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Chapter 1

Introduction

1.1 Abstract

The research subject of this thesis is a reaction–diffusion equation that de-
scribes a chemical reaction called Belousov–Zhabotinsky (BZ) reaction. The
BZ system is a kind of reaction–diffusion system which was discovered by B.P.
Belousov in 1951, and it was studied in detail by A.M. Zhabotinsky later.
The BZ system has remained a prototype for nonlinear chemical systems.
The interesting aspect of BZ reaction to be observed is the changing of color
in the reaction by temporal and spatial processing. It demonstrates the os-
cillations, consecutive pulses from the source center, and also self-organizing
patterns. Oregonator model was proposed by R.J. Field et al (1972) to cap-
ture the features of BZ reaction without dealing with the intermediate details
in three processes by five reactions. A three variables simplified model of the
Oregonator model was proposed by R. J. Field and R. M. Noyes in 1972.
After that, a two variables simplified model of the Oregonator model was
proposed by J. J. Tyson and P.C. Fife in 1980. In this thesis, we study
mathematically the reaction–diffusion equations of Keener–Tyson type for
BZ reaction. Regarding the reaction–diffusion equations of BZ reaction we
obtain the following two results.

(i) The time-global existence of unique smooth positive solutions to the
reaction-diffusion equations of the Keener-Tyson model for the Belousov–
Zhabotinsky reaction in the whole space is established with bounded
nonnegative initial data. Deriving estimates of semigroups and time
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evolution operators, and applying the maximum principle, the unique
existence and the positivity of solutions are ensured by construction
of time-local solutions from certain successive approximation. Invari-
ant regions and large time behavior of solutions are also discussed.
Here, our main issue is to ensure the positivity of trigger function. The
Keener–Tyson model is a two-variable partial differential equation with
a reaction term and a diffusion term, where the reaction term is in the
form of a fraction, hence there is a difficulty at the stage of showing pos-
itiveness for the solution determined by the successive approximation
sequence. In this thesis we devised a rigorous proof of it.

(ii) Besides, the existence of positive solutions to the system of ordinary
differential equations related to the Belousov–Zhabotinsky reaction is
established. The Keener–Tyson model is a two-variable partial differ-
ential equation with a reaction term and a diffusion term, where the
reaction term is in the form of a fraction, hence when performing nu-
merical calculations, if the denominator of the fraction takes a value
close to 0 or a negative value, an error may occur in the numerical
calculation. The key idea is to use a new successive approximation
of solutions, then ensuring its positivity. To obtain the positivity and
invariant region for numerical solutions, the system is discretized as dif-
ference equations of explicit form, employing operator splitting meth-
ods with linear stability conditions. Algorithm to solve the alternate
solution is given.

1.2 Outline of this thesis

In this section, the outline of this thesis is presented.
The main topic of this thesis is reaction–diffusion equation. We discuss

Belousov–Zhabotinsky reaction-diffusion equation, which is separated into 2
chapters. The first one corresponds to Chapter 3, and second one is drawn
in Chapter 4.

Chapter 2 presents global information about the case in this thesis. This
chapter includes 3 sections, where the diffusion-reaction is explained by the
process and gives the extension for its derivation. The general information
for Belousov–Zhabotinsky reaction is presented in Section 2.2, and the detail
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of it written in Section 2.3 Appendix.
The information in chapter 3 is spelled out by 5 sections. This chap-

ter tells us about a well-posedness for the reaction-diffusion equations of
Belousov–Zhabotinsky reaction. Some theorems are given in this chapter,
and also the proof of each theorem is elucidated.

Chapter 4 includes 6 sections. This section discusses numerical solutions
for Belousov–Zhabotinsky reaction. Listed in introduction, objectives, re-
sults, ordinary differential equations, difference equations, and at the end,
the algorithm for numerical solutions is given.
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Chapter 2

Reaction–diffusion phenomena

One of the phenomena in this world showing nonlinear dynamics is Belousov–
Zhabotinsky reaction, which has diffusion processing in chemistry. The
goal of this chapter is to explain about reaction-diffusion for Belousov–
Zhabotinsky reaction.

2.1 Reaction–diffusion equation

Diffusion is the process by which matter is transported from one part of a
system to another part as a result of random molecular movement. The
classical experiment presents in a tall cylindrical vessel filled with iodine,
and water is poured on top, carefully, and slowly. So that no convection
currents are set up. First, the colored part is separated sharply, with a well-
defined boundary. Later it is found that the upper part becomes colored,
and getting fainter towards the top. It shows us that there is a transfer
processing of iodine molecules from the lower to the upper part of the vessel
taking place in the absence of convection current [3].

Mathematical theory of diffusion is isotropic substances in based on the
hypothesis that the rate of transfer of diffusing substance through unit area
of a section is proportional to the concentration gradient, i.e.

F = −D∇u, (2.1.1)

where F is the rate of transfer per unit area of section, u is the concentration
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of diffusing substance, and D is a positive constant called as the diffusion
coefficient.

From the equation of continuity

∂u

∂t
= ∇ · F,

and (2.1.1), the following diffusion equation is obtained [3]:

∂u

∂t
= DΔu,

where Δ is the Laplacian operator. We have used the notation Δ :=
n∑

i=1

∂2i ,

where ∂i := ∂/∂xi for i = 1, . . . , n.
By introducing the reaction term f(u) which is a function of u, the

reaction–diffusion equation take the form [22]:

∂u

∂t
= DΔu+ f(u). (2.1.2)

2.2 Belousov–Zhabotinsky reaction

The Belousov–Zhabotinsky (BZ) is a kind of reaction-diffusion system which
was discovered by B.P. Belousov in 1951, and it was studied in detail by A.M.
Zhabotinsky later. The BZ system has remained a prototype for nonlinear
chemical systems. The changing of color in the reaction by temporal and
spatial processing, this reaction demonstrates the oscilations, consecutive
pulses from a source center, and also self-organizing patterns. The fascinating
aspects of investigation on this system not only lie in the understanding of
chemical reaction, but also in complexities of nonlinear dynamic systems
from mathematical perspective [2].

The BZ reaction is created by a trigger wavefront (converting the medium
from a reduced to an oxidized state) and a phase wave back (converting the
medium from an oxidized to a reduced state) [27]. The BZ reaction is named
after Russian workers who first studied in this reaction involves isothermal
oxidation of malonic acid in aqueous solution in the presence of bromate ions,
sulfuric acid, and a cation couple such as Ce3+ and Ce4+. The mechanism for
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BZ reaction which comprises eleven reactions (listed in [8]), presented that
the reaction divided into autocatalytic as indicated by the reproduction of
HBrO2. One of them is written as the following reaction:

BrO2 + Ce3+ +H+ ↔ HBrO2 + Ce4+. (2.2.1)

We saw that HBrO2 is produced autocatalytically in reaction (2.2.1), and
Ce3+ is rapidly oxidized to Ce4+ [8]. Here Ce3+ and Ce4+ make the color of
the solution white ( or colorless) and yellow, respectively. Moreover, ferroin
and ferriin make the color of red and blue in the reaction, respectively. When
ferriin could stay either high or low concentrations in an open system with
a ferroin reservoir, or when ferroin changed slowly, the bistability referred
to attracting as red and blue in the bromate - CHD - ferroin medium [2].
Figure 1 represents one kind of pattern of the diffusivities in BZ reaction.

Figure 1. Pattern in the BZ reaction medium in a petri dish.

Oregonator model was proposed by R.J. Field et al (1972) to capture
the features of BZ reaction without dealing with the intermediate details in
three processes by five reactions [6]. A three variables simplified model of
the Oregonator model was proposed by R. J. Field and R. M. Noyes in 1972
[4]. After that, a two variables simplified model of the Oregonator model was
proposed by J. J. Tyson and P.C. Fife in 1980 [26].

In the next chapter, we consider the following initial value problem of the
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reaction-diffusion equations of Keener-Tyson type for BZ reaction [27]:

(BZ)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u

∂t
= Δu+

1

ε
u (1− u)− hv

u− q

u+ q
, in R

n × (0,∞)

∂v

∂t
= dΔv + u− v, in R

n × (0,∞)

u |t=0= u0, v |t=0= v0 in R
n.

Here, u = u(x, t) and v = v(x, t) denote for the concentration of HBrO2 and
Fe3+ (ferriin) in the vessel, respectively. u0 = u0(x) and v0 = v0(x) are given
nonnegative bounded functions. We denote ε, h, q, and d for some positive
constants. The derivation of BZ is shown in Section 2.3 Appendix.

