship does not occur. It is unlikely that the road has improved with increasing
demand. Conversely, the idea that the demand is generated as a result of road network improvement is
considered. If this idea is true, there should be a correlation between past supply and demand in
subsequent years; the correlation coefficients should continually increase when we evaluate the value
from top to bottom direction. According to Table 6.4, in most cases the correlation coefficients continue
increasing as the demand year progresses. Hence, it can be said that there is a lagged effect of road
investment; demand-side connectivity increases as supply-side connectivity becomes better by road
network improvements.

To examine the change of EC distributions by different year, Figure 6.10 shows the number of
nodes included in each level classified by the log-scaled EC values. From 1990 to 2005, although the
number of nodes included in Level 1 is large in demand-side, there are many nodes included in Level 4, 5
and 6. In supply-side, while the number of nodes included in Level 1 is small, the nodes included in Level
4,5 and 6 are also small compared with the demand-side. Although it is a simple comparison of frequency
distributions, Figure 6.10 shows that there is a difference between the demand-side distribution where
the high centrality nodes increase significantly and the supply-side distribution where the low centrality
nodes decrease by the road network improvements. The possible reason for this is that the connectivity
of road supply performance evaluated by the supply-side EC and the concentration of traffic evaluated by
the demand-side EC represent different aspects of the network. Gifu Prefecture has small cities and towns
throughout the network. In terms of demand, the evaluations of EC show almost no impact of such places
and the nodes with lower level may remain, so there is little ‘induced’ demand by new road investment.
On the other hand, in terms of supply, the evaluations of EC show that road network improvements have
contributed to improve connectivity to such places. As for 2010, the EC distribution drastically changes,
and it resembles the supply-side distributions. As is discussed, it may be because of the lagged effect, but
other factors such as depopulations, increase of tourist demand and so on should be carefully examined.

The application of changes in the practical road networks for 20 years revealed that the impact

100



of road improvements differs on the supply-side and demand-side. In the case of Gifu Prefecture, the
evaluations on demand-side gradually increased according to the improvement of road supply
performance connectivity. Also, the change of EC distribution by different year shows the possibility of
differences in the aspects of the road performance connectivity evaluated by supply-side and the

concentration of traffic evaluated by the demand-side.
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Figure 6.9 Scatter plot in EC on both weights
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Table 6.4 Correlation coefficients of both weights

Supply
Year 1990 1999 2005 2010
1990 | 0.720 0300  0.140  0.131
1999 | 0.715 0289  0.154  0.140
2005 | 0.728 0289  0.157  0.143
2010 | 0.764 0478 0361  0.349

puewo(

6.6. Concluding Remarks

This chapter analysed EC in long-term road networks to confirm the impact of road improvements on the
connectivity evaluation. The road network in Gifu prefecture for 30 years has been invested year by year.
The road network from 1985 to 2024 are evaluated by the EC weighted by traffic capacity and link length.
The result verified that the impact of improvements on the road supply ability can be identified by
connectivity analytics. Moreover, the relationship between supply-side and demand-side is analysed by
comparing the EC evaluation by weights according to both sides. The result revealed that the impact of
road improvements differs on the supply-side and demand-side and the ones on demand-side tends to be
delayed. Also, the difference in the changes of trend by network improvements was confirmed. The
knowledges obtained from the analysis results are summarised as follows.

The connectivity of road supply performance enhances certainly according to the road
improvements. The distribution change of EC evaluations showed the expansion of the high connectivity
area by road improvements. In particular, the spread of the impact is large when the expressway with long
length and large capacity are connected, like the Tokai-Kanjo Expressway connected Tokai-Hokuriku
Expressway and Chuo Expressway. Moreover, the opening of the all Tokai-Kanjo Expressway in 2024
improved the distribution of EC evaluations even though the weight has not increased so much. This
means that the opening of all Tokai-Kanjo Expressway has significant effect for the connectivity of supply
ability on the whole of Gifu Prefecture.

