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Abstract 

With the growth of world-wide population and urbanisation, crowd analysis has received lots 

of attention from social and technical disciplines and has been an actively growing research 

area. Meanwhile, the advances in means of transportation have facilitated the gathering of 

people, many people have become indulged in travelling and the tourism industry has also 

expanded significantly across the globe. Tourism brings economic benefit and contributes to 

the employment and development in destination regions. However, the concentration of tourist 

flows to specific areas may lead to overcrowding of destinations and generate negative impacts 

such as alienated local residents, degraded tourist experiences, overloaded infrastructure, harm 

to the natural and cultural heritage, environmental pollution and transportation congestion. To 

overcome these issues and ensure public safety and make areas more convenient, understanding 

human spatiotemporal movement features and crowd phenomenon is of great importance and 

also plays a key role in a variety of application domains such as store location, developing 

crowd management strategies in public events as well as planning and designing of public 

spaces, and providing guidelines for navigation in large buildings such as train stations, airports, 

stadiums and theatres and so on.  

Tourism is one of the pillar industries of Japanese economic development. As one of the 

most famous tourist attractions of Japan, Kyoto is also faced issues that come from overtourism 

such as queuing at a bus station and transportation congestion. How to reasonably guide and 

manage tourists, provide a comfortable travel experience to visitors and reduce negative 

impacts on residents, have become urgent problems. Therefore, it is increasingly important to 

analyse and understand the movement behaviour and features of visitors to alleviate congestion 

in tourist areas and improve services offered to visitors and citizens. 

Pedestrian Level of Service (PLoS) is one of the best criteria to characterise the performance 

of a given road in terms of travellers’ perspective and is often described as the comfort level 

that is experienced by the pedestrian. The Highway Capacity Manual (HCM) provided certain 

guidelines for calculating pedestrian levels. In tourism research, Sequential Pattern Mining 

(SPM) has been extensively used by researchers to understand the destination visiting 

behaviour of tourists for efficient destination management and attraction marketing. Therefore, 

the PLoS and SPM are used as tools to study the crowding behaviours in this research. The 

dynamic nature of visitor flows and destination visiting trajectory information are key 

components of these two tools. The most common people data acquisition methods include 

manual count surveys and video surveillance. However, high labour costs and difficulty to 
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acquire long term data are always a problem for manual count surveys. Video camera-based 

data collection is also dependent on weather conditions, illumination changes, and limited 

viewing angles. Moreover, it is difficult to track the crowds because the camera-based data 

collection requires image processing to identify and track people, while it is common for 

blocking each other in dense crowds. On the other hand, thanks to the development of 

information and communication technology, smartphones have become more and more popular 

in the past decade. One smartphone has many kinds of sensors and functions which can be used 

to record many kinds of information about the user. The development of radio frequency 

technology provides more possibilities for using this information. For example, we can collect 

pedestrian movement data by tracking the location of their smart devices since they carry 

smartphones almost anytime and anywhere. Wi-Fi packet sensor data has been applied to 

analyse pedestrian behaviour under different scenarios such as the customers within a shopping 

mall, and passengers in a transit station. This data acquisition method requires less effort and 

fewer resources yet produces a larger volume of data than traditional counting and surveying. 

However, it is still not well developed in the current situation, especially limited research has 

been done in applying this technology to an outdoor context and analyses of a specific group 

(tourist). There are still challenges facing it such as how the environmental and installation 

conditions influence the observation result of the Wi-Fi packet sensor, and the correlation 

between the sensor observation and real pedestrian count is not clear. Therefore, this research 

carried out an experiment to collect data from a famous tourist area to extend the potential 

application of anonymous Wi-Fi sensing technology in various contexts. Moreover, other 

experiments were also carried out in the laboratory and campus to collect data as fundamental 

analysis of MAC address data for tracking people. 

Overall, this research aimed at unlocking and making available hidden data to analyse 

crowd behaviour. In this research, the Wi-Fi packet sensor was used to collect the data of smart 

device users. This is a passive data collecting method, without the cooperation of users, without 

installing any apps and without infringing on privacy. Specifically, the main contributions of 

this thesis can be summarized as: 

Chapter 3 explored the factors that influence the observation of the Wi-Fi packet sensor and 

gave a preliminary proof that the Wi-Fi packet sensor can be used to analyse human movement.  

Chapter 4 quantified the influencing factors and developed a method to estimate real 

pedestrian count based on Wi-Fi packet sensor data and manual count data collected at 

Higashiyama area, Kyoto. The result of this chapter is the foundation of chapter 5. 

Chapter 5 used the concept of PLoS (Pedestrian level of service) to evaluate the crowding 
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level in a tourist area. In this chapter, it is possible to estimate real pedestrian flow with the 

parameters estimated in chapter 4, based on which the PLoS can be decided. Possible solutions 

to balance people in time and space are also discussed. 

Chapter 6 proved that the characteristics of smart device users can be identified through 

clustering analysis even data from the Wi-Fi packet sensor is anonymous. It also extracted the 

frequently used routes by tourists in Higashiyama area. These analytical methods may be 

applicable to other tourist destinations and pedestrian flow studies, such as passenger flow 

inside a transfer station. This technology can also help monitor the pedestrian travel changes 

before and after the COVID-19 pandemic. For example, it can observe the volume and stay 

time of pedestrians at a public place like a mall or restaurant and can also observe the use of 

public transportation and cross-city mobility. 

This research showed it is possible to analyse crowd behaviour utilising Wi-Fi sensing 

technology, especially in terms of tourist behaviour. This can help local government and tourism 

destination managers make strategies for tourist control and tourism management. The analyses 

of this research provide evidence and insights for the further application of this new data source. 
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Chapter 1: Introduction 

1.1 Background and research motivation 

1.1.1 Crowd analysis 

The opportunity for jobs, convenience and prosperity, among other factors, pulls people to cities. 

According to the statistical data of the United Nations, more than half of the world’s population 

now lives in cities and it has been projected that 68% of the world population will live in urban 

areas by 2050. The high population density can cause problems such as lack of open space, 

pollution (land, pollution, water pollution and air pollution), overcrowded, and traffic 

congestion. Effective city planning and management by national and local authorities will be 

essential in addressing these and other issues as the world's urban areas swell. 

With the growth of world-wide population and urbanisation, crowd analysis has received 

lots of attention from social and technical disciplines and has been an actively growing research 

area (Keith Still, 2000; Lamba and Nain, 2017; Kaiser et al., 2018; Bendali-Braham et al., 2021). 

Understanding human spatiotemporal movement features and crowd phenomenon is of great 

interest and critical in a variety of application domains such as store location, developing crowd 

management strategies in public events as well as planning and designing of public spaces, and 

providing guidelines for navigation in large buildings such as train stations, airports, stadiums 

and theatres. The goals include ensuring public safety and making areas more convenient (Zhan 

et al., 2008; Timmermans, 2009). Meanwhile, many people have become indulged in travelling 

and the tourism industry has also expanded significantly across the globe. According to the 

statistics of the United Nations World Tourism Organisation (UNWTO), there were 1.5 billion 

international tourist arrivals in 2019 and it was expected that the international flow of tourists 

will reach 1.8 billion by 2030, globally. Japan is also one of the most attractive countries for 

tourism. Based on the data of the Japan National Tourism Organization (JNTO), Figure 1.1 

shows the number of international visitors to Japan from 2011 to 2020. It can be recognised that 

the number of international visitors to Japan has increased more than five times in the recent 

decade. With the outbreak of Covid-19, this trend has been abruptly reversed now. Due to the 

restriction on international travel, the tourism industry has been hit extremely hard and the 

tourism economy also experienced a huge decline. Even if the problem of overcrowding could 

be released, it is unrealistic and not a long-term policy to restrict international travel. The 
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ongoing pandemic could provide us with an opportunity to rethink tourism as a whole by 

shifting more decisively from overtourism to sustainable tourism. 

 

 

Figure 1.1 Number of international visitors to Japan from 2011 to 2020 
 

Tourism brings economic growth and contributes to the employment and development in 

destination regions. However, the concentration of tourist flows to specific areas may lead to 

overcrowding of destinations and generate negative impacts such as alienated local residents, 

degraded tourist experiences, overloaded infrastructure, harm to the natural and cultural 

heritage, environmental pollution and transportation congestion. (McKinsey & Company, & 

World Travel & Tourism Council, 2017; Peeters et al., 2018). The problems caused by the 

ongoing growth in tourism have created the issue of overtourism and it was found that 

overtourism has emerged rapidly as a concept and crowding/overtourism has become an 

important issue for residents as well as tourists in several destinations, including New York City, 

Amsterdam, Reykjavik, the Isle of Skye, the Koh Phi Phi Islands of Thailand and the Palawan 

archipelagic province of the Philippines (Peeters et al., 2018; Capocchi et al., 2019; Pechlaner 

et al., 2019). The World Tourism Organization (UNWTO) defines overtourism as an impact of 

tourism on a destination, or parts thereof, that excessively influences the perceived quality of 

life of its citizens and/or the quality of visitors’ experience in a negative way (UNWTO, 2018). 

This report also clearly states that the tourism must be developed and managed sustainably for 

both visitors and local communities, as tourism is an opportunity for communities and their 

people to share its benefits. 
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Tourism is one of the pillar industries of Japanese economic development. As one of the 

most famous tourist attractions of Japan, Kyoto attracted more than 53 million tourists (more 

than 7 million coming from overseas) based on the statistical data of 2017. 

 

 

Figure 1.2 Tourists in the streets around Kiyomizu temple, in Kyoto, in the pre-pandemic era. 

Photo: Shutterstock 

 

Tourists have not only brought economic benefit to Kyoto city but have also caused many 

problems. For example, an increase in tourists has caused severely crowded conditions inside 

buses, which brings discomfort to residents and too many pedestrians can also easily cause 

traffic congestion. Kyoto has fallen into an overtourism situation (Ken Victor Leonard, 

2020;Satake et al., 2019; Lee, 2021). While the Japanese Government continues to develop 

tourism to promote the economy, how to reasonably guide and manage tourists, provide a 

comfortable travel experience to visitors and reduce negative impacts on residents, have 

become urgent problems. Therefore, it is increasingly important to analyse and understand 

movement behaviour and features of visitors to alleviate congestion in tourist areas and improve 

services offered to visitors and citizens. UNWTO (2004) claims that sustainable tourism 

industry depends on effective management of tourism flows at and through destinations and 

sites, giving the visitor time and opportunity to appreciate and enjoy the local culture and the 

values of the places being visited and to acquire local goods and services. Oklevik et al. (2019) 

analyses overtourism concerning the crowding effect, observing how crowding as an issue for 

destinations has been a recurrent topic in tourism research since the early 1970s (Turner and 

Ash, 1975; Ward and Berno, 2011). According to the research of (McKinsey & Company, & 
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World Travel & Tourism Council, 2017), destinations can mitigate overcrowding by adopting 

the right mix of tactics which include smoothening visitors over time and spreading visitors 

across sites, adjusting pricing to balance supply and demand, regulating accommodation supply 

and limiting access and activities. 

1.1.2 New technologies for collecting pedestrian data 

If the movement behaviour of pedestrians can be understood spatially and temporally, it will be 

helpful to take measures to control the pedestrian flow to alleviate crowding and enhance the 

pedestrian experience. According to UNWTO (2004), improving visitor movement patterns 

around sites can help to manage tourism better to avoid congestion at tourist sites. For example, 

ensure that the site is regularly monitored, especially in peak periods, to confirm that the 

movement pathways are working efficiently and ensure that the visitor movement patterns are 

continuous or in a one-way circulation system, to avoid returning visitors competing with those 

walking to the attraction are some efficient measurements to improve pedestrian movement. As 

a way to incorporate the density experience of a pedestrian into infrastructure design, Fruin 

(1971) introduced the Level-of-Service concept for pedestrians. Pedestrian Level of Service 

(PLoS) is one of the best criteria to characterise the performance of a given road in terms of 

travellers’ perspective. The Highway Capacity Manual (HCM) used this concept as a measure 

to describe operational conditions of pedestrian traffic and provided certain guidelines for 

calculating pedestrian level (HCM, 2000). The Level of Service is often described as the 

comfort level that is experienced by the pedestrian (Bloomberg and Burden, 2006). In tourism 

research, Sequential Pattern Mining (SPM) has been extensively used by researchers to 

understand the destination visiting behaviour of tourists for efficient destination management 

and attraction marketing (Xia et al., 2005; Lew and McKercher, 2006; Orellana et al., 2012; 

Bermingham and Lee, 2014; Bin et al., 2019; Park et al., 2020; Abucejo and Cuizon, 2021). 

Therefore, the PLoS and SPM will be used as tools to study the crowding behaviours in this 

research. The dynamic nature of visitor flows and destination visiting trajectory information are 

key components of these two tools. The most common people data acquisition methods include 

manual count surveys and video surveillance. However, high labour costs and difficulty to 

acquire long term data are always a problem for manual count surveys. Video camera based 

data collection is also dependent on weather conditions, illumination changes, limited viewing 

angles (Liebig and Kemloh Wagoum, 2012) and other factors also can result in lower 

recognition rates such as complex background, shadows and abrupt motion (Gawande et al., 
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2020). Another major shortcoming of video-based human data collection is that it is difficult to 

unambiguously distinguish between people in a crowd because of constant interactions and 

blocking of each other. This severely restricted its use as a tracking method for the analysis of 

pedestrian behaviour in space utilisation (Dee and Velastin, 2008). On the other hand, with the 

rapid development of computer science and Internet techniques, massive-scale data are 

generated, recorded, stored and accumulated, forming the big data and opening a new age, 

various big data sources have been applied to enrich and promote tourism research (Kambatla 

et al., 2014; Li et al., 2018). Technological advancements have created a variety of data 

acquisition methods that require less effort and fewer resources yet produce a larger volume of 

data than traditional counting and surveying, as is the case with new technology-based data 

available through mobile devices. Automatic counting techniques are the most promising 

strategy for enhancing the amount and quality of such data. The number of smartphone users 

worldwide today surpasses three billion and is forecasted to grow further by several hundred 

million in the next few years (“Number of smartphone users worldwide from 2016 to 2021| 

Statistic,” n.d.). Besides, wireless internet access has become a standard feature of smartphones 

and each smartphone has a media access control (MAC) address that is unique to each device. 

The unique identifiers can be matched over space and time; therefore, the data are ideal for 

tracking devices and can be the potential for understanding pedestrian movement behaviour. 

This information means that Wi-Fi probe request data sources are becoming more and more 

massive, and the Wi-Fi probe detection-based data collection method called anonymous MAC 

address packet (AMP) sensing is becoming increasingly useful. Wi-Fi packet sensor data has 

been applied to analyse pedestrian behaviour under different scenarios such as the customers 

within a shopping mall (Fukuzaki et al., 2015), passengers in a transit station (Schauer et al., 

2014; Hwang et al., 2019) or the students’ movement and occupancy of a campus (Kalogianni 

et al., 2015; Andión et al., 2018) and in dense urban environments(Traunmueller et al., 2018). 

The Wi-Fi packet sensor data can also be used to support smart cities concept (Kyritsis, 2017). 

