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CHAPTER 1. INTRODUCTION 

 

1.1. Background 

Various studies have been conducted on the effects of land use/land cover changes on 

various aspects such as disaster prevention, agriculture and water resources. For example, 

Priess et al. [1] investigated feedbacks between land use changes, which are simulated with the 

land use/land cover dynamics simulation model, and water demand in Central Mongolia, and 

concluded as the current extend of irrigated agriculture water demands exceed water 

availability. Moreover, Mandakh et al. [2] investigated the land use/land cover changes 

occurring as a result of human activities in Delgerkhaan Soum of Khentii Province in Eastern 

Mongolia using Landsat imageries, and defined the impacting factors of water surface area in 

Avarga Toson Lake area.  

For studies of the impact of land use change on some events or phenomena, land use data 

form multiple periods are needed. One of the most commonly used data for studies of land use 

change is the result of land use classification with satellite images. Since the launch of Lansat-

1 in 1972, satellite imagery has continued to be used to create land use data, because satellite 

imagery is easier available to provide up-to-date in wide-area. In Japan, EROS, JAXA [3] 

publishes “High-Resolution Land Use and Land Cover Map Products (HRLULC)” on JAXA’s 

web page, which are produced from ALOS data such as ALOS/AVNIR-2, ALOS/PRISM and 

ALOS/PALSAR, and other spatial information. HRLULC has several versions since 2006. The 

latest version is Version 21.03 released in March 2021 with 12 categories and 10-m resolution 

during 2018 to 2020. Known example of global-scale land use/land cover map is 

GLCNMO2008 by Tateishi et al. [4] GLCNMO2008, which has 500-m special resolution, is 

produced using Terra and Aqua/MODIS. Data sources are from 2003 to 2013. 

While a variety of land use data are available using satellite imagery, from regional to 

global scales, there is a relative lack of data on land use before the launch of Earth observation 

satellites. Another method to produced land use data without satellite imagery is to visually 

read topographic maps. In Japan, the Land Use Subdivision Mesh of National Land Numerical 

Information is well-known as the land use data produced by visual reading of topographical 

map. The Land Use Subdivision Mesh of National Land Numerical Information is so-called 

100-m mesh, and it has been updated every few years since 1976. Another known example of 

land use map in Japan is “Saimitsu Suchi Jouhou” produced since 1981, which has 10-m spatial 

resolution, but available only for urban areas. 
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As for land use data before 1970 in Japan, there is LUIS [5]. LUIS has been developed 

nationwide, and at the Meiji/Taisho era, the middle of the Showa era and the end of the Showa 

era. LUIS is a valuable data set that provides a view of past land use and its evolution, which 

is not available in other land use data. However, its spatial resolution is as coarse as 2 km, and 

many studies have been published that have limited the target area and created new historical 

land use data. Ikemi et al. [6] created 100m-mesh land use data from 1/50,000 topographic 

maps of Fukuoka Prefecture in 1900 and 1950, and studied the spatial distribution of land use 

change and anthropogenic landform modification. Ohara et al. [7] created 500m mesh land use 

data for the Sapporo area (9 maps), Tokyo area (36 maps), and Osaka area (17 maps) between 

1930 and 1970 from 1/50,000 topographic maps, and compared them with numerical elevation 

data (DEM) to discuss the relationship between land use change and topographic conditions. 

As described above, for the period before the 1970s, when detailed land use data did not exist, 

each researcher prepared the land use data in limited area, independently. 

On the other hand, in addition to studies on the impact of land use change on some 

events/phenomena, studies on the impact of some events/phenomena on land use and 

population have also been conducted. Collenteur et al. [8] investigated to understand the impact 

of the occurrence of flood disasters on the spatial distribution of population dynamics in 

floodplain areas, and found that a trend of dampened population growth right after the flood 

followed by an accelerated growth a decade later. The impacts of flood events on floodplain 

development are so-called “Levee Effects ([9], [10]”, which has been attracting attention in 

recent years as complex mechanisms between hydrological and social processes in settled 

floodplain. 

In Japan, since the Meiji era (1868-1912), there has been a great deal of river 

improvement, and it is thought that the land use around the river channel has changed greatly 

due to the Levee effects. Ito and Nakamura [11] constructed long-term land use data and levee 

length database by visual reading of the topographical maps from 1870 to 1990 in the lower 

Kiso river basin, and found that urbanization progressed in the specific area after the levee was 

established. 

However, as mentioned above, it is difficult to obtain detailed land use data before 1970s, 

and the only way to obtain such data is to visually read topographic maps of only a limited 

area, as has been done in several studies. Moreover, it is difficult to assess how flood risks have 

changed due to the development of river infrastructure, rapid urbanization and land use 

changes, based only on flood cases with little information. 
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1.2. Research areas 

The following study areas have been selected in this research to evaluate long-term 

changes of flood risk with deep learning and flood simulation for case studies including the 

region Gifu Prefecture, Japan. (Figure 1.1).   

 

Figure 1.1 Location of the study area in Japan. 

 

The right side of the Nagara River is a flatland, where is the area between the Nagara 

River, the Ijira River, the Toba River, and Dodogamine mountain. This area is nearly 234 

hectares, and it was frequently damaged by flood until to finish the construction of levee to the 

Furu River and the Furu-Furu River in 1939. (Figure 1.2) 

The right levee side of the Nagara River, around Gifu city where the land use significantly 

changed that as the almost paddy field was changed to the residential area, river width of each 

river is widening, and the route of each river is changing in the past hundred years. [12] 

Figure 1.2 (b) shows the past topographical map, and Figure 1.3 (a) also shows the current 

topographical. Blue area is river area. Figure 1.2 (a) shows the past Nagara river was diverted 

to two branches such as the Furu river and the Furu-furu river. On the other hand, Figure 1.3 

(a) shows the current Nagara river improved to the mainstream, and some river stream 

disappears due to river improvement. 
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 (a) Aerial photograph around the Nagara bridge            (b) Topographical map  

Figure 1.2 Study area former time (from 1891 till 1939). 

 

  

(a) Aerial photograph around the Nagara bridge               (b) Topographical map     

Figure 1.3 Study area current time (after finish construction of coffer bank in 1939) 

 

1.3. Objectives and structure of the thesis 

Main objective of this thesis is to evaluation of long-term changes of flood risk with deep 

learning and flood simulation. In order to achieve this goal, this dissertation consists of five 

chapters as below: 

Chapter 1. Introduction, this chapter provides relevant background information on issues 

related to long-term changes in flood risk.  

Chapter 2.  In the third artificial intelligence boom that began around the 2000s, by doing 

so, it has become possible to realize a highly practical program, especially in recent years deep 
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learning has been rapidly developing and expanding to any research fields. Especially, CNN 

(Convolutional Neural Network) has been used in many cases for image recognition, 

discrimination and classification. However, while deep learning is being applied to satellite 

images, there are few examples of their application to topographical maps. Chapter 2 describes 

about developing and proposing of a classification method for topographical maps using deep 

learning for practical use. 

Chapter 3. In former times, the flatland around the Kiso-River system, included Gifu 

City, was frequently damaged by inundation after heavy rainfall. The residential area was 

constructed at relatively higher and well-drained low land and protected by banks so-called 

“Waju-Tei.” But in the current time, the new residential area is widening day by day. On the 

other hand, there are many mitigation factors of inundation risks, such as the construction of 

drainage pumps, channels and construction infrastructures for river improvements. Chapter 3 

describes about the temporal changes of flood risks from the Meiji era to the current time in 

Gifu city are investigated with an old topographical map, GIS analysis, and flood simulation. 

Chapter 4. Moreover, understanding of “Levee Effect”, land use changes and flood risk 

by flood inundation simulation have not yet been fully investigated. Chapter 3 describes about 

assessment of long-term flood risk changes with 2D flood simulation and past land use data 

produced from old topographical maps. But chapter 4 describes about efficiency of the 

infrastructures such a river improvements and levee effect using 2D flood simulation. 

Chapter 5. Conclusion, this chapter described the results summary of this research about 

evaluating flood risk with deep learning and flood simulation in long term change. 
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CHAPTER 2. DEVELOPMENT OF LAND USE CLASSIFICATION METHOD 

FROM TOPOGRAPHICAL MAPS WITH DEEP LEARNING 

 

 2.1. Introduction  

Land use data is one of the most frequently used spatial information along with 

topographical data. A typical example of land use data in Japan is land use subdivision mesh 

data [13] of national land numerical information. This land use subdivision mesh data is a 

commonly 100m mesh from 1976, and is data that classifies the land use situation nationwide 

by classification of rice fields, other agricultural land, forests, wasteland, urban area, etc., and 

has maintained every few years. 

Although it depends on the year of maintenance, it is mainly created by visual 

interpretation from 1:25,000 topographic maps and satellite images of the Geographical Survey 

Institute. Detailed numerical information [14] can be mentioned as more detailed digital land 

use information.  

Detailed numerical information was created as a result of the residential land use trend 

survey conducted from 1981 to 1997, and is maintained for the three major metropolitan areas 

(metropolitan area, Chubu area and Kinki area) with a 10-m mesh. Since 2000, it has been 

released under the name of Numerical Map 5000 (Land Use) [15]. The land use subdivision 

mesh data of the national land numerical information is spatially more detailed, and the land 

use items in urban areas are also divided into general low-rise residential areas, dense low-rise 

residential areas, middle/high-rise residential areas, and commercial/ commercial land. 

However, it has the disadvantage that it is not maintained outside the three major metropolitan 

areas and cannot be applied to a wide area.  

The National Land Use Database (LUIS) [16] shows past land use and its transition, 

which are not maintained by other land use data such as the Meiji/Taisho era, the middle and 

the end of the Showa era, and is maintained nationwide. This is valuable land use data, and is 

used for analysis of changes in landscape structure in groups [17] and estimation of past 

evaporation and scattering [18].  On the other hand, the spatial resolution is as coarse as 2 km, 

and many studies have been published that have created new past land use data by limiting the 

target area.  

Matsubara et al. [19] in order to analyze land-use changes around the Keio University 

Hiyoshi Campus, used 1:20,000 "Mizoguchi" topographic map published in 1902 and the 
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1:25,000 "Kawasaki" topographic map published in 1914-1994. This study had read map 

symbols with a 50m mesh and had created land-use data. 

Ikemi et al. [20] created 100m mesh land use data from 1:50,000 topographic maps of 

1900 and 1950 for the Fukuoka prefecture area, and examined the transition of land use and 

the spatial distribution of artificial topographical changes. Ohara et al. [21] uses a 500m mesh 

of land use data for the Sapporo area (9 map width), Tokyo area (36 map width), and Osaka 

area (17 map width) from around 1930 to 1970 from a 1:50,000 topographic map. It was created 

and compared with digital elevation data (DEM) to discuss the relationship between land use 

changes and topographical conditions. In addition, Ito and Nakamura [22] created 100m mesh 

land use data from the 1:20,000 and 1:25,000 topographic maps of the Kiso River basin after 

the Meiji era, and considered changes in land use in the hinterland due to the construction of 

embankments. As described above, the current situation is that each researcher independently 

creates the data before the 1950s, when detailed land use data does not exist. 

The main method for creating existing land use data is visual interpretation. One of the 

methods for creating land use data other than visual interpretation is land use classification 

using remote sensing images and satellite images. Since the launch of Landasat-1 in 1972, the 

use of satellite images for land use data creation has been under consideration due to the feature 

that the latest wide-area information can be easily obtained. As high-resolution land-use data 

that can be used in Japan, there is a high-resolution land-use cover map published by JAXA in 

Japan. [3]. It classifies the whole of Japan using high-resolution satellite images such as ALOS 

AVNIR-2, PRISM, and PLSAR. Currently, version 16.09 released in September 2016 has been 

released. Satellite images and remote sensing images are mainly classified on a pixel-by-pixel 

basis (pixel-based) using observation results from multiple wavelengths, while spatial 

information (textures) such as simultaneous occurrence matrices are used. For example, Donnie 

et al. [23], Franklin et al., [24]and an object-based method of capturing pixels as a spatial set 

(segment or object) (Lobo et al., [25], Kosaka et al. [26], Yamamoto et al. [27]) have been 

proposed. 

