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Fig. 2.1   Free body diagram of an active part and a passive part. An active part is between 
node 1 and node 2, and a passive part is between node 3 and node 4. An active part 
and a passive part are connected rigidly at node 2 and node 3. External force 1F is 

applied to node 1 and is displacement response vector at the node4, which are 
evaluation degrees of freedom. 
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Fig. 2.2  Frequency response function from excitation force which is added to node1, to 
evaluation dofs at node 4. Excitation force is added to some location in an active part. 
Exact location of exciting force is not clear in real structures. 
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Fig. 2.3  Neutralizer is considered as a discontinuity of wave propagation. Reflection and 
transmission coefficients can be calculated by solving the equillibrium at the position 
of a neutralizer, using the relationship between displacement, force, and wave 
amplitude. 
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Fig. 2.4   Condition of incident wave and reflected wave in case that node 2 of the active part is 
excited in longitudinal direction, and a perfect reflection device for the longitudinal 
wave is set very closely to node 2. As the wave reflects at the device and its phase 
turns over at the device, the displacement at the node 2 is very small.  
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Fig. 2.5   Prodesure of designing the neutralizer 
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(a) Whole structure                                  

 

 

(b) Enlarged view 

 

Fig. 2.6   Beam elements for FE validation with a neutralizer. Node 2 at the end of an active part 
and node 3 at the end of a passive part are rigidly connected. Two neutralizers, which 
consist of point masses and board springs, are set at a node, which locates at 0.01m in 
the direction of node 1 from node 2.  
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Fig. 2.7  Compliance  for the case with and without a neutralizer. By attaching a neutralizer, 
compliance  is largely reduced at 2450 Hz. Theoretically, compliance  is 0 
at the frequency, but for convenience of frequency resolution, it is nearly 0.  
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Fig. 2.8   . Compliance in case that a neutralizer is attached on an active part.  equals 
nearly 0 by convenience of frequency resolution. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Fig. 2.9   . Compliance in case that a neutralizer is attached on an active part. kernel 
compliance is not 0 at 2450 Hz. 

  



 

 

 

 

 

 

 

Fig. 2.10  . Compliance in case that a neutralizer is attached on an active part.  
is smaller than , and accordingly it is proved that Eq.(2.17) is satisfied. 

  



 

 

 

 

 

 

 

Fig. 2.11  . Compliance in case that a neutralizer is attached on an active part.  is not 
diffused. Therefore, response  is directly proportional to , and consequently 
vibration reduction is achieved. 
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Fig. 2.12  Reflection coefficient at a neutralizer. At the target frequency, absolute 
value of reflection coefficient is 1.  



 

 

Fig. 2.13  Transmission coefficient at a neutralizer.At the target frequency, absolute 
value of transmission coefficient is 0. 
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Fig. 2.14  Displacement for the case with and without a neutralizer on an active part: in 
case target frequency of a neutralizer is accordance with anti-resonance frequency of 
a passive part. By attaching a neutralizer, displacement   is largely reduced at 
2450 Hz.  
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Fig. 2.15  . Compliance in case that a neutralizer is attached on an active part. In this 
case, target frequency of a neutralizer is accordance with anti-resonance frequency of 
a passive part. By existence of damping on a passive part,   is kernel 
compliance. In case that the kernel compliance is not 0, and that  is not diffused, 

 is directly proportional to . Overwriting of  and . Target frequency 
of a neutralizer and anti-resonance frequency of a passive part are the same at 2450 
Hz. 

  



 

 
 
 
 
 

  

Fig. 2.16  . Compliance in case that a neutralizer is attached on an active part. In 
this case, target frequency of a neutralizer is accordance with anti-resonance 
frequency of a passive part. By existence of damping on a passive part,  is 
kernel compliance. In case that the kernel compliance is not 0, and that  is not 
diffused,  is directly proportional to . Overwriting of  and . Target 
frequency of a neutralizer and anti-resonance frequency of a passive part are the same 
at 2450 Hz. 

 

 

 

 

 

 

 



 

 

 

 

 

Fig. 2.17  . Compliance in case that a neutralizer is attached on an active part. In this case, 
target frequency of a neutralizer is accordance with anti-resonance frequency of a 
passive part. By existence of damping on a passive part,   is kernel 
compliance. In case that the kernel compliance is not 0, and that  is not diffused, 

 is directly proportional to . Overwriting of  and . Target frequency 
of a neutralizer and anti-resonance frequency of a passive part are the same at 2450 
Hz. 
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Fig. 3.1 Whole structure of interest and the decomposed subsystems. 
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Fig. 3.2   Schematic of the logarithmic magnitude of a self-compliance FRF at the frequency 
range of low-order resonances of a whole structure. Compliance FRF of a rigid 
and small subsystem in comparison with the main system which is the majority of 
a whole structure is dominated by a rigid body mode, and accordingly the 
resonance curve shows monotonous decrease at the frequency range of low-order 
resonances of a whole structure. On the other hand, compliance FRF of a main 
system includes many mountains and valleys in the resonance curve. 