Although multiple studies make use of Wi-Fi sensing technologies to analyse pedestrian 

behaviour, the potential of using this new emerging data source still needs to be explored and 

broadened in various contexts and perspectives. To this end, this research focuses on analysing 

and understanding pedestrian behaviour through the passive Wi-Fi sensing data and exploring 

the applications in tourism management. 
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1.2 Research questions and objectives 

Addressing the aforementioned main purpose, there are still challenges in using MAC address 

data as a tracking technology for the monitoring of pedestrians. Our main research question can 

be broken into several smaller ones. Firstly, in order to collect efficient data and as much data 

as possible, it needs to identify the influencing factors of the observation result of this 

technology. This brings us to the first research question: 

Question 1: What factors affect the data collection of the Wi-Fi packet sensor and whether 

it is suitable for collecting pedestrian data utilizing the Wi-Fi packet sensor? 

Objective of chapter 3: This part is a fundamental analysis of MAC address data collection. 

To answer the question 1, indoor and outdoor experiments were carried out with 5 sensors. 

Question 2: How do these factors influence the observation result of the sensor and how the 

pedestrian count can be estimated? 

Objective of chapter 4: This part quantified the influencing factors on the sensor data 

collection process and built the correlation between the Wi-Fi packet sensor observations and 

real pedestrian flow volume. The work of this part is the foundation of chapter 5. 

Question 3: Whether it is possible to evaluate the crowding level of visitors of a street? 

Objective of chapter 5: This part attempts to monitor the crowding level with the concept 

of PLoS. Based on the installation conditions of the Wi-Fi packet sensors and sidewalk width, 

it is possible to monitor the pedestrian flow performance. This information can help to manage 

the pedestrian flow in the tourist area. 

Question 4: Whether it is possible to analyse the behaviour of a specific group (tourist) with 

this anonymised data? 

Objective of chapter 6: To gain an insight in the capabilities of this technology, this part 

attempts to apply this data source to the tourism analysis. Firstly, the properties of the resulting 

data were clustered to identify the different types of smart device users. Then the frequently 

used routes by tourists were extracted. 

1.3 Dissertation framework and methodology 

1.3.1 Dissertation framework 

This dissertation consists of seven chapters. After the brief introduction that illustrated the 

background and motivation, research objective, and the structure of this dissertation in this 
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chapter, seven chapters will be presented as follows: 

Chapter 2 provided a review of the literature relevant to different pedestrian data collection 

methods. In this chapter, the advantages of the Wi-Fi packet sensor-based pedestrian data 

collection system were presented through comparison with other data collection methods such 

as the manual counting method and camera-based method. A detail review of literature that 

focuses on the specific investigated topic can be found in each related chapter. The sensor 

specifications and observation data characteristics are also described in this Chapter. 

Chapter 3 explored the factors affecting observation results of Wi-Fi packet sensors and 

how accurately pedestrian and traffic flow volume can be estimated through one sensor method. 

The data used in this chapter were collected from experiments in the laboratory and at Gifu 

University Campus.  

Chapter 4 developed a method to estimate real pedestrian volume based on Wi-Fi packet 

sensor data and manual count survey data collected in the Higashiyama area, Kyoto. The aim 

of this chapter is to quantify the influence factors of observation results to estimate the 

pedestrian volume in the Higashiyama area which will be used to evaluate the PLoS in chapter 

5.  

Chapter 5 explored the possibility of evaluating pedestrian flow performance based on Wi-

Fi packet sensor data. To know the efficiency of roadways in aspect to accommodate pedestrian 

travel or evaluate whether the tourists can have a comfortable walking experience, PLoS needs 

to be assessed. This assessment helps for the tourist management and improvement of service. 

Chapter 6 analysed the travelling behaviour of tourists in the Higashiyama area using 

digital footprint data collected by 20 Wi-Fi packet sensors. The clustering analysis was 

performed firstly to identify the trajectory of tourists from the anonymous data. Then sequential 

pattern mining was used to extract the frequent sequence of destinations visited by tourists.  

Chapter 7 summarised the findings and provided the main conclusions of this dissertation 

as well as possible further research directions. 
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Figure 1.3 Outline of thesis 
 

1.3.2 Methodology 

In this study, a methodology to use Wi-Fi sensing data for understanding the spatiotemporal 

behaviour of people is proposed. Firstly, a fundamental experiment was carried out to explore 

the factors that influence the observation of Wi-Fi packet sensors. A trial regression and 

clustering analysis were also performed using the collected data. Afterwards, the influencing 

factors were quantified and a model to estimate real pedestrian count was built. The research 

methodology also includes the evaluation of pedestrian crowding level and clustering analysis 
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to identify the types of smart device users and sequential pattern mining to identify the 

frequently used routes of tourists. The complete research methodology is visualised in Figure 

1.4. 

 

 
Figure 1.4 Visualisation of the research methodology 
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Chapter 2: Related work and sensor 

specifications 

This chapter aims to explore possible pedestrian data collection methods and explain why 

the Wi-Fi packet sensor was chosen as the data collection method in this research. The Wi-Fi 

packet sensor specifications is also explained in this chapter. 

2.1 Pedestrian data acquisition methods 

Pedestrian counting data is of great importance in many areas. For example, in a smart home, 

we can control the lighting, heating and cooling based on the number of people in the room. In 

a shopping mall, if we can know the number of people and their stay time in an area, we can 

analyse their consumption habits and preference, this will be helpful for selecting shop location. 

This information is also help for the design and management of public places such as tourist 

spot, bus stops, railway stations. Human movement behaviour research is also of increasing 

interest, particularly in the field of transportation planning. Movement data, indicating spatio-

temporal characteristics of the flow of people, contain important basic information for 

understanding the behaviour of people and the formulation and evaluation of traffic 

countermeasures. In order to analyse and understand pedestrian behaviour, collecting pedestrian 

data is of great importance. A variety of data collection methods have been used to investigate 

pedestrian behaviour, such as field observations, controlled experiments and survey methods. 

The field observations aim to study the pedestrian behaviour in realistic, natural environments. 

Contrary to field observations, controlled experiments need the participants’ movements in a 

controlled condition and a temporary experimental setup designed by the researchers. 

Collecting pedestrian data from a field observation is not an easy work especially when the 

study area is huge and the target is great quantity. Many methodologies have been studied to 

collect pedestrian data. Daamen et al. (2016) classified the data collection methods for 

pedestrians, as shown in Table 2.1.  
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Table 2.1 Classification of data collection methods for pedestrians (Daamen et al., 2016) 

 
Measurement objective 

Local Global 

Measurement 

perspective 

Microscopic 

Video 

Time-lapse 

Infrared 

Laser 

Stalking 

Questionnaires 

GPS 

Bluetooth, Wi-Fi 

Mobile phone data 

Macroscopic 

Manual counts 

Video 

Time-lapse 

Infrared 

Laser 

Aerial observations 

GPS 

Bluetooth, Wi-Fi 

Mobile phone data 

 

2.1.1 Conventional pedestrian data collection 

Traditional pedestrian mobility monitoring methods include manual count, questionnaire survey, 

and cameras with image processing techniques (Li et al., 2014; Peters et al., 2010; Lam et al., 

1995). As the name suggests, manual counting is a simple method that a person counts the 

number of individuals crossing designated sections. The accuracy of manual counting data can 

be relatively high, but it can only provide data only for limited time and locations since manual 

counting is labour intensive, and there is also a need for well-trained counting staff. Therefore, 

the manual counting appears powerless in the face of large crowds. One issue with surveys is 

that asking people to complete questionnaires can trigger survey fatigue and less faithful 

answers (Lee et al., 2016), and it often entails a great deal of preparatory work and post-data 

processing, high costs, and small sample sizes, which result in infrequent updates.  

With the development of video recording and digital video recorder technology, researchers 

can collect pedestrian data through video cameras instead of going to the field. In the beginning, 

the video was taken firstly while counted manually. Later, thanks to the image processing 

technology, it can automatically count the number of pedestrians or even derive the crowd speed 

and density information (Wang et al., 2012; Favaretto et al., 2016). Lam et al. (1995) studied 

the pedestrian dynamics on six pedestrian facilities in Hong Kong. The walking speed and 

pedestrian count data were collected both by video cameras and on-site manual counts. They 

checked the speed-flow-density relationships of indoor and outdoor walkways, signalized 

crosswalks, light rail transit crosswalks, and stairways and built the basis for the development 
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of pedestrian design standards for Hong Kong. However, the camera-based pedestrian detection 

method also has disadvantages as it requires good lighting conditions and the viewing area is 

limited. Besides, oldest methods for counting the amount of pedestrian flow have been using 

the top-view cameras, and most of the records are the tops of peoples’ heads, therefore it is 

difficult to reconstruct individual movements across multiple camera views especially when 

there are a large number of pedestrians. 

Although these methods can monitor the volume of people, they have several disadvantages, 

such as time consuming, limited coverage, high cost, and lack of movement information. In 

addition, it is difficult to obtain long-term data continually, and sometimes impractical, 

especially when the density of pedestrians is high.  

2.1.2 Emerging pedestrian data source 

By contrast, technological advancements have created a variety of data acquisition methods that 

require less effort and fewer resources yet produce a larger volume of data than traditional 

counting and surveying, as is the case with new technology-based data available through mobile 

devices. Emerging data sources have been explored to determine their usefulness with respect 

to measuring trip-making behaviour (Musa and Eriksson, 2012; Shoval and Ahas, 2016). When 

traffic volume over a long time period is needed, the automatic counting methods using diverse 

sensors such as pneumatic tubes, inductive loop detectors, infrared sensors, and radio beams 

can substitute for human data collectors (Lee and Sener, 2020). However, the installation and 

maintenance costs of these sensors are relatively high.  

2.1.2.1 Different technologies for collecting pedestrian data 

With the emergence of information and communication technology, smart technology has been 

able to mitigate many data collection issues and thus provide innovations to survey studies 

(Peters et al., 2010; Fukuda et al., 2017). These new technologies can capture high-resolution 

data on the behaviour of individual travellers in a large-scale population (Hasnat and Hasan, 

2018). With the rapid expansion of smart mobile device ownership, new data sources have 

become available for studies on understanding crowd behaviour. Harari et al. (2016) provided 

an overview of the most common types of smartphone data and their application. The types of 

data include Bluetooth, GPS, Wi-Fi, and other log data. Musa and Eriksson (2012) used MAC 

address data for human movement-tracking technology. They described a system using Wi-Fi 

detection to passively track smartphone clients and presented a trajectory estimation method. 
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Shoval and Isaacson (2007) compared tourist tracking techniques that are based on GPS, land-

based tracking systems, and hybrid solutions. They found that the time difference of arrival 

technique has a distinct advantage over GPS because it uses a light and easy-to-carry device, 

although GPS devices can obtain more accurate data. Martani et al. (2017) evaluated the 

reliability of two pedestrian monitoring systems; one utilises a downward-facing infrared depth 

sensor, and the other is based on a type of visible light (RGB) camera. The accuracy and 

limitations of both approaches under different conditions are discussed. it suggests that, 

although video surveillance has a good capture rate, the method is vulnerable to variation in 

lighting conditions, viewing angles, and weather conditions. The cost of video-based surveys is 

also relatively high. On the other hand, there are objections to the use of mobile network Global 

System for Mobile Communications log files due to privacy concerns (Utsch and Liebig, 2012).  

Digital footprints are widely used in social mobility studies. One type of digital footprint is 

the photos uploaded on websites such as Flickr (an image hosting and video hosting service). 

Önder et al. (2016) analysed tagged photos on Flickr and demonstrated that these digital 

footprints could be used as a useful indicator of tourist numbers at a destination. Bermingham 

and Lee (2014) noted that numerous studies have used social media platforms to explore 

travellers’ behaviour and trajectory patterns. By combining a collection of Flickr photos, they 

formulated the movement trails of an individual, called the trajectory. Spatio-temporal mining 

of the Queensland Flickr dataset uncovered interesting seasonal patterns along the east coast 

and local yearly patterns in Brisbane. Hasnat and Hasan (2018) presented a framework on how 

to use location-based data from social media (Twitter) to gather and analyse the travel behaviour 

of tourists. Some other researchers have also carried out studies using cellular data. Padrón and 

Hernández (2020) summarised how tracking techniques could be used in tourism research and 

to improve over-tourism management. To provide a structured and easy to follow evaluation of 

data characteristics, Table 2.2 presents an overview of different pedestrian data sources. 

To summarise, most traditional pedestrian monitoring methods can just acquire small 

sample data because of the limitations of labour and cost, and the emerging data sources, 

especially smartphone-based method, have shown great potential for monitoring pedestrians. 

Studies using emerging data sources have focused on the volume estimation or time-based 

analysis, but the analysis of human movement based on space on an aggregation level is still 

not enough. 
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Table 2.2 Classification of pedestrian data sources 
Pedestrian data sources 

Traditional Emerging 

Manual counting 

(human data collectors in the field or 

using video recordings) 

Cell tower mobile phone positioning 

(e.g., AirSage) 

Automated counting 

(e.g., pneumatic tubes, inductive loop 

detectors, infrared and radio beams) 

Global positioning systems 

(e.g., INRIX) 

Travel surveys 

(e.g., National Household Travel 

Survey) 

Multi-app location-based service 

(e.g., Foursquare, Yelp, TripAdvisor, 

Facebook) 

Interview surveys App-based tracking 

(fitness/activity tracking apps) 

Web-based surveys Wi-Fi/Bluetooth 

2.1.2.2 Wi-Fi and Bluetooth data 

The development of information and communication technology has changed society and our 

life fundamentally, and we are living in a mobile information era now. As the smart mobile 

devices (smartphone, laptop) spread day by day, new streams of data are being generated and 

can be integrated and analysed to better understand pedestrian mobility patterns. A Wi-Fi packet 

sensor can record when and where the smart device carrier has been, which can be treated as a 

kind of sequential data for the analysis of human movement behaviour. 

In 2020, 78.5% of the population in Japan used a smartphone, which constituted a 

significant increase from less than 64% in 2017 (Statista Research Department, 2021). The 

number of smartphone users worldwide today surpasses six billion and is forecasted to grow 

further by several hundred million in the next few years (S. O’Dea, 2022). Besides, wireless 

internet access has become a standard feature of smartphones, and each smartphone has a media 

access control (MAC) address that is unique to each device. The unique identifiers can be 

matched over space and time; therefore, the data are ideal for tracking devices. This information 

means that Wi-Fi probe request data sources are becoming more and more massive, and the Wi-

Fi probe detection-based data collection method is becoming increasingly useful. Where point-

to-point sensors are permanently installed, the amount of data collected can quickly become 

very large. The extracted information from such tracking data might be valuable and helpful for 

different kinds of use cases, such as crowd control, emergency situations, or just commercial 

purposes. 

The use of media access control (MAC) data to track people has recently focused on 

applications to mass events, shopping centres, airports, train stations, and so on. Ferro and 

Potorti (2005) examined the difference between Bluetooth and Wi-Fi wireless protocols and 
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concluded that Wi-Fi has a more extensive operating range, of up to 100 meters. Abedi et al. 