On the other hand, in deep learning, which has been rapidly developing in recent years, 

there are many cases of using CNN (Convolutional Neural Network), which is particularly 

excellent in image recognition, discrimination, and classification.  

Ito et al. [28] classified CNN classification using a data Landsat-5 (spatial resolution 30-

m) and GLCNMO2008 [29] with a resolution of 500-m as learning/verification data. When 

40,000 cropped images of each class were used for learning, the overall accuracy (OA) was 

82.8%. In addition, Yoshihara et al. [30] extracted 4000 images of 25×25 pixels from Geoeye-
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1 with a spatial resolution of 0.5 m and trained them with a CNN model. As a result, OA 

showed an accuracy of about 63%. There is. While the application of deep learning and 

machine learning to remote sensing images is advancing, there are few examples of application 

to existing topographic maps. Hirashima et al. [31] used CNN to identify map symbols on 

topographic maps as a method for creating training data for land use classification in aerial 

photographs, and extracted teacher data from aerial photographs centered on the positions of 

the identified map symbols. Then, CNN is used for two stages of extraction and classification 

of teacher data, such as classifying by CNN. However, regarding the method of directly 

creating land use data from existing maps, Iwasaki, Wayama [32] created a land use 

classification map of the old topographic map as one of the examples of use for deep learning 

map data. However, other than showing an accuracy of about 52 to 84%, there are almost no 

research examples assuming actual use. 

When assuming actual use, it is necessary to show the accuracy of the created land use 

data. The accuracy of the subject attributes of land use data has not been discussed much but 

Yanashima [33] compared the detailed numerical information with public facilities (point 

vectors) of the national land numerical information, and found that 25% of the national land 

numerical information was detailed numerical information. Reported that the classification was 

inappropriate. 

For land use data created from remote sensing images, according to Thomlinson et al. 

[34], has proposed criteria of 85% or more than 70% OA for classification each class. A 

standard of 70% or more for the classification accuracy of is proposed.  

The above-mentioned GLCNMO2008 [4] is 77.9% for OA when the number 

classification class is 20, 94.4% when integrated into 8 classes, and high-resolution land use 

cover map for Japan [3] shows 78.0% of OA when integrated into 10 classification classes. 

And the accuracy of the dataset is disclosed. 

As mentioned above, the classification accuracy of the land use data currently used is 

about 80%. As reported by Kojima and Takara [35], the classification accuracy depends on the 

spatial resolution, and the accuracy decreases as the resolution becomes coarser. In addition, if 

the classification classes divided into grassland and forest are integrated into one classification 

class called vegetation, the misclassification between grassland and forest will be correctly 

classified, so the classification accuracy is also in the number of classification classes. 

Although it depends, 80-85% or more can be proposed as practically usable accuracy 

considering the criteria of Thomlinson et al. [34]. 
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Although there are some research examples for creating land use data from existing maps 

by deep learning, it seems that they have not been put into practical use. 

Land use data creation using deep learning can be applied to future reduction of land use 

data creation costs, old topographic maps for which detailed land use data has not been created, 

overseas maps, etc. 

In this research, aiming for practical use in the future, the numerical map 25000 (map 

image) issued by the Geographical Survey Institute, which is relatively homogeneous data, is 

used as the map image for classification. A preliminary study will be conducted using the land 

use subdivision mesh of the national land numerical information as the true value. 

In the future, we plan to use the findings obtained in this study to develop overseas maps 

for which there is no available digital data, and classification of old topographic maps. 

 

2.2. Methods 

2.2.1 Topographical map and land use data 

The map image data to be classified includes the CD-ROM version of "Nagoya 

(published in January 1, 2007)” and "Gifu (published January 1, 2009)" out of the numerical 

map 25000 (map image) published by the Geographical Survey Institute. 

The numerical map 25000 (map image) is a digitized version of the 1:25,000 topographic 

map issued by the Geographical Survey Institute, and the CD-ROM version is distributed 

collectively for each primary mesh, but the publication dates are different. "Nagoya (published 

in January 1, 2007)" is significantly different from Mt. Ryozen (secondary mesh code 523673) 

published in December 1988 to Suzuka Pass (secondary mesh code 523622) published in 

November 2006. 

The pixel value of the numerical map 25000 (map image) is an index color of values 

from 0 to 255, but in this research, it is converted to RGB color in consideration of the 

application to old topographic maps and digitized paper maps. In addition, the coordinates were 

converted to the UTM coordinate system, and the pixel size was set to 2 m.  

As the true value of land use, the land use subdivision mesh data of the national land 

numerical information was used. Land use subdivision mesh data has been updated every few 

years since 1976. In this research, land use mesh data were used according to the year of 

publication: The 1991 version (L03-b-91), the 1997 version (L03-b-97), the 2006 version (L03-

b-06), and the 2009 version (L03-b-09).  
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Considering that it takes time to create land use data, we decided to use the land use data 

issued immediately after the year of publication of the topographic map. Table 2.1 shows the 

combination of the secondary mesh code of the topographic map, the year of issue, and the 

corresponding land use data. 

Table 2.1 Correspondence table of secondary mesh code of map image, publication year of 

map image and land use data 

Meshcode 
Year of 

publication 
Landusedata Meshcode 

Year of 

publication 
Landusedata Meshcode 

Year of 

publication 
Landusedata 

523600 2000 L03-b-06 523656 2004 L03-b-06 533630 2004 L03-b-06 

523061 2005 L03-b-06 523657 2005 L03-b-06 533631 2007 L03-b-09 

523602 1995 L03-b-97 523660 2006 L03-b-06 533632 2001 L03-b-06 

523603 2005 L03-b-06 523661 2006 L03-b-06 533633 2008 L03-b-09 

523604 2004 L03-b-06 523662 1998 L03-b-06 533634 2008 L03-b-09 

523607 2005 L03-b-06 523663 1998 L03-b-06 533635 2006 L03-b-06 

523610 2001 L03-b-06 523664 1998 L03-b-06 533636 2006 L03-b-06 

523611 2005 L03-b-06 523665 1998 L03-b-06 533637 2006 L03-b-06 

523612 1995 L03-b-97 523666 2002 L03-b-06 533640 2004 L03-b-06 

523613 1995 L03-b-97 523667 2002 L03-b-06 533641 2007 L03-b-09 

523614 2005 L03-b-06 523670 2004 L03-b-06 533642 2001 L03-b-06 

523616 2003 L03-b-06 523671 2004 L03-b-06 533643 2008 L03-b-09 

523617 2003 L03-b-06 523672 1998 L03-b-06 533644 2008 L03-b-09 

523620 2000 L03-b-06 523673 1988 L03-b-91 533645 2006 L03-b-06 

523621 1999 Lb3-b-06 523674 1998 L03-b-06 533646 2006 L03-b-06 

523622 2006 L03-b-06 523675 1998 L03-b-06 533647 2006 L03-b-06 

523623 2000 L03-b-06- 523676 2002 L03-b-06 533650 2004 L03-b-06 

523624 1998 L03-b-06 523677 2002 L03-b-06 533651 1998 L03-b-06 

523626 2005 L03-b-06 533600 2006 L03-b-06 533652 2007 L03-b-09 

523627 2002 L03-b-06 533601 2006 L03-b-06 533653 2008 L03-b-09 

523630 2004 L03-b-06 533603 2006 L03-b-06 533654 2007 L03-b-09 

523631 2005 L03-b-06 533603 2007 L03-b-09 533655 2006 L03-b-06 

523632 2005 L03-b-06 533604 2002 L03-b-06 533656 2006 L03-b-06 

523633 2000 L03-b-06 533605 2001 L03-b-06 533657 2006 L03-b-06 

523634 1995 L03-b-97 533606 1999 L03-b-06 533660 1998 L03-b-06 

523635 2000 L03-b-06 533607 1998 L03-b-06 533661 1997 L03-b-97 

523636 2002 L03-b-06 533610 2007 L03-b-09 533662 1989 L03-b-91 

523637 2003 L03-b-06 533611 2006 L03-b-06 533663 2004 L03-b-06 

523640 2005 L03-b-06 533612 2006 L03-b-06 533664 1991 L03-b-91 

523641 2006 L03-b-06 533613 2006 L03-b-06 533665 1991 L03-b-91 

523642 2004 L03-b-06 533614 2002 L03-b-06 533666 2007 L03-b-09 

523643 1997 L03-b-97 533615 2002 L03-b-06 533667 2007 L03-b-09 

523644 2001 L03-b-06 533616 1998 L03-b-06 533670 1998 L03-b-06 
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523645 2002 L03-b-06 533617 1998 L03-b-06 533671 1997 L03-b-97 

523646 2005 L03-b-06 533620 2006 L03-b-06 533672 1989 L03-b-91 

523647 2002 L03-b-06 533621 2007 L03-b-06 633673 1997 L03-b-97 

523650 2005 L03-b-06 533622 2006 L03-b-06 533674 1991 L03-b-91 

523651 2006 L03-b-06 533623 2006 L03-b-06 533675 1991 L03-b-91 

523652 2006 L03-b-06 533624 2001 L03-b-06 533676 2006 L03-b-06 

523653 1993 L03-b-97 533625 2001 L03-b-06 533677 2007 L03-b-09 

523654 2002 L03-b-06 533626 2001 L03-b-06    

523655 2001 L03-b-06 533627 2002 L03-b-06    

 

The mesh data provided by the Geographical Survey Institute has a different coordinate 

system for each map version, but all of have been converted to the UTM coordinate system. 

 

2.2.2. Extraction of training/validation data 

An image of 32 × 32, 64 × 64, 128 × 128 pixels was extracted from the map image 

centering on the barycentric coordinates of each mesh of the land use subdivision mesh data, 

and used as training data and verification data. Since the map image is geometrically corrected 

to a spatial resolution of 2 m, 64 x 64 pixels is equivalent to 128 m x 128 m, which is almost 

the same as the mesh size of the land use subdivision mesh data. Table 2.2 shows the 

correspondence between the land use type of land use subdivision mesh data and the adopted 

classification class.  

Table 2.2 Correspondence between land use type and classification class of land use 

subdivision mesh data 

Code Class 1991, 1997 2006 2009 

1 Paddy Rice field 

2 Field Other agricultural land 

3 Forest Forest 

- - Wasteland 

4 Urban Building site 

- - 
Highway traffic site 

Road 

- - Railroad 

- - Other sites 

5 River and lake Rivers and lakes 

- - Beach 

- - Sea of water 

- - Golf course 

- - - Out of analysis range 

 

The classification classes were set to 5 classes: Paddy, Field (other agricultural field), 

Forest, Urban, River and lake, considering the number of sample data that can be acquired and 

whether or not they can be distinguished from the map image. As for the data for verification 
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of classification accuracy, 500 sets for each of the above classes, a total of 2,500 sets, were 

randomly extracted from all areas of the map images "Nagoya" and "Gifu". As for the training 

data, 30,000 sets for each class were randomly selected so that they would not overlap with the 

verification data, for a total of 150,000 sets. At the time of learning, in order to verify the effect 

of the number of training data, 500 to 20,000 sets were randomly extracted from 30,000 sets 

and used as training data. (Section 2.3, 2.4) In addition, in order to verify the appropriate 

number of samples in each class, we prepared a separate training data set with the total number 

of samples in the five classes set at 50,000. For "rivers and lakes" and "other agricultural land" 

with 64 x 64 pixels, 500 samples were visually selected for each to verify the effect of the 

learning data extraction method. 

 

2.2.3 Decsription of CNN  

A CNN with the structure shown in Figure 2.1 was constructed using Python 3.7.9, Keras 

2.3.1 and Tensorflow 1.14.0. CNNs that convolve images are considered to be more suitable 

for classifying map images because they are easier to detect spatial features of images than 

other technologies that use images as one dimension. 

 

Figure 2.1 CNN structure. Conv2D: Convolutional layer, MaxPooling: Pooling layer, 

Dropout: Dropout, Flatten:, Dense: Fully connected layer, relu, softmax: Activation function. 