As an example of capacity expansion rather than the construction of a new road, the impact of
the change from provisional 2 lanes to 4 lanes road was verified. A road section that greatly contributes
to the network connectivity regardless of the road area after improvements were shown. Furthermore, it
was found that the connectivity evaluation results differ depending on the range of the 4 lanes road
completed. Hence, this analysis is helpful for prioritising the improvement plans.

The appearance of impact on the connectivity evaluations by the road improvement depends on
the demand-side and supply-side. It was concluded that the impact of road improvement on demand-side
may have lagged effect by the analysis of these relationships. In the case of Gifu prefecture, the evaluations
on demand-side gradually increased after the improvement of road supply performance connectivity.

Focusing on the areas where the tendency of the effects by road network changes greatly may lead to
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finding useful information on improvements. In addition, the target network in this chapter was limited
in the Gifu prefecture. There may be improvements that can produce more effective results when the
target area is extended to the surrounding prefecture. It is necessary to consider the road network outside

the Gifu prefecture to verify such effect.
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Chapter 7

Conclusions

7.1. Summary of Contributions

This study analysed vulnerability and connectivity of road networks by using network topological
analytics. The proposed method based on the graph theory enables to evaluate road network from
different aspects by setting different link weights. Compared with conventional road network evaluation
methods with a large computational load, the proposed method can easily and quickly obtain the road
network evaluation results. This leads to an evaluation independent of the level of detail of the network.
The findings obtained in each chapter are summarised below.

Chapter 2 summarised related researches on network robustness evaluations. In the existing
studies, the traditional road network evaluation methods using traffic assignment and route enumeration
is difficult to apply to large-scale networks due to the computational load. Therefore, it is necessary to
process such as the link aggregation and restriction of target area. Based on these tasks of existing studies,
it was found that the evaluation by network topological vulnerability is effective for analysis independent
of network size. However, there is no clear knowledge about the relationship between the evaluation by
network topology indicators and traditional vulnerability analysis. Also, the relationship between weight
settings and evaluation indicators is required to analyse to use the network topology indicators for road
network evaluations. The topological network evaluation methods make it possible analyse the detailed
network in wide range areas. In addition to the viewpoint of evaluation revealed by traditional methods,
it may be possible to give new findings by using detailed networks. From these backgrounds, the objective
of this study is to add a new perspective to the field of road network evaluation by showing that analytics
using network topological indicators can extract critical part that was not found due to the limitations of
conventional methods.

Chapter 3 organised the measured value of traffic function used as weights and the objectives of
evaluation by network topological analytics based on those weights. The spectral partitioning method and
eigenvector centrality method were introduced as methods for analysing weighted networks by using
graph theory. Both methods were calculated in a simple weighted network and showed the characteristics
of each method. The proposed analysis method with weighted network heavily depends on the setting of
the weight which is determined by what you want to evaluate. Therefore, the relationship between
challenges to be analysed and evaluated and the measured values of traffic function as weights were
summarised. This helps to interpret each evaluation result.

Chapter 4 proposed to use capacity weighted spectral partitioning method to identify critical
potential bottlenecks. When the traffic demand data is available from the traffic assignment or onsite

surveys, the bottleneck can be identified. However, in reality, there are many cases where such accurate
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demand data is not available at disaster or in the future planning stages. It is very important to identify
the parts that are likely to be bottlenecks from topological point of view for extracting potential vulnerable
parts in terms of traffic supply performance. The comparison with the conventional vulnerability
evaluation method indicated the usefulness of the proposed method. The validity of the method for large-
scaled networks was also tested, and it took around 200 minutes to obtain the result for the largest
network with 75,359 links. Finding critical bottlenecks easily with the proposed method can immediately
provide information of the critical parts that appears by changing the network based on road
improvement plan. Furthermore, the spectral partitioning method with other weight settings was applied
to the road network according to the evaluation purpose. It was shown that evaluation according weight
settings was possible.