(2015) also investigated the effects of various antenna characteristics on pedestrian and cyclist 

travel time estimation using Bluetooth and Wi-Fi sensors. According to their results, the data 

collection rate from Wi-Fi-based sensors is almost 10 times theoretically and 8 times 

empirically larger than that of Bluetooth-based sensors. They also compared Wi-Fi and 

Bluetooth in terms of architecture, discovery time, popularity of use and signal strength. 

Similarly, Boehm et al. (2016) discussed whether Bluetooth and Wi-Fi sensors are suitable for 

reliable estimation of pedestrian volumes in urban areas. To test these sensors, several field tests 

were carried out under a non-motorised traffic condition (on two bridges). The received signal 

strength indicator (RSSI) was used as the main tool to select moving devices. They reported 

that data from Wi-Fi-based sensors perform better than Bluetooth-based sensors. Moreover, 

MAC address discovery time is important for efficiently collecting data in a short period of 

time. Lesani and Miranda-Moreno (2019) also developed a Bluetooth-Wi-Fi system to collect 

pedestrian data. They evaluated the performance of a system with three sensors at a pedestrian-

only street at the McGill University campus over the course of 6 days. The ground truth data 

were obtained by manual counting from video recordings. They showed that the detection rate 

for Wi-Fi systems is 26%, while it is only 2.02% in the case of Bluetooth systems. Kurkcu and 

Ozbay (2017)examined pedestrian flows, wait times, and counts based on data collected from 

Wi-Fi and Bluetooth sensors. The developed methods were applied to data collected at a public 

transportation terminal using six sensors over the course of 2 months. They presented 

procedures to remove low-quality detections and improve the detection and counting 

performance of the devices. The theory of Wi-Fi and Bluetooth based data collection method 

are similar. Both are through detect the smart devices carried by users to track users. But Wi-Fi 

sensing technology has a more wide range and can detect more data. 

Andión et al. (2018) studied a dataset collected during 1 year from nine Wi-Fi tracking 

sensors deployed on a university campus. Their data analyses included time and occupancy, 

people’s positions, movements and identification of common behaviours, and a comparison 

between the actual data and the results collected from a video system at the main entrance of 

the university library. They reported that Wi-Fi tracking is more accurate than video camera 

systems and is cost-efficient. Their study illustrates how a low-cost Wi-Fi tracking system can 

be used under real-life conditions to improve the operation of monitored premises. Fukuzaki et 

al. (2014) developed a system that analysed pedestrian flow using Wi-Fi packet sensors. They 

confirmed that the approximate features of pedestrian flow could be analysed using their system 

and simple analytical methods with experiments in the laboratory and during an event at the 
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Osaka Electro-Communication University campus. Schauer et al. (2014) investigated the 

quality and feasibility of pedestrian flow estimations based on Wi-Fi and Bluetooth data 

captured in a realistic scenario at a German airport. Kalogianni et al. (2015) examined the 

rhythm of a university campus using 20 Wi-Fi monitors to collect data over 1 week at the Delft 

University of Technology. They focused on the occupancy, duration of stay and movement 

pattern at and between different facilities. Crawford et al. (2018) analysed the repeated trip 

behaviour of travellers in Wigan, a town in England, based on 1 year of data from 23 fixed 

Bluetooth sensors. They proposed a method for obtaining road user classifications based on 

their spatial and temporal variabilities. Abedi et al. (2014) presented the use of the MAC address 

data collection approach for the analysis of spatio-temporal dynamics of people in terms of 

shared space utilisation. Analysis of MAC address data in the university staff lounge provided 

clear statistics, such as utilisation frequency by staff, utilisation peak periods and time spent by 

staff. Wepulanon et al. (2019) proposed a method for bus passenger waiting time estimation 

using passive Wi-Fi data. They proposed a methodology to handle massive noise in Wi-Fi data 

and identified potential Wi-Fi records that could be derived from passenger’s devices.  

Ribeiro et al. (2020) developed a passive Wi-Fi tracking system and installed their sensory 

infrastructure in 19 buses to collect data related to public transport usage in the whole city. They 

analysed their data on a per-vehicle and per-stop basis and compared these against ground truth 

data (ticketing). Their study shows how collected data can be put to good use to improve the 

daily mobility experience involving sustainable mobility. Similar studies can be found in (Petre 

et al. 2017; Alekseev and William, 2019; Huang et al. 2019). Duives (2020) presented a large, 

though not comprehensive, overview of the studies tracking pedestrian with Wi-Fi or Bluetooth 

sensors, part of that is shown by Table 2.3. 

Although Wi-Fi packet sensor data has been applied to analyse pedestrian behaviour, it is 

still not well developed in the current situation, there are still challenges facing it and the 

potential of using this emerging data source still needs to be broadened in various perspectives. 

There are still gaps when using Wi-Fi packet sensor technology, such as, how the environmental 

and installation conditions influence the detection capability of sensors, and the correlation 

between the sensor observation and actual pedestrian count is not clear. Moreover, how Wi-Fi 

sensing technology can be used to alleviate pedestrian crowding problems and study tourist 

behaviour is still limited. 
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Table 2.3 Summary of literature related to derivation traffic state using Wi-Fi/Bluetooth 

sensors 
Reference Sensor type Setting 

(O’Neill et al., 2006) Bluetooth City streets of Bath 

(Miyaki et al., 2007) Wi-Fi City streets and Uni. of Tokyo 

(Musa and Eriksson, 2012) Wi-Fi City streets of Chicago 

(Kostakos et al., 2013) Wi-Fi City streets of Oulu, Finland 

(Danalet et al., 2014) Wi-Fi Campus 

(Schauer et al., 2014b) Bluetooth and Wi-Fi Security gates airport 

(Fukuzaki et al., 2015b) Wi-Fi Shopping mall 

(Ma et al., 2015) Wi-Fi University building 

(Daamen et al., 2016) Wi-Fi Nautical event 

(Hoogendoorn et al., 2016) Wi-Fi Nautical event 

(Bellini et al., 2017) Wi-Fi City streets San Francisco 

(Fang and Hong, 2017) Wi-Fi University campus Dartmouth 

(Potortì et al., 2018) Wi-Fi Building 

(Duives et al., 2018) Wi-Fi Music event 

2.1.3 Pros and cons of Wi-Fi packet sensor data 

Judging from these studies, Wi-Fi-based methods have clear advantages. As smartphones 

equipped with Wi-Fi modules are ubiquitous, the cost of deploying a Wi-Fi-based crowd-

tracking system is rather small, and such schemes enable us to obtain long-term and continuous 

counts. Moreover, there is no need for direct interaction with data donors, people carrying Wi-

Fi devices do not need to install any apps for such data to be collected, and the data output by 

the system is easy to process. The other advantage of this method is the installation location of 

the Wi-Fi packet sensors is very flexible. However, like authors in Al Ameen (2012) say that 

any wireless system has some inherent technical vulnerabilities and limitations. Sending data 

out from the Wi-Fi packet sensor through wireless media can pose threats to the privacy of an 

individual. The concerns for privacy have been investigated by Nishida et al. (2018). According 

to their study, the device-specific information contained in the packets cannot be used to 

identify an individual by itself, but it can be maliciously linked to personal information, such 

as by tracking a target individual and obtaining the MAC address and thus behavioural tracking 

of individuals may be performed. Therefore, they convert the obtained MAC address to 

anonymised MAC address using a one-way hash function in the sensor, and change the salt of 

hash function weekly. 

2.2 Overview of Wi-Fi packet sensor based data collection system 

Wireless Fidelity (Wi-Fi) also known IEEE 802.11 (Crow et al., 1997; Willig, 2003; Ferro and 

Potorti, 2005; Gast, 2005) is designed for wireless local area network connections. The MAC 
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address is a unique identifier assigned to hardware for communication on the internet, it is like 

the address in the internet. Electronic devices, such as smartphones, tablets, and computers with 

Wi-Fi enabled periodically transmit so-called ‘probe requests,’ even when the device is not 

associated with a network. Probe requests include a MAC address that is unique for each device, 

and thus the Wi-Fi packet sensor can be used to identify the movement of its holders. To protect 

the user’s privacy, some smart device manufacturers have developed technology to randomise 

MAC addresses. These include the producers of devices running Android or iOS operating 

systems. However, it can distinguish between real and randomised MAC addresses using 

certain technical means (Martin et al., 2017). It is therefore possible to count and track 

pedestrians and by detecting the devices they are carrying. Figure 2.1 shows an overview of 

Wi-Fi packet-based tracking systems. An anonymised MAC address probe (Wi-Fi packet) 

sensor can be used to detect probe requests from smart devices and upload them to cloud servers 

after anonymisation. To protect device owners’ privacy, the sensor anonymises MAC addresses 

to A-MAC addresses. 

 
Figure 2.1 Overview of Wi-Fi packet-based tracking system 

 

The Wi-Fi packet sensors used in this study were developed by the Japan Research Institute 

for Social Systems, and the data recorded by the sensors is shown in Table 2.4. Figure 2.2 

represents a screen shot from data base. 

 

Table 2.4 Data information acquired from Wi-Fi packet sensor 
ID  Record number 

UNIXTIME Internal time (it is possible to acquire decimal points in seconds) 

TIMESTAMP Date and time when the packet was captured (converted to seconds) 

AMPID  Sensor ID Which sensor captured the packet, 

AMAC MAC address after anonymisation  

--a unique device identifier 

OUI MAC address vendor code 

(Used for judgment of randomized MAC address etc. ) 

RSSI Received signal strength indicator 
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Figure 2.2 Screen shot from the data base 
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Chapter 3: Fundamental analysis on the Wi-Fi 

packet sensor based data collecting system 

3.1 Introduction and research objective 

Understanding pedestrian flow in large public buildings, such as airports, train stations, and 

shopping malls, is a significant challenge for the people running and managing such buildings. 

Systems that can identify customer densities can support the control and management of people 

flows and thus reduce travel time and management costs. Such systems can help determine 

people flow-control strategies, e.g., by closing or opening additional doors, ticketing booths 

and/or control gates. If the people flow and density can be observed automatically in real time, 

customers can be informed about the degree of congestion at their desired destination and 

certain pedestrian flows can be led through less-crowded areas to save time or for better comfort. 

Furthermore, such crowd information is also potentially useful for commercial purposes. 

Pedestrian and vehicle volumes are also the key criteria used to evaluate road network use. If 

the density and flow of pedestrians and vehicles can be observed, we can provide better services 

and cost savings, reduce air pollution, and so on. These types of data can also be used for urban 

design, transportation planning, tourist behaviour analyses, evacuation planning, and many 

other purposes. In the era of data-driven research, there is an interesting trend toward 

developing crowd-behaviour models using real-world data, and the usage of Wi-Fi packet 

sensors has recently attracted the attention of researchers. However, many researchers use 

sensor data directly, without considering differences between the detection capabilities of 

sensors, but these may vary with the environment. Hence, this chapter explores how the 

conditions surrounding Wi-Fi packet sensors influence observation results. I further attempt to 

estimate vehicle and pedestrian flow volume and explore whether it can estimate the pedestrian 

attribute type based on Wi-Fi packet sensor data. 

The remainder of this chapter is organised as follows. In Section 3.2, a brief overview of 

current research in this topic is provided. For the purpose of exploring the factors affecting the 

observation results of the Wi-Fi packet sensor, section 3.3 describes the experimental setup in 

the laboratory. To check how accurately pedestrian and traffic flow can be quantified, section 

3.4 describes the campus experiment. The clustering analysis presented in section 3.5 is to 

investigate whether it could identify different types of smart device users based on the Wi-Fi 
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packet sensor data. Finally, I conclude the paper and summarise future work in Section 3.6. 

3.2 Related research 

There have been many studies that have focused on Wi-Fi-based crowd-tracking systems. 

Among these, Musa and Eriksson (2012)may have been the first to use MAC address data for 

human movement-tracking technology. They described a system using Wi-Fi detection to 

passively track smartphone clients and presented a trajectory estimation method. Fukuzaki et 

al. (2014)developed a system that analyses pedestrian flow using Wi-Fi packet sensors. 

According to their results, the Wi-Fi probe request frame transmission interval is between 30 

and 120 s (depending on the device), and the RSSI is proportional to the distance between the 

sensor and the device, as long as that distance is less than 15 metres. They also carried out 

experiments in the lab and during an event at the Osaka Electro-Communication University 

campus. They confirmed that they can analyse the approximate features of pedestrian flow 

using their system and simple analytical methods. Fukuzaki et al. (2015) continued to study the 

extent to which the actual number of pedestrians can be estimated based on Wi-Fi detection 

data. They carried out a 2-month field experiment in a shopping mall and calculated a 

coefficient for estimating the actual number of people within a mall by comparing data obtained 

from Wi-Fi packet sensors to data collected from motion detectors. Based on these data, they 

reported a recognition rate of 29.3% on weekdays and 35.6% on holidays and weekends. 

Kalogianni et al. (2015)examined the rhythm of a university campus using 20 Wi-Fi monitors 

to collect data over the course of 1 week at the Delft University of Technology. They focused 

on the user’s occupation, duration of stay, and movement pattern at and between different 

facilities. Andión et al. (2018)studied a dataset collected over the course of 1 year from nine 

Wi-Fi tracking sensors deployed in a university campus. Their data analyses included time and 

occupancy, people’s positions, movements, and common behaviours, and a comparison 

between the actual data and the results collected from a video system at the main entrance of 

the university library. They reported that Wi-Fi tracking is more accurate than video camera 

systems, while also being cost-efficient. Their study illustrates how a low-cost Wi-Fi tracking 

system can be used under real-life conditions to improve the operation of monitored premises. 

Wi-Fi probe requests are a type of electromagnetic wave and factors such as the 

environment, obstacles, distance between the device and the sensor, and antenna gain will affect 

the detection rates of Wi-Fi packet sensors. Other factors that affect wireless transmission 

include attenuation distortion, free space loss, noise, atmospheric absorption, multipath, and 
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refraction (Xhafa et al., 2017). Some of the studies mentioned above investigated the influence 

of antenna gain on Wi-Fi packet sensor observation performance but did not consider the basic 

characteristics of the sensors. The researchers carried out their experiments under the 

assumption that all sensors have the same detection capacity. However, the observation 

performance of sensors varies with the request transmission characteristics of the Wi-Fi probe, 

even when the sensors have the same type of antenna. In this chapter, I attempt to fill this gap. 

I carried out experiments to evaluate the factors that influence detection performance, estimated 

vehicle and pedestrian flows, and compared our estimates to known ground truth data. 