Adadelta was used as the optimization algorithm. In the input layer, the pixel value of 

RGB image normalized to 0 to 1 was input. In the final layer, the Softmax function with the 

output value of each class set to 0 to 1 was used, and the Categoral Cross Entropy error function 

was used as the loss function. The Softmax function is an activation function that sets the total 

value of all outputs to 1.0, and determines that the class with the highest output value is the 

classification class of the image. ReLU (Rectified Linear Unit) was used as the activation 

(2.1) 
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function of the intermediate layer. If the t - th true value of class i is 𝑦𝑖
𝑡and the corresponding 

output value is 𝑦̂𝑖
𝑡, the loss function L is expressed by the following equation.  

𝐿 = − ∑ ∑ 𝑦𝑖
𝑡

𝑀

𝑖

log 𝑦̂𝑖
𝑡

𝑁

𝑡

 

Here, 𝑁 is the total number of training data (or verification data), and 𝑀 is the number of 

classification classes. CNN learning is optimized to minimize 𝐿. The hyperparameters were 

adjusted manually. 

 

2.2.4. Classification accuracy assessment 

During training, 10% of the training data is randomly extracted, and the correct answer 

rate (Val_accuracy) and loss function L (Val loss) during training as verification data, and in 

the remaining 90% of the training data is monitored together with the correct answer rate 

(accuracy) and loss function L (loss).  

Val_Accuracy evaluated here uses Validation data in which samples are randomly 

extracted for each learning, so it is difficult to make a quantitative comparison with other 

learning results. Therefore, we decided to save the CNN coefficient estimated every 5 times of 

learning (epoch) and perform quantitative evaluation using the above-mentioned 2,500 sets of 

verification data. The classification accuracy evaluation is based on the error discrimination 

matrix (Error Matrix, Confution Matrix), and the overall accuracy (OA; same as the above-

mentioned accuracy rate), the Kappa coefficient (Kappa), and the accuracy of each class (PA; 

Producer's Accuracy, UA; User's Accuracy) [36] was used. 

The accuracy of land use data such as national land numerical information and detailed 

numerical information actually used in Japan has not been discussed well, but the report by 

Hanashima [32] suggests that it is about 75% in a bad place. In this study, 85% of OA is adopted 

as the standard for practical use in consideration of the standard of Thomlinson et al. [34]. 

 

2.3. Results and discussion 

2.3.1. Image size 

Figure 2.2 shows the classification accuracy when the number of learning data in each 

class is 10,000 and the input image is 32 × 32, 64 × 64, 128 × 128 pixels. The coefficients were 

saved every 5 learning times, and the classification accuracy was evaluated using the 

verification data.  
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(a) 32 x 32 pixels (10,000 learning data) 

 

(b) 64 x 64 pixels (10,000 learning data) 

 

(c) 128 x 128 pixels (10,000 learning data) 
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Figure 2.2 Relationship between input image size, number of learnings and classification 

accuracy 

Since Adadelta, which is a stochastic gradient descent method, is used for optimization, 

the learning results are slightly different each time. Therefore, learning was performed 3 to 5 

times, and the average value is shown in the figure. The error bars are the maximum and 

minimum values. With 32 × 32 pixels, when the number of learning times was 10, the average 

value of OA was 77.6% and the maximum value of OA was 78.2%, showing the best accuracy. 

The accuracy tended to decrease gradually as the number of learnings increased. With 64 × 64 

pixels, when the number of learnings was 5, the average value of OA was 84.9% and the 

maximum value of OA was 85.8%, showing the best accuracy. The result was that the accuracy 

was the best when the number of learnings was 5 and the accuracy was the worst when the 

number of learnings was 10. It seems that the average value decreased because one of the 

results showed very poor accuracy of OA = 82.0% for 10 learning times. Looking at the 

maximum value, there was not much change after the 10th learning, and the average value 

tended to gradually decrease. With 128 × 128 pixels, the average value of OA was 84.6% when 

the number of learnings was 10, which was the best accuracy, but the maximum value of OA 

was 85.8% when the number of learnings was 35 times. The change due to the number of 

learnings was small compared to the results of other image sizes, but the average value tended 

to decrease slightly as the number of learnings increased. 

Figure 2.3 shows the relationship between the classification accuracy and the input image 

size in the number of learnings, which shows the most accurate average value for each input 

image size. 

 

Figure 2.3 Relationship between input image size and classification accuracy. 
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Although the accuracy is greatly improved with 32 × 32 pixels, there is not much 

difference in classification accuracy between 64 × 64 pixels and 128 × 128 pixels, but 64 × 64 

pixels is slightly higher accuracy. It is considered that the input image size is optimal depending 

on the size and distribution of map symbols. With 32 x 32 pixels, important map symbols may 

not be included in one input image, which is considered to have reduced accuracy. 

On the other hand, if the input image is large, it is considered that the map image of the 

class other than the land use of the national land numerical information, which is the true value, 

is mixed in the input image and the accuracy is lowered. To solve this problem, in addition to 

increasing the number of training samples and performing reinforcement learning, it is 

conceivable to use a method such as fuzzy classification [37] that outputs the classification 

judgment by the area ratio of the target section. 

In this study, we will use 64 × 64 pixels, which show the best accuracy. 

 

2.3.2. Number of learning 

Figure 2.4 shows the relationship between the number of trainings and the classification 

accuracy when the number of training data is 500 and 30,000 with 64 × 64 pixels as the input 

image. Considering this together with Figure 2.2 (b), where the number of training data is 

10,000, the number of trainings at which the highest accuracy occurs is approximately 5 to 10 

times, depending on the number of data, and thereafter, as the number of trainings increases, 

the number of trainings increases. It can be seen that the accuracy is gradually decreasing. 

 

 

 

(a) Number of learning data for each class 500 
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(b) Number of learning data for each class 30,000 

Figure 2.4 Relationship between the number of learnings and classification accuracy. 

 

Figure 2.5 shows the correct answer rate (Accuracy) and loss function (Loss) based on 

the learning data during training, and the correct answer rate (Val_Accuracy) and loss function 

(Val_Loss) based on the validation data when the number of training data in each class is 

10,000. 

 

 

 

 

 

(a) Learning data 
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(b) Validation data 

Figure 2.5 Relationship between the number of learnings and the correct answer 

rate/loss function 

Similarly, the average value of the learning results of multiple times is shown, and the 

error bars are the maximum and minimum values. The correct answer rate based on the learning 

data reaches almost 100% when the number of learnings is about 20 times, and the loss function 

also reaches almost 0 when the number of learnings is 10 times (see Figure 2.5(a)). If it matches 

the training data excessively, the possibility of so-called "overfitting" is suggested. In the 

evaluation using the validation data shown in Figure 2.5 (b), the accuracy rate (Val_Accuracy) 

was almost 90% after 5 learnings, showing almost no change. On the other hand, the loss 

function (Val_Loss) gradually increases after the number of learnings is 7, and it can be seen 

that the estimation error increases. The reason why the loss function deteriorates even though 

the correct answer rate does not change is that the class showing the maximum value in the 

output value of the final layer does not change, but the difference from the others is considered 

to become small. Therefore, the correct answer rate and classification accuracy did not decrease 

significantly up to the number of learnings of 50, but if the number of learnings was further 

increased, the classes showing the maximum value would be replaced, and there is a possibility 

that the number would decrease sharply. This increase in the loss function is considered to be 

the cause of the decrease in accuracy as the number of learnings seen in Fig. 2.2 and Fig. 2.4 

increases. From the above, it is considered appropriate to study about 5 to10 times within the 

scope of this study.  
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2.3.3. Learning data extraction method 

The problem of multiple classification classes coexisting within the object of image 

classification has long been a problem. When one pixel is classified, a pixel in which multiple 

classification classes coexist is called a mixel, and a method for separating the classes in the 

mixel has been studied [38] [39]. A similar problem arises in this study, where the classification 

target is an image with N × N pixels. There may be multiple land uses in each mesh of the 

100m mesh national land numerical information set as the true value in this study, or incorrect 

land use may be assigned. Therefore, in this study, we compared and considered the 

classification accuracy when sample extraction was performed arbitrarily by the following 

visual interpretation. 

As shown in Fig. 2.6, in "river areas and lakes", there are cases where the image to be 

classified is almost the water surface, and there are cases where the river passes through the 

image but there is almost no water surface.  

We compared the classification accuracy when 500 samples of images with a water 

surface of 40% or more were selected and used as training data, and when 500 samples were 

randomly extracted and used as training data. All land uses other than rivers and lakes were 

randomly extracted from 500 samples and used as learning data. 

The average classification accuracy was 71.7% for OA and 65.1% for Kappa coefficient 

when only images with a water surface of 40% or more were used as training data, but 73.2% 

for OA when all random training data were acquired., Kappa coefficient averaged 66.5%, 

showing better accuracy when learning data was acquired at random. 
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(a) Water surface 40% or more  (b) Water surface less than 40% 

Figure 2.6 Example of input image of "River area and lake" class. 

 

On the other hand, it cannot be said that the use of satellite imagery for land use data was 

also misleading, but that "other agricultural lands" are relatively larger than the main residential 

areas, paddy field and wetlands. 

            

(a) Correctly agricultural land                   (b) Not agricultural land 

Figure 2.7 Example of input image for "Other agricultural land" class. 
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Figure 2.7 (a) is an example of being correctly classified as "other agricultural land" such 

as fields/pastures, orchards, wastelands, and bamboo grove, and Figure 2.7 (b) is classified as 

other agricultural land in the national land numerical information. However, it is an example 

that can be read as other than that on the map image. Similar to rivers and lakes, 500 samples 

that can be visually read as "other agricultural land" were extracted and classified, and the 

average was 74.4% for OA and 68.0% for Kappa coefficient. The accuracy was improved 

compared to the result using the training data. 

The following are possible causes for this. If only 40% or more of the water surface is 

used as the learning data, the classification accuracy will decrease because the rivers and lakes 

with less than 40% of the water surface will be learned so that they will not be classified 

correctly. On the other hand, if the learning data is created by excluding the samples that are 

not agricultural land, the learning noise of the agricultural land classification that has existed 

so far is reduced, and it is considered that the classification accuracy of the correct agricultural 

land is improved. 

In this way, the method of extracting learning data affects the classification accuracy. As 

in the case of other agricultural land studies, it is expected that the classification accuracy will 

be improved by visually confirming the map symbols and extracting the learning data. On the 

other hand, if only samples with specific characteristics are extracted, such as the results of 

studies on rivers and lakes, the classification accuracy may decrease. Note that even in other 

agricultural lands, for example, if only the areas where the map symbols of fields and pastures 

are shown are extracted, other map symbols such as orchards, bamboo grove, and whale fields 

may not be correctly classified. 
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2.3.4. Number of training samples 

Figure 2.8 shows the change in classification accuracy when the number of training 

data in each class is 500 to 30,000 samples.  

 

Figure 2.8 Relationship between the number of learning samples in each class and 

classification accuracy 

 

With 1,000 samples, the average accuracy was 77.3% in OA and 71.7% in Kappa, which 

did not reach the practical classification accuracy, but when 10,000 samples, the average 

accuracy was 84.9% in OA and 81.1% in Kappa, which almost reaches a practical level. At 

15,000 samples, the average accuracy was 86.0% in OA, the lowest accuracy was 85.0%, and 

even the lowest value shows a practical level of OA. 

When the number of training samples is further increased, the improvement in accuracy 

slows down to 86.8% on average for OA when the number of samples is 20,000 and 87.2% on 

average for OA when the number of samples is 30,000. Table 2.3 shows an example of the 

classification results with 10,000 samples. 

In this example, the OA is 85.5%, and the classification accuracy of each class is more 

than 70% for both PA and UA. It has been shown that when the number of training samples in 

each class is the same, it is possible to obtain an almost practical level of accuracy by sampling 

10,000 or more in each class. 
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Table 2.3 Example of error discrimination matrix when the number of training samples 

in each class is 10,000. Pdy: paddy, Fld: field, Frst: forest, Ubn: urban, Riv: river and lake. 

