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Abstract 

Missing data in hydrological field is still an inevitable problem at 

present day. Solving this kind of problem is an important task for river 

management. Upgrading the observation devices could only lower the 

missing rate of data. There will still be possibility of missing value. At the 

same time, budget and installation environment should also be considered 

for upgrading the devices. Thus, complement of missing data is another 

way to solve the problem. At the present stage, there are already many 

methods to complement missing hydrological data which were proved 

practical. On one hand, short period of data gaps can be complemented 

from data around the gaps. On the other hand, long period of data gaps 

could be complemented by tank model or data of neighboring observation 

points. However, these kinds of traditional method have their limits such as 

low accuracy at extreme hydrological conditions, large amount of data 

conversion and lots of time consumption.  

Deep learning technology has developed quickly in recent decades and 

has advantages than the traditional methods on the prediction of 

hydrological data. There are many applications on runoff prediction and 

flood forecasting. However, deep learning is not applied commonly in the 

application of missing data complement at present because in the case of a 

short missing period, interpolation using observation data before and after 

the missing period is useful, or complement using observation data from 

different points in upper stream and lower stream is relatively accurate. 

These methods are solutions of missing data problem to a certain extent 

due to their own limits. If there is a long missing period, or the observation 

points are far from each other, deep learning might be a better choice.  

In this study, long short-term memory (LSTM) is applied to 

complement missing discharge data of the Daihachiga River and verified. 

Stochastic gradient descent (SGD) is generally used as the optimization 

algorithm for deep learning. SGD can obtain good learning results quickly, 

but the results are slightly different for each learning by its randomized 

algorithm. In the first part, learning was performed 1000 times and it was 

recognized that the difference between each learning result is non-ignorable. 
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The ensemble average, which obtained by more than 20 learning results, 

indicates 0.904 in 5th percentile of Nash-Sutcliffe efficiency which is 

higher than the accuracy of linear regression analysis. The method to 

reduce the variation of learning results and obtain sufficient accuracy is 

proposed. In the second part, the hyperparameters of the LSTM were tuned 

to investigate their influence on the model performance. The result 

indicated that tuning of hyperparameters is required and it can influence the 

performance of training to a certain extent. In the analysis of the second 

part, it was proved that the optimal hyperparameter combination could 

improve the performance of the model several times for missing discharge 

data imputation. The hyperparameter setting of this study could be a 

reference for further research on the relevant area. 
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Water level and discharge of river are the most basic and important 

hydrological information for river construction and management, and there 

are many measurement data. In particular, river water level is easy to 

measure steadily against the flow rate and is measured at many points. 

Integrity of such hydrological data plays an important role in river 

management. Especially in the case of disaster prevention and mitigation, 

missing data may cause mistake in decision-making and have serious 

consequences. Although information on river disaster prevention [1], such 

as rainfall and water level, is distributed by telemeter, it was reported that 

the percentage of missing/undetected data and abnormal values by 

observation type at national and prefectural sites in 2012 is as follows: 

water level 63.0%, precipitation 8.9%, water quality 11.3% and water level 

data has a high rate of occurrence on missing, not received, or abnormal 

values. It could be said that complementing missing water level data is an 

important task for river management. For rainfall, the most common cause 

of missing/unreceived data and abnormal values is abnormal 

communication path (about 40%), while for water level, it is reported that 

more than 70% of all missing data are due to the failure of the 

measurement device or the water level dropping below the lower limit of 

measurement of the water level gauge [2]. Applying better hardware will 

improve efficiency of data acquisition and transfer and prevent data gaps to 

a certain extent [3]. However, improving devices could only lower the 

missing rate of data. There will still be possibility of missing value. At the 

same time, budget and installation environment should also be considered 

for upgrading the devices.  

In the case of inevitability of missing data at the present stage, 

complementing is necessary and feasible. There are already many methods 

to complement missing hydrological data which were proved practical. On 

one hand, short period of data gaps can be complemented from data around 

the gaps. On the other hand, long period of data gaps could be 

complemented by tank model or data of neighboring observation points. 

Aburatani et al. [4] compared the interpolation methods of missing values 

by linear interpolation, 6-point scheme, and tank model using the observed 

values near the missing interval. They reported that the tank model can 

generally supplement missing values in all situations, but it requires a lot of 
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effort and time, and that the linear interpolation and 6-point scheme may be 

more suitable than the tank model because interpolation is difficult during 

floods and less effort is required during normal water level. Besides, Kojiri 

et al. [5] applied pattern classification and fuzzy inference on the 

complement of missing values. Runoff model is another option, but plenty 

of data and data conversion are needed before the calculation. Its demerit is 

similar with the tank model mentioned above. 

Deep learning and Artificial Neural Networks (ANNs) have made 

remarkable progress in recent years, and there are many applications in the 

field of river technology. A three-layer hierarchical neural network with 

input layer, intermediate layer, and output layer, also known as shallow 

neural network, has been commonly used in the past [6,7]. However, in 

recent years, as more computational resources have become available, 

Deep Neural Networks (DNN) with multiple intermediate layers have come 

into use. Wada et al. [8] proposed a Genetic Programming Neural Network 

(GPNN) that determines the structure of the input layer using a genetic 

algorithm, as opposed to a DNN with five intermediate layers, and 

performed long-term flow forecasting. Hitokoto et al. [9,10] and Fusamae 

and Shimamoto [11] have also conducted flood forecasting using a four-

layer DNN with two intermediate layers. Besides, there are various 

applications, such as the application to the prediction of water level in a 

drainage pumping station by Kimura et al. [12] and the application to the 

long-term prediction of dam inflow by Tamura et al. [13].  

In the current so-called third AI boom, many ANNs from relatively 

simple hierarchical structures to with more complex structures are being 

used. On one hand, Convolutional Neural Networks (CNN) have two-

dimensional image data as input data, a convolutional layer that 

corresponds to the convolution of the image, and a pooling layer that 

processes the features extracted by the convolutional layer so that they are 

not affected by translation. It has many applications in the fields of image 

recognition, such as face recognition and automatic driving, and video 

recognition. CNNs using 2D data have few applications in the field of 

rivers where time series data is used, but it is possible to use 1D data by 

converting it to 2D. Kimura et al. [14] used 16 variables such as rainfall 
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and water level as input data, and converted them into 2D data with 

observation points arranged from upstream to downstream as the vertical 

axis and time series as the horizontal axis, and applied them to CNN for 

flood forecasting. On the other hand, Recurrent Neural Network (RNN) has 

a structure that temporarily stores the state of the intermediate and output 

layers and uses them for the next input in order to analyze time-series data, 

and is often used for machine translation and speech recognition as an 

ANN suitable for using time-series data. In the field of rivers, for example, 

Teranishi and Shidawara [15] combined the Jordan type, which uses the 

state of the output layer to the intermediate layer, and the Elman type, 

which also uses the state of the intermediate layer to the intermediate layer, 

and applied them to runoff prediction during floods; Taniguchi et al. [16] 

applied them to dam inflow prediction; RNNs with Elman-type networks 

applied to both the intermediate and output layers were applied to real time 

sewer water level prediction by Chiang et al. [17]; and the prediction 

accuracy of stream flow by hierarchical neural networks and RNNs was 

compared by Sahoo et al. [18].  