3.3 Laboratory experiment 

 

  

Figure 3.1 Wi-Fi packet sensors 
 

In this chapter, experiments were carried out with the five sensors shown in Figure 3.1 (1,2,3 

outdoor-type; 4,5 indoor-type). The outdoor-type sensors were waterproof and had bigger 

containers (160 × 160 × 90 mm, 840 g), whereas the indoor-type sensors had smaller containers 

(160 × 130 × 60 mm, 490 g) and electricity was provided via a USB socket. I first investigated 

the factors that impact the detection results, and then evaluated their vehicle and pedestrian 

detection abilities by carrying out experiments at the Gifu University Campus. First, the devices 

were installed at similar locations so that their detection tendency could be investigated. Then 

they were placed at different heights, as shown in Figure 3.2. The layout of the sensors was 

changed about every 6 days. I investigated the influence of height (high, middle, or low), sensor 

type (outdoor or indoor), and sensor ID (s1 to s5) on detection properties. Table 3.1 summarises 

the time and location data for the five sensors, with the number in the table indicating the sensor 

ID (s1 to s5). 
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Figure 3.2 Layout of Wi-Fi packet sensors for height test 
 

Table 3.1 Layout of the Wi-Fi packet sensors 
            Location 

 

Time period 

High (h3) 
Middle 

(h2) 
Low (h1) 

6/29 17:00-7/5 15:00 s5, s4 s2 s3, s1 

7/5 15:00-7/11 12:00 s3 s4, s5 s2, s1 

7/11 12:00-7/18 11:00 s2, s1 s3 s4, s5 

7/18 11:00-7/24 13:00 s4 s1, s5 s2, s3 

7/24 15:00-7/31 23:00 s5, s3 s4, s1 s2 

 

From Table 3.1, we can see that I collected height test data from 2018/6/29 17:00 to 

2018/7/31 23:00. The analysis of variance (ANOVA) test was carried out to investigate the 

statistical differences between the conditions tested. The number of detected AMACs was 

aggregated per hour, and the variation in this number was calculated. Before making these 

calculations, I deleted the randomised AMAC addresses. There was a power cut during the 

height test in the period (7/24 13:50–7/24 14:20). Therefore, I deleted the data covering the 2-

hour period during which this outage occurred (7/24 13:00–7/24 15:00).  

 

Table 3.2 Analysis of variance (ANOVA) results 
Factors DF F value P value CR 

Sensor Type 1 262.561* <2× 10-16 6.03% 

Sensor ID 3 6.873* 0.00013 0.47% 

Height 2 178.232* <2× 10-16 8.18% 

Sensor Type: 

Height 

2 9.613* 6.85× 10-5 0.47% 

Sensor ID: 

Height 

4 70.795* <2× 10-16 0.25% 

Error 2   84.6% 

Total  14   100% 

CR, contribution rate; DF, degree of freedom *: 0.1% significance 

 

The ANOVA test results are summarised in Table 3.2. The contribution rate (CR) represents 
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the percentage contribution of each factor. The data suggest that the CR of the error accounted 

for 84.6% of the total variation. The major factor affecting the variation in the number of AMAC 

observations was the change in the number of detected devices located around the sensor, and 

this varied with respect to time and date, in accordance with the density of people in the area. 

These results suggest that about 15% of the variation can be explained by the sensor-type, 

sensor ID, and installation height, which means that the location of the sensor should be selected 

carefully to avoid differences in detection ability. Looking at the influence of individual factors, 

height was the most influential, explaining approximately 53% (=8.18%/15.4%) of the variation 

due to the sensor installation location. Sensor type was the second most influential factor, 

explaining 39% (=6.03%/15.4%) of the variation. Although sensor ID and the two interaction 

effects were statistically significant, they only explained a small amount of variation. Hence, 

these factors can be neglected for convenience in experimental design. 

 

 

 
Figure 3.3 Average AMAC counts from sensors at different locations 

 

To confirm this, Figure 3.3 shows the relationship between the average counts of the sensors 

at each location. We can see that the number of observations was largest when the sensors were 

at the middle height. In addition, the outdoor-type sensors (s1, s2, and s3) performed better than 

the indoor-type sensors (s4 and s5). In cases where s1 and s3 were installed at h1 and h2, s3 

detected more AMACs than s1, but s1 detected more AMACs when they were installed at h3. 

Hence, the sensor height influences the detection capacity of Wi-Fi packet sensors. This can 

also be seen from Table 3.2. The relationship between sensor ID and height is also statistically 

significant. From Figures 3.4 and 3.5, we can see that the total AMAC counts and AMAC counts 
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per day were smaller in the case of indoor-type sensors (s4 and s5) than outdoor-type sensors 

(s1, s2 and s3) most of the time. 

 
Figure 3.4 Total AMAC counts by sensor 

 

Figure 3.5 shows the daily AMAC counts, from which we can see that the observations 

depend on whether the day is on a weekday or a weekend (Saturdays are coloured in blue, and 

Sundays and holidays are coloured in red). The vertical red lines show the height change timing. 

We can also conclude that there are differences between the detection abilities of indoor and 

outdoor sensors. Thus, the results of in-laboratory experiment suggest that the height and type 

of Wi-Fi packet sensor influence their detection capacity, so we should consider these factors 

when using Wi-Fi packet sensor data to estimate traffic flow. 

 

 

Figure 3.5 AMAC counts of Wi-Fi packet sensor data per day 

 

The reason why the Wi-Fi packet sensors at the middle height had the best performance 

maybe some Wi-Fi probe requests were absorbed by the ceiling or floor or obstructed by the 

things around. The reason why the out-door type sensors performed better than the in-door type 

sensors may be that the outdoor-type sensor has a longer power cable with a transformer inside 

0

50000

100000

150000

200000

s1 s2 s3 s4 s5

Total AMAC count

6
2

9
6

3
0

7
0

1
7

0
2

7
0

3
7

0
4

7
0

5
7

0
6

7
0

7
7

0
8

7
0

9
7

1
0

7
1
1

7
1

2
7

1
3

7
1

4
7

1
5

7
1

6
7

1
7

7
1

8
7

1
9

7
2

0
7

2
1

7
2

2
7

2
3

7
2

4
7

2
5

7
2

6
7

2
7

7
2

8
7

2
9

7
3

0
7

3
10

2000

4000

6000

8000

10000

A
M

A
C

 c
o

u
n

t

Date

AMAC counts  per day

s1 s2 s3 s4 s5



 

31 

 

the container. The longer power cable just like an antenna may contribute to the detection 

capability of the out-door type sensor. 

3.4 Campus experiment 

A second experiment was carried out to verify the detection capabilities of sensors when they 

are used to quantify the number of vehicles and pedestrians. Fukuda et al. (2017) tried to 

estimate the boarding and alighting locations and the number of paratransit passengers using 

Wi-Fi and GPS data. They installed both Wi-Fi scanner and GPS logger in the paratransit 

vehicles to collect data. But I focus on the observation of all pedestrians using only fixed Wi-

Fi packet sensors. Observation experiments were carried out at Gifu University Campus to 

quantify vehicles (2018/11/05–2018/12/10) and pedestrians (2019/1/11–2019/2/12).  

The layout of the Wi-Fi packet sensors and their locations are shown in Figures. 3.6 and 3.7, 

respectively. V1–V5 and P1–P5 represent the sensors observing vehicles and pedestrians, 

respectively. I installed the sensors at locations that will be passed by many vehicles and 

pedestrians. 

As shown in Figure 3.6, I installed V2, V3, and V5 at the university gates because vehicles 

must enter and exit the campus through these gates. V1 and V4 are near parking places, so 

vehicles often pass these locations. Due to power supply limitations, I had to place sensors V1 

and V4 inside a building, and the distances from the road to V1 and V4 are 60 and 35 metres, 

respectively. To observe pedestrians, I placed the sensors where vehicles are prohibited so that 

only pedestrians and cyclists would be observed. At the same time, I carried out a video survey 

to record the vehicles as they passed by, and a manual counting survey to record the number of 

pedestrians. There are monitoring cameras at the entry gates of the university (V2, V3, and V5). 

I obtained these videos from the University, and also recorded by our own videos at V1 and V4 

(2018/12/05 8:00–18:00). To observe pedestrians, I set an imaginary cordon line for each sensor 

and manually counted the pedestrians who crossed it (on 2019/2/6 for P1 and P4, and on 

2019/2/7 for P2, P3 and P3). I used the number of vehicles from the video survey and number 

of pedestrians from the manual counting survey as ground truth data. Comparing the Wi-Fi 

packet sensor data to the ground truth data enabled us to estimate the detection rate of each 

sensor.  
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Figure 3.6 Layout of Wi-Fi packet sensors 

 

     
V1: Refreshment 

corner 

V2: Guard’s room 

table 

V3: On the ground V4: On top of a shelf V5: Guard’s room 

table 

     
P1: Passageway P2: Stairway P3:Roof P4:  

On a table 

P5: Above a box 

Figure 3.7 Installation locations of sensors used to detect vehicles and pedestrians 

 

3.4.1 Data pre-processing  

Data pre-processing is required because raw data contain noise such as randomised AMACs 

and AMACs from stationary devices such as printers. The raw data collected from the sensors 

were pre-processed as follows: 

Filter 1: Delete randomised AMAC. MAC address randomisation is the increasing trend 

of device operating systems using a random, anonymous device identifier instead of the real 

MAC address when connecting to wireless networks. The goal of doing this is to increase user 

privacy by preventing network operators from being able track devices using the real MAC 

address as a consistent device identifier. Because we cannot track devices with randomised 
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AMACs, these should be removed. The data from the Wi-Fi packet sensor contains the 

organisationally unique identifier (OUI) of each AMAC, which can be used to determine 

whether the observed MAC address is randomised or not. Tables 3.3 and 3.4 summarise the raw 

observation data for vehicles and pedestrians, respectively. The rates of randomised AMAC 

addresses were 0.78 to 0.95, which means that only 5% to 22% of data were usable. As 

randomised addresses were not considered, the results may be under/overestimated. 

Table 3.3 Raw vehicle observation data 
Sensor All 

records 

Randomised 

AMAC 

 Real 

AMAC 

Random 

rate 

Time period 

V1 35,457 33,487 1,970 0.94 12/5 8:00-18:00  

V2 21,672 19,497 2,175 0.90 11/26 8:00-18:00  

V3 5,536 4,761 775 0.86 11/26 8:00-18:00  

V4 7,458 6,814 644 0.91 12/5 8:00 -18:00  

V5 25,547 23,521 2,026 0.92 11/26 8:00-18:00  

 

Table 3.4 Raw pedestrian observation data 
Sensor All 

records 

Randomised 

AMAC 

 Real 

AMAC 

Random 

rate 

Time period 

P1 5,182 4,178 1,004 0.81 2/6 8:00-18:00 

P2 42,924 39,977 2,947 0.93 2/7 8:00-18:00 

P3 25,303 19,664 5,639 0.78 2/7 8:00-18:00 

P4 18,960 17,379 1,581 0.92 2/6 8:00-18:00 

P5 92,281 87,801 4,480 0.95 2/7 8:00-18:00 

 

Filter 2: Delete stationary devices. I deleted non-mobile devices because I am interested 

in moving devices. There may have been some Wi-Fi probe requests from non-mobile devices 

such as printers or laptops in offices. I defined non-mobile devices as those whose AMACs 

were observed over the course of 24 h per day, with the first observation time being between 

00:00:00 AM to 00:05:00 AM and the last observation time being between 23:55:00 to 23:59:59. 

After this procedure, our AMAC data were ready to be analysed. 

3.4.2  Vehicle detection analyses  

I further aggregated the pre-processed data and counted vehicles from the video into 15 min 

periods. Many AMAC records were detected by sensor V1, which was installed at the 

refreshment corner located on the first floor of the Nursing Course Building, where many 

students come during lecture breaks. It may be possible to identify and remove these AMACs 

through RSSI. Because the students are nearer to the sensor than the vehicles, the signals from 

their devices are stronger, while those from vehicles are weak. Hence, I first defined a threshold 

RSSI to classify vehicles, then deleted AMACs with RSSIs stronger than this threshold. 

Because the distance between V1 and V5 was known and the time difference could be obtained 
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from Wi-Fi packet sensor data, I matched the data from V1 and V5 and calculated the speed of 

the devices with matched AMACs. Generally, according to (Boehm et al., 2016), the speed of a 

cyclist is 20 km/h, so I categorised AMACs as originating from vehicles if their speed was 

greater than 20 km/h. The average RSSI of these AMACs was -88 dBm. I regarded AMACs as 

originating from within the building if the RSSI was greater than -88 dBm and deleted these 

from the V1 data set. Similarly, I also deleted AMACs that originated from inside the building 

from the V4 sensor data (located in the Animal Medical Centre). The road leading from V2 to 

V4 has turns and small bumps, so I manually observed the time needed to cycle between V2 

and V4. Based on our observations, the average time was 151 s. Thus, I defined an AMAC as 

belonging to a vehicle if its time difference was less than 151 s. The average RSSI and median 

of the matched AMACs (V2 and V4) was -86 dBm. I removed AMACs from the V4 data set if 

their RSSI was stronger than -86 dBm. For sensor V4, due to a camera problem, I lost 3 sets of 

video data from 2018/12/5 12:30:00 pm to 2018/12/5 13:15:00, so I only had 37 samples for 

V4 and 40 data points for the other four sensors. I obtained an approximation function for each 

Wi-Fi packet sensor by comparing the Wi-Fi packet sensor data to the ground truth data. 

Because the person driving a car to university is mainly for commuting, thus I consider one 

unique AMAC address as one vehicle. Then a fitting function for the vehicle observation data 

was derived. The function of each sensor was selected by the higher R square value through 

comparing the value when fitting the data by linear fitting and exponential function fitting.  

 

 

Figure 3.8 Estimating vehicle flow from Wi-Fi packet sensor data 
 

From Figure 3.8, we can see that the relationship between the vehicle observation data 

collected from the Wi-Fi packet sensors and the ground truth data fit well to the exponential 

function for all five sensors. Moreover, the coefficients of determination were better for V2, V3, 
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and V5, which were installed at the gates of the university. This may be because vehicles will 

slow down at the gate for entry permit inspection, which makes it easier to detect Wi-Fi packet 

signals from devices inside these vehicles. The large errors in V1 and V4 may be due to the 

obstruction of the building or signal attenuation because of distance. The coefficient of 

determination for V3 was much smaller than those for V2 and V5. Regarding the locations of 

these three sensors and the laboratory height test, V2 and V5 were on the table in the guard 

room, while V3 was on the ground because there is no guard room at the Nishi Bashi gate. The 

location of V3 was too low so the signal may have been blocked by vehicles, because the lower 

parts of vehicles are made of metal. In addition, the coefficient of determination for V5 was 

smaller than that of V2. This may be because the sensor types were different, although V2 and 

V5 were installed at similar heights. Based on these results, we can state that Wi-Fi packet 

sensors should be installed outside buildings and close to the road, and their heights should not 

be lower than vehicle windows. Although the correlation coefficients are not high, it can at least 

enlighten us there is a certain relationship between actual data and observed data, and further 

research (maybe a better filtering method) is needed. 

3.4.3 Pedestrian detection analyses  

I counted the number of pedestrians manually and used the results as our ground truth data. I 

set an imaginary cordon line near each sensor and counted pedestrians who crossed it. P3 was 

installed on the roof of a building, and the other four Wi-Fi packet sensors were installed at 

locations along roads traversed by pedestrians. I selected several time periods when there are 

generally more pedestrians for our analyses. The time periods varied from 15 min to 1 h. I 

filtered the Wi-Fi packet sensor data from the time periods for which we had ground truth data 

and regarded captured unique AMAC addresses as belonging to one person. Because vehicles 

cannot go into the detection area, the results could only be from devices carried by pedestrians. 