(a) Rigid and small subsystem  

 (b) Main system  



A

 3.7  

 3.8  

 3.9  

1

 

 3.10  



A 3.7 3.10

A

 

3.11  

 

3.1

3.10

3.1

3.12  

3.2 kernel

 

  3.13  

A B

3.13

3.12  

 3.14  

 
  



kernel

kernel

0 Gershgorin

 

3.2.1

A

B

B   

0.01

0

Gershgorin

3.4

0.02 B

 

 

kernel

3.11 3.13 A

kernel

 



 3.15  

1 3.13 3.11

kernel

A B

. 

 

Gershgorin

A

A

B kernel

Gershgorin

3.15

A Gershgorin

Gershgorin 3.5

Gershgorin

A

 

A B

B

Gershgorin 3.3 a



4

3.3(a)

6 3 Gershgorin

 

Gershgorin

kernel

3.15 B A Gershgorin

A Gershgorin

3.3 b

Gershgorin

Gershgorin Gershgorin

Gershgorin 0

Gershgorin

0

 

B Gershgorin

kernel Gershgorin

0 A

0 3.3(a)

Gershgorin

Gershgorin

Gershgorin

0



3.13  

 

 



Fig. 3.3  Visualized Gershgorin circles for the ,  and  direction only on a complex 

plane. The centers of Gershgorin circles corresponding to  are shifted by 
adding a rigid and small subsystem A onto the subsystem B. Then, the Gershgorin 

circles corresponding to  are circles of the same radius whose centers have 
just moved in the real axis direction. The shift distances are dominated by the mass 
and moment of inertia of the subsystem A as described in the equation (3.15).
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Fig. 3.4  Order differences among block matrices of a kernel compliance matrix  
computed by two different system of units. Generally, Gershgorin circles 

corresponding to a kernel compliance matrix  are much affected by the 
system of units to calculate the frequency response function matrix.
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Fig. 3.5   Configuration and its modal characteristics of the main system B for verifying our 
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Fig. 3.6  Attachment angle of a rigid and small subsystem A onto the main system B. The z-
axis of the principal axis of inertia corresponds to an axis obtained by inclining the 
Z-axis of the global coordinates by 10 degrees around the X-axis. 
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Fig. 3.7  Gershgorin circles of the matrix  at 150 Hz. Gershgorin circles of a FRF matrix 
depend on the system of units used in their calculation. In the numerical examples 
in this paper, a circle far from zero on the positive real axis is the first candidate to 
approach zero. Therefore, at 150 Hz, y-directional blue circle is the first candidate. 

(a) 150 Hz

(b) Enlarged view of y-direction circle at 150 Hz

(c) Enlarged view of other circles at 150 Hz



Fig. 3.8  Gershgorin circles of the matrix  at 160 Hz. Gershgorin circles of a FRF matrix 
depend on the system of units used in their calculation. In the numerical examples 
in this paper, a circle far from zero on the positive real axis is the first candidate to 
approach zero. At 160 Hz, there is no candidate, because all the circles are located 
in the negative region of the real axis. 
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(c) Enlarged view of other circles at 160 Hz
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Fig. 3.9  Required mass to approach zero of the eigenvalue of the kernel compliance matrix 
at 150 Hz. For a subsystem A with a mass of 0.08 kg, it is expected that resonances 
will be caused at 149 Hz and 165 Hz in the frequency region. 
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the subsystem A. On the contrary, at 158 Hz, 159 Hz and 160 Hz, since the circle 
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Fig. 3.11 Purpose-designed rigid and small subsystem A for the first numerical case study.  
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Fig. 3.13  Gershgorin circles of  by the MMKS system of units. In both figures, it can 
be seen that the circle related to the degree of freedom in the y-direction moves 

largely in the negative direction of the real axis, and that the circle includes or 
immediately before the zero of the real axis. 

 (b) Enlarged view of y-direction circle at 165 Hz
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frequencies estimated by our proposed method. 

(a) Subsystem B only             (b) Whole structure



 

(1) (3)

 

(1) 

 

(2) Gershgorin kernel

Gershgorin kernel

Gershgorin

 

(3) Gershgorin

Gershgorin

 



 

kCA kernel Compliance Analysis

(1) Neutralizer  

(2)  

(1) Neutralizer

kCA

Neutralizer

0  

(2)

kernel

kernel



kernel

kernel

Gershgorin Gershgorin

 

2

DC

(1) (2) (1) DC

Neutralizer 0

A

(2) DC PWM

PWM

 

2 (1) Neutralizer (2)

Neutralizer



(1) (2)

  

 

 
  



(1) 26 1 (1998) pp.2-4 
(2) 50 57 1

(2000) pp.95 
(3) 

49 6 (1997) pp.525-545 
(4) 57

4 (2004) pp.1-28 
(5) Vol.27No.3(2003) pp.164-169 
(6) 

22 2 (2019) pp.1-14 
(7) 2 1

C , Vol. 71, No. 712 
(2005), pp. 3335-3342. 