2.3 Appendix

2.3.1 Derivation

In this section, we show the derivation of BZ according to [2]. All reactions
of Oregonator model were considered to be irreversible and forward rate
constants were assigned to four of the reactions. The rate constant and
stoichiometry of the fifth reaction were treated as expendable parameters
[5]. In Chen investigation (see [2]), it found that there are three stages occur
in the whole lifespan of system called as transitional period, induction period,
and main period. Each stage has unique characteristics and corresponding
bifurcation points. The reactions in BZ system (see [2]) of the bromate-CHD-
ferroin are separated in the following three processes A, B, and C:

A

⎧⎨
⎩ BrO−

3 + Br− + 2H+ → HBrO2 +HOBr (R1)

HBrO2 + Br− +H+ → 2HOBr (R2)

B

⎧⎪⎪⎨
⎪⎪⎩

BrO−
3 +HBrO2 +H+ ↔ 2BrO∗

2 +H2O (R3)

BrO∗
2 + ferroin + H+ ↔ HBrO2 + ferriin (R4)

2HBrO2 → BrO−
3 +HOBr + H+ (R5)
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C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ferriin + CHD+ BrCHD ↔ ferroin + H+ + BrCHD∗

+ CHD∗ (R6)

BrCHD∗ +CHD∗ +H2O → hBr− +CHD+ others (R7)

BrCHD+H+ +H2 → Br− +H2Q (hydroquinone)

+ others (R8)

Here the symbol * represents that the molecule becomes an excited state
by absorbing light. We can understand the processes A, B, and C as follows
[11]. In the process A, the action of Br− produces HBrO2. In the process
B, HBrO2 produces BrO∗

2, and ferriin is generated due to the oxidation of
BrO∗

2 to ferroin. In the process C, ferroin is generated due to the reduction
of BrCHD to ferriin. Br− is also generated. Therefore Br− reactivates the
process A and repeats the cycle. Notice that we can show that (2.2.1) is the
reaction which running at process B, written as (R4).

To understand the process of modeling in the intermediate chemical species
of BZ reaction, we considered in the following rate equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX

dt
= −k3HAX + k−3U

2 + k4HU(C − Z)− k−4XZ

−2k5X
2 − k2HXY + k1H

2AY,

dY

dt
= −k2HXY − k1H

2AY + hk7R + k8B0H,

dZ

dt
= k4HU(C − Z)− k−4XZ − k6BZ

+k−6HR(C − Z),

dU

dt
= 2k3HAX − 2k−3U

2 − k4HU(C − Z) + k−4XZ,

dR

dt
= k6BZ − k−6HR(C − Z)− k7R,

(2.3.1)

where A = [BrO−
3 ], B = [CHD] + [BrCHD], B0 = [BrCHD], C = [ferroin] +

[ferriin], H = [H+], U = [BrO∗
2], R = [BrCHD∗]+[CHD∗], X = [HBrO2], Y =

[Br−], Z = [ferriin], h = unknown stoichiometric parameter, rate constant km
corresponds to reaction (Rm) where m = 1, 2, 5, 7, 8, kn and k−n correspond
to reaction (Rn) where n = 3, 4, 6, and [ ] represents the concentration of a
chemical species.
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R changes so fast, due to k6 � k7 � k−6, that it will be approximated
with its steady-state. By using scaled dimensionless parameter and variables
(see [2]), rate equations are written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
dx

dt
= −x− x2 − xy + qy + u(c− z) +K−3u

2 −K−4xz,

εσ
dy

dt
= −qy − xy +

hz

1 + ρ(c− z)
+ β,

dz

dt
= u(c− z)−K−4xz − z

1 + ρ(c− z)
,

εμ
du

dt
= 2x+K−4xz − u(c− z)− 2K−3u

2.

(2.3.2)

For σ, μ� 1, we obtain new system:⎧⎪⎪⎨
⎪⎪⎩

ε
dx

dt
= x(1− x)−

[
hz

1 + ρ(c− z)
+ β

]
x− q

x+ q
−K−3u0

2,

dz

dt
= 2x− 2K−3u0

2 − z

1 + ρ(c− z)
.

with steady states y and u:

y0 =
1

q + x

[
hz

1 + ρ(c− z)
+ β

]
,

u0 =
2x(2 +K−4z)

(c− z) +
√

(c− z)2 + 8K−3x(2 +K−4z)
.

The corresponding PDE system for medium with diffusion is⎧⎪⎪⎨
⎪⎪⎩

ε
dx

dt
= x(1− x)−

[
hz

1 + ρ(c− z)
+ β

]
x− q

x+ q
−K−3u0

2 +Δx,

dz

dt
= 2x− 2K−3u0

2 − z

1 + ρ(c− z)
+ δΔz.

(2.3.3)

The theory of wave propagation in excitable media is usually based on a pair
of reaction–diffusion equation. By changing variable x and z in (2.3.3) being
u and v respectively, and assume that β, ρ → 0, K−3 = 0 and a little bit
modify, then (2.3.3) be rewritten as:⎧⎪⎨

⎪⎩
ε
∂u

∂t
= ε2Δu+ u (1− u)− fv

u− q

u+ q
,

∂v

∂t
= Δv + u− v.

(2.3.4)
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By divided both of sides in the first equation of (2.3.4) with ε, and define
h := f/ε then we obtain BZ equations seem like in Section 2.2.

2.3.2 Nullclines

By putting any values to (2.3.4), and f = εh, we can show the nullclilnes of
ordinary differential equations (2.3.4) in Figure 2.

Figure 2. Nullclines of ordinary differential equations (2.3.4) with

q = 0.0002, h = 16.145, and ε = 0.032, v1 = (u(1− u)(u+ q))/(f(u− q)),

and v2 = u.
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Chapter 3

A well-posedness for the reaction–diffusion

equations of Belousov–Zhabotinsky re-

action

In this chapter, the time-global existence of unique smooth positive solutions
to the reaction-diffusion equation of Keener-Tyson model for the Belousov-
Zhabotinsky reaction in the whole space is established with bounded nonneg-
ative initial data. By deriving estimates of semigroups and time evolution
operators, and by applying the maximum principle, the unique existence and
the positivity of solutions are ensured by the construction of time-local so-
lutions from certain successive approximation. Invariant regions and large
time behavior of solutions are also discussed.

3.1 Introduction

We consider the initial value problem of reaction-diffusion equations BZ in
chapter 2, Section 2.2. For example of constant values, by [2] we have ε =
0.032, q = 2.0× 10−4, and d = 0.6× ε. Note that in BZ, h (or f) stands for
the excitability which governs dynamics of a pattern formulation. In fact,
a spiral pattern appears for large value of h. Besides a ripple (concentric
circle) pattern is developed for small value of h.

It has already been known the solvability of BZ in the abstract setting
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of L2-framework by Yagi and his collaborators [25, 28]. In our framework,
we may treat more various data, including the trivial solution of BZ. Fur-
thermore, the invariant region and large time behavior of solutions are con-
cerned. For applying the estimates of maximum principle type, we argue
certain successive approximation of solutions. And at the end, to obtain
uniform bounds, and to ensure positivity, some estimates for semigroups and
time evolution operators are derived by arguments of relatively compact per-
turbation from Laplacian, via smoothing properties of the heat semigroup.

3.2 Objectives

In BZ reaction, the complexities of nonlinear dynamic systems from a math-
ematical perspective, such as the bifurcation and the oscillations, made this
topic interesting to be studied. Here, our aim is to establish the well-
posedness theory and some basic properties of solutions to BZ, in terms
of functional analysis. Here, our main issue is to ensure the positivity of u.

3.3 Semigroups and time evolution operators

Let n ∈ N, 1 ≤ p < ∞, and Lp := Lp(Rn) be the space of all p-th integrable

functions in R
n with the norm ‖f‖p :=

(∫
Rn

|f(x)|pdx
)1/p

. Let L∞ be the

space of all bounded functions with the norm ‖f‖∞ := ess. supx∈Rn |f(x)|.
Define BUC as the space of all bounded uniformly continuous functions.
Since L∞ is a Banach space, so is its closed subsetBUC, as well as C(I;BUC)
for closed interval I ⊂ R. For k ∈ N, let W k,∞ be a set of all bounded
functions whose k-th derivatives are also bounded.