Then I derived a function to approximate the pedestrian traffic by comparing the Wi-Fi packet 

sensor data to the ground truth data.  

From Figure 3.9, we can see that the relationship between the pedestrian observation data 

from the Wi-Fi packet sensors and the ground truth data fit best to a linear function, except in 

the case of P2. The slope of the curves when observing vehicles are gradually increasing, which 

means when the vehicles become density (Sometimes drivers have to queue through the gate 

one by one.), the detection rate of the Wi-Fi packet sensor will decrease. This may be caused 

by the obstruction of vehicles’ bodies. However, it is rare for high-density students to pass by a 
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Wi-Fi packet sensor together. The location of P2 may be crowded than others, that’s why P2 is 

not linear. Moreover, the coefficient of determination for P3 was very small. This may be 

because P3 was installed on the roof of a building, so many observations may have been lost 

due to obstruction by the building. In the cases of P2 and P3, insufficient data may have 

contributed to the difference between the results from these sensors and the others. There are 

several vending machines and a passageway near P4, but only the people who go into and out 

of the second canteen were counted in as the ground truth data, this is one of the factors that 

weaken the accuracy of the estimation function of P4. Based on these results, I confirmed that 

we can roughly estimate the flow of vehicles and pedestrians through Wi-Fi packet sensors, and 

the coefficients of determination were larger when observing pedestrians than when observing 

vehicles. 

 

 

Figure 3.9 Estimating pedestrian flow from Wi-Fi packet sensor data 

 

This suggests that Wi-Fi packet sensors may be more suitable for observing pedestrians. In 

addition, P1 and P5 have very good accuracy and can obtain a reliable number of flow, which 

inspires us that the Wi-Fi packet sensor could be a good way to accurately quantify the 

pedestrian flow volume. 

3.5 Categorisation of observations by clustering analyses 

Next, I investigated whether it could identify different types of users based on the observed data, 

but these may include observations that are not related to human movement. I analysed student 
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behaviour while on campus. K-means clustering analyses  (Syakur et al., 2018)were applied to 

each AMAC address to identify the type of device. From the pedestrian observation data 

collected from 2019/02/04 (Monday) to 2019/02/10 (Sunday), I deleted randomised AMACs 

and those devices that we only observed once. These data are summarised in Table 3.5. 

Table 3.5 Data used for clustering analyses 
All packages 1,207, 976 

After deleting the random 

AMACs 

133,231 

AMACs were observed onc 1,161 

Packages for analyses 132,070 

AMAC number 2,853 

 

In total, seven factors with 40 items were considered for K-means clustering analyses. These 

factors are described in Table 3.6.  

 

Table 3.6 Factors considered for K-means clustering analyses 
Factors Definition 

Observation ratio by 

sensor 

For an AMAC, the number of observations by a sensor divided by the 

total observations of this AMAC 

1 item per sensor installation point 

Observation ratio by hour  Number of observations each hour divided by the total number of 

observations 

24 items for each hour 

Observation ratio by day 

of the week 

Number of observations on a given day divided by the total number 

of observations 

7 items, one for each day of the week 

Observed days Observed days of an AMAC 

Number of capture sensors Number of sensors captured by the same AMAC 

Observation time Time of an AMAC observation with respect to first and last observed 

time 

Total observations Number of observations of a particular AMAC 

 

To use the K-means clustering method, the number of clusters, K, must be identified in 

advance. The elbow method was applied to determine the optimal K value. The results of the 

elbow method are shown in Figure 3.10. The vertical axis is the sum of the squares of the 

distances between samples and the centre of their cluster, and the horizontal axis represents the 

number of clusters. We can see that the optimal value of K was 3, so I used this value for our 

K-means clustering.  
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Figure 3.10 Results from the elbow method 

 

The AMAC counts for each cluster are detailed in Table 3.7. We can see more than 96% of 

all AMACs were in cluster1, while cluster 2 and 3 only has a small part. 

 

Table 3.7 AMAC count of each cluster 
Cluster 1 2 3 

AMAC counts 2,751 11 91 

 

 
Figure 3.11 Average observation rate by day of the week 

 

Figure 3.11 shows the average observation rate with respect to the day of the week. We can 

see that clusters 1 and 3 had a clear downward trend during the weekend, while there was no 

obvious change in cluster 2. In addition, cluster 3 had a larger observation rate than cluster 1 

during the weekend.  

1 2 3 4 5 6 7 8

0
40

00
0

80
00

0
12

00
00 The Elbow Method showing the optimal K

Number of Clusters

w
ith

in
 g

ro
up

s 
su

m
 o

f s
qu

ar
es

0

0.05

0.1

0.15

0.2

0.25

Mon Tue Wed Thu Fri Sat Sun

Average observation rate by day of the week

1 2 3



 

39 

 

 
Figure 3.12 Average observation rate by hour 

 

Figure 3.12 shows the average observation rate with respect to the hour. The rate for cluster 

1 increased rapidly from 7 to 8 am, then began to fall from 12 onwards. In the case of cluster 3, 

the observation rate increased and decreased gently, then increased rapidly from 8 to 10 am. 

There were even some observations at midnight in cluster 3. Considering that the first class 

starts at 8:45 and morning classes end at 12:00, we can assume that devices in cluster 1 were 

most likely owned by undergraduate students; cluster 3 most likely represented 

graduate/research students because their schedule allows them to move more freely than 

undergraduates. Cluster 2 contained no obvious changes. The peak time of cluster 1 was 12:00, 

while cluster 3 had a peak at 11:00. This may because time constraints are stricter for 

undergraduates. Figure 3.13 shows the percentage of observations in each location per cluster. 

Devices in cluster 1 often appeared at the academic core of library. This is reasonable because 

examinations were held during the observation period. Cluster 2 appeared mostly at the entrance 

of the engineering building, which may be because sensor 3 was near the administration office 

of this faculty. There were also wireless printers and laptop computers in the administration 

office. Cluster 3 mainly appeared at the engineering building. Moreover, devices in cluster 3 

were not often observed at the canteen. This may be because graduate students often buy lunch 

from the second floor of the first canteen building then eat at the laboratory. Although some 

choose to eat at the canteen, the first canteen is more popular than the second because it is more 

convenient. Hence, our observations are consistent with the habits of graduate students.  
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Figure 3.13 Percentage of observed locations 

 

Table 3.8 Other characteristics per cluster 
Cluster ID # of Obs Days # of Obs Hours # of Obs Sensors # of observations 

1 2.50 51.55 2.31 23.16 

2 6.64 154.68 1.55 2621.64 

3 5.45 120.84 2.04 434.20 

 

Table 3.8 shows other observation characteristics of each cluster. I use “#” to represent the 

average value of an indicator. The average observed hours in cluster 1 was 51.55 h; cluster 2 

had the largest number of average observed hours, at 154.68 h; the average observed hours of 

cluster 3 was 120.84 h. These results are roughly consistent with the number of observed days. 

The average number of sensors at which each user was observed, reflects the areas of activity 

in each different cluster. We can see that users in clusters 1 and 3 often moved between more 

than two places, while those in cluster 2 moved between less than two places. Moreover, cluster 

2 had a much higher number of observations for each AMAC.  

Based on these analyses, I identified the characteristics of clusters, as summarised in Table 

3.9. Characteristics of observations can be classified in a similar manner when sensors are 

installed in other places, such as city centres or tourist attractions. 

Table 3.9 Results inferred from K-means clustering 
Cluster ID Tendency Estimated attribute 

1 Large sample size. Observed mainly in the 

morning. Few observations at night or 

weekends 

Undergraduate 

students 

2 Small sample size, observed continuously, 

7 days a week, 24 h a day 

Stationary devices 

3 Observed mainly on weekdays but some 

observations at night. Often observed at the 

entrance of Eng. Bldg. 

Graduate students 
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3.6 Spatial and temporal variation of pedestrian flow 

In this section, I checked how the pedestrian flow of different locations changed over time. 

Figure 3.14 shows how AMAC counts were distributed among five Wi-Fi packet sensors (s1 to 

s5) between four time periods of a Monday (2019/02/04) when observing pedestrians. The size 

of the flow corresponds to the proportion of AMAC count it contains. The ‘nonactive’ group 

denotes the AMACs were observed in the previous time period but not observed in the present 

time period. It can be seen that a large part of the people became nonactive after lunchtime (t2), 

this may be because they left the campus in the afternoon before 17:00. It can also be seen that 

many people at the academic core (s2) and Engineering building (s3) tend to stay for several 

hours. Moreover, it can be seen that some people will change their study place such as the flow 

from t2_s2 to t3_s3 and from t2_s3 to t3_s2. The people who studied at the canteen can also be 

identified from t3_s5 to t4_s5. 

 

 
Figure 3.14 Spatial and temporal variation of pedestrian flow 

3.7 Conclusion 

This chapter explored how the environmental conditions of Wi-Fi packet sensors influence 

their detection capabilities. To this end, I carried out in-laboratory and on-campus experiments. 

Based on the data observed in our experiments, I investigated the factors influencing the 

t2 (11:01-12:59) t3 (15:01-16:59) t4 (17:01-18:59)t1 (7:01-8:59)
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detection capabilities of Wi-Fi packet sensors. It was found that the detection capacity varies 

between sensors and the detection rate varies with respect to sensor type and installation height. 

Outdoor sensors achieved better detection rates than indoor sensors. To collect more data, it is 

necessary to install Wi-Fi packet sensors outside buildings, and not near the floor and ceiling. 

Then I investigated whether it could estimate vehicle and pedestrian flows based on Wi-Fi 

packet sensor data. It was found that, when detecting vehicles, the relationship between the 

ground truth data and Wi-Fi packet sensor data fit well to the exponential function for all five 

sensors. Conversely, when detecting pedestrians, the relationship between the ground truth data 

and Wi-Fi packet sensor data can fit either a linear function or an exponential function. The 

coefficients of determination calculated when observing pedestrians were larger than those 

when vehicles were observed. This suggests that Wi-Fi packet sensors may be more suitable for 

observing pedestrians. Furthermore, it confirmed that we can cluster anonymous Wi-Fi packet 

sensor data based on movement trends and checked how Wi-Fi packet sensor data could reflect 

the spatial and temporal variation of pedestrian flow. This suggests that we can also study tourist 

behaviour using Wi-Fi packet sensors. For example, we can study the movement patterns of 

tourists by extracting their trajectories from data from multiple sensors. One of the main 

limitations of this chapter is that the findings in the in-laboratory experiment were not clearly 

reflected by the on-campus experiment. This should be considered in the future. It can increase 

the robustness of our results by increasing the number of observations and taking other factors, 

such as built environment and density of people, into account. 
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Chapter 4: Estimation on real pedestrian count 

using Wi-Fi packet sensor 

4.1 Introduction  

In chapter 3 it was found that the observation result of the Wi-Fi packet sensor can be affected 

by several factors such as the setting height and sensor type, and a rough correlation exists 

between ground truth data and Wi-Fi packet sensor observations based on the one-sensor 

method. In this chapter, pedestrian flow is estimated utilizing two-sensors method considering 

installation conditions of the Wi-Fi packet sensors. 

Counting the number of pedestrians is of great importance because of its usefulness in many 

fields. The pedestrian traffic volume information is important basic information for urban traffic 

planning which includes the analysis of walking speed, flow, density and space required by the 

pedestrians. If the pedestrian flow can be better understood, it will be possible to build statistics 

for pedestrian movements such as OD (Origin-Destination) pattern that can be used for 

developing and evaluating transportation plans. If crowding exists at a specific location at a 

specific time for example when there is an event such as a music festival or at a tourist area on 

holidays, it may cause conflict among people. Therefore, it is required for the management of 

pedestrian flow so as to ensure the safety of pedestrians by smoothening their movement.  

In recent years, smartphones have become widespread. The abundant sensors and interfaces 

provide potential to researchers to study pedestrian behaviour through tracking the device they 

carry. For example, Versichele et al. (2012) analysed the complex spatiotemporal dynamics of 

visitor movements at a festival with 22 Bluetooth scanners. Yoshimura et al. (2017) analysed 

the differences between the pedestrian movement patterns on discount days and normal days in 

a shopping environment. Five Bluetooth sensors were installed in a historical centre of 

Barcelona to collect pedestrian data for one month. Daamen et al. (2016) compared data 

collection using counting cameras, Wi-Fi sensors and GPS trackers to estimate pedestrian traffic 

state during a large-scale event in an urban area. According to their study, the counting camera 

can give accurate local counts but have no speed and route information; the Wi-Fi data can get 

information on routes and travel times (speeds) but the penetration rate for Wi-Fi sensors was 

low; the GPS tracker data can provide detailed route choice information but not continuous, 

and the sample size is rather small compared to the Wi-Fi data. Alekseev and Lam (2019) 
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compared the number of pedestrians estimated using Wi-Fi scanners and video records and 

developed a framework to calculate the number of pedestrians through conducting experiments 

on the university campus.  

In comparison with video recording techniques, the new monitoring techniques can actively 

collect pedestrian data with larger spatial and time scales and can provide data in real-time. Ota 

et al. (2018) studied the acquisition rate of the Wi-Fi packet sensor considering the surrounding 

conditions, installation height, and the stay behaviour of the pedestrians of the sensor as well 

as the penetration rate of the devices with Wi-Fi turned ‘ON’. In their study, they set three levels 

of attenuation rate (level A=5%, level B=15%, level C= 25%) for the surrounding conditions, 

installation height and the approximate density of the pedestrians. For example, if the three 

factors are all level A for a sensor, its acquisition rate is 85.7%. Even there are some studies 

using automatic technologies to estimate pedestrian flow, studies using this kind of data to 

estimate pedestrian flow is still limited and they didn’t consider the effect of surrounding 

environment on the observations of the sensors. Therefore, the objective of this chapter is to 

quantify the influencing factors of the Wi-Fi packet sensor observations, such as height and 

surrounding conditions. 

4.2 Research area and data collection 

 

 
 

Figure 4.1 Data collection locations in Higashiyama area 
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The data used in this chapter were collected from the Higashiyama area around Kiyomizu 

Temple, which is one of the busiest tourist areas in Kyoto city, Japan. The detection area is 

about 0.6 km2 (1,000 metres long and 600 metres wide). Figure 4.1 shows the study area on the 

map. 20 Wi-Fi packet sensors were equipped to collect data for 6 months (from 2017/10/1 to 

2018/3/28). At the same time, a manual count survey was carried out to collect the real 

pedestrian flow data at six cross-sections (C21~C26) on 2017/11/12 (Sun) and 2017/11/13 

(Mon). 

4.2.1 The classification of the installation condition of the sensors 

As is shown in the previous chapter, the different installation conditions of the Wi-Fi packet 

sensor will influence the observation counts. Based on the characteristics of the installation 

locations, three levels of the surrounding conditions and installation height are given as shown 

in Table 4.1. 