Chapter 5 introduced the capacity weighted eigenvector centrality measure as a network
topological indicator for connectivity evaluation considering the ease of link disruption. EC identified a
relatively weakly and strongly connected part in the network. Same with the spectral partitioning method,
the usefulness was verified by comparison with the conventional evaluation method, and the operation in
the large-scaled road network was confirmed. Moreover, other weighted EC also analysed the road
network. As combinations of these evaluations, node clustering with EC obtained by several weights
represented the geographical and performance characteristics of the network. Moreover, the detailed
network analysis including small city roads could identify characteristics that cannot be found in the
approximate network. For example, there are areas with low connectivity even near large-capacity roads,
and identification of easily isolated central city areas that are extremely low connectivity with external
cities. These are the contributions of the proposed method that can be analyse detailed networks.

Chapter 6 confirmed the impact of road improvements on the connectivity by analysing capacity-
length weighted EC for 20 years. It was shown that the road network improvement in Gifu prefecture for
20 years has definitely increased the road supply performance. Furthermore, link capacity expansion case
studies verified which section of the expansion would lead to improve the connectivity of road supply
performance for the whole of network. The results showed an effective and efficient improvement section
for increasing the connectivity of road supply performance. In this way, the change of connectivity
indicators suggests that the proposed method is helpful for prioritising the improvement plan. It was
further found that the appearance of impact of road improvement onto the connectivity evaluation was
different for the demand-side and supply-side analysis. In Gifu prefecture road network, it was concluded
that the impact of road improvement on traffic demand-side may have time lags to emerge.

In the vulnerability analytics, the proposed method could identify the critical potential
bottlenecks in a wide and detailed network. In the connectivity analytics, the proposed method evaluated
the effect of supply performance to each region by the large capacity roads connecting inter-city, and the
connectivity to the outside of area. In conclusion, the contributions of this study are summarised as

follows;

106



Significance of adopting network topological indicators for road network evaluation

This study showed the significance of vulnerability and connectivity evaluation method by road network
topological indicators. The methods evaluating the characteristics of network from the structure of
connections have been especially studied in recent years, and it is expected to be developed continually.
Therefore, the achievement that the road network performance can be evaluated by the network
topological indicators will lead to introduction of a new direction for the future road network evaluation
methods. The network evaluation methods become more and more simple and diverse, as the optimal
network topology according to each objective and network evolution mechanism can be identified. It is a

great progress to show that road networks can be included in such a discussion.

Determination of evaluation target by changing weight settings

In the evaluation of vulnerability and connectivity, various weight settings were adopted in the network
topological analytics. These weight values are determined according to what we want to evaluate. In other
words, changing the weight setting allows for a wide range of evaluation by the same network topological
indicator. This study used the measured values of traffic function as weights, however the weight option
is very wide. Also, it is possible to set the weight value combining some features. The analytics with several

weights showed the possibility to evaluate for different targets.

Applicability to detailed and large road networks

In chapter 4, the analysis of a large network with around 400,000 links were operated easily. The proposed
method can thus be applicable, regardless of the level of detail and size. The capability to evaluate the
connectivity in a wide-scale and detailed network including small city roads give an advantage that roads
with different roles depending on the rank can be evaluated simultaneously. For example, intercity
expressways and high capacity national roads are connected and accessible, but there are areas that are
easily affected by link disruptions and failures around the residential area. In such case, the supply
performance by the large capacity roads cannot be sufficiently secured because the connectivity is weak
before reaching the large capacity roads from the residence place. In other words, the connectivity is
greatly increased by some road improvements for such areas. It is possible to find candidates for efficient
and effective road improvements by evaluating the all rank roads simultaneously. Moreover, the size of the
network can be changed freely. For example, evaluation for the whole of the prefecture, evaluation for each
city, evaluation only for larger than national roads, evaluation including city roads and so on. Because the
analysis target can be determined without depending on the network resolution, there is no need to

consider link aggregation methods even if you want to analyse a wide area.