(8) 2
2 C

, Vol. 71, No. 715 (2006), pp. 735-742. 
(9) : 

1 , RKU C , 
Vol. 57, No. 544 (1991), pp. 3777-3781. 

(10) 
C , Vol. 56, No. 524 (1990), pp. 915-920. 

(11) 2
C , Vol. 50, No. 458 (1984), 

pp. 1970-1977. 
(12) 

C , Vol. 78, No. 792 (2012), 
pp. 2733-2745. 

(13) El-Khatib, H. M., Mace, B. R. and Brennan, M. J., Suppression of bending waves in 
a beam using a tuned vibration absorber, Journal of Sound and Vibration, Vol. 288 
(2005), pp. 1157-1175. 

(14) Golub, G. H. and Van Loan, C. F., Matrix computations - Third Edition, The John 
Hopkins University Press (1996), pp.320.IATF 16949: 2016 (2016). 

(15) 
(C ) Vol.59 No.567(1993) pp.3469-3473 

(16) , , , , 
D 133 10

(2013) pp.1003-1008 
(17) 19 3

(1995) pp.106-109 
(18) 6 2 (1982)

pp.64-69 
(19) Lyon,R.H and Maidanik,G., Power flow between linearly coupled oscillators, 

Journal of Acoustic Society of America, Vol. 34, No. 5 (1962). 
(20) Lyon,R.H. and DeJong,R.G., Theory and application of statistical energy analysis 

second edition (1995), Butterworth-Heinemann. 



(21) Fahy,F., Statistical energy analysis: a critical overview, Philosophical Transactions 
of Royal Society of London A, Vol. 346 (1994), pp.431-447. 

(22) Lyon,R.H., Statistial energy analysis and structural fuzzy, Journal of the Acoustical 
Society of America, Vol. 97, No. 5 (1995), pp.2878-2881. 

(23) Lyon,R.H., and Eichler,E., Random vibration of connected structures, Journal of the 
Acoustical Society of America, Vol. 36, No. 7 (1964), pp.1344-1354. 

(24) M.P.Norton and D.G.Karczub, Statistical energy analysis of noise and vibration, 
Fundamentals of Noise and Vibration Analysis for Engineers second edition, 
CAMBRIDGE, pp.383-440. 

(25) , , FEM SEA
(C ) Vol.74 No.747(2008) pp.2655-2661. 

(26) , , SEA
(C ) Vol.79 No.800(2013) pp.1012-1023. 

(27) Van der Auweraer, H., Wyckaert, K., Hendricx, W. and Van der Linden, P., Noise 
and vibration transfer path analysis, Lecture series – van Kareman Institute for fluid 
dynamics, van Kareman Institute, Rhode-Saint-Genese, Belgium (1979). 

(28) Seijs, M. V., Klerk, D. and Rixen, D. J., General framework for transfer path 
analysis: History, theory and classification of techniques, Mechanical Systems and 
Signal Processing, Vol. 68-69 (2016), pp. 217-244, DOI: 
10.1016/j.ymssp.2015.08.004. 

(29)   (2012) pp. 105-108. 
(30) 

Vol. 85, No. 
871 (2019), DOI: 10.1299/transjsme.18-00260. 

(31) Wittrick, W.H., Rates of change of eighenvalues with reference to backling and 
vibration problems, Journal of the Royal Aeronautical Society, Vol.66(1962), 590-
591 

(32) Zarghamee, M. S., Optimum frequency of structures, AIAA Journal, Vol.6(1968), 
pp749-750 

(33) Fox, R. L. and Kapoor, M. P., Rates of change of eigenvalues and eigenvectors , 
AIAA Journal, Vol.6(1968), pp2426-2427 

(34) 1
vol.42 No.356(1976), pp1109-

1118 
(35) 2 , 

1 2 -1
vol.42 No.359(1976), pp2050-2059 

(36) 3 , 
-2

vol.42 No.359(1976), pp2060-2068 
 

  



A Neutralizer  
 

 
Fig. A.1   Example of mounting a Neutralizer on a DC motor. A neutralizer is installed to reduce 

vibration in the direction of rotation of a DC motor. 
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Fig. A.2   Frequency characteristic of compliance at the evaluation DOF, in case that a liner DC 

motor is mounted on the system. The frequency components are distributed in a very 
narrow range. In this case, the Neutralizer target frequency is set to the most dominant 
frequency component. 



 

 

 

 

 

 

 

 

 

Fig. A.3   Frequency characteristic of compliance at the evaluation DOF, in case that a liner DC 
motor is mounted on the system, and the Neutralizer is installed on the DC motor. The 
compliance of the neutralizer target frequency is 0. 

 

 



  