Table 4.2 presents the sensors’ installation information for six cross-sections where a 

manual count survey was carried out. C21 to C26 are the names of cross-sections. Sensor ID A 

and B represent the sensor identification numbers at both end of the cross-sections. Height A(B) 

and surrounding condition A(B) represent the height level and surrounding condition level of 

the sensor A(B). 

Table 4.1 Installation conditions of sensors 

Installation 

height 

ℎ0 
2 meters high or more, at a place of a good view that is not easily affected 

by the surrounding people.  

ℎ1 1.5m~2m, places can be seen from a person’s height. 

ℎ2 70cm ~1m, places with poor visibility, blocked by people or vehicles. 

Surrounding 

conditions 

𝑒0 

Well-reflected: inside a building that reflects radio waves easily (made 

by concrete or steel), or there is a building that reflects radio waves 

opposite to the sensor within 10 meters. 

𝑒1 

Moderate reflection and absorption: there are no buildings within 10 

meters that easily reflect radio waves, and there are few radio wave 

absorbers such as people and trees. 

𝑒2 
Well-absorbed: there are no buildings that reflect radio waves opposite 

to the sensor but many radio waves absorbers such as people and trees. 

 

Table 4.2 Installation information of sensors at cross-sections 

Cross-

section 

Sensor ID 

A 

Sensor 

ID B 

Height 

A 

Height 

B 

Surrounding 

condition A 

Surrounding 

condition B 

C21 1 2 ℎ0 ℎ0 𝑒0 𝑒1 

C22 9 10 ℎ2 ℎ0 𝑒2 𝑒1 

C23 18 19 ℎ0 ℎ0 𝑒2 𝑒2 

C24 17 20 ℎ2 ℎ1 𝑒0 𝑒1 

C25 5 9 ℎ2 ℎ2 𝑒2 𝑒2 

C26 4 8 ℎ1 ℎ2 𝑒2 𝑒2 
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4.3 Estimation of pedestrian flow using two sensors method 

4.3.1 Relationship between the Wi-Fi packet sensor data and manual count survey data 

The observation data were filtered before checking relationship with survey data since there are 

meaningless observations such as randomised AMACs. Firstly, the randomised AMACs are 

removed, then the AMACs observed by two sensors at the same time were removed based on 

RSSI and UNIXTIME. The AMACs with stronger RSSI and firstly observed were kept. Finally, 

the AMACs were observed only once were removed since they cannot be counted as a 

movement between two sensors.  

The count survey recorded the pedestrians passed by the cross-section every 15 minutes. 

The AMACs observed by two sensors at the end of the count survey were also aggregated every 

15 minutes. The dataset from 9:00 to 10:30 on Nov 13th at cross-section 21 were removed 

because the Wi-Fi sensors had no observation. By comparing the two datasets we can get the 

correlation function as Figure 4.2 shows. The intercepts of the six functions are set as 30 

because here I have only six functions while I want to estimate five parameters. Unifying the 

intercept can help to reduce the number of parameters that need to be estimated. I checked the 

intercept of each function when their R2 is largest and the intercept is between 19 to 59. Then I 

checked the R2 of six functions and R2 in Table 4.4 with intercept set as 30, 40 or 50 and found 

both R2 of six functions and R2 in Table 4.4 are larger than when set intercept as 40 or 50. 

Therefore here I set the intercept as 30. 
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Figure 4.2 Correlation between Wi-Fi packet sensor data and survey data 

 
The horizontal axis is AMAC count data from the Wi-Fi packet sensor and the vertical axis 

is the pedestrian count obtained by manual count survey. It can be found that the correlation 

may fit well with the exponential function (the detection ability may decrease gradually when 

the number of pedestrians increases). This is reasonable because when there are too many 

people, the body of people can be regarded as an obstacle and will absorb the Wi-Fi signal. 

Furthermore, the unique AMACs under the same pedestrian traffic volume differs greatly for 

the six cross-sections. The acquisition rate was quite low at cross-sections C26 and C25 while 

it was high at C24. From the figure 4.1, C26 and C25 are located on Nene-no-michi and 

Shimogawara dori that are very popular with tourists. As mentioned above, the Wi-Fi radio 

waves can be absorbed by human bodies, and the acquisition rate tends to decrease as the 

pedestrian traffic volume increases. Therefore, it can be said that the number of observed unique 

AMACs may decrease with respect to the pedestrian volume at these two locations. Another 

possible reason is that there are streets between C25 and C26 such as Ishibe-koji, which are 

also well visited by tourists, and the people who use these streets cannot be observed by the two 

sensors leading to less matched AMACs. On the other hand, C24 is located at a rather wide 

road and there are sightseeing buses passing by; there may have some observations from the 

tourists inside buses by sensors 20 and 17. Therefore, the number of observed unique AMACs 

seems to increase. 

y = 30e0.0433x

R² = 0.6207
C21

y = 30e0.0406x

R² = 0.8108
C22

y = 30e0.0491x

R² = 0.7251
C23

y = 30e0.0251x

R² = 0.5828
C24y = 30e0.0996x

R² = 0.5797
C25

y = 30e0.121x

R² = 0.4569
C26

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180

SU
R

V
EY

 D
A

TA

DATA OBSERVED BY TWO WI-FI PACKET SENSORS 

C21 C22 C23 C24 C25 C26

Expon. (C21) Expon. (C22) Expon. (C23) Expon. (C24) Expon. (C25) Expon. (C26)



 

50 

 

4.3.2 Quantifying factors influencing the observation of Wi-Fi packet sensor 

Based on Figure 4.2 we can see the correlation between survey data and Wi-Fi packet sensor 

data were suitably fitted with an exponential function. As mentioned above, Ota et al. (2018) 

studied the acquisition rate of the Wi-Fi packet sensor considering the surrounding conditions 

and installation height. However, in their study, they just simply assume the three levels of 

attenuation rate (level A=5%, level B=15%, level C= 25%) for the surrounding conditions and 

installation height. If we want to analyse pedestrian flow quantitatively, it will be necessary to 

estimate the acquisition rate of each sensor so that the Wi-Fi packet observations can be 

expanded to the real pedestrian flow. If the relationship between the pedestrian traffic volume 

at cross-sections and the installation conditions of the sensors can be understood clearly, it will 

be possible to estimate the pedestrian volume more accurately. 

Since there are only six cross-sections in this survey, the number of parameters that can be 

estimated is up to six. Therefore, we decide to estimate the coefficient of the regression curve 

shown by Figure 4.2 with the installation height (ℎ0, ℎ1) and surrounding conditions (𝑒0, 𝑒1) as 

the explanatory factors. The equation between the ground truth data and Wi-Fi packet sensor 

data is assumed as: 

𝑦 = 30𝑒𝛽𝑥 (4.1) 

𝑦: actual pedestrian flow volume, 𝑥:number of AMACs observed by two sensors. 

Here, 𝛽 is the result of the combined effect of the installation height and the surrounding 

conditions of the Wi-Fi packet sensor. Let: 

𝛽 = 𝑐 ∗ ℎ0

𝑥ℎ0 ∗ ℎ1

𝑥ℎ1 ∗ 𝑒0

𝑥𝑒0 ∗ 𝑒1

𝑥𝑒1  (4.2) 

Definitions of variables in the model is shown in Table 4.3: 

 

Table 4.3 Definitions of variables 
𝑐 Constant, when height is ℎ2 and surrounding condition is 𝑒2 (unknown variable) 

ℎ0, ℎ1 Explanation of 𝑦 when set height is ℎ0 or ℎ1 (unknown variable)  

𝑒0, 𝑒1 Explanation of 𝑦 when surrounding condition is 𝑒0 or 𝑒1, (unknown variable) 

𝑥ℎ0
, 𝑥ℎ1

 Number of sensors of the link when set height is ℎ0 or ℎ1 (it should be 0, 1 or 2) 

𝑥𝑒0
, 𝑥𝑒1

 Number of sensors of the link when surrounding conditions is 𝑒0 or 𝑒1 (it should 

be 0, 1 or 2) 

 

The least squares method was applied to calculate 𝛽 of the trend lines in the Figure 4.2 and 

also be used to estimate the parameters (ℎ0, ℎ1, 𝑒0, 𝑒1) of the equation (4.2). Equation (4.2) can 

be transferred to a linear equation by taking the logarithm of both sides. Table 4.4 shows the 
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estimation result.  

Table 4.4 Parameter estimation result 
Parameter Value T-stat R2 

𝑐 0.09960  -3.19 

0.70 

ℎ0 0.84135  -0.36 

ℎ1 0.84605  -0.17 

𝑒0 0.88279  -0.12 

𝑒1 0.48450  -0.84 

 

The larger estimates of parameters will result in a larger rise of the curve, meaning that the 

sensor observations become less when the pedestrian volume is the same, in other words, the 

acquisition rate of the Wi-Fi packet sensor becomes lower. From this point of view, the ℎ0 is 

smaller than ℎ1 in Table 4.3, meaning that when putting the Wi-Fi packet sensors at a higher 

place (2 meters), the observation efficiency will be better. Maybe it is because it can reduce the 

obstruction of the human body to the Wi-Fi probe. 𝑒0 is larger than 𝑒1 meaning that when the 

Wi-Fi packet sensors were installed inside a building or the surrounding conditions are easy to 

reflect the Wi-Fi probe, the acquisition rate is lower. Considering that the coefficient can be 

interpreted as 1 in the case the installation height and surrounding conditions are ℎ2 and 𝑒2. The 

acquisition rate is higher if the parameter has a lower value. In conclusion, ℎ0  is the most 

efficient in terms of installation height, and 𝑒1 is the most efficient considering the effect of 

radio wave absorption and reflection. Moreover, 𝑒0 is less than 1 meaning that the absorption 

has a more obvious influence on the observation of Wi-Fi packet sensor compared with 

reflection. R square is 0.7 means the parameters can explain 70% of the variation of 𝛽. The t 

values for the parameters seem not statistically significant (the absolute value is less than 2). 

This may be because the sample size is too small and more sample is needed to improve the 

estimation. 

 



 

52 

 

 
Figure 4.3 Estimated result based on the parameters 

 

Figure 4.3 compared the estimated pedestrian flow based on the parameters in Table 4.4 

with the trend line of each cross-section. It can be seen that, for cross-sections C22 and C25, 

the model can well estimate the pedestrian flow based on the Wi-Fi packet sensor observations. 

However, the models are underestimating for C21 and C26, and overestimating for C23 and 

C24. Since we only counted pedestrians at 6 cross-sections, we cannot further improve the 

model. It is necessary to increase the observation cross-sections and verify parameters in the 

future. It is also necessary to verify the reliability of the evaluation levels of the installation 

conditions in Table 4.2. 

4.4 Conclusions  

In this chapter, I studied how to estimate the real pedestrian flow volume based on the Wi-Fi 

packet sensor observations. A two-sensor method was used to filter out the unique MAC address 

data that belong to the pedestrians passing by. Through comparing with the manual count 

ground truth data, it can be confirmed that there has a strong correlation between pedestrian 

traffic counts at a cross-section and the number of unique AMACs matched by two sensors. In 

addition, it is revealed appropriate to use an exponential function as a regression curve. Next, I 

examined whether the coefficient of the exponential function could be explained by the sensor 
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installation conditions. I then quantified the influence factors with data collected at six cross-

sections in the Higashiyama area of Kyoto city. As a result, if the sensor installation conditions 

can be known, it will be possible to estimate the real pedestrian flow of a segment.  

The result of this chapter can therefore help study pedestrian flow characteristics such as 

the relationship between speed, flow and density and their fundamental diagrams on walkways 

using Wi-Fi sensor data. As an essential transportation mode, walking has been promoted by 

the government of more and more countries for broader sustainability and economic 

development strategies (Mp, 2017; Salvo et al., 2021; Guariguata et al., 2021; United Nations, 

2021; Hirst and Dempsey, 2022). For cities to enhance walking activity, it is important to 

estimate how the walking trips are likely to distribute along the area in time and space. The 

method in this chapter can help understand pedestrian walking behaviour under different 

circumstances, from daily trips, movement on holidays, and special events. Since only 6 cross-

sections were observed this time, there remains a problem in the reliability of the parameters. 

It is considered necessary to continue the study by increasing the number of cross-sections in 

the future. 
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Chapter 5: Pedestrian level of service (PLoS) 

measurement based on Wi-Fi packet sensor 

data 

5.1 Introduction 

Massive visitors bring not only economic benefits but also impacts and pressures to tourist 

attractions. The residents may suffer from heavy congestion when driving in these areas because 

of the crossing of pedestrians and queuing at bus stations. The visitors suffer from crowding 

caused by too many people or even security threat to their sightseeing experience. In order to 

relax such problems, it is necessary to understand the travel demand of visitors and evaluate 

pedestrian performance (whether the pedestrians can move smoothly) of that area so that the 

authority or community can manage and control movement of people. According to the research 

of (McKinsey & Company, & World Travel & Tourism Council, 2017), destinations can 

mitigate overcrowding by adopting the right mix of tactics which include smoothening visitors 

over time and spreading visitors across sites, adjusting pricing to balance supply and demand, 

regulating accommodation supply and limiting access and activities. 

Based on chapter 4, it is possible to roughly estimate the real pedestrian count of a street 

utilizing Wi-Fi packet sensor data by referring to the installation conditions of the sensor. This 

chapter then tries to evaluate a crowding level in tourist areas with the concept of pedestrian 

level of service (PLoS). The concept of LoS (Level of Service) is proposed from the Highway 

Capacity Manual (HCM) and can be used for the assessment of the operational performance of 

a roadway facility. The LoS is intended to represent user-perceived quality of service and can 

be defined as a measurement of operational conditions within a traffic stream, generally in terms 

of travel time, speed, freedom to manoeuvre, traffic interruptions, comfort and convenience 

(HCM, 2000). Among various LoS models, the most common measure in evaluating the quality 

of walking conditions of a street for pedestrians is using the pedestrian level of service (PLoS). 

The PLoS can be defined as “an overall measure of walking condition on route, path and facility 

and it reflects users’ perception in terms of sense of mobility, comfort and safety” (Gallin, 2001). 

The development of PLoS measures has received considerable attentions from academic 

researchers (Mōri and Tsukaguchi, 1987; Zhao et al., 2014; Kadali and Vedagiri, 2015; Nowar 
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Raad and Burke, 2017; Banerjee et al., 2018; Rahul and Manoj, 2020; Ujjwal and 

Bandyopadhyaya, 2021; Molyneaux et al., 2021) and practitioners (Otak, 1997; Croft et al., 

2013; Transportation Research Board, 2016; AASHTO, 2021), as society seeks to improve the 

level of pedestrian activity to increase the share of walking as a mode of transport that may 

contribute to reduce car usage, to lessen the traffic congestion and associated environmental 

impacts. Initially, the traffic engineers assessed PLoS using methods similar to LoS assessment 

methods for traffic facilities, i.e. based on pedestrian flow volumes and capacity of the 

pedestrian facility (Fruin, 1971; Mōri and Tsukaguchi, 1987). Later, researchers tried to 

integrate qualitative factors into the assessment of LoS offered by pedestrian facilities which 

marked an important advance in the field of PLoS assessment (Sarkar, 1993; Khisty, 1994; 

Parida et al., 2007). Ghani et al. (2015) proposed a method to audit pedestrian infrastructure in 

a heritage site using Pedestrian Index (P-Index) method. The method is based on a star rating 

system including four indicators namely mobility, safety, facility and accessibility. Further, 

researchers have used other quantitative factors such as footpath width, shoulder width, buffer 

zone width and presence of on-street parking for PLoS assessment. Table 5.1 presents a list of 

different methodological approaches and factors considered by various pedestrian studies (Gr 

et al., 2018). 