 
Referenced 

Sum UA (%) 
PDY FLD FRST UBN RIV 

C
la

ss
if

ie
d
 

PDY 394 30 9 24 11 468 84.2 

FLD 55 422 29 45 21 572 73.8 

FRST 14 7 454 2 5 482 94.2 

UBN 27 33 2 422 10 494 85.4 

RIV 10 8 6 7 453 484 93.6 

Sum 500 500 500 500 500 2500  

PA (%) 78.8 84.4 90.8 84.4 90.6   

OA = 85.8%, Kappa=82.3% 

On the other hand, in the optimization problem, it is well known that when the number 

of training samples is biased, the classification result is biased to the class with a large number 

of training samples, and the classification accuracy decreases. Figure 2.9 shows the number of 

learning samples for rice fields 7,844, the number of other agricultural land samples 1,559, the 

number of forest samples 29,737, and the number of building land samples according to the 

number of land use meshes included in "Nagoya" and "Gifu". The classification accuracy is 

shown when the number of samples in each class is 10,000, and the total number of samples is 

50,000. As in Fig. 2.2, it can be seen that the accuracy is the best when the number of learnings 

is 5, and the accuracy does not improve even if the number of learnings is increased further. 

The accuracy was 61.2% on average for OA and 51.5% on average for Kappa, showing a lower 

classification accuracy than when the sample size of each class was unified to 500. 

 

Figure 2.9 Relationship between the number of learnings and classification accuracy.  
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Table 2.4 shows an example of the error discrimination matrix with 5 learnings. 

Compared to Table 2.3, the PA of forests and rice fields with a large number of learning 

samples shows high values, while the cases where other classes are misclassified as forests and 

rice fields increase, so each UA shows a low value. 

Table 2.4 Example of error discrimination matrix when the number of training 

samples in each class is not unified. Pdy: paddy, Fld: field, Frst: forest, Ubn: urban, Riv: river 

and lake. 

 
Referenced 

Sum UA (%) 
Pdy Fld Frst Ubn Riv 

C
la

ss
if

ie
d

 Pdy 429 90 5 45 41 610 70.3 

Fld 11 175 3 14 12 215 81.4 

Frst 46 166 491 19 83 805 61.0 

Ubn 14 69 1 422 364 870 48.5 

Riv 0 0 0 0 0 0 0.0 

Sum 500 500 500 500 500 2500  

PA (%) 85.8 35.0 98.2 84.4 0.0   

OA = 60.7%, Kappa=50.9% 

 

For other agricultural lands with a small number of learning samples, only 215 meshes 

out of 2,500 meshes were discriminated as other agricultural lands, and the UA showed a 

relatively high value. However, meshes, which are true values and other agricultural land, are 

often misclassified as rice fields and forests, and PA showed a low value of 35.0%. The number 

of learning samples for rivers and lakes was 4,036, which is not extremely small compared to 

the number of samples for other agricultural lands, but the result was that even one mesh was 

not classified. Although the detailed values are different, the accuracy of rivers and lakes was 

low in other examples as well. As shown in Fig. 2.6, the cause of this is that rivers and lakes 

have very different forms: lakes and large rivers where most of the mesh is water surface, and 

small and medium-sized rivers where the ratio of water surface in the mesh is low. This is 

probably because there are two land use classes. Conversely, if the number of learning samples 

is sufficient and the number of samples in each class is well-balanced, land use with different 

map symbols such as paddy fields, fields/pastures, and tea fields will be aggregated into one 

class.  
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2.3.5. Ensemble average of learning results 

As mentioned above, optimization by the stochastic gradient descent method, which is 

usually used in deep learning, randomly produces slightly different learning results even if the 

same data is used. The accuracy is improved by integrating these slightly different learning 

results. In general, if the output value of class i in a mesh t is 𝑦̂𝑖
𝑡 (i = 1⋯n), the classification 

class of that mesh is shown by Equation 2.2. 

 arg max
𝑖∈{1,𝑀}

𝑦̂𝑖
𝑡
 (2.2) 

Here, when there are n learning results and the output value of the j the learning result 

class i is indicated by 𝑦̂𝑖,𝑗
𝑡

 (j = 1⋯n), 

Here, the new methods, a), b), c) are proposed by following: 

i) A method in which the class showing the maximum value out of n learning results is 

used as the classification class of mesh t (argmax) 

 arg max
𝑖∈{1,𝑀}

{ max
𝑗∈{1,𝑛}

𝑦̂𝑖,𝑗
𝑡 } (2.3) 

ii) A method that sums the output values of n learning results and sets the class showing 

the maximum of the total output values as the classification class of mesh t. (Weighted Average 

Voting) 

 arg max
𝑖∈{1,𝑀}

{∑ 𝑦̂𝑖,𝑗
𝑡𝑛

𝑗=1 } (2.4) 

iii) A method of the classification classes determined by each of the n learning results, 

the mode is the classification class of mesh t. (Max voting) 

 mode
𝑗∈{1,𝑛}

{arg max
𝑖∈{1,𝑀}

𝑦̂𝑖,𝑗
𝑡 } (2.5) 

 

Figure 2.10 shows the relationship between the number of integrated learning results 

and the classification accuracy when the number of learning samples in each class is 10,000. 
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Figure 2.10 Relationship between the number of integrated learning results and 

classification accuracy. 

 

It was shown that the OA, which was initially 84%, improved to 86% or more by 

integrating three or more learning results. There was no clear difference in which of the three 

integration methods was superior. 

 

2.3.6. Spatial evaluation 

Spatial evaluation of land use classification results.  

As an example, where each class is arranged in a well-balanced manner and there are few 

areas not subject to classification such as "other land" and "seawater area", the secondary mesh 

code 533602 (1:25,000 topographic map named "Nagahama”) and, as an example of not 

extracting CNN training data, secondary mesh code 523731 (map name “Okazaki”; published 

in 2002) was trained with 30,000 training samples for each class. Figure 2.11 shows the result 

of ensemble average of the learning results. 

Here, we have shosen research area which, Okazaki and Nagahama by this reason.  

・There is a large water area. 

・All land use is well-balanced. 

Reasons for Okazaki map is selected from the map (mesh number 5237) other than the 

maps for which the training data was acquired (mesh number 5336, 5236). 
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(a) Nagahama 

  

(b) Okazaki 

Figure 2.11 Classification results by deep learning. Sample size 30,000. 

Integration of 5 classification results by Max Voting method. 

 

Figures 2.12 and 2.13 show the 2006 version of the national land numerical information 

land use subdivision mesh (L03-b-06) and the numerical map 25000 (map image) in the same 

area. The land use types "wasteland", "transport", and "other" that exist in the land use 

subdivision mesh data do not exist in the deep learning classification class, in Figure 2.11  
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(a) Nagahama 

 

 

(b) Okazaki 

 

Figure 2.12 National Land Numerical Information Land Use Subdivision Mesh Data. 
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(a) Nagahama 

 

 

(b) Okazaki 

 

Figure 2.13 Numerical map 25000 (map image). 

 

Although it is classified as another land use, it seems that it is classified very accurately 

as a whole. Especially in river areas and lakes, both lakes and river areas existing in the area 

are well classified. Tables 2.5 and 2.6 show the error discrimination matrix of the classification 
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results in this area. One secondary mesh, that the land use subdivision mesh (100 m mesh) in 

one map of the 1: 25,000 topographic map is 100 × 100 10,000 mesh. 

 

Table 2.5 Error discrimination matrix in secondary mesh code 533602 

  Referenced 
Sum UA(%) 

  PDY FLD FRST UBN RIV 

C
la

ss
if

ie
d

 

PDY 3418 10 76 104 9 3617 94.5 

FLD 144 132 156 38 18 488 27.0 

FRST 34 4 2186 6 0 2230 98.0 

UBN 127 8 38 1637 8 1818 90.0 

RIV 40 0 24 2 1248 1314 95.0 

Sum 3763 154 2480 1787 1283 9467  

PA(%) 90.8 85.7 88.1 91.6 97.3   

 

OA = 91.1%, Kappa=87.8% 

 

Table 2.6 Error discrimination matrix in secondary mesh code 523731 

  Referenced 

Sum UA(%) 
  PDY FLD FRST UBN RIV 

C
la

ss
if

ie
d

 

PDY 763 73 26 81 25 968 78.8 

FLD 15 228 3 15 3 264 86.4 

FRST 170 283 2621 71 41 3186 82.3 

UBN 84 135 14 3709 30 3972 93.4 

RIV 10 32 5 26 482 555 86.8 

Sum 1042 751 2669 3902 581 8945  

PA(%) 73.2 30.4 98.2 95.1 83.0   

OA = 87.2%, Kappa=81.3% 

 

About 95% of "Nagahama (533602)" and about 90% of "Okazaki (523731)" are the land 

use types corresponding to rice fields, other agricultural land, forests, building land, river land 

and lakes. In "Nagahama", OA is 91.1% and Kappa is 87.8%, which are very accurate 

classifications. Even in "Okazaki", the OA is 87.2% and the Kappa coefficient is 81.3%, which 

is slightly inferior to Nagahama, but it can be said that it has reached a practical level. 

Regarding the classification accuracy of each class, rivers and lakes showed good classification 
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accuracy in both "Nagahama" where a wide range of lakes exist and "Okazaki" where there are 

no large lakes. As shown in Fig. 2.6, it is considered that good accuracy can be shown by 

collecting learning data with two types of features in a well-balanced manner.  

On the other hand, in other agricultural lands, there was a tendency that UA was low in 

"Nagahama" and PA was low in "Okazaki" compared to other classes. Since other agricultural 

lands are classes that include various map symbols, the classification accuracy is considered to 

be inferior to those of other classes. In addition, PA is high in "Nagahama" included in the area 

where the training data was acquired, and it is considered that the meshes of other agricultural 

land are classified almost accurately by the true value. Also, in "Okazaki", since a specific map 

symbol contained in other agricultural land is hardly included in the learning data, it is not 

possible to accurately classify the specific map symbol, and the PA of other agricultural land 

is low. 

The Atsumi Peninsula to Mikawa region of Aichi Prefecture, which includes "Okazaki," 

is a production center for oranges, and there are more map symbols for "orchards" than "Gifu" 

and "Nagoya," which may be a factor in misclassification. As mentioned above, it is necessary 

to be careful about the acquisition of learning data of the "other agricultural land" class in which 

multiple map symbols are mixed, but other than that, a topographic map different from the area 

where the learning data was acquired is sufficient. Practical level classification results were 

obtained. 

 

2.4. Summary  

In this chapter, we aimed to put into practical use a method for classifying existing maps 

including map symbols by using deep learning. Within the scope of this study, which is to 

create a land use map equivalent to about 100 m mesh in five classification classes for a map 

image equivalent to 1:25,000, the overall accuracy (OA) is constantly 85% or more. We were 

able to propose a practical level land use classification method that can be shown. Even in the 

application result to the area different from the acquisition area of the learning data, the 

accuracy of 85% or more can be shown by OA, the applicability to 1:25,000 map images all 

over Japan, and the update of land use data. The findings obtained in the details of the practical 

classification procedure are as follows. 

✓ In the applicable range of this method, learning using 64 × 64 pixels, which 

corresponds to a mesh of about 100 m, is suitable. If the size is increased, the 

information obtained will increase, but the misjudgment by the mixer will increase. 
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✓ The optimal number of learning times is about 5 times. When learning 10 times or 

more, the value of the loss function increases significantly, and the effect of 

overfitting can be seen.  

✓ There are some meshes classified into different land use classes in the land use 

subdivision mesh data of the national land numerical information. In particular, other 

agricultural lands are often misclassified as rice fields and wetlands, so care must be 

taken when using them as the true value of land use classification.  

✓ Other agricultural land is a land use class that includes a large number of map 

symbols, and it is necessary to extract each map symbol in a well-balanced manner 

and create learning data. 

✓ The number of learning samples should be the same for each class to some extent. If 

the number of training samples in each class is not balanced, the classification 

accuracy will decrease even if the total number of samples is large. 

✓ In order to show the practical level of classification accuracy, it seems that the 

number of samples in one class needs to be 10,000 or more.  