However, simple RNNs such as the Elman and Jordan types have a 

problem that is impossible to take very old information into account in the 

learning due to the vanishing gradient problem. In order to alleviate this 

vanishing gradient problem, RNN models such as Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) have been proposed, 

and there are relatively many applications of LSTM in the field of 

hydrology. Especially in the applications of runoff prediction and flood 

forecasting, LSTM is one of the commonly used networks [19]. Hu et al. 

[20] got conclusion that LSTM model had better simulation performance 

and more stable than ANN model on simulation of rainfall-runoff process. 

Lee et al. [21] performed runoff simulations of river using LSTM model 

and a physics-based model and designated that LSTM model is more 

applicable. Lee et al. [22] and Xiang et al. [23] presented an application of 

LSTM model on simulation of hydroclimatological variables and 

estimation of hourly rainfall-runoff, respectively, and pointed out that the 

LSTM model had better performance than traditional models. Fan et al. [24] 

applied LSTM on runoff modeling of a river basin and compared 

performance of the LSTM with ANN and Soil & Water Assessment Tool 
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(SWAT). It is indicated that the performance of LSTM is better than others. 

Bai et al. [25] compared robustness of LSTM model with two hydrologic 

models in prediction of runoff in changing climatic conditions and 

considered that the LSTM model is a preferred tool for runoff simulation 

with sufficient calibration data. Kratzert et al. [26] studied the ability of 

LSTM to predict discharge of a catchment and discussed potential of 

LSTM in application of hydrological modeling. Sudriani et al. [27] 

analyzed daily discharge data by LSTM and held that the relative error was 

acceptable. Ding et al. [28], Le et al. [29], Li et al. [30], and Zhang et al. 

[31] worked on the water table depth prediction and flood forecasting of 

LSTM by setting hydrologic data as input data. And prediction result of the 

LSTM model was effective. Sahoo et al. [32] and Qin et al. [33] explored 

the suitability of LSTM for prediction of low-flow time series and 

hydrological time series, respectively. These two studies showed the 

feasibility of LSTM model for predicting discharge and hydrological time 

series. Additionally, the potential of LSTM in forecasting of 

evapotranspiration was also explored and the fact was known that the 

performance of the model can be affected by different factors.  Granata and 

Di Nunno [34] deployed LSTM and nonlinear autoregressive network with 

exogenous inputs (NARX) for prediction of evapotranspiration. The result 

indicated that each model has its own advantages in different climatic 

conditions since the model performance can be affected by local climatic 

conditions significantly. Chen et al. [35] compared the performance of 

LSTM with several other models in estimation of daily reference 

evapotranspiration. The model performance was influenced by the type of 

available features. Ferreira and da Cunha [36] investigated the potential of 

deep learning models, machine learning models, and a combined model in 

forecasting of daily reference evapotranspiration in local and regional 

scenarios. Even if the model performance varied with different input data 

combinations, the combined model, which consisted of LSTM and a CNN, 

had the best accuracy in both local and regional scenarios. The various 

algorithms used in deep learning are packaged and modularized in 

programming languages such as Python and MATLAB, making it 

relatively easy for even beginners to adopt them. However, in order to 

obtain good results, trial-and-error processes are required, such as the 
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selection of appropriate models and fine tuning, and it is necessary to 

continue to conduct a large number of analyses for each application target 

and accumulate a variety of knowledge. 

However, tuning of hyperparameters influences the performance of an 

LSTM model. Exploring optimal hyperparameters for an LSTM model is 

already a study objective in applications of LSTM models in fields other 

than hydrology, such as sequence labelling [37], network attack detection 

[38], stock market prediction [39], highway traffic prediction [40], etc. In 

the case of hydrology, the tuning of hyperparameters is a necessary step 

before the application of the model in much another research [28,30,41–44]; 

however, no sufficient knowledge has been obtained. 

Comparing missing data complement by deep learning with flood 

forecasting or long-term water level prediction, there are only few 

applications because in the case of a short missing period, interpolation 

using observation data before and after the missing period is useful, as in 

the case of Aburatani et al. [4] , or complement using observation data from 

different points in upper stream and lower stream is relatively accurate. But 

the potential of deep learning is being explored in those applications. 

Dastorani et al. [45] predicted missing flow data by ANN and adaptive 

neuro-fuzzy inference system (ANFIS). It is presented that ANFIS 

technique has superior ability and ANN is an efficient method to predict 

missing flow data. Mispan et al. [46] tried prediction of missing stream 

flow data with ANN model and illustrated that ANN can predict the 

missing data well. There are some differences in the application of deep 

learning between water level/flow rate prediction and missing data 

complement in terms of the following: (1) flood prediction is for several 

hours in the future, while missing data complement depends on the missing 

period, and thus is for one to several days in the future; (2) missing data 

complement can use future observation data; (3) missing data complement 

can use observation data at the time of estimation, as long as it is at a 

different location from the one to be estimated. There are two types of 

complement: interpolation, which uses surrounding values to fill in the 

gaps, and imputation, which means to make something complete by filling 

in the missing parts, as used by Kojiri et al. [5].  
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The purpose of this study is to obtain a complete time series of river 

discharge data by complementing the missing discharge data with the flow 

data from other locations. An LSTM which is suitable for processing time 

series information, is applied and its accuracy is verified. The 

hyperparameters of an LSTM model was tuned to investigate the influence 

on the model performance and an attempt was made to obtain a more 

suitable hyperparameter combination in the imputation of missing data 

using an LSTM model. A suitable hyperparameter combination of LSTM 

will improve the performance of the model on missing discharge data 

imputation and it will have reference value in hydrological research. 
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2.1 Target River Basin, Data and Imputation by Linear 

Regression Analysis 

2.1.1 Target River Basin and Used Data 

The Daihachiga River basin of the Miya River system in Takayama 

City, Gifu Prefecture, is the target river basin. In the Daihachiga River 

basin, water level and discharge measurements have been conducted at 

hourly intervals since 1986 at two points, Sanpukuji (catchment area: 60 

km2) and Shioyabashi (catchment area: 41 km2), by the Miya River Upper 

Reaches Development and Construction Work Office of Gifu Prefecture. In 

this study, the observed discharge data of 2008, which has no missing data 

in both locations, will be used for training and the observed discharge data 

of 2009 will be used for validation. The target river basin is shown in 

Figure 2-1. 