Various studies have focused on PLoS model development at intersections 

(Marisamynathan and Vedagiri, 2019), sidewalks (Tan et al., 2007; Gr et al., 2018), midblocks 

(Kadali and Vedagiri, 2015), stairways (Wen et al., 2012), and roadway segments (Asadi-

Shekari et al., 2013a). Ujjwal and Bandyopadhyaya (2021) developed a comprehensive PLoS 

assessment model for mixed land-use of urban areas (having residential, commercial or 

shopping, and office activity in the same place). Based on the face-to-face interview survey 

they collected the importance rating score of the 24 walking encouragement and 

discouragement factors from 550 pedestrians. Then the PCA (Principal Component Analysis) 

was conducted to define the most important influencing factors. Finally, six important 

parameters were identified for PLoS assessment including safety issues under pedestrian traffic 

interaction, pedestrian convenience and sense of security, pedestrian walking comfort and so 

on. Ahmed et al. (2021) introduced a new pedestrian crossing level of service method to 

promote safe crossing in urban areas. According to Nowar Raad and Burke (2017), Gr et al. 

(2018) and Ahmed et al. (2021), the main conventional techniques for data collection in PLoS 

studies are direct observation (Anciaes and Jones, 2018), video techniques (Teknomo et al., 

2000; Asadi-Shekari et al., 2013b; Al-Mukaram and Musa, 2020), and questionnaires (Zhang 

and Prevedouros, 2003; Zahid et al., 2020; He et al., 2020). Simulation methods, regression 
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analysis, and point systems are the main analytical methods that are used to rate the street’s 

condition. However, using direct observation solely can generate biased results, because it is 

purely dependent on the researcher’s perception. Similarly, using only a questionnaire method 

of data collection limits the results to the respondent’s perception. Besides, the questionnaire 

survey method cannot reflect the situation in real-time and cost more and investigators. As a 

consequence, there is no universal method that can be used to evaluate PLoS everywhere 

because it should consider the different characteristics of each place. On the other hand, the Wi-

Fi packet sensor can be used to collect pedestrian count data without the necessity of the 

researcher’s and respondent’s cooperation therefore can acquire data of crowds objectively. 

Moreover, it is possible to acquire long-term and continuous observation data, therefore the Wi-

Fi packet sensor data can be an ideal data source for the evaluation of PLoS. 

 

Table 5.1 Summary of PLoS studies (Gr et al., 2018) 
Authors (Year)  Methods Factors considered 

Sarkar (1993) Scoring System Convenience, comfort, safety, continuity, system coherence 

and attractiveness. 

Khisty (1994) Scoring System Comfort, convenience, continuity, attractiveness, system 

coherence, safety, security. 

Dixon (1996) Scoring System Path conflicts, amenities, motor vehicle LOS, maintenance 

problems, provision of basic facilities and provision of 

multiple modes. 

Landis et al. (2001) Ordinary Least 

Regression 

Lateral separation factors, traffic volume, speed of the 

vehicle, driveway access frequency and volume 

Gallin (2001) Scoring System Sidewalk width, sidewalk surface, comfort, walk 

environment, potential for vehicle conflict, crossing 

facilities and pedestrian volume. 

Muraleetharan et al. 

(2005) 

Ordinary Least 

Regression 

Sidewalk width and separation, pedestrian volume, flow 

rate and bicycle events 

Parida et al. (2007) Scoring System Footpath width, footpath surface, continuity, comfort, 

safety, encroachment, potential to vehicle conflict, crossing 

facilities, walking environment and pedestrian volume 

Asadi-Shekari et al. 

(2014) 

Scoring system Footpath surface, footpath, corner island, width of 

footpath, tactile pavement(guiding), tactile 

pavement(warning), signal, seating area, drinking fountain, 

buffer, traffic lanes, crossing, facilities, furniture 

Talavera-Garcia 

and Soria-Lara 

(2015) 

Scoring system Sidewalk width, sidewalk surface, walking distance 

Aghaabbasi et al. 

(2016) 

Scoring system Sidewalk width, sidewalk surface, ramps, tactile 

pavements, utilities and landscape 

 

Overall, the main aim of this chapter is to develop a quantitative PLoS measurement method 

appropriate for the tourism context that reflects the perceived comfort or safety of tourists in 

Higashiyama district based on the Wi-Fi sensing data. This method only needs the sidewalk 
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width data to derive the pedestrian flow rate and PLoS level. This study might be considered as 

a guideline for evaluating pedestrian level of services for such tourist areas or other business 

areas. 

5.2 Data preparation 

The Wi-Fi packet sensor observation data used in this chapter is collected by 20 sensors in 

Higashiyama area, same as chapter 4. Figure 5.1 shows the study area on the map. 20 Wi-Fi 

packet sensors were equipped to collect data for 6 months (from 2017/10/1 to 2018/3/28). 

Several famous point of interest (Yasaka Shrine, Entoku Temple, Kodai Temple and Kiyomizu 

Temple) are circled and pointed out with arrows. Table 5.2 records the installation conditions 

of all Wi-Fi packet sensors. The 0h  ~ 2h   in the height column and 0e  ~ 2e   in the surrounding 

conditions column represent different levels. The detailed explanation of these levels can be 

found in chapter 4. 

 

 

Figure 5.1 Coverage of observation locations in Higashiyama. 
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Table 5.2 Installation conditions of sensors 
Sensor 

ID 
Height 

Surrounding 

conditions 

Sensor 

ID 
Height 

Surrounding 

conditions 

1 0h  0e  11 0h  1e  

2 0h  1e  12 2h  2e  

3 2h  2e  13 0h  2e  

4 1h  2e  14 0h  1e  

5 2h  2e  15 2h  2e  

6 0h  1e  16 0h  1e  

7 0h  1e  17 2h  0e  

8 2h  2e  18 0h  2e  

9 2h  2e  19 0h  2e  

10 0h  1e  20 1h  1e  

5.3 Criteria for evaluating PLoS 

According to (HCM, 2000), the PLoS rating of a walkway is determined on the basis of two 

decision variables: the average pedestrian space and the pedestrian flow rate. Based on the study 

in chapter 4, it is possible to estimate the real pedestrian flow count of a road segment using 

Wi-Fi packet sensor data. The criteria of PLoS based on pedestrian flow rate is therefore used 

to evaluate the pedestrian flow performance in Higashiyama area. Table 5.3 shows the six-level 

scale PLoS criteria developed by Highway Capacity Manual (HCM, 2000) . 

 

Table 5.3 Pedestrian walkway LOS (adapted from the HCM 2000) 
Pedestrian 

LOS  

Flow rate 

(ped/min/m) 

Characteristics 

A <= 16 Free speed, no conflict. 

B 16-23 Free speed, respond to other pedestrians. 

C 23-33 Normal speed, reverse-direction or crossing movements can cause 

minor conflicts. 

D 33-49 Restricted to select walking speed freely, high probability of conflict 

of crossing or reverse flow movements, reasonably fluid flow but 

friction and interaction between pedestrians is likely. 

E 49-75 Virtually all pedestrians restrict normal walking speed, volumes 

approach the limit of walkway capacity, with interruptions to flow. 

F Flow rate 

varies 

All walking speeds are severely restricted, and forward progress is 

made only by shuffling. Frequent, unavoidable contact with other 

pedestrians. 

 

Level A represents the best condition scenario in terms of the road passability, level F 

represents the worst condition scenario (i.e., very congested/unsafe/uncomfortable). If the 
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streets are too congested, people may feel uncomfortable and unsafe to use the street which 

contributes to the feeling of stress (Krupat, 1985). According to (Shamsuddin and Ujang, 2008), 

the presence of people can increase their feeling of safety in using the street. If there are too 

many people it will become an unsafe environment. Street users will avoid using streets that 

are too congested. However, the feeling of crowding is different for each of users with different 

purposes. The tourists who walk mainly for pleasure may feel satisfied and positive emotions 

while commuters running for catching a bus will feel negative emotions. There are also some 

positive effects of crowding. For example, in tourist attraction sites, crowding makes a street 

lively and inviting. The crowds also reflect vibrancy. People walking along the street during 

crowded situation tend to walk much slower for shopping purpose. This was because the 

shoppers tend to stroll and stop to look in windows (Al-Azzawi, 2004). According to (Radisya 

Pratiwi et al., 2015), during a crowded situation (festival), the pedestrians could observe the 

environment in detail because they walked at a low speed and they tend to value the availability 

of amenities the most. Therefore, it is best to keep the pedestrian flow neither too much nor too 

less. Maybe the levels C and D are the ideal PLoS levels for tourists to have a good experience. 

5.4 Analysis of the PLoS under different scenarios 

Firstly, I checked the tendency of the AMAC counts during the observation period. Figure 5.2 

shows the AMAC count distribution of the whole observation period. The horizontal axis 

represents the date and the vertical axis represents the number of observed AMACs. The date 

is in red- orange when it is a weekend or holiday, and we can see more AMACs were observed 

on weekends and holidays than on weekdays. Moreover, it can be seen that there was overall 

the largest number of visitors in November 2017 and the least number of visitors in January 

2018. This may be because November is the best time (mid-October to mid-December) for 

viewing maples in Kyoto. 

 

Figure 5.2 AMAC count distribution 
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5.4.1 Comparing PLoS on weekdays and weekends 

Firstly, the PLoS on weekdays and weekends (holidays) were compared because there was an 

obvious difference between the AMAC observations on weekdays and weekends (holidays). 

The pedestrian flow rate is the total number of pedestrians crossing the given cross-section 

divided by the analysis period and the sideway width. The width of a sideway is collected 

through a field survey. 

Figure 5.3 shows the name and location of links on the map. Based on the environment of 

each link I classified the links into 4 types as shown in Table 5.4. Figures 5.4-5.7 show the 

environment of a sample link of each type. Table 5.5 gives the name and location of each link. 

Sensor A/B on behalf of the sensor ID at the end of a link. 

 

 

 

Figure 5.3 Link names and locations 

 

Table 5.4 Classification of links. 
Type Link name Characterisation 
1 L1-L5 Main road for vehicles 

2 L6, L7, L8, L9, L13, L14, L16, L17, L18 Good for walking, less POIs 
3 L10, L15, L19, L22, L23, L24, L25 Very good for walking, many 

traditional buildings and POIs 
4 L11, L20, L26, L12, L21, L27,  L28 Heading to Kiyomizu Temple, 

many POIs, very popular 
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Figure 5.4 Street view of L1-L5 

 

Figure 5.5 Street view of L18 

 

Figure 5.6 Street view of L22 

 

Figure 5.7 Street view of L12 

 

Table 5.5 Link name and locations 
Link 

name 

Sensor 

A 

Sensor 

B 

Link 

name 

Sensor 

A 

Sensor 

B 

Link 

name 

Sensor 

A 

Sensor 

B 

Link 

name 

Sensor 

A 

Sensor 

B 

L1 1 6 L8 5 6 L15 9 12 L22 3 4 

L2 6 10 L9 9 10 L16 12 18 L23 4 8 

L3 10 11 L10 11 12 L17 2 3 L24 8 13 

L4 11 19 L11 19 18 L18 8 9 L25 13 14 

L5 19 20 L12 17 20 L19 12 13 L26 14 15 

L6 1 2 L13 2 5 L20 14 18 L27 16 17 

L7 1 4 L14 5 9 L21 7 17 L28 15 16 

 

 

Figures 5.8 to 5.15 shows the estimated PLoS distribution of different links. The vertical 

axis represents time period and the horizontal axis represents the name of links. The different 

colour shows the different PLoS level. Through comparing the PLoS distribution on weekdays 

(Figures 5.8 to 5.10) and on weekends or holidays (Figures 5.11 to 5.15), it can be recognised 

that the PLoS on weekends or holidays ranks higher over a longer time and more links than that 
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of weekdays. Moreover, the links L12, L28, L11 have a higher PLoS ranking than other places 

during some time period on weekdays. The links L12, L28, L11, L18 and L22 have extremely 

high PLoS levels on weekends and holidays. These links are consistent with the frequent 

patterns identified in chapter 6. The links that have obviously high PLoS level (L11, L28, L12), 

mostly belong to group 4 in Table 5.4 followed by group 3 (L22) and group 2 (L18). This means 

the Kiyomizu temple plays a key role in attracting tourists and visitors prefer narrower streets 

with fewer vehicles, which are closer to traditional buildings and POIs and are more suitable 

for walking tour. Among these links, the links L12 and L28 start to have high PLoS levels in 

the morning around 10:00, while the time period when links L11, L18 and L22 have high PLoS 

levels happens mainly in the afternoon. The reason may be because there are tourist buses going 

to the parking place at sensor 7 by using link L12. The parking place near sensor 7 is a special 

sightseeing parking lot with a large area dedicated to tourist buses and taxis. The vehicles can 

only access this parking lot through links L12 and L21. Some observations may come from the 

tourist on the bus and some of the tourist buses come rather early. Figure 5.10 shows the PLoS 

of a weekday of neither during the popular maple season (mid-October to mid-December) nor 

the special holidays. It can be seen that most of the roads were not crowded at all except the 

link L11 which is along the ‘Golden route’ identified in chapter 6. As a consequence it can be 

said that the PLoS based on the Wi-Fi packet sensor data can reflect pedestrian flow 

performance. 
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Figure 5.8 PLoS on 2017/11/08 (Wednesday) 

 
Figure 5.9 PLoS on 2017/11/14 (Tuesday) 

 
Figure 5.10 PLoS on 2018/01/09 (Tuesday) 

 
Figure 5.11 PLoS on2017/11/11(Saturday) 
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Figure 5.12 PLoS on 2017/11/12(Sunday) 

 
Figure 5.13 PLoS on 2017/11/19 (Sunday) 

 
Figure 5.14 PLoS on 2017/11/23 (Thursday, 

Holiday) 

 
Figure 5.15 PLoS on 2017/11/25 (Saturday) 
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5.4.2 The PLoS under different scenario  

1 Illumination event 

To meet with the tourism demand, many of the temples and shrines in Kyoto held illumination 

events at night. The historic buildings and gardens are illuminated so that visitors can enjoy the 

very beautiful view of these places extremely with maples in autumn and cherry blossoms in 

spring. There are three famous temples (Kodai Temple, Entoku Temple and Kiyomizu Temple) 

that held illumination events in the study area shown by arrows in Figure 5.16. The illumination 

events were held during 2017/11/11~12/3 from 17:00 to 21:30. 