✓ There was no significant difference in the results of the three ensemble average 

methods, and the accuracy improved regardless of which method was used. 

 

In this study, CNN was trained using the training data acquired in the areas of Nagoya 

(primary mesh number 5236) and Gifu (primary mesh number 5336) of the numerical map 

1:25000. The learned CNN is applied to another area (secondary mesh number 523731) and it 

is verified that sufficient classification accuracy can be obtained, but the influence of regional 

land use and map symbol is also suggested. 

In the future, it will be necessary to apply it to map images nationwide and study regional 

bias and bias of the types of map symbols included in the learning data to further improve 

accuracy. 
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CHAPTER 3. FLOOD SIMULATION WITH OLD AND CURRENT 

TOPOGRAPHICAL MAPS 

3.1. Introduction 

3.1.1. Background 

A stone monument about a warning for residence in the tsunami-damaged area became 

a popular topic after the tsunami hazard by the Great East Japan Earthquake, 11th March of 

2011. It is also on the news that old location name at the landslide-damaged area in Yagi, 

Asaminami district, Hiroshima is evidence of frequent land-slides as “八木蛇落悪谷” the 20th 

August of 2014. It is essential to know the past disaster risks in the residential area for natural 

disaster mitigation. 

Flooding, it being flash, due to rising groundwater, coastal, and due to the opening or 

breaking of a dam or reservoir is a life-threatening natural hazard all over the world; too much 

rainfall within a short period of time and consequent high river discharge results in floods 

which subsequently creates significant infrastructure problems for areas and a substantial 

economic deficits in production as well as extensive damages to existing property, goods and 

even loss of human lives along with siltation of reservoirs and hence limit the capacity of 

existing dams to control floods. Flood hazards management involves prediction, preparation, 

prevention, mitigation, and post-disaster management activities, hence inspiring various 

researches from evacuation measures, hydrology and floodplain analysis, flood risk assessment 

creation of terrain models for floodplain mapping, the stimulation of the impacts of flood 

retarding structures on streamflow and many more.  

In former times, the flatland around the Kiso-River system, included Gifu City, was 

frequently damaged by inundation/flood after heavy rainfall. Large paddy fields worked as a 

flood control reservoir. The residential area was constructed at relatively higher and well-

drained low land and protected by banks so-called “Waju-Tei.” Currently, former paddy fields 

change to the new residential area. On the other hand, there are many mitigation factors of 

inundation risks, such as the construction of drainage pumps and channels. 
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3.1.2. Research object 

The object of this chapter is an experiment to evaluate the flood risks from the past to 

present using the past and present topographical maps in Gifu City. For that we shall try to 

identify the areas at risk of flooding in long term, to analyze the urban expansions are relevant 

to current and future flood risks, to outline policies to be applied in such areas in order to 

decrease and manage flood risks and development of an information system for decision-

makers for residents of that risky places. 

 

3.1.3. Research flow 

In order to reach the purpose of the study, the following flow of research has to be 

undertaken by Figure 3.1, this research will be run on GIS analysis and hydrological analysis. 

GIS applications are in land use mapping, digitizing several layers and defining is paddy field 

can decrease flood risk or not, hydrological data is in define total inundation water volume of 

Nagara river and hydrograph for to simulate flood inundation.  

Flood risk evaluation with GIS analysis will be based on land use data of the old and 

current time by GIS data processing with total inundation water volume from hydrological data 

processing.   

 

Figure 3.1 Research flow 
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Flood risk evaluation by flood simulation model iRIC will be based on hydrograph for 

flood simulation from hydrological data processing with DEM data of the old and current time 

by GIS data processing. 

 

3.2 Datasets and data processing  

3.2.1. Description of GIS data  

a) Map data  

In modern mapping, a topographic map is a type of map characterized by large-scale 

detail and quantitative representation of relief, using contour lines but, historically, using a 

variety of methods. Traditional definitions require a topographic map to show both natural and 

man-made features. The Geographical Survey Institute of Japan is responsible for the base 

mapping of Japan. Standard map scales are 1:25,000, 1:50,000, 1:200,000 and 1:500,000 [40] 

In this chapter, those topographic map data and their sources are using for spatial 

analyze of study area below in Table 3.1 and Figure 3.2.  

Table 3.1 List of the topographical map data 

Product Source Scale Surveyed 

1891 
Imperial Japanese Land Survey  

(大日本帝国陸地測量部) 
1/20,000 1891 

1920 
Imperial Japanese Land Survey  

(大日本帝国陸地測量部) 
1/25,000 1920 

1947 
Geographical Survey Institute of Japan  

(国土地理院) 
1/25,000 1947 

1970 
Geographical Survey Institute of Japan  

(国土地理院) 
1/25,000 1970 

1992 
Geographical Survey Institute of Japan  

(国土地理院) 
1/25,000 

Northern side in 1994 

Gifu eastern side in 1992 

1997  
Geospatial Information Authority of 

Japan (国土地理院) 

1/25,000 

Digital 

Map 

Gifu southern side in 2000 

Northern side in 2000 

Gifu eastern in 1997 
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Figure 3.2 Topographical map data 

 

b) DEM data 

A digital elevation model (DEM) is a digital file consisting of terrain elevations for 

ground positions at the regularly spaced horizontal interval. It represents only height 

information without any further definition about the surface [41]. 

For this study, a DEM data used for the simulation model to evaluate current and former 

time flood risk. High-resolution DEM data (5m) had published by Geological Survey Institute, 

Japan acquired by airborne LIDAR system and included the shape of flood protection banks, 

as shown in Figure 3.3.  

But former time, such high technologies was not inventing usually in 1891, so created 

DEM by digitized objects which including information with elevation from old topographical 

maps 1981 by GIS software.  
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Figure 3.3 DEM image, current time 

 

c) Land use data 

Land use data is used to evaluate of inundation depth by land use change in the long 

term. Current time`s vegetation and land use map were downloadable from the Natural 

Environment GIS database, published by Biodiversity center of Japan, Ministry of the 

Environment.[42]. This map is developed with the surveying from 1993–2003.  

The land use categories identified were: bare soil, cultivated area, forest, garden, 

grassland, paddy field, urbanized area, water bodies, etc. The attributes used for each of the 

land use categories are shown in Figure 3.4 and Figure 3.5. 

 

Figure 3.4 Land use data, 2004 
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Figure 3.5 Attribute data of survey for land use around Gifu city 

 

3.2.2. GIS data processing 

A Geographical Information System (GIS), was used in several aspects of this study. 

First, it was used to overlay maps for spatially represented old and current maps. Second, to 

digitize several layers for define land usage and assume their areas, and finally to create DEM 

from the old topographical map and develop created DEM with other elevation objects such 

flood protecting bank (levee), river and paddy field area for analyzing flood simulation model. 

I describe each of these activities below. 

Georeferencing 

A spatial reference is a series of parameters that define the coordinate system and other 

spatial properties for each dataset in the geodatabase. It is typical that all datasets for the same 

area use a standard spatial reference definition.  

One of the defining features of GIS is its ability to combine spatially referenced data. 

An occurring frequency issue is the need to combine spatial data from different sources that 

use different spatial reference system. Scanned map datasets don’t typically contain spatial 

reference information. To use raster dataset in conjunction with spatial data, you may need to 

align or georeferenced them to a map coordinate system. A map coordinate system is defined 

using map projection. (Map projection - a method by which the curved surface of the earth is 

portrayed on a flat surface) Coordinate systems enable geographic datasets to use common 

locations for integration. A coordinate system is a reference system used to represent the 
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locations of geographic features, imagery, and observations, such as the Global Positioning 

System (GPS) locations, within a common geographic framework.  

In this study georeferenced as having the best potential to define mitigation site using 

6 different year`s topographical maps such as below: 

 

Digital map (1997) is containing spatial reference information (coordinate grid, 

geodesy points…etc.,) that should use by Ground Control points for georeferencing. But on the 

other scanned map datasets did not contain the same spatial reference information in the same 

place as a digital map 1997. Thus, spatial reference information is using for general grounds 

points in raster dataset for georeferencing. But mostly natural and social objectives changed in 

Gifu city during the past 100 years, those changes are made troubles to georeferenced the map 

1891. So, we used other maps such as 1920, 1947, 1970, 1992 years for to overlay 1997 and 

1891. 

Data representation    

Digitizing is the process by which coordinates from a map, image, or other sources of 

data are converted into a digital format in a GIS [43]. This process becomes necessary when 

available data is gathered in formats that cannot be immediately integrated with other GIS data. 

For research, using ArcGIS 10.0 software on-screen digitizing method, which involves 

scanning a map or image into a computer, then traces the points, lines, and polygons. In this 

study had digitized layers of from topographical maps 1891. (Table 3.2, Figure 3.6.) 

Table 3.2 Digitized layers and their description 

Digitized layers  Layer type 

Description of layers 

Number  

of shape 
Characteristics 

Study area Polygon 1 23471545.39m2 

River Polygon 1 1731618.97m2 

Counter line Polyline 375 7.5-300m height 

Height points Point 116 98-417.6m height 

Flood  

protection  

One side Polyline 113 66457.4m 

Double-sided Polyline 47 46261.22m 



Evaluation of long-term changes of flood risk with deep learning and flood simulation 

47 

 

bank Rocky bank Polyline 12 79.63m 

Land use type 

Paddy field Polygon 21 4321409.36m2 

Urban Polygon 68 2698371.26m2 

Others  Polygon 176 15863656.45m2 

 

 

Figure 3.6 Digitized layers 

 

Creation Digital Elevation Model, 1891 

There are a number of interpolation methods in creating a DEM using contour line and 

height points digitized from the topographic map were illustrated and explained. In this 

research, I selected create DEM by following methods as figures. (Figures 3.7-3.10). 

a) Labeling contour map. Contour lines and height points are a familiar way of 

representing surfaces on maps and quickly interpret the shape of the terrain. 
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Figure 3.7 Labeling contour map 

 

A contour line connects a series of points of equal elevation, and it is used to illustrate 

relief on a map. For example, numerous contour lines that are too close with another contour 

line, usually at a hilly or mountainous terrain. When they far apart, they indicate a gentler slope. 

Also, the contour is a line through all cross points with equal height (or other) values.  

In order to output a more detailed DEM, need to digitize the contours with 7.5-300 m 

of height, elevation points are with 98-417.6m height. Alternatively, sample points can also be 

collected from a ground survey using GPS. The more sample points collected and used, the 

more accurate the output will be in representing the earth’s surface. 

b) Create a TIN model. A triangulated irregular network (TIN) surface can be generated 

from either surface source measurements or by converting another functional surface to a TIN 

surface from counter line, and points, which contain elevation information. A TIN is an 

efficient way of representing continuous surfaces as a series of linked triangles. Figure 3.11.  

In ArcGIS software, you can create TIN by the command “Create TIN’’ from 

ArcToolbox/3D Analyst Tools/TIN management.  
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Figure 3.8 TIN model 

 

c) Elevation points. For create DEM, we needed nodes from TIN into an output feature 

class and produces a 2D or 3D point feature class whose points are extracted from nodes of the 

input TIN. 

 

Figure 3.9 Elevation points 
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d) Create DEM (Interpolation using elevation points) Some of the most common 

interpolation methods include Inverse Distance Weighted (IDW) interpolation, Spline, & 

Kriging. These are all available in ArcGIS 10.0 software.  

IDW [44] is the method, which should be used when the set of points is dense enough 

to capture the extent of local surface variation needed for analysis. It estimates cell values by 

averaging the values of sample data points in the neighborhood of each processing cell. The 

closer a point is to the center of the cell being estimated, the more influence or weight it has in 

the averaging process. The higher the distance, the less influence the cell has on the output 

value. 

 

Figure 3.10 Created DEM, 1891 

 

DEM development for a flood simulation model 

Contour line and elevation points are containing in created DEM 1891 as figure 3.13. 

In real life, there have many natural and human-made things are locating on the earth. So, I 

need to develop that old DEM by levee, paddy fields and river valley too.  