 

2.1.2 Imputation by Linear Regression Analysis 

Figure 2-2 shows a scatter plot of the discharge of Sanpukuji Qsan 

(m3/s) and the discharge of Shioyabashi Qshio (m
3/s) in 2008. The distance 

 

Figure 2-1. Target river basin. 
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between the two points is 6.4 km, which is relatively short, and the 

correlation coefficient between the discharge of two points is 0.915, which 

is very high. On the other hand, there is some dispersion in the peak period, 

and differences are observed among rainfall events. The following equation 

is obtained from the scatter plot as a linear regression line. 

𝑄𝑠ℎ𝑖𝑜 = 0.7280𝑄𝑠𝑎𝑛 + 0.1657   (1) 

Using equation (1), the hydrograph shown in Figure 2-3 was obtained by 

estimating Qshio from Qsan in 2009. In the figure, the horizontal axis is DOY 

(day of year) and Qest is the estimated result of Qshio. When the Nash-

Sutcliffe model efficiency coefficient (NSE) was calculated, it was found 

that NSE = 0.903 which is highly accurate for runoff prediction. However, 

there are underestimations in the peaks of discharge and some 

underestimations in the reduced discharge and normal water conditions. In 

this study, it was investigated whether these underestimations can be 

corrected by deep learning. 

 

 

Figure 2-2. Relationship between discharge of Sanpukuji and Shioyabashi. 
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2.2 LSTM Model 

2.2.1 LSTM Model 

The structure of the LSTM model used in this study is shown in 

Figure 2-4. In the LSTM, the internal state Ct of the LSTM unit at time t 

and the output ht from the LSTM unit are transmitted to the LSTM at the 

next time t+1. In the LSTM unit, the input values xt at time t and ht-1, Ct-1 

are used to obtain the output ht at time t. In the output layer unit, the output 

yt from the output layer is obtained from the output ht from the LSTM. The 

above procedure is the same as the standard RNN model. In the case of 

LSTM, xt, ht-1 and Ct-1 will be passed through the input gate, output gate 

and forget gate in the LSTM unit and the vanishing gradient problem can 

be solved [47,48].  In this study, the number of units in the input layer is 24, 

the number of units in the output layer is 5, and the number of units in the 

hidden layer (LSTM layer) is 50, as shown in Figure 2-4. The model was 

implemented using Python 3.7.3, Keras 2.2.4, and Tensorflow 1.13.1. 

 

Figure 2-3. Comparison of the discharge estimated by the linear regression equation 

with the observed value. 

0.5

5

50

0 100 200 300 400

D
is

ch
ar

g
e(

m
3
/s

)

DOY

Qshio
Qlinear



Chapter 2    Investigation of Missing River Discharge Data Imputation Method Using Deep Learning 

12 

 

 

The activation function, dropout rate, and other settings inside the 

LSTM were left as default (i.e., tanh for activation function and 0 for 

dropout rate). The activation function of the output layer is elu 

(Exponential Linear Unit), and Adam is used as the optimizer. 

Mean_squared_error was used as the loss function. The training data was 

randomly divided into 90% training data and 10% validation data during 

the training. The maximum number of training times (number of epochs) 

were set as 200, and to prevent overtraining, EarlyStopping was set to stop 

after 20 times of training after the error evaluation (val_loss) stopped 

decreasing using the validation data during training. 

2.2.2 Input Data and Output Data 

Assuming that t is the time of the output value to be estimated, the 

output layer outputs the discharge of Shioyabashi from t to t-4. The input 

layer inputs the discharge of Sanpukuji from t to t-23 and the discharge of 

Shioyabashi from t-24 to t-47. All time intervals are 1 hour. Table 2-1 

shows the types of input data and the number of variables for each case. 

 

 

Figure 2-4. Structure of the LSTM model used in this study. 
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Table 2-1. Type of input data and number of variables 

No. Input Variables Number of Input Variables 

Case1 Qshio + Qsan 2 

Case2 Qshio 1 

Case3 Qsan 1 

 

2.3 Results and Discussion 

2.3.1 Investigation of Dispersion in the Training Results 

Because Stochastic Gradient Descent (SGD), a method that 

incorporates randomness in the initial values and the learning process, is 

generally used for ANN optimization, the model coefficients obtained 

through trainings are slightly different for each training. Figure 2-5 shows 

three examples of training results for Case 1. These three cases use the 

same model structure, the same settings, and the same training data, but 

each time the model is restarted from the initial settings, and the training 

results are slightly different. Training results 1 and 2 in Figure 2-5(a) and 

Figure 2-5(b) show NSE of 0.932 and 0.902, respectively, which are 

equivalent to or better than the estimation results by the linear regression 

model, in the accuracy evaluation using the validation data, and the 

underestimation of peak discharge, discharge reduction and normal 

discharge is improved. However, in the training result 3 shown in Figure 

2-5(c), the NSE is 0.463, which shows poor reproducibility especially in 

the peak discharge, indicating that there is dispersion in the training results. 

The evaluation values of the loss function by the training data (loss) and the 

loss function by the validation data (val_loss) of the training results 1~3 are 

almost the same as shown in Table 2-2, and it is difficult to check the 

applicability and versatility other than the training data at the time of 

training, although it is checked by val_loss. To see how the dispersion of 

the training results occurred, 1000 independent trainings were carried out, 

and the loss, val_loss of the trainings were compared with the NSE which 

used the training data and the NSE which used validation data (Figure 2-6). 

The correlation between the NSE using the training data and the loss, 

which is the error evaluation value from the training data that accounts for 

90% of the data that used for training, is relatively high at R=-0.683 (Figure 
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2-6(a)). However, the other correlations (Figure 2-6(b), (c), and (d)) are 

low, especially the correlations between the NSE using the validation data 

and loss, val_loss (Figure 2-6(c) and (d)) are -0.0166 and 0.0369, 

respectively, which is almost uncorrelated, indicating that even if the error 

evaluation results during the training were good, the accuracy during the 

application could often be very poor. 
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Figure 2-5. Examples of training results for Case 1. 
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Table 2-2. Accuracy evaluation for each training result. 