In the whole space R
n, for w0 ∈ L∞(Rn) the heat equation

(H)

{
∂tw = Δw in R

n×(0,∞),
w|t=0 = w0 in R

n
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admits a time-global unique smooth solution

w := w(t) := w(x, t) := (etΔw0)(x) := (Ht ∗ w0)(x)

:=

∫
Rn

(4πt)−n/2 exp(−|x− y|2/4t)w0(y)dy

in Cw((0,∞);L∞), where Ht := Ht(x) := (4πt)−n/2 exp(−|x|2/4t) is the heat
kernel. Since ‖Ht‖1 = 1 for t > 0, by Young’s inequality we have ‖w(t)‖∞ ≤
‖Ht‖1‖w0‖∞ ≤ ‖w0‖∞ for t > 0. In particular, if w0(x) ≥ c for all x ∈ R

n

with some c ∈ R, then w(x, t) ≥ c holds true for x ∈ R
n and t > 0; so-

called the maximum principle. Furthermore, if additionally w0 ∈ BUC and
w0 ≡ c, then w(x, t) > c for x ∈ R

n and t > 0; so-called the strong maximum
principle.

We easily see that for k ∈ N, there exists a positive constant C such that
‖∂ki etΔw0‖∞ ≤ Ct−k/2‖w0‖∞ for t > 0 and 1 ≤ i ≤ n. So, w(t) ∈ Ck for
k ∈ N and t > 0, which implies that w(t) ∈ C∞(Rn) for t > 0, and then
w ∈ C∞(Rn × (0,∞)).

In general, for w0 ∈ L∞, there is a lack of the continuity of solutions to
(H) in time at t = 0. Note that etΔw0 → w0 in L∞ as t → 0, if and only if
w0 ∈ BUC.

3.4 Results

The time-global existence of unique smooth positive solutions to the reaction-
diffusion equations of the Keener-Tyson model for the Belousov-Zhabotinsky
reaction in the whole space is established with bounded nonnegative initial
data (u0, v0). Due to semigroup theory, reaction-diffusion equations BZ are
formally equivalent to the integral equations:

u(t) = etΔu0 +

∫ t

0

e(t−s)Δ

[
u(s){1− u(s)}

ε
− hv(s)

u(s)− q

u(s) + q

]
ds, (3.4.1)

v(t) = edtΔv0 +

∫ t

0

ed(t−s)Δ [−v(s) + u(s)] ds, (3.4.2)

since Δ generates a (C0) semigroup {etΔ}t≥0 in BUC(R
n), so-called the heat

semigroup. To show the uniqueness, this expression is useful. Once we estab-
lish the existence of solutions to the integral equations (3.4.1) and (3.4.2),
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it is easy to confirm that solutions to the integral equations satisfy BZ in
the classical sense by the standard argument from smoothing property of the
heat semigroup.

Theorem 3.4.1 Let n ∈ N, ε, h, d > 0, and let q ∈ (0, 1). Put ū ∈ (q, 1) is

a root of g(u) := u(1 − u)(u + q) − εhq(u − q) = 0, and S := (q, ū)2. Let

u0, v0 ∈ BUC(Rn).

1. If u0(x) ≥ 0 and v0(x) ≥ 0 for x ∈ R
n, then there exists a pair

(u, v) of time-global unique nonnegative classical solutions to BZ in

C([0,∞);BUC(Rn)).

2. If (u0(x), v0(x)) ∈ S for x ∈ R
n, then (u(x, t), v(x, t)) ∈ S for x ∈ R

n

and t > 0.

3. If u(x, t∗) ≥ c∗ and v(x, t∗) ≥ c∗ for x ∈ R
n with some t∗ ≥ 0 and

c∗ > 0, then there exists a T� ≥ t∗ such that (u(x, t), v(x, t)) ∈ S for

x ∈ R
n and t ≥ T�.

3.5 Proof of Theorem 3.4.1

Here we will give a rigorous proof of the existence of time-global unique
nonnegative classical solutions in L∞-setting.
Let us introduce the notion of an invariant region. A set Ω ⊂ R

2 is called
an invariant region, if a pair (u, v) of solutions to BZ always remains in Ω.
Theorem 3.4.1 (1) implies that [0,∞)2 is an invariant region. Furthermore,
the assertion (2) tells us that the square domain S := (q, ū)2 is an invariant
region. It will be seen that [0,m]2 for m ≥ 1 are also invariant regions in
Proposition 3.5.2.

We easily notice that there are two nonnegative steady states (solutions
independent of x and t): the trivial solution (0, 0) and a non-trivial one
(ũ, ũ), where ũ is a positive root of g̃(u) := (1 − u)(u + q) − εh(u − q) = 0.
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Note that (ũ, ũ) ∈ S. The linear stability or instability theories may be found
around (ũ, ũ) in [28]. In addition, the assertion (3) leads us to give large time
behaviors of solutions. In fact, some global attractors are in S. Moreover, the
trivial solution is clearly unstable, which follows from the strong maximum
principle.

For proving the existence theory, one can release the condition of uniform
continuity for initial data. Indeed, for u0, v0 ∈ L∞(Rn), there exists a pair
of time-global unique smooth nonnegative solutions to BZ. However, in this
case, there is a lack of the continuity of solutions in time at t = 0. So, the
solutions belong to Cw((0,∞);L∞(Rn)), i.e., C([δ,∞);L∞(Rn)) for δ > 0.

For proving Theorem 3.4.1 (1), we first show the existence of time-local
unique nonnegative classical solutions. To construct time-local solutions,
the key idea is to use the certain successive approximation. One may eas-
ily see that the solution is smooth in t and x. Once we obtain time-local
well-posedness, it is rather easy to extend the solution time-globally, since
a priori bounds are derived uniformly in time and space by the maximum
principle. Global bounds of solutions follow from the behaviors of those to
the corresponding ordinary differential equations of the logistic type.

Let us consider the following initial value problem associated with the
second equation of BZ:

(PV)

{
∂tψ = dΔψ − ψ + ϕ in R

n×(0,∞),
ψ|t=0 = ψ0 in R

n.

Here, ϕ := ϕ(x, t) is a given bounded function. We are now in a position to
state the time-global solvability of this problem, and derive upper and lower
bounds for the solutions ψ.

Lemma 3.5.1 Let n ∈ N, d > 0, c ≥ 0, and let ϕ ∈ L∞(Rn × (0,∞)) with

ϕ(x, t) ≥ c for x ∈ R
n and t > 0. If ψ0 ∈ BUC with ψ0(x) ≥ c for x ∈ R

n,

then there exists a time-global unique solution to (PV) in C([0,∞);BUC)

with ψ(x, t) ≥ c for x ∈ R
n and t > 0, enjoying

‖ψ(t)‖∞ ≤ ‖ψ0‖∞ + t max
0≤τ≤t

‖ϕ(τ)‖∞ for t > 0. (3.5.1)

Proof. Let L := dΔ − 1. One may see that L generates a (C0) semigroup
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{etL}t≥0 in BUC with

‖etL‖L(L∞) := ‖etL‖L∞→L∞ := sup
ψ0∈L∞, �≡0

‖etLψ0‖∞
‖ψ0‖∞ ≤ e−t for t > 0,

since etL = e−tedtΔ. So, for ψ0 ∈ BUC, (PV) is written as

ψ(t) = etLψ0 +

∫ t

0

e(t−s)Lϕ(s)ds. (3.5.2)

The existence of a time-global unique solution follows from this formula.
Taking L∞-norm into (3.5.2) above, the upper bound estimate (3.5.1) is
easily obtained.

We next show the lower bound. If ϕ ≡ ψ0 ≡ c, then ψ ≡ c is a unique
solution to (PV). So, by (3.5.2), χ := ψ − c satisfies

χ(t) = etL(ψ0 − c) +

∫ t

0

e(t−s)L {ϕ(s)− c} ds ≥ 0

for x ∈ R
n and t > t�. Thus, ψ ≥ c. �

Remark 3.5.1 (i) If ϕ has some regularity, e.g. ϕ ∈ L∞([0,∞);W 1,∞),

then ψ becomes a classical solution; C1 in t and C2 in x; see the proof of

Lemma 3.5.3 in below. Moreover, if ϕ is smooth in t and x, then the solution

ψ is also smooth in t and x.

(ii) If either ϕ(x, t) > c in some open set around x� ∈ R
n and t� ∈ [0,∞)

or ψ0 ≡ c, then ψ(x, t) > 0 for x ∈ R
n and t > t� by the strong maximum

principle.

In what follows, we recall some theories and estimates for time evolution
operators. Let us consider the following autonomous problem:

(PA)

{
∂tξ = Δξ − η(x, t)ξ in R

n×(0,∞),
ξ|t=0 = ξ0 in R

n.