For this section, I tried to overlay old DEM data with some objects containing height 

information by the following method as figures 3.11-3.15. In topographical map 1891 is 

contained levee, land use types such as paddy fields and urbanized area so on.  

a) Line data of flood protecting the bank. Here, I am digitized levee by polyline from 

topological map 1891. (Table 3.2, Figure 3.11)  
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Figure 3.11 Flood protecting bank 

 

b) Create a buffer zone 15m. In the old topographical map, the average width of the 

levee was 15m. So, in this step, I created a buffer zone by 15m from each bank of river. (Figure 

3.12) 

 

Figure 3.12 Created buffer zone by 15m 
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c) Set elevation 5m. In this step, the average height of levee was 5m in Meiji era. So, I 

edited attribute data of levee by 5 m height elevation. Then convert that data to raster data. 

(Figure 3.13)  

 

Figure 3.13 Convert to raster data containing elevation information 

d) Unit raster data. The last step is to unit two raster data, which created DEM data and 

converted raster data containing height information of levee. (Figure 3.14) 

 

Figure 3.14 DEM data with 5 m high flood protecting the bank 



Evaluation of long-term changes of flood risk with deep learning and flood simulation 

53 

 

By that method, other conditions (1 m deeper of the river, and 0.5m more in-depth of 

paddy fields) are converted their raster. In the result, DEM in 1891 is developed by the height 

information (Figure 3.15): Levee – 5m high, Paddy field – 0.5m deep and River–1 m deep 

 

Figure 3.15 Developed DEM by the height information 

 

Creation land use map 

Land use involves the management and modification of natural environment or 

wilderness into built environment such as settlements and semi-natural habitats such as arable 

fields, pastures, and managed woods. It also has been defined as “the arrangements, activities, 

and inputs people undertake in a certain land cover type to produce, change or maintain it”. 

[45]. In that section, I created land use maps of former times and current times by the current 

land use data and to digitized land use polygon data from the topographical map, 1981. You 

can see from figure 3.16 and figure 3.17, and land usage is changing to urbanized are too fast. 

Levee 

1 m deep river 

stream  
0.5 m deep paddy 

field  
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Figure 3.16 Land use map, 1891 

 

 

Figure 3.17 Land use map, current time 

 

3.2.3. Hydrological data 

This study is using a database [46] of the river discharge volume and water level data 

from Chusetsu-bridge point data of the Nagara river for hydrological analysis. Figure 3.18 

shows the web page of the Chusetsu observing station. 



Evaluation of long-term changes of flood risk with deep learning and flood simulation 

55 

 

 

 

Figure 3.18 Database based on webpage 

 

In this database, Nagara-bridge point is observing only water level data, but Chusetsu-

bridge point is observing both of water level data from 1976 and river discharge volume data 

from 2002. I used the Chusetsu point data to estimate probable hydrological discharge value. 

 

Hydrological data processing 

a) Total inundation water volume 

The total floodwater volume in this research is decided with the hydrograph of Basic 

High Water as follows: 

Basic high water is the maximum river discharge volume used in the flood control plan 

such as construction of dam and banks. The basic high water for the Nagara river (Chusetsu 

point), which is decided under the comprehensive judgment with hydrological statistics, 

historical flood and model simulation, is 8900m3/s as Figure 3.19. [47] 
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Figure 3.19 Hydrograph to decide peak discharge volume of basic high water level. 

 

I assumed as the flood situation that the whole of the discharge volume larger than 

2000m3/s overflow to flood plain. Total inundation water volume is estimated with the 

summation of the discharge volume larger than 2000m3/s in the hydrograph of the necessary 

high water. It is defined as 250,000,000 m3. 

b) Hydrograph for flood simulation 

The hydrographs for flood simulation by iRIC is decided with hydrological frequency 

analysis. First, the annual maximum hourly discharge data from 2002 to 2012 at Chusetsu point 

is evaluated as Table 3.3. 

Table 3.3 List of annual maximum peak discharge 

Year Annual maximum discharge (m3/s) 

2002 5334.34 

2003 2374.18 

2004 7666.87 

2005 2158.62 

2006 3309.36 

2007 2654.77 

2008 1409.24 

 
 250,000,000m

3
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2009 2423.78 

2010 2770.68 

2011 2661.89 

2012 2102.23 

The Weibul formula is applied as plotting position formula to this hydrological data as 

Table 3.4. 

Table 3.4 List of annual maximum discharge and probabilities by plotting position 

formula 

 Annual maximum discharge (m3/s) p (i) 

1 1409.24 0.08333 

2 2102.23 0.16667 

3 2158.62 0.25000 

4 2374.18 0.33333 

5 2423.78 0.41667 

6 2654.77 0.50000 

7 2661.89 0.58333 

8 2770.68 0.66667 

9 3309.36 0.75000 

10 5334.34 0.83333 

11 7666.87 0.91667 

 

The following 3 probability distribution functions are applied. [48] 

a) Gumbel distribution 
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where, x is valuable, a and c is the parameters. 

b) 2-parameter log-normal distribution 
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where parameter log-normal x, ζis the standard deviation of x. 

c) 3-parameter log-normal distribution 
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where c is a lower limit value, which is defined as Equation 3.4. 
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The fitting parameters of each distribution function are estimated with the graphical 

estimation method as follows:  

a) Gumbel distribution 

 a = 1942.3 

 c = 0.00058297 

b) 2-parameter log-normal distribution 

 ζ= 0.58885 

 λ = 7.9521 

c) 3-parameter log-normal distribution 

 c = 997.37 

 ζ = 0.90987 

 λ = 7.4375 

Also fitting accuracies of each distribution function are evaluated as follows (see Figures 

3.20 to 3.23): 

a) Gumbel distribution: SLSC = 0.02670 

b) 2-parameter log-normal distribution: SLSC=0.01803 

c) 3-parameter log-normal distribution: SLSC=0.01395 

3-paremeter log-normal distribution shows the best fitting accuracy. So, I use this 

distribution to estimate the probable discharge volume. 
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Figure 3.20 Probable plotting sheet of Gumbel distribution 

 

 

Figure 3.21 Probable plotting sheet of 2-parameter log-normal distribution. 
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Figure 3.22 Probable plotting sheet of 3-parameter log-normal distribution. 

 

The probability peak discharge of return period T=5 years is estimated as Q=3653m3/s 

with the above hydrological frequency analysis. 

For the flood simulation, the simulation hydrograph is decided as follows: for time 

series pattern, the observed hydrograph from 18 September 2012 to 20 September 2012. I cut 

the data to shorten the total simulation time as Figure 3.24. Finally, I get the hydrographs for 

flood simulation with iRIC, to edit the discharge volume to fit the peak discharge to Q=3653 

m3/s as Figure 3.25. 
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Figure 3.23 Original observed hydrograph 

 

 

Figure 3.24 Shorten hydrograph. 

only used this period to shorten 

the total simulation time 
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Figure 3.25 Final hydrograph. 

 

3.3. Flood risk evaluation by a flood simulation model 

3.3.1. General Introduction of iRIC flood model 

The essential operation and startup procedures of Nays2D Flood, which is compiled 

with iRIC, Nays2D Flood simulates two-dimensional plane river flow and riverbed 

deformation. It was developed by Professor Yasuyuki Shimizu of Hokkaido University.[49]. 

The International River Interface Cooperative (iRIC) software application provides an 

integrated river simulation environment. iRIC provides a comprehensive, unified environment 

in which data necessary for river analysis solvers (hereafter: solvers) can be compiled, rivers 

can be simulated, and analytical results can be visualized. 

In this chapter, iRIC Nays 2D Flood, an analytical solver for calculation of unsteady 

two-dimensional plane flow and riverbed deformation using boundary-fitted coordinates 

within general curvilinear coordinates is used to flood inundation simulation. iRIC Nays 2D 

Flood requires topographic data and calculation conditions to perform flooding calculation. 

The general operation for iRIC simulations is performed on the Windows system, with the 

following continuity and momentum equations of two-dimensional unsteady flow in the 

Cartesian co-ordinate system be expressed as [50]:  

  

Q=3653m3/s 
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Continuity equation: 
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Momentum equations: 
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where:  h = water depth  

 t = time 

 u = depth-averaged velocity components in x direction 

 v = depth-averaged velocity components in y direction 

 r = rainfall  

 g = gravity acceleration 

 H = water height 

 τx = bed shear stress in x direction 

 τy = bed shear stress in y direction 

 Cf = bed friction coefficient 

 νt = eddy viscosity 
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 ρ = water density 

 κ = Karman constant (= 0.4) 

 u* = shear velocity 

 n = Manning’s roughness coefficient 

 

3.3.2. Calibration 

Performance of the iRIC model was applied to simulate the Nagara river floodplain, 

which is flatland on the right side of the Nagara River, where is the area between the 

NagaraRiver, the Ijira River, the Toba River, and Mont. Dodogamine. The simulation has 

focused on the applicability of water flow and flood propagation by using flow conditions in 

the year of 2011. 

Computational conditions. Figure 3.29 shows the computational grids and the land-

cover category map. Grid cell size is about 40 x 40 m. The boundary condition of upper-side 

is non-discharge. The boundary conditions of the right and left, and lower-side are free to 

discharge. The test hydrograph is entered from the inflow point on the upper-side boundary, as 

shown in Figure 3.26. Red and blue areas are land-cover categories for the definition of 

roughness coefficients. Blue indicates river stream area, in where roughness coefficient n is 

defined as 0.01. The red area is another land cover type, in where n is defined as 0.03. Other 

computational conditions are shown in Table 3.5. 

 

Figure 3.26 Illustration of the computational grids and boundaries. 

Inflow point 

Left-side boundary 

Lower-side boundary 

Right-side boundary 

Upper-side boundary 
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Table 3.5 Other computational conditions 

Precipitation 0 mm/h 

Initial water depth 0 m 

Computational time step 0.01 sec 

Difference method CIP method 

 

3.4 Results and discussions 

Simulation cases 

The following cases are simulated in this study.  

a) Case 1 

Target date: Modern age 

Topography: 5-m DEM published by GSI 

b) Case 2 

Target date: Modern age 

Topography: 5-m DEM published by GSI with the artificial crevasse on the levee around the 

Nagara bridge.  

c) Case 3 

Target date: Meiji era 

Topography: 5-m DEM made from the old topographical map 

 

Case 1 

The simulated results with modern DEM without artificial crevasse on the levee are as follows.  

Figure 3.27 and Figure 3.28 are the simulated inundation depths before and after the overflow. 

The figures show the overflow occurs from nearby Kinka bridge, marked with a white circle 

in Figure 3.29 and figure 3.30 are the simulated inundation depth at 118,800sec and 128400 

sec, respectively. These figures are also clearly shown the overflow from nearby Kinka bridge. 

Figure 3.31 is the simulated maximum inundation depth during the simulation period in Case-

1. Those figures are show the inundation flood mainly damages to the south side of the Nagara 

River from near Kinka bridge. It seems that the modern river infrastructure developments and 

flood control systems have an excellent performance to prevent flood. 
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Figure 3.27 Simulated inundation depths at 

115,200 sec in Case 1. 

Figure 3.28 Simulated inundation depths at 

115,800 sec in Case 1. 

 

Figure 3.29 Simulated inundation depths at 

118,800 sec in Case 1. 

Figure 3.30 Simulated inundation depths at 

128,400 sec in Case 1. 

 

Figure 3.31 Simulated maximum inundation depths in Case 1. 

  

115,200 sec 

118800sec 
128400sec 

115,800 sec 
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Case 2 

The simulated results with modern DEM with artificial crevasse at the levee near Nagara 

bridge are as follows. This artificial crevasse was created for determining the risk of inundation 

in the case if levee shall break due to natural disasters such as disasters, floods and other 

accidents. Figure 3.32 shows DEM image around Nagara bridge and Figure 3.33 shows an 

artificial crevasse on the levee by a red circle, which edited levee height for evaluate inundation 

risk when levee will break.  

 

Figure 3.32 DEM image around the Nagara 

bridge 

 

Figure 3.33 Edited levee height for evaluate 

inundation risk with an artificial crevasse. 