No. NSE (validation data) loss val_loss 
1 0.932 7.88×10-5 2.40×10-5 

2 0.902 8.70×10-5 1.96×10-5 

3 0.463 6.80×10-5 2.15×10-5 
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Figure 2-6. Comparison of the accuracy ratings of training results. 
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Next, the hydrograph was estimated by N randomly selected training 

results from the 1000 training results and the accuracy of the ensemble 

average of the N hydrographs was evaluated. The number of average 

hydrographs to be calculated was set to 40, the mean and standard 

deviation of the NSE of the ensemble averages from N=1 to 50 were 

calculated, and the change of 5th percentile was examined (Figure 2-7). The 

mean of the NSE exceeded the accuracy of the linear regression equation of 

0.903 for the average hydrographs with N≥2, but the accuracy of the 5th 

percentile was 0.829, which is still below the accuracy of the linear 

regression equation in many cases. For the average NSE, the accuracy of 

the linear regression equation of 0.903 is exceeded for the average 

hydrograph of N≥2. The NSE of 5th percentile increased rapidly from 

0.768 at N=1 to 0.903 at N=10, and after a slight increase and decrease, the 

accuracy always exceeded NSE=0.904 for N≥20. This shows that in Case 

1, the average hydrograph of more than 20 training results was calculated 

to suppress the dispersion of the training results and almost surpass the 

accuracy of the linear regression equation. 

 

 

Figure 2-7. Relationship between training times and NSE (Case 1). 
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2.3.2 Consideration of Differences in Input Data 

In Case 2 and Case 3, as in Case 1, the relationship between the 

number of training times and the NSE of the ensemble average was 

evaluated. In Case 2, the accuracy was very low, with an average value of 

0.530. In the 5th percentile, the accuracy improved as N increased and 

became almost constant at N≥30, however the value was about 0.52, 

which was not enough to obtain sufficient accuracy (Figure 2-8). Case 3 is 

different from Case 1, although the NSE of the 5th percentile was 0.865 for 

N=1, showing high accuracy even if there was few number of training 

times, it was almost constant at about 0.901 for N≥15. On average, the 

accuracy was always higher than 0.905, indicating that the accuracy 

exceeded the linear regression equation with a probability of 50% (Figure 

2-9). As a result, Case 1, which uses both the time series data of the target 

of missing value estimation and the time series data of the neighboring 

observation points, has the highest estimation accuracy, and shows a higher 

accuracy than the linear regression equation to be compared. The reason 

why Case 1 had the best accuracy is that Case 2 uses only the time series 

data of Shioyabashi, which is the target of the estimation, and it is difficult 

to estimate whether the discharge will increase or decrease in the next 24 

hours; in Case 3, only the time series data of the neighboring observation 

point, Sanpukuji, is used, and no correction based on the previous 

Shioyabashi is made. 
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2.4 Conclusion 

In this study, a completion method for missing discharge values was 

investigated by LSTM, which belongs to recurrent neural networks that are 

 

Figure 2-8. Relationship between training times and NSE (Case 2). 
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Figure 2-9. Relationship between training times and NSE (Case 3). 
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good at analyzing time series data. The SGD with randomness, which has 

been used for neural network optimization in recent years, can obtain good 

training results on average at high speed, however the obtained training 

results are dispersed. In general, such dispersion is so small as to be 

negligible, however, depending on the application target, the accuracy 

during training may be high but may not be sufficient when applied to other 

data. This phenomenon is called overtraining, and since ANN requires a 

very long computation time for each training, it is common to construct a 

highly versatile ANN by examining the training data, constructing the 

model, and tuning the hyperparameters. On the other hand, since the time 

required for one training session is very short (1~10 minutes) for the 

application target of this study, the implementation of a large amount of 

trainings and the dispersion of the training results were investigated. After 

1000 times of training, the results suggest that the dispersion is not 

negligible. However, the average hydrographs of more than 20 times of 

training results almost always showed better accuracy than the linear 

regression equation to be compared, suggesting a method that is able to 

obtain sufficient estimation accuracy without a lot of detailed trial and error 

such as tuning of hyperparameters. Besides, for the application of the 

imputation method to the missing discharge data, it was shown that it is 

very effective to use the discharge data of another neighboring observation 

point as input data, in addition to the discharge data except for missing 

period at the target point for precise estimation, to improve the estimation 

accuracy. 
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3.1 Materials and Methods 

3.1.1 Study Area 

The study area of the present work is the Daihachiga River Basin 

(Figure 3-1). Although it is the same area mentioned in Chapter 2, it will be 

reiterated here. The Daihachiga River belongs to the Jinzu River system. It 

starts from Hikagedaira Mountain, which is located in the east of 

Takayama City, Gifu Prefecture, Japan. The river flows from the east to the 

west, and merges into the Miya River in the urban area of Takayama. The 

river basin has about 1800 mm of mean annual precipitation, 10.9 ℃ of 

mean annual air temperature, and 60.4 km2 of catchment area [49,50]. 

 

3.1.2 Data 

Discharge data of the Daihachiga River were used in this study. The 

data were observed at one-hour intervals by the Gifu Prefecture at the 

observation points of Shioyabashi (36°8'8"N, 137°18'50"E, 617 m) and 

Sanpukuji (36°9'12"N, 137°15'38"E, 563 m) (Figure 3-1). The data of 2008 

and 2009 were used as training and validation data, respectively. In 

 

Figure 3-1. The Daihachiga River Basin and observation points. (a) Location of Gifu 

Prefecture; (b) location of the Daihachiga River Basin; (c) observation points of the 

Daihachiga River. 
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addition, precipitation and air temperature data at one-hour intervals 

observed by the Japan Meteorological Agency in 2008 and 2009, 

Takayama (36°09'18"N, 137°15'11"E, 561 m), were used during the 

training of the discharge data. 

3.1.3 Hyperparameters of LSTM Model 

The structure of LSTM model used in this study is almost same as the 

one mentioned in chapter 2 (Figure 2-4). The only difference is that the 

hyperparameter of the model in this study is not fixed value. The 

hyperparameters tuned for training are shown below: 

⚫ 𝐼𝑛: number and type of input variables.  

⚫ 𝐵𝑎𝑐𝑘𝑡𝑠: backtracked time steps of data used for the training. 

⚫ 𝐻𝑖𝑑: number of units of hidden layer. 

⚫ 𝐷𝑟𝑝: dropout. 

⚫ 𝐷𝑟𝑝𝑟: recurrent dropout. 

The purpose of this study is to impute the missing values. Therefore, it 

is possible to use past or future data of the observation point for which the 

missing value must be estimated as input values. Because LSTM is a 

structure that propagates information from the past to the future, future 

information is not as effective as present information as input data. 

Therefore, in this study, the past data Backts steps before will be used as 

training data. When the data to be estimated are used as input data for 

training, considering the existence of missing data, the data from t-Backts to 

t-Backts-24 are used to estimate the data at time t. This means that if there is 

a Backts steps gap of missing data, this part can be estimated by the data 

before the gap. Thus, the hyperparameter Backts only has a value when the 

estimated data were also used as input data. For other input data than the 

estimated point, such as temperature and precipitation, data from time t to 

t-24 are used to estimate time t. 
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The LSTM was actualized by Python 3.7.4 with the Keras 2.3.1 and 

Numpy 1.18.1 libraries. The activation function was an exponential linear 

unit (ELU) and the optimizer was Adam. 