Here, η := η(x, t) is a given bounded function. We now establish the time-
local solvability of (PA) with upper bounds of ξ(t).
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Lemma 3.5.2 Let n ∈ N, a > 0. Assume that η ∈ L∞(Rn × [0,∞)) with

|η(x, t)| ≤ a for x ∈ R
n and t > 0. If ξ0 ∈ BUC, then there exist a

T∗ > 0 and a time-local unique solution to (PA) in C([0, T∗];BUC), having

‖ξ(t)‖∞ ≤ 4

3
‖ξ0‖∞ holds for t ∈ [0, T∗].

Proof. The proof is based on the standard iteration. Set ξ1(t) := etΔξ0,

ξ�+1(t) := etΔξ0 −
∫ t

0

e(t−s)Δη(s) ξ�(s)ds

for � ∈ N, successively. Obviously, ‖ξ1(t)‖∞ ≤ ‖ξ0‖∞ for t > 0. Taking ‖ · ‖∞
into above, ‖ξ�+1(t)‖∞ ≤ 4

3
‖ξ0‖∞ holds for � ∈ N, at least when t ∈

[
0,

1

4a

]
.

So, we also see that
{
ξ�
}∞
�=1

is a Cauchy sequence in C([0, T∗];BUC) with

some T∗ ≥ 1

4a
. One can easily check that ξ = lim

�→∞
ξ� is a solution to (PA).

The uniqueness follows from the Gronwall inequality, as usual. �

Let A := A(x, t) := Δ − η(x, t). By using time evolution operators{
U(t, s)

}
0≤s≤t

associated with A, then the solution to (PA) can be rewritten

as ξ(t) = U(t, 0)ξ0; see e.g. the book of Tanabe [23]. The upper bound above

implies ‖U(t, 0)‖L∞→L∞ ≤ 4/3 for 0 ≤ t ≤ 1

4a
, as well as ‖U(t, s)‖L∞→L∞ ≤

4/3 for 0 ≤ s ≤ t ≤ 1

4a
.

Now, we begin to discuss a classical solution to (PA). Let∇ := (∂1, . . . , ∂n).

Lemma 3.5.3 Adding the assumption in Lemma 3.5.2, suppose t1/2∇η(t) ∈
L∞(Rn × [0,∞)). Then ξ is a classical solution to (PA).

Proof. Although the argument is rather standard, we give a proof. It is easy
to see that ‖∇ξ(t)‖∞ ≤ Ct−1/2 for t ∈ (0, T∗] with T∗ ≤ 1 by

ξ(t) = etΔξ0 −
∫ t

0

e(t−s)Δη(s)ξ(s)ds,
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taking ∇ and ‖ · ‖∞ into above. So, the key is to derive estimates for the
second spatial derivatives. One easily has

‖∇2ξ(t)‖∞ ≤ ‖∇2etΔξ0‖∞ +

∫ t

0

‖∇2e(t−s)Δη(s)ξ(s)‖∞ds

≤ Ct−1‖ξ0‖∞ +

∫ t

0

(t− s)−1/2‖∇{η(s)ξ(s)} ‖∞ds

≤ Ct−1‖ξ0‖∞ +

∫ t

0

(t− s)−1/2Cs−1/2ds ≤ Ct−1

for t ∈ (0, T ′
∗] with T

′
∗ ≤ T∗ ≤ 1 and constant C depending only on n, ‖ξ0‖∞,

sup0≤τ≤T ′∗ ‖η(τ)‖∞ and sup0≤τ≤T ′∗ τ
1/2‖∇ξ(τ)‖∞. The estimate for ∂tξ can

also be derived, similarly. By uniqueness, ξ becomes a classical solution as
long as it exists, at least up to T∗. �

In here, a kind of linearized problem of the first equation of BZ with a
non-autonomous term is considered.

(PN)

{
∂tξ = Δξ − η(x, t){ξ − c}+ ζ(x, t) in R

n×(0,∞),
ξ|t=0 = ξ0 in R

n.

Here, ζ := ζ(x, t) is a given bounded function; c ≥ 0 is a constant. By deriv-
ing estimates of semigroups and time evolution operators, and by applying
the maximum principle, the unique existence and the positivity of solutions
are ensured by the construction of time-local solutions.

Lemma 3.5.4 Let n ∈ N, a, b > 0 and c ≥ 0. Assume that η, ζ ∈ L∞(Rn×
[0,∞)) satisfying t1/2∇η and t1/2∇ζ are bounded, |η| ≤ a and 0 < ζ ≤ b for

x ∈ R
n and t > 0. If ξ0 ∈ BUC with ξ0(x) ≥ c for x ∈ R

n, then there exist a

T† > 0 and a time-local unique classical solution to (PN) in C([0, T†];BUC)

with ξ(x, t) > c, and ‖ξ(t)‖∞ ≤ 2‖ξ0‖∞ for x ∈ R
n and t ∈ [0, T†].

Proof. Let θ := ξ − c and θ0 := ξ0 − c ≥ 0. So, θ satisfies

∂tθ = Δθ − η(x, t)θ + ζ(x, t), θ|t=0 = θ0,

which is also rewritten as

θ(t) = U(t, 0)θ0 +

∫ t

0

U(t, s)ζ(s)ds. (3.5.3)
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When θ0 ≡ 0, it is easy to show θ > 0. So, let us assume ‖θ0‖∞ > 0. By
Lemma 3.5.2 and Lemma 3.5.3, we can show the existence of a time-local
unique classical solution to (3.5.3), having the upper bound estimate:

‖θ(t)‖∞ ≤ ‖U(t, 0)θ0‖∞ +

∫ t

0

‖U(t, s)ζ(s)‖∞ds

≤ 4

3
‖θ0‖∞ +

4

3
t max
0≤τ≤t

‖ζ(τ)‖∞ ≤ 2‖θ0‖∞

for t ∈ (0, T†] with some T† ≤ min{T∗, ‖θ0‖∞/2b}. Once we have ξ(t) ≥ c, it
is clear that ‖ξ(t)‖∞ ≤ 2‖ξ0‖∞ in [0, T†].

The lower bound of solutions follows from the maximum principle for a
classical solution. We suppose that there exists (x̂, t̂) ∈ R× (0, T∗] such that
ξ(x̂, t̂) = c. Without loss of generality, t̂ is taken as the first time when ξ
touches to c. At (x̂, t̂), we see that ∂tξ ≤ 0 in the left hand side of (PN),
however, Δξ ≥ 0, ζ > 0 and η{ξ − c} = 0 in the right hand side. This
contradicts to that ξ is a classical solution to (PN). We can apply Oleinik’s
technique to avoid the situation for the case ξ(x̂, t̂) → c as |x̂| → ∞; see [9]
or [10]. Note that even if θ0 = ξ0−c ≡ 0, then θ = ξ−c > 0 by the positivity
of ζ. Therefore, ξ(x, t) > c for x ∈ R

n and t ∈ [0, T†]. �

3.5.1 Time-local solvability

By deriving estimates of semigroups and time evolution operators, and by
applying the maximum principle, the unique existence and the positivity of
solutions are ensured by the construction of time-local solutions from certain
successive approximation. We will give the complete proof of the time-local
solvability in this section.

Proposition 3.5.1 Let n ∈ N, ε, h, d > 0, and let q ∈ (0, 1). If u0,

v0 ∈ BUC(Rn) with q ≤ u0(x) ≤ 1 and q ≤ v0(x) ≤ 1 for x ∈ R
n, then

there exist T0 > 0 and time-local unique classical solutions (u, v) to BZ in

C([0, T0];BUC(R
n)) with q ≤ u(x, t) ≤ 2m and q ≤ v(x, t) ≤ 2m for x ∈ R

n

and t ∈ [0, T0], where m := max{‖u0‖∞, ‖v0‖∞} ≤ 1. Furthermore, T0 ≥
C/m with some constant C > 0 independent of m.
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Proof. We employ an iteration argument. For making the approximation
sequences, we begin with

u1(t) := etΔu0 and v1(t) := edtΔv0.

For � ∈ N, we successively define

u�+1(t) := U�(t, 0)u0 +

∫ t

0

U�(t, s)

[
u�(s)

ε
+

hqv�(s)

u�(s) + q

]
ds,

v�+1(t) := etLv0 +

∫ t

0

e(t−s)Lu�(s)ds.