 

Figure 3.34 – Figure 3.39 are showing the simulation inundation before and after depths 

the overflow from the artificial crevasse on the levee. The figures show the overflow occurs 

from the artificial crevasse, where is shown in the white circle of Figure 3.35. The timing of 

overflow occurrence is before the peak discharge time (show Figure 3.38). 

Figure 3.36 shows the timing of overflow from the upper stream, where is not crevasse.  

Figure 3.37 shows the simulated inundation depth at 128,400 sec. Figure 3.39 shows the 

simulated maximum inundation depth in Case 2. It seems the effect of old levee around Nishi-

Nakashima to Danno-Shima in Figure 3.39. The flood inundation damages both of the northern 

and south side of the Nagara River in the case with the artificial crevasse (the Case 2).  

However, in the case without artificial crevasse (the Case 1), the only south part of the 

Nagara river is damaged by flood inundation. It is indicated that the river infrastructures as 

levee make an excellent performance to protect the low land from flood disaster in the modern 

age. 
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Figure 3.34 Simulated inundation depths at 

110,400 sec in Case 2. 

Figure 3.35 Simulated inundation depths at 

111,000 sec in Case 2. 

  

Figure 3.36 Simulated inundation depths at 

118,800 sec in Case 2. 

Figure 3.37 Simulated inundation depths at 

128400 sec in Case 2. 

 

 

Figure 3.38 Input hydrograph and illustration 

of overflow occurrence timing. 

Figure 3.39 Simulated maximum inundation 

depths in Case 2. 

overflow  

occurrence 

time 

Peak time is 

122,400sec 

110400sec 111000sec 

118800sec 128400sec 

Effect of old 

levee 
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Case 3 

The simulated results with Meiji era DEM are as follows. The input water volume from 

the upper stream does not flow down through the river stream and overflow at the Obusa area 

(see Figure 3.40). This overflow point is the almost same as the results with the modern DEM. 

Figure 3.41 and Figure 3.42 are the simulated flood inundation at 76,800 sec and 160,800 sec, 

respectively.  

 

Figure 3.40 Simulated inundation depths at 

26,400 sec in Case 3. 

 

Figure 3.41 Simulated inundation depths at 

76,800 sec in Case 3. 

 

Figure 3.42 Simulated inundation depths at 

160,800 sec in Case 3. 

 

These figures show that the expanse of the simulated flood inundation area is affected by 

interpolated elevation data and levee. The Meiji era DEMs are produced by interpolation of the 

contour line from an old map. The contour lines on flatlands are apart from each other. 

Therefore, miss interpolation often occurs as Figure 3.43. Especially, streamlines should have 

the lowest elevation around there. This miss interpolation causes the damming around the 

Obusa area in Figures 3.40 to 3.42. It is one of the critical issues of the evaluation of flood risk 

with old topographical maps. 
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Figure 3.43 Illustration of the topographical interpolation error with contour lines. 

 

3.5. Summary  

In this chapter, the temporal changes of flood risks from the Meiji era to the current time 

in Gifu city are investigated with an old topographical map, GIS analysis, and flood simulation. 

The findings in this research are summarized as follows: 

1) Land use changes are investigated by the comparison of the old map and current map. 

The area of paddy fields in the target area decreased by 30% from the Meiji era to the current 

time.  

2) The flood simulation with the iRIC and 5-m DEM published by Japanese GSI is 

attempted using a sample hydrograph. It is showed that the iRIC and 5-m DEM have a good 

effect on the simulation of flood inundation. 

3) The DEM in Meiji era is produced by the interpolation technique with the contour 

lines from the old topographical map. However, the interpolation with contour lines could not 

produce good DEM, which is suitable for flood simulation. In a normal map, elevations on the 

river bed are uncertain. Therefore, the interpolated river bed is often not smooth from up to 

downstream, as the mentioned results in this research. In the simulation results, the discharge 

from upstream is blocked by the irregular grid, and the unexpected overflow occurs in the 

upstream. It is showed that iRIC and high-resolution DEM has an excellent performance to 

simulate the flood inundation. The improvement of the interpolation technique from contour 

lines is one of the essential tasks for the evaluation of flood inundation risks with old 

topographical maps. 
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CHAPTER 4.  ASSESSMENT OF LONG TERM FLOOD RISK CHANGES 

IN GIFU CITY 

 

4.1. Introduction 

Heavy rainfall within a short period and consequent high river discharge are results in 

floods which subsequently creates huge infrastructure problems for areas, such huge economic 

deficits in production as well as damages to existing property and goods, even loss of human 

lives. In about hundred years ago the flat-land around the Kiso Three Rivers system (the 

catchment areas of the Kiso River, Nagara River, and Ibi River are called “the Kiso Three River 

system”) included Gifu City, Gifu Prefecture of Japan, was frequently damaged by inundation 

after heavy rainfall. Our research aims to evaluate flood risk changes by river improvement in 

the Kiso Three River system fin the past hundred years. For that reason, we simulated in several 

times on flood inundation in the large, medium and low scale case in the urban area of Gifu 

city with 2D flood inundation model, and compared the distribution of flood depth. The results, 

the flood inundation area in the urban area for small scale flood disaster dramatically is reduced 

from 3.82 km² in the past time to 0.48 km² in the current time with the progress of river 

infrastructure improvement. However flooded area in the urban area for large and middle scale 

disaster show the almost same. It is suggested that flood risks in urban area are dramatically 

improved for only a small disaster. 

Gifu Prefecture was a frequent flood occurred area where damaged by the Kiso Three 

Rivers system since a long time ago. For this reason, river improvements and infrastructures 

are constructed on the branches of the Kiso Three river system from the 1900s to the current, 

which after construction the damage of the flood dramatically decreased. Although the risk of 

floods has reduced due to river improvements, it is finding that there are significant fluctuations 

in population and land use from 1920 to 2015. Such the phenomenon that the development of 

floodplain advances by embankment and development of levee is called “Levee Effect,” and 

several studies have been conducted ([8]; [10]). However, in these studies, only studies using 

primary social data such as qualitative analysis and short-term population change are being 

conducted. On the other hand, Ito and Nakamura [Nakamura 2018], constructed long-term land 

use data and levee length database and found that urbanization progressed in the specific area 

after the levee was established.  

However, it is not enough to evaluate how flood risks have been changing by the river 

infrastructure improvement, the rapid urbanization and land use changes, using 2D flood 
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inundation simulation. In this research, the authors investigate flood risk changes in the past 

100 years with 2D flood inundation simulation analysis considered 100 years ago, and current 

topographical and river infrastructure situations. Also, land use changes have been evaluated 

and compared with simulated flood risks in order to investigate the relationship the levee 

development and urbanization and flood risk changes. 

 

4.2. Research data 

4.2.1 Topographical map and terrain information 

Flood inundation analysis needs land surface topography. However, there is no data like 

the numerical elevation model in the 1900s. For this reason, we read terrain information from 

the topographic map and interpolate the elevation value to create a numerical elevation model 

from old maps. A numerical elevation model of the current time is created in the same way.  

Here, we used the 1:20,000 scale topographical maps from 1891 to 1893 (Meiji 24 to 26 

in Japanese calendar) surveyed by The Ministry of the Imperial Japanese Land survey to 

produce the past topographical map in Meiji era (mainly in 1891), and also used the 1:25,000 

topological maps from 2002 to 2009 (Heisei 21 to 26 in Japanese calendar) corresponded by 

the Geospatial Information Authority of Japan to produce the current topographical map in 

Heisei era (mainly in 2009). 

Based on the topographical maps of Figures 4.1 and 4.2, the terrain information such as 

contour line, reference points for ground surveying, height points, and levee shape was 

digitized to shapefile using ArcGIS software. The details of digitized terrain information are 

shown in Table 4.1.  

 

Figure 4.1 Topographical data in 1891 (Meiji era). 
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Figure 4.2 Topographical data in 2009 (Heisei era). 

Table 4.1 Digitized Symbols. 

Terrain symbol 
Symbol sample 

on map 
Layer symbol Layer type 

Contour 
 

 polyline 

Levee 
 

 polyline 

River 
  polygon 

Reference point 
 

 point 

Height points 
 

 point 

 

Here, height point shows the height from the average elevation around the point and often 

indicates the height of levee top from the ground height. Contour lines are digitized under 40 

m asl because the whole urban area of Gifu city is locating less than 20 m. Flood inundation 

analysis does not need high mountain topography. 

It is challenging to create a numerical elevation model, because of contour lines and 

reference points are not written in the river in the old topographic map. So, the contour lines 

which are interrupted in the river were joined in order to compensate for the elevation value in 
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the river. Moreover, surrounding rivers other than the Nagara River and the Ijira River were 

also digitized, but small rivers that do not affect the flooding calculation were omitted.  

 

Figure 4.3 Digitized symbols in 1891 (Meiji era). 

 

Figure 4.4 Digitized symbols in 2009 (Heisei era). 

Figure 4.3 and Figure 4.4 show the digitized symbols for the past and current 

topographical maps. The digitized shapefiles are rasterized and interpolated to the 10 m grid 

by the method of Ohno and Tamura [Ohno 2002] in order to flood inundation analysis. 
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4.2.2. Land use data 

Land use/cover in the study area are dramatically changed from 1891 to 2009. Figure 4.5 

and Figure 4.6 are shown the land use changes from 1891 to 2009. These land use data are 

digitized from the topographical maps in the Meiji era and the Heisei era [Nakamura 2018]. 

The land use is categorized into 8 classes such as urban area, public, factory, forest, farmland, 

paddy field, wasteland, and water area. In the Meiji era, urban area extended to the left levee 

of the mainstream of the Nagara River. The almost area between the Nagara River and Ijira 

River is covered by farmland. On the other hand, the urban area extends to both sides of the 

mainstream of the Nagara River in the Heisei era. Figure 4.5 and 4.6 show that the urban area 

has dramatically developed in the last 100 years in the study area. 

 

Figure 4.5 Land use map in 1891 (Meiji era). 

 

 

Figure 4.6 Land use map in 2009 (Heisei era). 
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4.3. Method 

4.3.1. Flood simulation model 

In this chapter, iRIC Nays 2D Flood [Shimizu 2014], an analytical solver for calculation 

of unsteady two-dimensional plane flow and riverbed deformation using boundary-fitted 

coordinates within general curvilinear coordinates is used to flood inundation simulation. In 

the above mentioned, which introduced about iRIC flood model. (See the section 3.3.1) 

 

4.3.2. Computational conditions 

When performing flooding calculation using iRIC Nays 2D Flood, in addition to the 

numerical elevation model created in the previous chapter, the setting of a hydrograph showing 

the inflow and flow rate from each river, boundary condition of calculation lattice and a time 

step of the calculation are necessary to set. The flood calculation was carried out with three 

hydrographs set in Section 3.3.1 for the two numerical elevation models of Gifu city in the past 

and the current time. 

Hydrograph: 

In this study, inflow hydrographs are set to the three rivers such as the Nagara River, Ijira 

River, and Toba River. The Nagara River basin is about 1620 km2. On the other hand, the Ijira 

River and Toba River are relatively small basin as about 48 km2 and 55 km2. The inflow 

hydrograph of the Nagara River is defined with the basic high water which is used for the basic 

policy of river improvement announced on August 31, 2007, by the Ministry of Land, 

Infrastructure, and Transportation [Ministry of Land Infrastructure and Transport of Japan. 

2007], and determined as Figure 4.7(a). The peak flow rate of the reference hydrograph of the 

Nagara River is 8900m3/s. And its time series was referenced the heavy rainfall event on 

November 2000. There is no reference hydrograph for the Ijira and Toba River. Thus, the Ijira 

River hydrograph was prepared by the following procedure. 

1）The peak flow rate Qp (m
3/s) is set using the rational formula as Equation. (4.1).  

 rAfQ pp
6.3

1
=  (4.1) 

where: fp = peak runoff coefficient 

  r = average rainfall intensity (mm/h) 

  A = catchment area (km2) 
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2）Set the time to reach the peak flow rate from the flood arrival time formula as 

Equation 4.2. The current data is used for the flow path length and average slope of the river. 