3.1.4 Hyperparameter Settings and Data Training 

LSTM training was carried out by 90 kinds of hyperparameter 

combination (Table A1) settings to figure out the best one. The discharge 

data of the Daihachiga River, and the air temperature and precipitation data 

of Takayama were used as input variables. Several specified values were 

assigned for each hyperparameter in the training (Table 3-1). Backts = 24 

and 168 assume the missing period of 1 day and 7 days, respectively. In 

each training period, values of dropout and recurrent dropout were assigned 

identically. The hyperparameter values were assigned by trial-and-error 

approach in those 90 trainings. The estimated data were the discharge of 

Shioyabashi. Table 3-2 shows the input variable types for each case. For 

example, in the setting of Backts = 24, Case 1 takes as input data two 

variables: the discharge data from t-Backts to t-Backts-24 at the Shioyabashi, 

and the precipitation at t to t-24. Case 2 takes as input data two variables: 

the discharge data from t-Backts to t-Backts-24 at the Shioyabashi, and the 

discharge data from t to t-24 at Sanpukuji. Case 5 takes one variable as 

input data: the discharge data from t-Backts to t-Backts-24 at the 

Shioyabashi. Additionally, Case 9 takes as input data one variable: the 

discharge data from t to t-24 at the Sanpukuji. 

Table 3-1. Assigned values of hyperparameters. 
Hyperparameter Value1 Value2 Value3 Value4 

Backts 24 168 0  

Hid 20 50 100 200 

Drp 0 0.01 0.05 0.1 

Drpr 0 0.01 0.05 0.1 
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Table 3-2. Cases of input variables. 

 Type of Input Variables 
Number of Input 

Variables 

Case1 Qshio + P 2 

Case2 Qshio + Qsan 2 

Case3 Qshio + Qsan + P 3 

Case4 Qshio + Qsan + P + T 4 

Case5 Qshio 1 

Case6 Qshio + T 2 

Case7 P 1 

Case8 T 1 

Case9 Qsan 1 

Case10 Qsan + P 2 

Case11 Qsan + T 2 

P: precipitation.  Qsan: discharge volume of Sanpukuji  

Qshio: discharge volume of Shioyabashi T: air temperature 

 

The evaluation method of chapter 2 was referenced and improved 

advisably in this study. Because the result of each training of Stochastic 

Gradient Decent (SGD) is different, which means the accuracy of each 

training is different, the ensemble average of multiple training results was 

calculated to cancel such differences. For each combination of 

hyperparameters, the training was repeated 500 times. From the results of 

500 trainings, N ensemble members of them were picked out randomly and 

the ensemble average was calculated. The Nash–Sutcliffe model efficiency 

coefficients (NSE)[51] of these average values were calculated for the 

evaluation. Additionally, the evaluation metrics commonly used on deep 

learning, such as Root Mean Squared Error (RMSE) and Mean Absolute 

Error (MAE) were regarded as the potential options to evaluate the model 

accuracy of this study. The N varies from 1 to 50 and for each N, the 

random pick out was carried out 40 times. The average and standard 

deviation of NSE of these 40 ensemble average values were calculated and 

the variation of 5th percentile (P5) on N = 1–50 was evaluated. Even if the 

result was dispersed, P5 can indicate that 95% of the results were better 

than it. 
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3.1.5 Traditional Methods 

The linear regression equation was used as the traditional imputation 

method compared with the new method using deep learning, which was 

proposed in this study. When 𝑦𝑡  is the discharge data observed on 

Shioyabashi at time 𝑡, and 𝑥𝑡 is the discharge data observed on Sanpukuji 

at time 𝑡, the linear regression model is defined as the follows equation (2): 

𝑦𝑡 = 𝑎𝑥𝑡 + 𝑏   (2) 

where 𝑎 and 𝑏 are the regression parameters. As mentioned in chapter 2, 𝑎 

and 𝑏 have been estimated with the data of 2008, as shown in Figure 2-2. 

The x axis is the discharge data at Sanpukuji (𝑥𝑡), and the y axis is the 

discharge data at Shioyabashi (𝑦𝑡), where the correlation coefficient R was 

0.915. The dotted line is the linear regression model. The accuracy, which 

was evaluated with the discharge data in 2009, was 0.903 in NSE. 

 A tank model optimized by Shuffled Complex Evolution (SCE-UA) 

method was also considered as the comparison target of the deep learning. 

In this model, the precipitation of Takayama in 2009 was used as input and 

the discharge height was estimated. The equation of the model is shown as 

follows equation (3): 

𝛴𝑄 = 𝛴𝑅 − 𝛴𝐸   (3) 

where Q is the discharge height (mm/h), R is the precipitation and E is the 

evaporation. The discharge coefficient was set as 0.9. The evaporation was 

set as 0 since it was complicated and hard to grasp the exact amount of 

evaporation in this case. However, the R of the tank model was 0.888 

(Figure 3-2), and the NSE was 0.771, which is lower than the linear 

regression model. The aim of this study is to propose a new method to 

obtain an improved accuracy. Thus, the higher accuracy of the linear 

regression model was chosen as the goal to be exceeded by the new method. 
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3.2 Results and Discussion 

3.2.1 Evaluation Metrics 

NSE, RMSE, and MAE were tested on six random trainings. These 

random trainings were numbered from 1 to 6 and their results were shown 

in Figure 3-3. The results were compared with each other and indicated a 

basically stable relationship between the three kinds of metrics. The NSE 

has a negative correlation with RMSE. The trend of MAE was expected to 

be the same as RMSE. However, it is different between training No.2 and 

 

Figure 3-2.  Tank model estimated with 2009 precipitation data. 

0

1

2

3

4

0 1 2 3 4

E
st

im
at

ed
 d

is
ch

ar
g

e 
h

ei
g

h
t 

(m
m

/h
) 

at
 S

h
io

y
ab

as
h

i

Observed discharge height (mm/h) at Shioyabashi

R=0.888



Chapter 3   Investigation of Hyperparameter Setting of Long Short-term Memory Model Applied for

 Imputation of Missing Discharge Data of the Daihachiga River 

29 

 

training No. 3. Even if training No. 2 has higher RMSE and lower NSE 

than training No. 3, its MAE was lower. The hydrographs of training No. 2 

and training No.3 are shown in Figure 3-4 and Figure 3-5, respectively. The 

blue line is observed data and the orange line is estimated data. The line of 

estimated data overlaps the line of observed data more in training No. 2, 

which has led to a result of lower MAE value than training No. 3. On the 

other hand, training No. 3 was able to estimate peak discharge more 

accurate than training No. 2, which made the RMSE of No.3 lower than 

training No. 2. However, these results were compared under a condition 

that NSE is under 0.4, which cannot be regarded as acceptable model 

accuracy. Since NSE can reflect the trend of RMSE and MAE, and was 

frequently used in recent studies, it was chosen as the evaluation metrics of 

this study. 