Here, we put A� := Δ − η� with η�(x, t) :=
u�(x, t)

ε
+

hv�(x, t)

u�(x, t) + q
, and{

U�(t, s)
}
t≥s≥0

is the time evolution operator associated with A�. Note that
u�+1 and v�+1 formally satisfy

∂tu�+1 = A�u�+1 + ζ� = Δu�+1 +
u�(1− u�+1)

ε
− hv�

u�+1 − q

u� + q
, (3.5.4)

with u�+1|t=0 = u0 and ζ�(x, t) :=
u�(x, t)

ε
+

hqv�(x, t)

u�(x, t) + q
≥ 0;

∂tv�+1 = Lv�+1 + u� = dΔv�+1 − v�+1 + u�, (3.5.5)

with v�+1|t=0 = v0 for positive functions u� and v�.
In what follows, we derive estimates for u�, v�, ∂iu� and ∂iv�. We put

K1,� := K1,�(T ) := sup0≤t≤T ‖u�(t)‖∞,
K2,� := K2,�(T ) := sup0≤t≤T ‖v�(t)‖∞,
K3,� := K3,�(T ) := sup0≤t≤T t

1/2‖∂iu�(t)‖∞,
K4,� := K4,�(T ) := sup0≤t≤T t

1/2‖∂iv�(t)‖∞,
for T > 0, 1 ≤ i ≤ n and � ∈ N. For deriving the uniform estimates, we will
use the induction argument for �.

For � = 1, by q ≤ u0 ≤ m and q ≤ v0 ≤ m, we easily see that q ≤ u1(t) ≤
‖u0‖∞, q ≤ v1(t) ≤ ‖v0‖∞, t1/2‖∂iu1(t)‖∞ ≤ ‖u0‖∞ and t1/2‖∂iv1(t)‖∞ ≤
‖v0‖∞ for t > 0 and 1 ≤ i ≤ n by the maximum principle and estimates for
the heat kernel. Thus,

Kj,1 ≤ m for T > 0 and 1 ≤ j ≤ 4. (3.5.6)
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For � = 2, before estimating u2 and v2, we give bounds for η1 and ζ1. By
u1 ≥ q, v1 ≥ q and conditions of (3.5.6), it holds that

‖η1‖∞ ≤ (1
ε
+
h

q

)
m =: a1 and 0 ≤ ζ1 ≤

(1
ε
+ h

)
m := b1.

So, by Lemma 3.5.2 and Lemma 3.5.4, it holds that

‖u2(t)‖∞ ≤ ‖U1(t, 0)u0‖∞ +

∫ t

0

‖U1(t, s)ζ1(s)‖∞ ds

≤ 4

3
‖u0‖∞ +

∫ t

0

4

3
b1 ds

≤ 2m

provided that t ≤ T†,2 with some T†,2 > 0. Furthermore, since u2 is a classical
solution to (3.5.4) with � = 1 by Lemma 3.5.3, with c = q, we can apply the
maximum principle to obtain u2(x, t) ≥ q for x ∈ R

n and t ∈ [0, T†,2]. To
get the estimate for K3,2 = supt t

1/2‖∂iu2(t)‖∞, we use the expression by the
heat semigroup:

u2(t) = etΔu0 +

∫ t

0

e(t−s)Δ [−η1(s)u2(s) + ζ1(s)] ds.

Hence, it holds that

t1/2‖∂iu2(t)‖∞ ≤ ‖u0‖∞ + t1/2
∫ t

0

(t− s)−1/2[a1‖u2(s)‖∞ + b1]ds ≤ 2m

for t ∈ (0, T ′
†,2] with some T ′

†,2 ≤ T†,2. On the other hand, by Lemma 3.5.1,
with c = 0, it holds that

q ≤ v2(x, t) ≤ ‖v0‖∞ + t sup
0≤τ≤t

‖u1(τ)‖∞ ≤ 2m

for x ∈ R
n and t ∈ [0, 1]. For deriving the estimate for ∂iv2, we appeal to

the heat semigroup, again, to obtain

t1/2‖∂iv2(t)‖∞ ≤ ‖v0‖∞ + t1/2
∫ t

0

‖∂ie(t−s)Δ [−v2(s) + u1(s)] ‖∞ ds ≤ 2m

for t ∈ (0, T�,2] with T�,2 ≤ 1. So, letting T2 := min{T ′
†,2, T�,2}, we have

u2 ≥ q, v2 ≥ q, Kj,2 ≤ 2m for T ≤ T2, 1 ≤ j ≤ 4. (3.5.7)
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As the similar discussion, then there exists a T0 ≤ T2 such that

u3 ≥ q, v3 ≥ q, Kj,3 ≤ 2m for T ≤ T0, 1 ≤ j ≤ 4. (3.5.8)

Note T0 ≥ C/m with some C > 0. The proof is essentially the same as that
for � ≥ 4 in below. So, the detail is omitted in here.

Let � ≥ 4. We now assume that

u� ≥ q, v� ≥ q, Kj,� ≤ 2m for T ≤ T0, 1 ≤ j ≤ 4 (3.5.9)

hold. We will compute estimates for u�+1 and v�+1. By assumption,

‖η�‖∞ ≤ (1
ε
+
h

q

)
2m =: a and 0 ≤ ζ� ≤

(1
ε
+ h

)
2m := b

hold for t ∈ [0, T0]. Hence, by Lemma 3.5.2 and Lemma 3.5.4, one can see
that

‖u�+1(t)‖∞ ≤ ‖U�(t, 0)u0‖∞ +

∫ t

0

‖U�(t, s)ζ�(s)‖∞ ds

≤ 4

3
m+

∫ t

0

4

3
b ds

≤ 2m

for t ∈ [0, T0]. Note that we took T0 ≤ m/2b in here. Since u� is a classical so-
lution to (3.5.4), we can apply the maximum principle to obtain u�+1(x, t) ≥ 0
for x ∈ R

n and t ∈ [0, T0]. For using the expression

u�+1(t) = etΔu0 +

∫ t

0

e(t−s)Δ [−η�(s)u�+1(s) + ζ�(s)] ds,

we take ∂i and ‖ · ‖∞ into above to obtain that

t1/2‖∂iu�+1(t)‖∞ ≤ ‖u0‖∞ + t1/2
∫ t

0

(t− s)−1/2[a‖u�+1(s)‖∞ + b] ds ≤ 2m

for t ∈ [0, T0] by (3.5.1). Besides, by Lemma 3.5.1,

q ≤ v�+1(x, t) ≤ ‖v0‖∞ + t sup
0≤τ≤t

‖v�(τ)‖∞ ≤ 2m
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holds for x ∈ R
n and t ∈ [0, T0]. By the heat semigroup, we obtain

t1/2‖∂iv�+1(t)‖∞ ≤ ‖v0‖∞ + t1/2
∫ t

0

‖∂ie(t−s)Δ [−v�+1(s) + u�(s)] ‖∞ ds ≤ 2m

for t ∈ [0, T0]. Therefore,

u�+1 ≥ q, v�+1 ≥ q, Kj,�+1 ≤ 2m for T ≤ T0, 1 ≤ j ≤ 4.

Thus, (3.5.9) holds true for all � ∈ N.
One may see that u� and v� are continuous in t ∈ [0, T0] for � ∈ N. It

is also easy to see that
{
u�, v�, t

1/2∂iu�, t
1/2∂iv�

}∞
�=1

are Cauchy sequences in
C([0, T0];BUC), taking T0 small again, necessarily. We denote (u, v, û, v̂) by
the limit functions of (u�, v�, t

1/2∇u�, t1/2∇v�) as � → ∞. The coincidences
û = t1/2∇u and v̂ = t1/2∇v hold, obviously. The uniqueness follows from the
Gronwall inequality, directly. Furthermore, by construction, q ≤ u(x, t) ≤
2m and q ≤ v(x, t) ≤ 2m for x ∈ R

n and t ∈ [0, T0], as well as (u, v) is a pair
of the time-local unique classical solutions to BZ. This completes the proof
of Proposition 3.5.1. �

Remark 3.5.2 (i) For k ∈ N, it is possible to construct u(t), v(t) ∈ Ck(Rn)

for t ∈ (0, Tk], if Tk is chosen small enough. Nevertheless, the solution is

unique as long as it exists, one can extend the existence time of the solution

up to T0 having bounds for k-th derivatives. We hence confirm that u(t) ∈
Ck(Rn) for all k ∈ N and t ∈ (0, T0], which means that u(t), v(t) ∈ C∞(Rn)

in t ∈ (0, T0], as well as u, v ∈ C∞(Rn × (0, T0]).

(ii) This iteration procedure also works for proving u ≥ 0 and v ≥ 0, provided

if u0 ≥ 0 and v0 ≥ 0. Since u� ≥ 0 and v� ≥ 0 hold for � ∈ N by Lemma 3.5.1

and Lemma 3.5.4 with c = 0, as the same way as above, we ensure that the

limits also satisfy 0 ≤ u(x, t) ≤ 2m and 0 ≤ v(x, t) ≤ 2m for x ∈ R
n and

t ∈ [0, T0].
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3.5.2 Invariant region

This section mainly concerns the invariant region and large time behaviour
of BZ solutions. In this subsection, invariant regions are discussed. We first
show that the solutions obtained by Proposition 3.5.1 can be extended time-
globally. Also besides, invariant regions and large time behavior of solutions
can be shown in the proposition 3.5.2.