 
( ) 7.0

3 /1067.1 SLTp

−=
 (4.2) 

where: Tp = flood arrival time (s) 

  L = flow path length of the river (km) 

  S = mean slope 

3）Make a hydrograph using the kinematic wave method's motion equation as 

Equation 4.3 and the decreasing curve equation as Equation 4.4. Use Equation 4.3 when the 

flow rate increases and Equation 4.4 when the flow rate decreases.  

 
( ) Brt

N
Qt

3

5sin
=

 (4.3) 

 
)(

0
0tt

t KQQ
−−

=
 (4.4) 

where: Qt = flow rate at time t (m3/s) 

  B = river width (m) 

  θ = river bed slope 

  N = equivalent roughness of river bed 

  Q0 = flow rate at the time t0 

  K = constant 

The base flow rate was defined as 5 hours from the start of inflow. Also, the base flow 

rate was 100 m³/s of the Nagara River and 20 m³/s of other small rivers. The inflow hydrographs 

created by the above method are shown in Figure 4.5. The peak flow rate of the Ijira and Toba 

Rivers are less than 100 m3/s, so, the second panel of Figure 4.7(b) shows the detail of the 

hydrographs of the Ijira and Toba rivers. 

As mentioned above, the basic inflow hydrographs are defined as Figure 4.7. In this 

study, we prepared three patterns of hydrograph with peak flow as 1/4, 1/6, and 1/10 of the 

basic hydrographs shown in Figure 4.7, due to evaluate several disaster scales. The new 

patterns of hydrograph are shown in figure 4.8. The peak flow rate of the basic hydrographs 

assumes the disaster scale with 100-y return period. The hydrographs with 1/4, 1/6 peak flow 

are assumed the middle scale disaster, and 1/10 peak flow is assumed the small-scale disaster.  
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(a) Basic hydrographs of three rivers 

 

(b) Basic hydrographs of the Ijira and Toba Rivers 

Figure 4.7. Basic inflow hydrographs for iRIC Simulation. 

 

Parameter settings:  

When performing flood inundation simulation, it is necessary to set boundary conditions, 

calculation grid, calculation time step, etc. The set parameters are summarized in Table 4.2. 

The inflow end of each river is set the upstream end of each river on the study area boundary 

line. The inflow ends are shown as black rectangle boxes in Figure 4.3 and Figure 4.4. 

Mentioned hydrographs are input from these inflow end into flood simulation boundary area. 

The boundary conditions are free-flowing at the southern and the western end of the grid, and 

the other flows are inflows. The following conditions must be taken into consideration in the 

size and time step of the calculation grid. 
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 tux   (4.5) 

where: u = flow rate in the x direction (m/s) 

  Δx = calculation grid size in the x direction (m) 

  Δt = calculation time step (s) 

Table 4.2 Parameters 

Number of grids 
x direction 950 

y direction 700 

Grid size (m) 
x direction 10 

y direction 10 

Method of difference method Upwind difference 

Calculation time step (s) 0.5 

Boundary condition 

East end inflow 

West end outflow 

North end inflow 

South end outflow 

Roughness coefficient 
Rivers 0.01 

Other than river 0.06 

Land using type 
Residential 0.5 

Non-residential 0 

 

 

  

(a) The Nagara River 
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(b) The Ijira River 

 

 

(c) The Toba River 

Figure 4.8. Modified hydrographs for iRIC Simulation. 

 

The grid size was 10m×10m, and the calculation time step was 0.5s. If the calculation 

time step is too small, the time required for the calculation becomes very long. To do all the 

flooding calculations, we set the calculation time step to this value.  
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4.3. Result and discussion 

4.3.1. Flood inundation simulation 

Flood simulation performed with the modified hydrographs for each era. The simulation 

result of the inundation area when using the basic hydrographs with 1/1 peak flow rate was 

covered over almost all of the study area. Because the differences of simulated flood inundation 

area between two eras were not so obviously from each other, we used the modified 

hydrographs to compare the disaster risks of two eras. Figure 4.9 shows the distribution of the 

maximum flood inundation depth simulated with the modified hydrographs with 1/4, 1/6, and 

1/10 peak in 1890 (Meiji era). The simulation results with 1/4 and 1/6 peak have the almost 

same flood inundation area. Only the urban area on the left levee side of the Nagara River was 

not flooded. The area nearby the Mount Kinka is relatively higher elevation area. The almost 

all area between the branches of the Nagara River as the Furu and Furu-furu River were 

flooded. The simulation results with 1/10 peak showed relatively less flood inundation area 

than the other results. The many areas on the left levee side of the Nagara River were not 

flooded. This area became the urban area in 2009. 

Figure 4.9 shows the distribution of the maximum flood inundation depth simulated with 

the modified hydrographs with 1/4, 1/6, and 1/10 peak in 2009 (Heise era). Figure 10 shows 

the flood inundation area reduced from the Meiji era.  

 

(a) Maximum flood inundation depth with 1/4 hydrograph 
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b) Maximum flood inundation depth with 1/6 hydrograph 

 

(c) Maximum flood inundation depth as 1/10 hydrograph 

Figure 4.9. Distribution of maximum flood depth in 1891. 
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(a) Maximum flood inundation depth with 1/4 hydrograph 

 

 

(b) Maximum flood inundation depth with 1/6 hydrograph 
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(c) Maximum flood inundation depth as 1/10 hydrograph 

Figure 4.10. Distribution of maximum flood depth in 2009. 

Figure 4.10 shows the comparison of the flood inundation area with each flood disaster 

scale as peak modification value. The flood inundation area with 1/4 peak in 2009 is less than 

1/10 peak in 1891. The flood inundation area is significantly reduced. It is indicated that the 

river improvement has worked effectively for medium or less scale flood disaster. 

 

4.3.2. Overlay with land use data 

It is confirmed that the total flood inundation area is reduced by river improvement 

from 1891 to 2009. On the other hand, because the urban area is expanding in the last 100 

years, as we mentioned in figures 4.5 and 4.6, the assessment of flood risk in the urban area is 

also essential. Therefore, we calculate the flood inundation area in the urban area as figure 4.12 

with overlaying the flood inundation cover map and land use map. Figure 4.12 shows flood 

inundation area in the urban area for 1891 and 2009 are the almost same with 1/4 and 1/6 peak 

hydrographs. However, the results with 1/10 peak hydrograph are dramatically reduced from 

3.82 km2 in 1891 to 0.48 km2 in 2009. For middle-scale flood disaster as 1/4 and 1/6 peak, it 

is suggested that flood risks in urban area are not decreased, because decreasing of flood risk 

by river improvement competed with urbanization around the river stream. However, for small 

scale flood disaster as 1/10 peak, the flood risk is dramatically reduced. It is suggested that the 

urban is hardly never flooded for small scale disaster. We also compared the maximum flood 

inundation depths in the urban area as figure 4.13. Maximum flood inundation depths are 
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slightly decreased from the Meiji era to the Heisei era. And the difference of flood inundation 

depth for small scale disaster is only a little, different from the results of flood inundation area. 

 

Figure 4.11 Comparison of flood inundation area for the whole of the study area. 

 

Figure 4.12. Comparison of flood inundation area for the urban area. 
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Figure 4.13 Comparison of maximum flood inundation depths for the urban area. 

 

4.5. Summary 

In this study, the authors investigate the relationship flood risk changes and land use 

changes with 2D flood inundation simulation in order to evaluate “Levee Effect” in Gifu City, 

Japan. The river infrastructures and stream networks of the Nagara River in Gifu City, Japan 

were improved in this past 100 years. The topographical maps in 1891 and 2009 are digitized 

in order to provide terrain data for flood inundation simulation. From the results of flood 

inundation simulation, it is shown that the flood inundation area for the same disaster scale has 

been decreased with the progress of river infrastructure improvement. However, only in the 

urban area, the flood inundation area for large and middle scale flood disaster are the almost 

same, the flood risks are not so much improved with the progress of river infrastructure 

improvement. On the other hands, the flooded area in the urban area for small scale flood 

disaster dramatically is reduced from 3.82 km² in the past time to 0.48 km² in the current time. 

The above results suggest that decreased of flood risk by river improvement for massive and 

middle disaster competed with urbanization around the river stream. Recent flood risk 

reduction by river infrastructures and improvement in the urban area mainly affects to small 

scale disaster and only small influence on large and middle scale disasters. These results 

provide essential knowledge for investigation of “Levee Effect”. 
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CHAPTER 5. CONCLUSION 

This chapter summarizes the results presented in this thesis for the purposes described 

in Section 1.3. 

This research was made the following conclusions that described by each study of 

evaluation and assessment for long term changes in flooding using deep learning and flood 

simulation.  

Firstly, Chapter 2 performed deep learning using CNN for the purpose of the classifying 

land use of highly accurate map images. Specifically, we aimed to put into practical use a 

method for classifying existing maps including map symbols by using deep learning. By the 

result, the overall accuracy (OA) is consistently 85% or higher, which provides a land use map 

of approximately 100 m of mesh in categories of 1: 25000 maps and it proposed a practical 

level land use classification method that can be shown. 

The results obtained in this study are listed below. 

• The number of samples to be taken per class must be 15,000 or more to show 

the actual level of accuracy of the classification. As for the number of learning 

samples, it is better to make the number of samples of each class uniform to some 

extent. If the number of training samples in each class is not balanced, the 

classification accuracy will decrease even if the total number of samples is large. 

• Regarding the optimum number of learnings, the optimal number of surveys is 

approximately 5 times. When learning 10 or more times, the value of the loss function 

increases significantly and the effect of overfitting can be seen.  

• There was no significant difference in the results of integration by the three 

proposed integration methods (Max method, Sum method, Mode method). When 

using the integrated method, it is recommended that the number of learning samples 

in each class be 10,000 or more. 

Chapter 3 performed the temporal changes of flood risks from the Meiji era to the current 

time in Gifu city are investigated with an old topographical map, GIS analysis, and flood 

simulation. 
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The findings in this research are summarized as follows: 

• Land use changes are investigated by the comparison of the old map and current 

map. The area of paddy fields in the target area decreased by 30% from the Meiji era 

to the current time.  

• The flood simulation with the iRIC and 5-m DEM published by Japanese GSI 

is attempted using a sample hydrograph. It is showed that the iRIC and 5-m DEM 

have a good effect on the simulation of flood inundation. It showing the flood 

prevention system and other river improvements are working great.  

• The DEM in Meiji era is produced by the interpolation technique with the 

contour lines from the old topographical map. However, the interpolation with contour 

lines could not produce good DEM, which is suitable for flood simulation. In a normal 

map, elevations on the river bed are uncertain. Therefore, the interpolated river bed is 

often not smooth from up to downstream, as the mentioned results in this chapter. In 

the simulation results, the discharge from upstream is blocked by the irregular grid, 

and the unexpected overflow occurs in the upstream. It is showed that iRIC and high-

resolution DEM has an excellent performance to simulate the flood inundation. The 

improvement of the interpolation technique from contour lines is one of the essential 

tasks for the evaluation of flood inundation risks with old topographical maps. 

 

Chapter 4. Moreover, understanding of “Levee Effect”, land use changes and flood risk 

by flood inundation simulation have not yet been fully investigated. The river infrastructures 

and stream networks of the Nagara River were improved in this past 100 years.  

From the results of flood inundation simulation, it is shown that the flood inundation area 

for the same disaster scale has been decreased with the progress of river infrastructure 

improvement. However, only in the urban area, the flood inundation area for large and middle 

scale flood disaster are the almost same, the flood risks are not so much improved with the 

progress of river infrastructure improvement. On the other hands, the flooded area in the urban 

area for small scale flood disaster dramatically is reduced from 3.82 km² in the past time to 

0.48 km² in the current time. The above results suggest that decreased of flood risk by river 

improvement for massive and middle disaster competed with urbanization around the river 

stream. Recent flood risk reduction by river infrastructures and improvement in the urban area 

mainly affects to small scale disaster and only small influence on large and middle scale 

disasters. These results provide essential knowledge for investigation of “Levee Effect”.  
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