Evaluation of Isolation risk of small villages at the disaster

Gifu Prefecture has urban and mountainous areas. Especially, the analysis considering the city roads in
mountainous area provided interesting results. The evaluation of connectivity of the detailed network
emphasises each small village in mountainous area. In the case of where these villages are connected by

roads with sufficient capacity such as national roads, the connectivity is propagated to other villages.
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However, the connectivity evaluations found some isolated villages where they have no connection with
surrounding villages. Since these villages are connected to the outside of the study area by roads with very
few and small capacity, the risk of isolation may not appear in the evaluation of the number of routes.
Nevertheless, it can be said that the essential connectivity of the villages is extremely weak. [t may be very

useful in disaster countermeasures such as relief material transportation plans.

Effects of using open source network data

The open source network data has been provided recently (ex, open street map, GIS), and anyone can
easily obtain data on a large-scaled road network. Establishing a method that can analyse open source
network without processing will increase the value of providing network data. For example, real estate
business related to land use, tourism business, there are many fields that are affected by road services
which are infrastructure facilities closely related daily life. The road network performance has the
potential to influence decision making in various fields as one of the elements to understand the
characteristics of places. In that respect, it is very effective that the process from obtainment network data,

analysis, evaluation is easy and quick.

7.2. Future Works

Lastly, the further challenges of this study are summarised.

Selection of the target area to evaluate

The target area of this study is Gifu prefecture. In the verification of the impact of road improvements in
Chapter 5, the impact of Hida tunnel construction in the northern area of Gifu prefecture and the link
capacity expansion in that area was not large. The reason for this may be that the areas where connectivity
is increased by these road improvements are large not only in Gifu prefecture, but also in Toyama and
Ishikawa prefecture. It is necessary to select the target area considering where the improvement to be

evaluated will contribute.

Relationship between vulnerability/connectivity evaluation and geographical condition, social situation of
cities.

Both two proposed methods of vulnerability and connectivity were applied to large-scaled network of 6
cities. As a result, the distribution of connectivity evaluation by EC and the partitioning are very different
from city to city. Road characteristics may depend on factors such as urban land use, geographical
structures and so on. Understanding such differences of characteristics may include valuable information

related to land use and urban policies, that may also contribute to social sustainability.

Vulnerability analysis by the proposed connectivity evaluation method

The connectivity evaluation method using EC was proposed. It is considered that the vulnerability of the
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network can be analysed by evaluating how much connectivity is decreased by the link disruption. Also,
this method is suitable for repeating the calculation because the computational load is significantly small.
Therefore, many combination problems of the link disruption pattern can be applied. It will be a new

indicator to define the vulnerability by the change of connectivity evaluation results of whole network.

Relationship of other factors on demand change

It was concluded that the impact of road improvement on demand-side may have lagged effect by the
analysis of the relationship between demand and supply. In the case of Gifu prefecture, the evaluations on
demand-side gradually increased after the improvement of road service connectivity. However, the reason
for the demand change is not limited to the impact of the road improvements. It should include many other
social factors such as depopulation, land use change and tourism demand increase. The verification of the

demand effect from these factors makes more clear the impact of road improvements.

Is this road improvement really necessary? It is not easy to answer this question because the
necessity of road improvement has a deeply enmeshed relationship with regionality of the target area, the
situation between adjacent cities, disaster risk, social situations and so on. In the transport system for
social sustainability, if it asked whether many roads should be built, there may be regions where roads
should be improved and regions where it should not be improved. It is difficult to understand it only by
cost-effectiveness and efficiency. In the future, the situation where the direction of road improvement is
determined by the unified standard based on each country and local government will change. In this paper,
the usefulness of an evaluation method for analysing a road network using any weight was indicated. By
setting the weight according to each objective, it is possible to consider those factors in the evaluation
based on the network topology. By utilising this knowledge will lead to evaluation of road network that
considers many factors comprehensively. Because the weight values can be set flexibly, it is possible to try
the evaluation based on not only limited aspects but also multiple viewpoints. Numerous factors are
considered to be largely related to road improvement and others are not. In order to clarify these various
factors and criteria, the road network evaluation method with small calculation loads and flexible

condition setting will greatly help to construct new evaluation standards different in each target area.
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