Proposition 3.5.2 Let n ∈ N, ε, h, d > 0 and q ∈ (0, 1). If u0, v0 ∈
BUC(Rn) with 0 ≤ u0(x) ≤ m and 0 ≤ v0(x) ≤ m for x ∈ R

n with some

m ≥ 1, then there exists a time-global unique classical solutions (u, v) to BZ

in C([0,∞);BUC(Rn)) with 0 ≤ u(x, t) ≤ m and 0 ≤ v(x, t) ≤ m for x ∈ R
n

and t > 0.

Proof. By Proposition 3.5.1, we have already obtained a pair of time-local
unique classical solutions (u(x, t), v(x, t)) ∈ [0, 2m]2 for x ∈ R

n and t ∈
[0, T0]. In what follows, we will derive the a priori estimates u ≤ m and
v ≤ m for t ∈ [0, T0]. It is enough to consider the local behavior of solutions.
Using the same argument in the proof of Lemma 3.5.4, there does not exist
(x̃, t̃) such that u(x̃, t̃) > m by m ≥ 1. So, we have u ≤ m. Furthermore,
since u ≤ m and v0 ≤ m, one can also see that v > m never happened. So,
v ≤ m.

Gathering the time-local solvability, uniqueness and upper bounds, we
can extend the solution up to t ∈ [0, 2T0]. Repeating this argument infinitely
many times, we obtain a time-global unique classical solution (u, v) ∈ [0,m]2.
�

Note that Theorem 3.4.1 (1) immediately follows from Proposition 3.5.2.
And also, this implies that [0,m]2 is an invariant region for m ≥ 1. We are
now in a position to show that S := (q, ū)2 is an invariant region.

Proof of Theorem 3.4.1 (2)

Let (u0, v0) ∈ S. By Proposition 3.5.1, Remark 3.5.2 (ii) and Proposi-
tion 3.5.2, we have obtained a time-global unique smooth solutions having
the lower and upper bounds (u, v) ∈ [q, 1]2. So, it is required to show that
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u and v never touched to ū ∈ (q, 1). We assume that there exists (x̄, t̄) such
that u(x̄, t̄) = ū. Without loss of generality, we take t̄ ∈ (0,∞) is the first
time, and x̄ ∈ R

n. Since u, v ≥ q and ū is a positive root of g(u) = 0, at (x̄, t̄)

we see that ∂tu > 0, Δu ≤ 0 and
1

ε
u(1− u)− hv

u− q

u+ q
≤ 0. This contradicts

to that u is a solution. One can avoid the case u(x, t) → ū at |x| → ∞ by
Oleinik’s technique.

Similarly, if there exists (x̄, t̄) such that v(x̄, t̄) = ū, then at (x̄, t̄) we see
that ∂tv > 0, dΔv ≤ 0 and −v+ u ≤ −v+ ū = 0. This is a contradiction. It
is also easy to see that u and v never touched to q, as the same arguments
above. Therefore, (u, v) ∈ S. �

In BZ equations, it is possible to occur that the solution running for a
large value of time. Finally, we will give the remaining parts of the proof of
Theorem 3.4.1. We will discuss the large time behaviors of BZ solutions.

Proof of Theorem 3.4.1 (3)

We now put m := max{‖u0‖∞, ‖v0‖∞} > 1 and c∗ ∈ (0, q), without loss of
generality. Applying Lemma 3.5.1, Lemma 3.5.4, with c = c∗, and Proposi-
tion 3.5.2. It is easy to see that c∗ ≤ u(x, t) ≤ m and c∗ ≤ v(x, t) ≤ m for
x ∈ R

n and t > t∗. Let ρ := ρ(t) be the solution to the following ordinary
differential equation of logistic type:

ρ′ =
1

ε
ρ(1− ρ) for t > t∗, ρ(t∗) = c∗.

Note that 0 < c∗ < q < 1, and then ρ is monotone increasing. So, there
exists a T�1 > t∗ such that ρ(T�1) = q. By the argument of the maximum
principle, u(x, t) ≥ ρ(t) for x ∈ R

n and t ∈ [t∗, T�1], that is to say, ρ is a
subsolution of u up to T�1.

We secondly consider that σ := σ(t) is the solution to

σ′ = Gm(σ) :=
1

ε
σ(1− σ)− hm

σ − q

σ + q
for t > T�1, σ(T�1) = q.

Note that there exists q1 ∈ (q, 1) such that Gm(q1) = 0, and σ(t) converges
to q1 as t tend to infinite. Since σ is monotone increasing, for q2 ∈ (q, q1),
then there exists a T�2 ≥ T�1 such that σ(T�2) = q2. Again, σ is a subsolution
of u, we thus see that u(x, t) ≥ q2 > q for x ∈ R

n and t ≥ T�2.
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Thirdly, we derive a lower bound of v. Let ν := ν(t) be a solution to
differential equation

ν ′ = −ν + q2 for t > T�2, ν(T�2) = c∗.

Obviously, ν is monotone increasing, and ν(t) converges to q2 as t running to
infinity. Hence, for q3 ∈ (q, q2), there exists a T�3 ≥ T�2 such that ν(T�3) = q3.
Since ν is a subsolution of v, we have v(x, t) ≥ q3 > q for x ∈ R

n and t ≥ T�3.
In what follows, we shall derive upper bounds of u and v. Let us define

κ := κ(t) as the solution to

κ′ = G∗(κ) :=
1

ε
κ(1− κ)− hq3

κ− q

κ+ q
for t > T�3, κ(T�3) = m.

Note that κ is monotone decreasing, and κ(t) converges to κ∗ as t tend to
infinite, where κ∗ ∈ (q, ū) satisfies G∗(κ) = 0. For u∗ ∈ (κ∗, ū), there exists
a T�4 ≥ T�3 such that κ(T�4) = u∗. Since v ≥ q3 for t ≥ T�3, it holds that
u(x, t) ≤ κ(t) for x ∈ R

n and t ≥ T�3. That is to say, κ is a supersolution of
u. Moreover, u(x, T�4) ≤ u∗ for x ∈ R

n. We thus see that u(x, t) ≤ u∗ < ū
for x ∈ R

n and t ≥ T�4.
Since u ≤ u∗ < ū for t ≥ T�4, there exists a T� ≥ T�4 such that v(x, T�) ≤ ū

for x ∈ R
n, by observing a supersolution of v:

μ′ = −μ+ u∗ for t > T�4, μ(T�4) = m.

Hence, v(x, t) < ū for x ∈ R
n and t > T�.

Note that S is an invariant region by Theorem 3.4.1 (2). Therefore,
summing up the arguments above, (u(x, t), v(x, t)) ∈ S for x ∈ R

n and
t > T�. This completes the proof of Theorem 3.4.1 (3). �

Remark 3.5.3 (i) Looking at the proof above, we find the following fact.

Let κ̄ ∈ (q, ū) be a root of κ(1− κ)(κ+ q)− εhq1(κ− q) = 0. For q� ∈ [q, q1)

and u� ∈ (κ̄, ū], then there exists a T� ≥ t∗ such that (u(x, t), v(x, t)) ∈ S� :=

(q�, u�)
2 ⊂ S for x ∈ R

n and t ≥ T�. Note that S� is an invariant region

depending on m.

(ii) The assumption u(t∗), v(t∗) ≥ c∗ are crucial. Indeed, it seems to be

difficult to show (u, v) ∈ S for large t, when u0 ≥ 0, v0 ≥ 0 and either u0 ≡ 0

or v0 ≡ 0 only.
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Chapter 4

Positivity-preserving numerical meth-

ods for Belousov–Zhabotinsky reaction

In this chapter, the existence of positive solutions to the system of ordi-
nary differential equations related to the Belousov-Zhabotinsky reaction is
established. Our idea is to use a new successive approximation of solutions,
ensuring its positivity. To obtain the positivity and invariant region for nu-
merical solutions, the system is discretized as difference equations of explicit
form, employing operator splitting methods with linear stability conditions.
An algorithm to solve the alternate solution is given.