 

 

Figure 3-3. Relationship between RMSE, MAE and NSE. 
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Figure 3-4．Hydrograph of Training No.2. 

 

Figure 3-5. Hydrograph of Training No.3. 
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3.2.2 Number of Members for Ensemble Average 

The P5 of the NSE from the number of ensemble members N = 1 to 

50 for Case 2 is shown in Figure 3-6 as an example. The blue line shows 

the results with Backts = 24, Hid = 20, the orange line shows the results 

with Backts = 24, Hid = 200, and the red line shows the results with Backts 

= 168, Hid = 100. At the blue line, where the number of hidden layers (Hid) 

is small, the accuracy is generally low, and the P5 of NSE = 0.90 is the 

best. For the orange and red lines, where Hid > 100, increasing the number 

of ensemble members results in an accuracy of NSE > 0.92, which is 

greater than the 0.903 reference accuracy. In brief, the variation curves of 

P5 of NSE become flat, and keep the accuracy level when N ≤ 20. Thus, in 

this study, the training results were evaluated by the P5 of NSE for N = 30 

for safety to avoid the dispersion of different training results. 

 

3.2.3 Type of Input Variables 

The P5 of NSE, when N = 30, was compared to evaluate the 

influence of each training hyperparameter to the result. There are four 

 

Figure 3-6. Examples of relationship between number of ensemble members (N) and 

5th percentile of NSE for Case 2. Blue line: Backts = 24, Hid = 20, Drp = 0, Drpr = 0; 

orange line: Backts = 24, Hid = 200, Drp = 0, Drpr = 0; red line: Backts = 168, Hid = 100, 

Drp = 0, Drpr = 0. 
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kinds of Hid combinations for each input variable case. Figure 3-7, Figure 

3-8 and Figure 3-9 show the four combinations of the hyperparameter 

settings summaries of the results with Drp = 0 and Drpr = 0. Figure 3-7 and 

Figure 3-8 show the results of Case 1–6 with Backts = 24, which assumed a 

1-day missing period, and Backts = 168, which assumed a 7-day missing 

period, respectively. In Figure 3-7, Case 2, Case 3 and Case 4, which used 

the discharge data of both Shioyabashi and Sanpukuji as input data, were 

relatively good. Case 2 and Case 3 indicate 0.939 and 0.947 in the median 

of P5 of NSE, respectively. They are over the reference accuracy 0.903, 

which is the accuracy of the linear regression model. Case 4, which used air 

temperature as one of the input data factors, indicates 0.900 in the median 

of P5 of NSE, which was slightly less than the reference accuracy. The 

lower quartiles for Case 2 and Case 3 were 0.922 and 0.917, respectively, 

which were better than the reference accuracy. However, the minimum for 

Case 2 and Case 3 were 0.896 and 0.860, respectively, which were slightly 

less than the reference accuracy. It must be noted that Case 3, which used 

precipitation as one of the input data factors, has a wide variation in 

accuracy depending on different hyperparameter settings. In Figure 3-8, 

Case 2, Case 3, and Case 4 have relatively good accuracy, as is seen in 

Figure 3-7. Case 2 indicates 0.922 in the median of P5 of NSE, which is 

over the reference accuracy. However, the median of Case 3 and Case 4 are 

0.899 and 0.871, respectively, which are less than the reference accuracy. 

The minimum for Case 2 is 0.904, which is over the reference accuracy. 

Thus, Case 2 is appropriate for the input data when Backts = 168. 
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Figure 3-7. Summarized training results for Case 1 to Case 6 when Backts = 24, Drp = 0, 

Drpr = 0. 
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The results of the cases without the discharge data of Shioyabasi as 

Backts = 0 are shown in Figure 3-9. Case 9, Case 10, and Case 11, which 

used discharge data of Sanpukuji as the input data, indicated relatively 

good accuracies. However, they were 0.877–0.891 in the median of P5 of 

NSE, which was slightly less than the reference accuracy. In Case 7, where 

only precipitation was used as the input data, the median of the P5 of NSE 

is 0.344. In Case 8, where only air temperature was used as the input data, 

the median of the P5 of NSE is 0.013, indicating that it is difficult to 

estimate the missing data. These results suggest the understanding for the 

input data combination is: (i) both the Sanpukuji data and the Shioyabashi 

data are necessary, (ii) air temperature is not required; and (iii) 

precipitation may contribute to the improvement of accuracy, but it should 

be noted that it may cause poor accuracy depending on the parameter 

settings. 

 

Figure 3-8. Summarized training results for Case 1 to Case 6 when Backts = 168, Drp = 

0, Drpr = 0. 



Chapter 3   Investigation of Hyperparameter Setting of Long Short-term Memory Model Applied for

 Imputation of Missing Discharge Data of the Daihachiga River 

35 

 

 

Two trainings of Case 1 (Backts = 24, Hid = 20, Drp = 0, Drpr = 0) and 

Case 8 (Backts = 24, Hid = 20, Drp = 0, Drpr = 0) were chosen to 

investigate the impact of precipitation to the estimation results. The 

hydrograph of observed discharge, precipitation, and both estimation 

results are shown in Figure 3-10. The blue line is observed data, and the 

grey line is precipitation. The green and orange lines represent discharge 

estimated from data with precipitation and without precipitation, 

respectively. The hydrograph indicates that both estimation results are 

responsive to precipitation events. When precipitation data was used for 

training, there is a trend of an occurrence of trough in the estimated 

discharge after a peak caused by precipitation. Additionally, the model 

could not estimate the discharge well when a relatively heavy precipitation 

event occurs. Besides, even if the location of the observation point of 

precipitation data is close to Sanpukuji, it is still outside of the Daihachiga 

 

Figure 3-9. Summarized training results for Case 7 to Case 11 when Backts = 0, Drp = 0, 

Drpr = 0. 



Chapter 3   Investigation of Hyperparameter Setting of Long Short-term Memory Model Applied for

 Imputation of Missing Discharge Data of the Daihachiga River 

36 

 

River Basin. It leads to a possibility that the precipitation data could not 

represent the precipitation of the whole basin of the Daihachiga River. A 

regional rainfall in small area near Takayama may not have influence on 

the discharge of upper stream. These are considered as part of the reasons 

that precipitation may cause lower accuracy. 