4.1 Introduction

We consider the reaction-diffusion equations of Keener-Tyson model for Be
lousov–Zhabotinsky reaction BZ in chapter 2, Section 2.2. There are many
literatures on structure-preserving numerical methods for partial differential
equations; see e.g. [7] and references therein. Moreover, the researchers on
reaction-diffusion equations often discuss the positivity of numerical solu-
tions, when the time-step size Δt is small enough; the reader can find it in
e.g. [29]. From this viewpoint, it has been known that Mimura and his col-
laborators obtained the positive numerical solutions to the system of some
reaction-diffusion equations; see [16, 17]. However, it seems to be new that a
numerical scheme leads us to invariant regions. Also besides, there are many
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numerical results on BZ reaction; see e.g. [24] and references therein. On the
other hand, here our scheme is an explicit method which has the features as
aiming at application to validated numerics, in the future.

4.2 Objective

Continuing from Chapter 3, the interesting one on BZ reaction, the positivity
of u is a critical issue. The goal of this study is to give a new discretiza-
tion scheme for some reaction-diffusion equations, which priori ensures the
positivity-preserving. Our aim is to establish similar results for numerical
solutions to the difference equations discretized BZ of special type.

4.3 Results

The virtue of using the following new successive approximation of BZ solu-
tions is to be ensured the positivity of the solutions, automatically. Here,
we emphasize that this technique can be applied to construct the positivity
(or, non-negative) of solutions to ordinary differential equations and positive
numerical solutions to finite difference equations.

∂tu�+1 = Δu�+1 +
1

ε
u�(1− u�+1)− hv�

(
u�+1 − q

u� + q

)
,

∂tv�+1 = dΔv�+1 − v�+1 + u�,

for � ∈ N with u�+1|t=0 = u0 and v�+1|t=0 = v0, starting at u1 := etΔu0 and
v1 := edtΔv0 with nonnegative initial data u0, v0 ∈ BUC(Rn).

The construction of time-local positive solutions to the system of first-
order ordinary differential equation (ODE), deal with the following system:

(P) u′i = −fi(u)ui + gi(u), t > 0, ui(0) = ai, i = 1, . . . ,m,

for natural number of m.
Let X, Y be metric spaces, then F : X → Y is called Lipschitz (continu-

ous) if there exist a number Λ > 0 such that ‖F (x1)− F (x2)‖ ≤ Λ‖x1 − x2‖
for all x1, x2 ∈ X. Furthermore, F is called locally Lipschitz (continuous) if
for every x ∈ X there exists some ε > 0 such that F is Lipschitz continuous
on the ε-neighborhood of x.
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Theorem 4.3.1 If fi, gi ≥ 0 are locally Lipschitz continuous and ai ≥ 0,

then there exists a time-local unique solution ui ≥ 0 to (P).

To obtain the positivity and invariant region for numerical solutions, the
system is discretized as difference equations of explicit form. We argue the
numerical algorithm for positive solutions. We first discuss a discretization of
(P). To obtain positive solutions, we choose the following difference equations
(DE), mixing the forward and backward Euler methods:

(DE)
uk+1 − uk

Δt
= −F (uk)uk+1 + g(uk), k ∈ N0 := N ∪ {0},

where uk =
(
uk1, . . . , u

k
m

)
, tk := kΔt for Δt > 0 and u0i = ai ≥ 0 for

i = 1, . . . ,m.

Theorem 4.3.2 If fi, gi ≥ 0 are Lipschitz continuous, Δt > 0 and u0i ≥ 0,

then the numerical solution uki ≥ 0 to (DE) exists for k ∈ N.

In the end, employing operator splitting methods with linear stability
conditions for solving the discretized reaction–diffusion equation. First, we
will state the results on numerical solutions of BZ to discretized equations.
Let us consider the discretization,

(Do)

⎧⎪⎪⎨
⎪⎪⎩

uk+1
j − ukj
Δt

=
ukj (1− uk+1

j )

ε
− h vkj

uk+1
j − q

ukj + q
,

vk+1
j − vkj
Δt

= −vk+1
j + ukj

for j = 1, . . . , J − 1 and k ∈ N0. On the other hand, for the discretization of
the heat equations, we use the standard FTCS (forward difference for time
and second-order central difference for space),

(Dh)

⎧⎪⎪⎨
⎪⎪⎩

ũk+1
j − ũkj
Δt

=
ũkj+1 − 2ũkj + ũkj−1

Δx2
,

ṽk+1
j − ṽkj
Δt

= d
ṽkj+1 − 2ṽkj + ṽkj−1

Δx2

for j = 1, . . . , J − 1 and k ∈ N0.
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Theorem 4.3.3 Let ε, h,Δt,Δx > 0, d ≥ 0 and q ∈ (0, 1). Define ukj , v
k
j as

numerical solutions to alternate (Do) and (Dh). If u0j , v
0
j ∈ (q, 1) for j, then

ukj , v
k
j ∈ (q, 1) for j and k, provided if Δt/Δx2 ≤ 1/max{2, 2d}.

4.4 Ordinary differential equations

The construction of time-local positive solutions to the system of first order
ordinary differential equations (ODE) is discussed in this section. We deal
with system ODE nonlinear (P) in Section 4.3.

Throughout this processing, for simplicity of notation, t = 0 is the initial
time, ′ := d/dt, u :=

(
u1, . . . , um

)
. Here, ui = ui(t) are unknown functions

for t > 0 and i = 1, . . . ,m. Besides, ai ≥ 0 are given initial data, fi ≥ 0 and
gi ≥ 0 are also given function. We often rewrite (P) into the following vector
valued ODE:

(P′)
{

u′ = −F (u)u+ g(u), t > 0,
u(0) = a.

Here, we have denoted a :=
(
a1, . . . , am

)
, g :=

(
g1, . . . , gm

)
, and F is the

diagonal m×m matrix whose (i, i)-component is fi.
When m = 2, u := u1, v := u2, a1 := u0, a2 := v0 and

F :=

(
u/ε+ hv/(u+ q) 0

0 1

)
, g :=

(
u/ε+ hqv/(u+ q)

u

)

are taken, then (P) is equivalent to the uniform-in-space BZ. The model
problem (P) is often used to describe dynamics of nonlinear chemical or
biological systems, for example, the Lotka-Volterra type equations of prey-
predator models with density-dependent inhibition (Holling’s type II or type
IV), epidemic SIV (or, SHIV) models and the Gierer-Meinhardt model. We
especially treat fractional nonlinear terms, and the denominator takes on the
value of zero for negative solutions. Hence, the positivity of solutions to (P)
is strongly required, and so is even in its approximation.

32



4.4.1 Proof of Theorem 4.3.1

We consider the nonlinear system (P) in Section 4.3. Let ai ≥ 0 for i =
1, . . . ,m. For the sake of simplicity, let us assume that a = 0 and gi(v) > 0
for v = 0. Making the approximation sequences

{
u�i
}∞
�=1

for i = 1, . . . ,m,
we begin with u1(t) := a for t ≥ 0. For each � ∈ N, we successively define
u�+1 as the solution to the system of linear non-autonomous ODE:

(SA)
(
u�+1

)′
= −F (u�)u�+1 + g(u�), t > 0, u�+1(0) = a

with vectors of nonnegative u� and a. So, (SA) is equivalent to the integral
equation

(INT) u�+1(t) = a−
∫ t

0

F (u�(s))u�+1(s)ds+

∫ t

0

g(u�(s))ds.

Heuristically, if F is a constant matrix, then v′ = −Fv, t > 0, v(0) = a
admits a solution v(t) = e−Fta. In this situation, we thus have

u�+1(t) = e−Fta+

∫ t

0

e−F (t−s)g(u�(s))ds.

For general matrix-valued functions F , one may construct u�+1 for each � ∈ N

by perturbation theory, at least time-locally.
Obviously, u1i ≥ 0 for i = 1, . . . ,m and ‖u1(t)‖ = ‖a‖ for t ≥ 0. Here,

we have used the max norm for vectors ‖v‖ := maxi=1,...,m |vi| for v :=(
v1, . . . , vm

)
, as well as to matrices ‖F‖ := maxi,j=1,...,m |fij| for F :=

(
fij

)
.

In what follows, we will show the positivity and boundedness of u�+1
i by

induction in �. For u2, it holds true that

‖u2(t)‖ ≤ ‖a‖+
∫ t

0

‖F (u1(s))‖ · ‖u2(s)‖ds+
∫ t

0

‖g(u1(s))‖ds
≤ ‖a‖+ ‖F (a)‖ · t ·max0≤s≤t ‖u2(s)‖+ t · ‖g(a)‖.

Taking max0≤t≤τ in both hand side, we have

‖u2(t)‖ ≤ 2‖a‖ for t ∈ [0, T2],

with T2 := min
{
1/(3‖F (a)‖), ‖a‖/(3‖g(a)‖)}. In addition, we can also

obtain that u2i ≥ 0. Indeed, let us assume that there exists a t∗ ∈ (0, T2] such
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that u2i (t∗) = 0 for some i = 1, . . . ,m. Without loss of generality, t∗ is the
first time when u2i touches 0. So, at t∗, we see that (u2i )

′ ≤ 0, fi(u
1)u2i = 0,

and gi(u
1) > 0. This contradicts to the fact that u2 is a solution to (SA)

with � = 1.
Let � ≥ 2. Assume that ‖u�(t)‖ ≤ 2‖a‖ and u�i(t) ≥ 0 hold for t ∈ [0, T0]

and i = 1, . . . ,m, where T0 > 0 will be determined later. We now argue on
u�+1. By assumption, it is easy to see that

‖u�+1(t)‖ ≤ ‖a‖+
∫ t

0

‖F (u�(s))‖ · ‖u�+1(s)‖ds+
∫ t

0

‖g(u�(s))‖ds
≤ ‖a‖+Mf · t ·max0≤s≤t ‖u�+1(s)‖+ t ·Mg

≤ 2‖a‖ for t ∈ [0, T0],

with T0 := min
{
1/(3Mf ), ‖a‖/(3Mg)

}
, where

Mf := sup
‖v‖≤2‖a‖,v≥0

‖F (v)‖, Mg := sup
‖v‖≤2‖a‖,v≥0

‖g(v)‖.

In addition, we can also see that u�+1
i ≥ 0 for i by the same contradiction

argument above. This means that ‖u�(t)‖ ≤ 2‖a‖ and u�i ≥ 0 hold for all
� ∈ N and i = 1, . . . ,m for t ∈ [0, T0].

It is straightforward to get the continuity of solutions. One may also see
that

{
u�

}∞
�=1

is a Cauchy sequence in C([0, T0];R
m). So, the limit

(
u1(t), . . . ,

um(t)
)
= u(t) = lim�→∞ u�(t) exists for t ∈ [0, T0], and satisfies (P); ui(t) ≥ 0

for i = 1, . . . ,m by construction. The uniqueness follows from Gronwall’s
inequality, directly. �

Note that the proof is easy, if ai > 0 for all i. In Theorem 4.3.1, it is
not needed to use either the existence of stable solutions to (P), comparison
principle, nor a priori estimates by Lyapunov functions.

4.5 Difference equations

Before we argue the numerical algorithm for positive solutions, we saw that
the discretization of (P), mixing the forward and backward Euler methods,
is written as (DE), see Section 4.3. Obviously, (DE) is a mimic of (SA). Also
besides, we see that the numerical solution uk to (DE) tends to the solution
u(t) to (P) at t = tk for each k as Δt→ 0.
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4.5.1 Proof of Theorem 4.3.2

Let us consider (DE) in Section 4.3. Here, we rewrite (DE) into the explicit
form as

uk+1
i =

uki + gi(u
k)Δt

1 + fi(uk)Δt
, k ∈ N0, i = 1, . . . ,m.

So, uk+1
i ≥ 0, if uki ≥ 0. Thus, one can prove it by induction. �

The advantage of Theorem 4.3.2 is that we may take arbitrary large Δt.
The spirit of (DE) is still valid on the numerical methods for construction

of nonnegative solutions to the partial differential equations. For simplicity,
let n = 1, and consider the discretization uk

j of u(xj, tk) for xj := jΔx and
tk := kΔt satisfying

uk+1
j − uk

j

Δt
= d

uk
j+1 − 2uk

j + uk
j−1

Δx2
− F (uk

j )u
k+1
j + g(uk

j ) (4.5.1)

with nonnegative initial data. So, it is easy to see that all element of uk
j

is nonnegative for all j and k, provided if the linear stability condition
Δt/Δx2 ≤ 1/(2d) for d > 0 in the Lax-Richtmyer sense is assumed. Note
that the similar scheme has also been introduced by Mimura in [16], and [17],
for ensuring the postivity of numerical solutions, basically. In fact, Mimura
argued the reaction-diffusion equation of following type:

uk+1
j − uk

j

Δt
= Duk

j+1 − 2uk
j + uk

j−1

Δx2
+ F̃ (uk

j )u
k+1
j (4.5.2)

with nonnegative diagonal matrix D. From this procedure, we can also
get positive solutions, under the linear stability conditions. However, it is
not clear whether the invariant region for numerical solutions to (4.5.1) and
(4.5.2) is derived, in general.

4.6 Numerical solutions to BZ

We will derive invariant regions for numerical solutions to BZ. For the sake
of simplicity, let n = 1, and let us consider BZ in bounded interval x ∈ [0, L]
for L > 0 with the homogeneous Neumann boundary conditions ∂xu(0, t) =
∂xu(L, t) = 0 or, the periodic boundary conditions u(x, t) = u(x + L, t) for
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t > 0. For discretization of BZ, we put ukj ≈ u(xj, tk) and v
k
j ≈ v(xj, tk) for

j = 0, . . . , J and k ∈ N0, taking e.g. the average of integration. Here, J ∈ N,
xj := jΔx, tk := kΔt for Δx > 0 and Δt > 0; L = JΔx .

We sometimes employ the algorithm of operator splitting methods (OSM)
for solving the discretized reaction-diffusion equation and related problems.
By using (Do) and (Dh) in Section 4.3, at j = 0 and j = J , we give certain
definition by boundary conditions. Our algorithm is to solve alternate (Do)
and (Dh). That is to say, a pair of the series

{
ukj , v

k
j

}
is given as

1. Put u0j ≈ u0(xj) and v
0
j ≈ v0(xj), the average of integration.

2. Construct u1j , v
1
j by (Do) with k = 0.

3. Construct ũ1j , ṽ
1
j by (Dh) with ũ

0
j := u1j and ṽ0j := v1j .

4. Construct u2j , v
2
j by (Do) with u

1
j := ũ1j and v1j := ṽ1j .

5. Construct ũ2j , ṽ
2
j by (Dh) with ũ

1
j := u2j and ṽ1j := v2j .

6. Repeat this process.

If d = 0, then we skip the steps of construction ṽkj , that is, ṽ
k
j := vkj .

4.6.1 Proof of Theorem 4.3.3

Considering (Do) and (Dh) in Section 4.3, here we will give proof of Theorem
4.3.3. By Theorem 4.3.2 and the linear stability conditions, it holds that
ukj , v

k
j ≥ 0 for all j and k. The induction in k is used. Let ukj , v

k
j ∈ (q, 1). We

first check that uk+1
j , vk+1

j > q by (Do). It turns out that

uk+1
j − q =

ukj + ukjΔt/ε+ hqvkjΔt/(u
k
j + q)

1 + ukjΔt/ε+ hvkjΔt/(u
k
j + q)

− q

=
(ukj − q) + (1− q)ukjΔt/ε

1 + ukjΔt/ε+ hvkjΔt/(u
k
j + q)

> 0

by ukj > q and q ∈ (0, 1). Similarly, we have

vk+1
j − q =

vkj + ukjΔt

1 +Δt
− q =

(vkj − q) + (ukj − q)Δt

1 +Δt
> 0.
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One can also easily see that

1− uk+1
j =

(1− ukj ) + (1− q)hvkjΔt/(u
k
j + q)

1 + ukjΔt/ε+ hvkjΔt/(u
k
j + q)

> 0,

1− vk+1
j =

(1− vkj ) + (1− ukj )Δt

1 +Δt
> 0.

On (Dh), it is well-known that the linear stability condition yields the
maximum principle for numerical solution, that is, ũk+1

j , ṽk+1
j ∈ (q, 1), if

ũkj , ṽ
k
j ∈ (q, 1). This completes the proof. �

Remark 4.6.1 (i) This assertion implies that SΔ := (q, 1)2 is an invariant

region for numerical solutions to alternate (Do) and (Dh).

(ii) One can easily see that R
2
+ is also an invariant region by positivity-

preserving.

(iii) The numerical solutions converge to solutions to PDE BZ as Δt → 0

with order O(Δt), as the same as the standard scheme and equation (4.5.2).

(iv) The similar results on the predator-prey models are also obtained. The

reader can find the details on PDE in [20] and references therein.

(v) We believe that one may take initial data, more freely. In fact, if u0j , v
0
j ≥ 0

for j, and if u0j′ , v
0
j′′ > 0 for some j′ and j′′, then there exists a k′ ∈ N0 such

that ukj , v
k
j ∈ (q, 1) for k ≥ k′ and j. This means that absorbing sets for

numerical solutions always exist in SΔ.
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