 

3.2.4 Dropout and Recurrent Dropout 

Figure 3-11 shows the influence of dropout and recurrent dropout 

(Drp&Drpr), when Hid = 20 to 200 and Backts = 24 for Case 3. The 

accuracy improved as Drp&Drpr became smaller, and Drp&Drpr = 0.00 

had the best accuracy of 0.947 in the median P5 of the NSE. The maximum 

P5 of the NSE was 0.961 when Drp&Drpr = 0.01 and Hid = 200. When Hid 

= 20, the minimums were indicated as 0.860, 0.860, 0.825, and 0.771 for 

Drp&Drpr = 0.00, 0.01, 0.05, and 0.10, respectively. When Drp&Drpr = 

0.00 or 0.01, in the case of Hid > 50, the accuracies were indicated to be 

more than 0.920, which is over the reference accuracy. In brief, Drp&Drpr 

= 0.00 shows the best results. The reason may be that higher Drp and Drpr 

values drop more units for the linear transformation of the input and 

recurrent state. Fewer units caused a shortage of information necessary for 

the training, since the LSTM model of this study has only a few units in the 

 

Figure 3-10. Influence of precipitation on the estimation results. 
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input and hidden layers. In the case of some other studies, a large number 

of units in the input and hidden layers caused drops in the units by dropout 

and recurrent dropout, which improved the training results [52,53]. Thus, if 

Hid is less than 200, Drp&Drpr = 0.00 is appropriate, and if Hid is more 

than 200, Drp&Drpr = 0.01 is appropriate. 

 

3.2.5 Number of Hidden Layers 

Figure 3-12 shows the relationship between the number of hidden 

layers (Hid = 20 to 200) and the P5 of NSE, when Backts = 24 and 

Drp&Drpr = 0.00. In Cases 2, 3 and 4, the accuracy improved as Hid 

increased. Case 2 and 3 indicated better accuracy than the reference 

accuracy 0.903 when Hid > 50. However, when Hid > 100, the accuracies 

were almost the same, i.e., 0.947–0.947 for Case 2, 0.957–0.959 for Case 3. 

Additionally, Figure 3-13 shows the relationship between the number of 

hidden layers (Hid = 20 to 200) and the P5 of the NSE when Backts = 168 

and Drp&Drpr = 0.00. In Case 2, the accuracy slightly improved from 

0.904 to 0.928 as Hid increased. In Case 4, the accuracy had almost no 

 

Figure 3-11. Influence of dropout and recurrent dropout on the 5th percentile of NSE. 
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change as Hid increased. On the other hand, in Case 3, Hid = 50 indicated 

the best accuracy of 0.915. However, the accuracy decreased as Hid 

increased when Hid > 50. In Case 3, with precipitation as the input, the 

estimated hydrograph might be jagged due to the influence of precipitation, 

showing pulsed time-series data. This is the reason why Case 3 does not 

always show the best accuracy. As a result, for Backts = 24, Hid = 100 is 

appropriate for both Cases 2 and 3 because the accuracies for Hid = 100 

and 200 were almost same. Setting a higher Hid value will just lead to a 

longer training time consumption. Moreover, for Backts = 168, Hid = 100 is 

also appropriate for Case 2, and Hid = 50 is appropriate for Case 3. 

However, in Case 3, where precipitation is used as the input data, care 

should be taken because the accuracy may decrease depending on the 

settings.  

 

 

 

Figure 3-12. Influence of number of hidden layers to the 5th percentile of NSE, when 

Backts = 24. 
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3.3 Conclusion 

In this study, LSTM was applied for the imputation of missing 

discharge data of the Daihachiga River. The performance of an LSTM 

model was evaluated, and the hyperparameters of the model were tuned to 

satisfy the reference accuracy of 0.903 in NSE. Different hyperparameters 

affect the model performance to different extents. In the case of the 

Daihachiga River, the discharge data of both observation points should be 

included in input variables for training (Case 2). It is thought that the 

discharge data of Shioyabashi dating back 1 day or 7 days is effective in 

correcting the absolute value of the estimated discharge, because the 

estimated hydrograph with Case 9 had a slight error in base flow volume. 

The influence of precipitation varies. Since precipitation is strongly related 

to discharge, it may be useful to complete missing data. However, there is a 

possibility of making the estimated hydrograph jagged due to the influence 

of precipitation, showing pulsed time-series data. The location of 

observation point of precipitation data also needs to be considered. 

Although it is possible that filtering the precipitation data before inputting 

it into the LSTM will improve the accuracy, it is safer to exclude 

precipitation data in order to obtain consistently good results. Moreover, air 

temperature data could not improve the performance. Due to the small 

 

Figure 3-13. Influence of number of hidden layers to the 5th percentile of NSE, when Backts 

= 168. 
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number of units for transformation in the model of this study, setting the 

dropout value to 0 was suitable. A higher Hid value might be more suitable 

for the model. However, an excessive Hid value would just lead to a longer 

training time.  

Consequently, this study can propose the hyperparameter settings as 

Backts = 24, In = Case 2, Hid = 100, Drp&Drpr = 0, a setting which is 

possible to estimate greater than the reference accuracy. The necessity of 

hyperparameter tuning was proved and the hyperparameter settings could 

be a reference for further research in relevant areas. Of course, this 

combination can be appropriately adjusted under specific experimental 

conditions. In future experiments, the amount of analysis data can be 

increased, such as the discharge data of more than two observation points, 

and the influence of precipitation and air temperature on the model 

performance can be further analyzed to improve the accuracy of the results. 
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    In this thesis LSTM model was applied for the imputation of missing 

discharge data of the Daihachiga River. The performance of the model was 

evaluated and compared with traditional method. There are both 

advantages and disadvantages for applying LSTM to such tasks. The 

method of improving the disadvantages was also investigated. The 

conclusions of this thesis are summarized as following. 

Chapter 2: 

⚫ Because of the properties of SGD, the training results are dispersed. 

Ensemble average of the results is necessary to avoid such dispersion. 

⚫ Although there is possibility that the result of some certain training of 

LSTM is worse than linear regression analysis, the average of more 

than 20 times of training result can increase to a higher level than the 

linear regression analysis. 

⚫ LSTM is a feasible way to complement missing discharge data since it 

can obtain better accuracy than linear regression analysis even if its 

hyperparameters are not tuned. The model needs more improvement to 

make it applicable. 

⚫ Using the data of neighboring observation point is useful for improving 

the estimation accuracy. 

 

Chapter 3: 

⚫ Hyperparameters can affect the LSTM model performance in different 

extent. 

⚫ Using discharge data of both observation points is the best choice in the 

case of the Daihachiga River. 

⚫ Precipitation data could be noise. In some cases, it can improve the 

performance. But in other cases, it may lower the estimation accuracy. 

It might be caused by the estimation mechanism of the LSTM model. 

Besides, the location of observation point of precipitation might lead to 
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a result that in certain rainfall events the precipitation has no influence 

on the discharge of upper stream. 

⚫ Air temperature almost has no influence on the results 

⚫ High dropout values may cause information shortage at transformation 

of cell state to a model with few units. It leads to decrease of the model 

performance. 

⚫ The LSTM model can complement the 24 hours of missing data gap 

very well. If the gap is 168 hours long, the accuracy is acceptable. But 

at the same time, setting of dropout needs special attention. 

⚫ Although more hidden layer leads to better results, time consumption of 

training needs to be considered when setting the number of hidden 

layers. 

⚫ Optimal hyperparameter setting can improve the model performance 

significantly. In this study, the optimal hyperparameter setting is Backts 

= 24, In = Case 2, Hid = 100, Drp&Drpr = 0. 

   The LSTM has its specific inherent advantages over traditional methods. 

It was proved competent and had better performance than traditional 

method in imputation of missing discharge data. In this study, the potential 

of the LSTM for imputation of missing data was underlined, and feasible 

application method to further research of missing hydrological data 

imputation was provided. Those advantages of the LSTM should be 

explored and applied on not only missing discharge data, but also other 

kinds of hydrological data such as water level. In future studies, the 

application method of the LSTM should also be improved to adjust the new 

application scenarios. 
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Appendix 

Table A1. Table of 90 kinds of hyperparameter combination 

Training No. In Backts Hid Drp Drpr 
P5 of 

NSE 
1 Qshio + Qsan 24 20 0 0 0.896323 

2 Qshio + P 24 20 0 0 0.612851 

3 Qshio + Qsan + P 24 20 0 0 0.859700 

4 Qshio + Qsan + P + T 24 20 0 0 0.841739 

5 Qshio 24 20 0 0 0.643958 

6 Qshio + T 24 20 0 0 0.351267 

7 Qshio + Qsan + P 24 20 0.01 0.01 0.860271 

8 Qshio + Qsan + P 24 20 0.05 0.05 0.824750 

9 Qshio + Qsan + P 24 20 0.1 0.1 0.771259 

10 Qshio + Qsan 24 50 0 0 0.930278 

11 Qshio + P 24 50 0 0 0.573846 

12 Qshio + Qsan + P 24 50 0 0 0.936166 

13 Qshio + Qsan + P + T 24 50 0 0 0.892641 

14 Qshio 24 50 0 0 0.680160 

15 Qshio + T 24 50 0 0 0.356994 

16 Qshio + Qsan + P 24 50 0.01 0.01 0.927786 

17 Qshio + Qsan + P 24 50 0.05 0.05 0.908147 

18 Qshio + Qsan + P 24 50 0.1 0.1 0.873763 

19 Qshio + Qsan 24 100 0 0 0.947078 

20 Qshio + P 24 100 0 0 0.535739 

21 Qshio + Qsan + P 24 100 0 0 0.957068 

22 Qshio + Qsan + P + T 24 100 0 0 0.906750 

23 Qshio 24 100 0 0 0.727970 

24 Qshio + T 24 100 0 0 0.359394 

25 Qshio + Qsan + P 24 100 0.01 0.01 0.943825 

26 Qshio + Qsan + P 24 100 0.05 0.05 0.922461 

27 Qshio + Qsan + P 24 100 0.1 0.1 0.909169 

28 Qshio + Qsan 24 200 0 0 0.947493 

29 Qshio + P 24 200 0 0 0.601911 

30 Qshio + Qsan + P 24 200 0 0 0.959165 

31 Qshio + Qsan + P + T 24 200 0 0 0.925806 

32 Qshio 24 200 0 0 0.702479 

33 Qshio + T 24 200 0 0 0.385552 

34 Qshio + Qsan + P 24 200 0.01 0.01 0.961166 

35 Qshio + Qsan + P 24 200 0.05 0.05 0.953193 

36 Qshio + Qsan + P 24 200 0.1 0.1 0.928058 

37 Qshio + Qsan 168 20 0 0 0.904154 

38 Qshio + P 168 20 0 0 0.499526 

39 Qshio + Qsan + P 168 20 0 0 0.900507 

40 Qshio + Qsan + P + T 168 20 0 0 0.869109 

41 Qshio 168 20 0 0 0.129549 
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42 Qshio + T 168 20 0 0 0.122250 

43 Qshio + Qsan 168 50 0 0 0.920067 

44 Qshio + P 168 50 0 0 0.494320 

45 Qshio + Qsan + P 168 50 0 0 0.915458 

46 Qshio + Qsan + P + T 168 50 0 0 0.872925 

47 Qshio 168 50 0 0 0.138257 

48 Qshio + T 168 50 0 0 0.133258 

49 Qshio + Qsan 168 50 0.01 0.01 0.918030 

50 Qshio + Qsan + P 168 50 0.01 0.01 0.914554 

51 Qshio + Qsan 168 50 0.05 0.05 0.900544 

52 Qshio + Qsan 168 50 0.1 0.1 0.874470 

53 Qshio + Qsan 168 100 0 0 0.922857 

54 Qshio + P 168 100 0 0 0.446777 

55 Qshio + Qsan + P 168 100 0 0 0.898342 

56 Qshio + Qsan + P + T 168 100 0 0 0.871731 

57 Qshio 168 100 0 0 0.146017 

58 Qshio + T 168 100 0 0 0.165140 

59 Qshio + Qsan + P 168 100 0.01 0.01 0.906672 

60 Qshio + Qsan + P 168 100 0.05 0.05 0.904354 

61 Qshio + Qsan + P 168 100 0.1 0.1 0.887407 

62 Qshio + Qsan 168 200 0 0 0.927516 

63 Qshio + P 168 200 0 0 0.459666 

64 Qshio + Qsan + P 168 200 0 0 0.876401 

65 Qshio + Qsan + P + T 168 200 0 0 0.869963 

66 Qshio 168 200 0 0 0.146245 

67 Qshio + T 168 200 0 0 0.182535 

68 Qshio + Qsan + P 168 200 0.01 0.01 0.883799 

69 Qshio + Qsan + P 168 200 0.05 0.05 0.883235 

70 Qshio + Qsan + P 168 200 0.1 0.1 0.881285 

71 Qsan None 20 0 0 0.880953 

72 P None 20 0 0 0.374783 

73 T None 20 0 0 -0.016940 

74 Qsan + P None 20 0 0 0.892470 

75 Qsan + T None 20 0 0 0.892694 

76 Qsan None 50 0 0 0.871054 

77 P None 50 0 0 0.315801 

78 T None 50 0 0 -0.003190 

79 Qsan + P None 50 0 0 0.885649 

80 Qsan + T None 50 0 0 0.876715 

81 Qsan None 100 0 0 0.888463 

82 P None 100 0 0 0.310116 

83 T None 100 0 0 0.029295 

84 Qsan + P None 100 0 0 0.867375 

85 Qsan + T None 100 0 0 0.889015 

86 Qsan None 200 0 0 0.909590 

87 P None 200 0 0 0.372668 

88 T None 200 0 0 0.032621 
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89 Qsan + P None 200 0 0 0.845648 

90 Qsan + T None 200 0 0 0.900389 

 