 

 

Figure 5.16 Area classification and illumination place 

 

Figures 5.17 and 5.19 represent the PLoS when there had an illumination event and Figures 

5.18 and 5.20 represent the PLoS when there had no illumination event. When comparing the 

PLoS with and without event, it can be recognised that the PLoS of some links (link L18, link 
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L11, link L28 and link L12) ranked relatively high even after 18:00 (black dotted line) when 

there had an illumination event while the PLoS was very low after 18:00 if there had no 

illumination event. There are parking service for private cars and bus stops along the main road 

between sensor 1 and 20. A major railway station-Kyoto station is in the lower left direction of 

sensor 20. Links L18 and L28 are near the illumination place and links L11 and L12 are the 

main corridors to enter and exit the study area. These links are consistent with the frequent 

patterns identified in chapter 6. 

 

 
Figure 5.17 PLoS on 2017/12/02 (Saturday) 

 
Figure 5.18 PLoS on 2017/12/09 (Saturday) 
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Figure 5.19 PLoS on 2017/12/03 (Sunday) 

 
Figure 5.20 PLoS on 2017/12/10 (Sunday) 

 

Based on the characteristics of the locations where the Wi-Fi packet sensor was installed, 

the whole study area can be classified into three groups named ‘Road / Car Parks’, ‘Mid-area’ 

and ‘Tourist area’ as shown in Figure 5.16. Figure 5.21 represents the estimated pedestrian flow 

distribution at different areas over time. The aggregation time period is 1 hour. The estimated 

pedestrian flow is real pedestrian flow estimated based on the Wi-Fi packet sensor observation 

and calculated based on the equations (4.1) and (4.2) and parameters in chapter 4. 

We can see the observations in ‘tourist area’ rapidly decreased after 17:00 without the event, 

and the number of observations in ‘Road / Car parks’ becomes larger than those in ‘Tourist area’ 

from 17:00. However, when there had an illumination event, the decreasing speed of pedestrians 

in ‘Tourist area’ is slow and the pedestrian in ‘Tourist area’ kept larger than that in Road/Car 

parks area. Therefore, it can be said that the leaving time of the tourists becomes later with the 

illumination event.  
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Figure 5.21 Distribution of estimated real pedestrian flow of different areas 

 

2 The PLoS on New Year’s Day 

 

Figures 5.22 and 5.23 show the PLoS distribution on Japanese New Year’s Eve and New 

Year’s Day. From Figures 5.22 and 5.23 it can be seen that the PLoS of link L22 (near Yasaka 

shrine) becomes high after 22:00 and link L6(near Yasaka shrine) and link L18 (near Kodai 

Temple) also had high PLoS level during the start of the New Year. This may be because of the 

Hatsumode activity (初詣 in Japanese). Hatsumode is a tradition of Japan and it refers to the 

first visit to a shrine or a temple in the New Year. On this occasion, people pray in the hopes of 

having a good year ahead. The activity is public and open to anyone. People visit on the first, 

second or third day of the year as most are on vacation on those days. Generally, most people 

visit on the first day. 
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Figure 5.22 PLoS on 2017/12/31 (New Year’s 

Eve) 

 

Figure 5.23 PLoS on 2018/01/01 (New Year’s Day) 

5.5 Discussion 

Through analysis above, it can be known that the links L12, L28, L11, L18 have rather higher 

PLoS ranking than other places. These links are consistent with the frequent patterns in chapter 

6. Because these places were always at level E or F, meaning that the tourists may always suffer 

from crowding which may make them uncomfortable. Therefore, the local government or 

destination management organisation managers should take measures to balance pedestrian 

flow on these streets so as to improve the service. For example, like Figure 5.24 shows, when 

links L18 and L11 were busy but the surrounding link like links L19 and L10 were not busy, 

tourism managers can provide such information to tourists to help them make better planning 

of sightseeing routes or take measures (such as roundabout or direction rule) to guide them to 

use other circuitous routes. 
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Figure 5.24 PloS level of links  
 

5.6 Conclusions 

A better understanding of the PLoS in tourist areas can help the managers provide better service 

and the tourists can have a better experience. In this chapter, the Wi-Fi packet sensor data was 

used to calculate pedestrian flow rate and evaluate the level of crowding in a tourist area. This 

data source has an ability to capture the situations of crowd movement in a simple and tractable 

way. Based on this method, the pedestrian flow can be controlled by time and space. The criteria 

developed by HCM (2000) was used as a benchmark and pedestrian flow is estimated through 

matching the same AMACs observed by two sensors located at ends of a link firstly then 

converting to real pedestrian flow by using the parameters in chapter 4. As a result, it is possible 

to evaluate the PLoS of a link and provide ideas which street should be improved in specific. It 

was also recognized that the PLoS of links near illumination event area were ranked higher than 

without event and people tend to stay longer in tourist area when there had an illumination event, 

this inspires us holding such an event may help to improve vehicle traffic conditions because 

the demand will decrease on bus stations or cross-sections near the tourist area. This may be 

justified by comparing it with traffic detector data in the future. 
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Chapter 6: Identifying golden routes in tourist 

areas based on Wi-Fi packet sensor 

6.1 Introduction and research objective 

Tourism is one of the pillar industries of Japanese economic development. As one of the most 

famous tourist attractions of Japan, Kyoto attracted more than 53 million tourists (more than 7 

million coming from overseas) based on the statistical data of 2017. According to the Japan 

National Tourism Organisation, the number of foreign visitors in 2018 exceeded 31 million. 

Tourists have not only brought economic growth to Kyoto city but also caused many problems, 

for example, severely crowded conditions inside buses, discomfort to residents, and heavy 

traffic congestion. While the Japanese Government continues to develop tourism to promote 

the economy, how to reasonably guide and manage tourists, to provide a comfortable travel 

experience to visitors and reduce negative impacts on residents, has become an urgent problem. 

Therefore, it is increasingly important to analyse and understand movement patterns and 

behaviours of tourists to alleviate congestion in tourist areas and improve services offered to 

citizens. This chapter will rely on movement data from Wi-Fi packet sensors. By examining the 

digital footprint of pedestrians, this research is aimed at monitoring crowds’ movement 

behaviour in a small area and network.  

One of the most important topics in pedestrian flow research is movement pattern analysis. 

Selecting the appropriate data mining technique is essential for detecting trajectory patterns in 

a complex dataset. Sequential pattern mining (SPM) is a topic of data mining used to identify 

frequent subsequences as patterns in a sequence database. Examples of sequence data include 

text, DNA sequences, web usage data, and multiplayer games. SPM can be applied to many 

domains, including discovering customer buying patterns in retail stores, identifying plan 

failures, and finding network alarms. In this chapter, by analysing sequential trajectory data 

from tourists in the massive tourist area of Kyoto, Japan, it can identify their frequently used 

routes and thereby develop strategies to manage crowds and alleviate congestion in the tourist 

area to make it more convenient and prevent crowd-induced disasters. The extracted knowledge 

can also be helpful to public space design.  

The remainder of this paper is organised as follows. In section 6.2, a brief overview of 

current research on this topic was provided. Section 6.3 describes the data collection procedure 
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and the research area as well as the framework of this chapter. Section 6.4 aims to explore the 

movement characteristics of tourists based on Wi-Fi packet sensor data. K-means clustering 

analysis is applied to extract the tourist-like probe data. Section 6.5 aims to identify a golden 

route that is most frequently used based on SPM analysis. Finally, section 6.6 concludes the 

chapter.  

6.2 Related research 

SPM is one of the most popular data mining tasks on sequences. It consists of discovering 

interesting subsequences in a set of sequences, where the interest of a subsequence can be 

measured in terms of various criteria, such as its occurrence frequency, length, and profit.  

 

Table 6.1 Applications of sequential pattern mining. 
Studies Application area 

Wang et al. (2007) Bioinformatics  

Fournier-Viger et al. (2008); Ziebarth et al. (2015) e-Learning  

Srikant and Agrawal (1996) Market basket analysis  

Pokou et al. (2016) Text analysis 

Schweizer et al. (2015) Energy reduction in smart homes  

Fournier-Viger et al. (2012) Webpage click-stream analysis  

Reps et al. (2012); Batal. et al. (2011); McAullay et al. (2005); 

Norén et al. (2008); Jin et al. (2008); Wright et al. (2015) 

Healthcare and medical fields  

 

The SPM problem was first introduced in 1995 by Agrawal and was defined as follows: 

‘Given a database of sequences, where each sequence consists of a list of transactions ordered 

by transaction time and each transaction is a set of items, SPM is used to discover all sequential 

patterns with user-specified minimum support, where the support of a pattern is the number of 

data-sequences that contain the pattern’ (Agrawal and Srikant, 1995). Its original applications 

were in the retail industry where it was used to predict whether a customer is likely to purchase 

its sequel within some time period after purchasing a certain book. SPM has numerous real-life 

applications since data are naturally encoded as sequences of symbols in many fields, such as 

those listed in Table 6.1. 

Several previous studies in the transport and travel sciences have extracted information from 

massive trajectory databases using SPM (Bermingham and Lee, 2014). Moreover, to understand 

travellers’ behaviour, pattern mining techniques are suitable for detecting hidden patterns in 

extensive databases, which are relevant to tourism and destination management research 

(Mooney and Roddick, 2013). By applying SPM to the tourist trajectory, we can identify 

relationships between one tourism spot and others to manage or propose planning for tourism 
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development. Bin et al. (2019) summarised the SPM algorithm in route recommendations in 

tourism studies. Using data collected from websites, they proposed a method to integrate 

heterogeneous tourism data to construct a point-of-interest (POI) knowledgebase and massive 

structured POI visit sequences. They also proposed the POI-Visit SPM algorithm to generate 

fine-grained POI routes. The feasibility and effectiveness of the algorithm were demonstrated 

using a real-life tourism dataset. These studies indicate the feasibility of applying SPM to 

tourism planning and management. 

In this chapter, I try to identify the frequent trip patterns of tourists by an SPM method using 

data collected by the emerging Wi-Fi sensing technology. 

6.3 Methodologies 

6.3.1 Research Area 

The data used in this chapter were collected from the Higashiyama area around Kiyomizu 

Temple, which is one of the busiest tourist areas in Kyoto city, Japan. The detection area was 

about 0.6 km2 (1,000-metre long and 600-metre wide). Figure 6.1 shows the study area on the 

map. 20 sensors were equipped to collect data for 6 months (from 2017/10/1 to 2018/3/28). 

Table 6.2 lists the sensor IDs, and the observation location names. 

 

 
 

Figure 6.1 Coverage of observation locations in Higashiyama. 
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Table 6.2 Observation locations. 
Sensor ID Location Sensor ID Location 

1 Higashioji Shinkomichi 11 Higashioji Yasakatsu 

2 Shimokawara Shinkomichi 12 Shimokawara Yasakatsu 

3 Nenenomichi Shinkomichi 13 Nineizaka Yasakatsu 

4 Nenenomichi Chuo 14 Sanneizaka Matsubaradori 

5 Shimogawara Yasui 15 Matsubaradori Kiyomizu Temple 

6 Higashioji Yasui 16 Chawanzaka Kiyomizu Temple 

7 Shimizuzaka Parking 17 Gojozaka Chawanzaka 

8 Nenenomichi Kodaiji 18 Matsubaradori Chuo 

9 Shimogawara Kodaiji 19 Higashioji Matsubaradori 

10 Higashioji Kodaiji 20 Higashioji Gojozaka Naka 

6.3.2 Sequential Pattern Mining Framework 

The framework for discovering frequent travel patterns of tourists from Wi-Fi packet 

collector data is outlined in Figure 6.2. The data cleaning module is used first to remove the 

randomised AMACs and non-movement data to save calculation time. The clustering analysis 

module identifies the different smart device users. The travel routes generating module 

discovers a series of sequential patterns of destinations visited by tourists by adopting the 

constrained sequential pattern discovery using equivalence classes (CSPADE) algorithm. 

Finally, the frequently used routes are selected based on support, confidence, and lift. The 

details of these processes are presented in Sections 6.4 and 6.5.  

 

 
Figure 6.2 Sequential pattern mining framework. 

6.4 Categorisation of observations by clustering analyses 

In this section, I investigate whether it can identify different types of users based on the 

observed data. Since Wi-Fi packet sensor data cannot identify the characteristics of device users, 

non-hierarchical clustering was performed to understand different characteristics of 

observations. Izakian et al. (2016) pointed out that clustering is one of the most powerful 

techniques to reveal hidden patterns and structures in data. Among many clustering algorithms, 

unsupervised machine learning algorithms, such as the K-means algorithm, help to avoid the 

transposition of expectations on clustering results (Jain, 2010). As one of the most popular 

clustering algorithms, K-means clustering is used for partitioning a given dataset into a set of k 
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groups (i.e., k clusters), where k represents the number of groups. It classifies objects in multiple 

groups, such that objects within the same cluster are very similar, whereas objects from different 

clusters are very different. In other words, it tries to find homogeneous subgroups within the 

data such that data points in each cluster are as similar as possible according to a similarity 

measure such as Euclidean-based distance (Syakur et al., 2018). K-means clustering analysis 

was applied here to cluster AMAC addresses, to identify the type of device users. K-means 

clustering is relatively computationally quick. The approach was also used by Bayarma et al. 

(2007) to identify groups of travel patterns from travel diary data. 

From pedestrian observation data collected from 2017/11/06 (Monday) to 2017/11/12 

(Sunday), I removed randomised AMACs and AMACs that were only observed once. A 

randomised AMAC could be identified through an organisationally unique identifier (OUI). 

This week was chosen as it is one of the best times to visit Kyoto city because of beautiful 

weather and Japanese maples. After preprocessing, the data used for clustering analysis are 

summarised in Table 6.3. 

 

Table 6.3 Data used for clustering analyses. 
Total number 

of records 

Number of records 

after removing 

random AMACs 

Number of records 

obtained from 

AMACs observed 

once 

Number of 

records for 

analyses 

Number of 

AMACs for 

analyses  

7,642,747 2,292,031 52,014 2,240,017 158,051 

 

The data was aggregated by each AMAC based on the observation time, place, and other 

indicators. In total, nine factors comprising 57 items were considered for K-means clustering 

analyses. These factors are described in Table 6.4. 

 

Table 6.4 Factors considered for K-means clustering analyses. 
Factors Definition 

Share of observations 

by each sensor 

For an AMAC, the number of observations by a sensor divided by the total 

observations of this AMAC; one item per sensor installation point. 

Share of observations 

by time 

Number of observations each hour divided by the total number of observations; 

24 items. 

Share of observations 

by day of week 

Number of observations each day of a week divided by the total number of 

observations; seven items, one for each day of the week. 

Observed days Number of days an AMAC is observed within a week.  

Observed sensors Number of sensors observing an AMAC. 

Observed time Time difference between when an AMAC is first and last observed. 

Total observations Total number of observations for each AMAC. 

First observed time  Time when an AMAC is first observed (in hours, dummy variable); 24 items. 

Final observed time Time when AMAC is last observed (in hour, dummy variable); 24 items. 
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Figure 6.3 Results from the elbow method.  

Table 6.5 AMAC count of each 

cluster. 
 

Cluster AMAC 

counts 

1 116,448 

2 27,962 

3 13,536 

4 105 
 

 

To use the K-means clustering method, the number of clusters, K, must be identified in 

advance. I applied the elbow method to determine the optimal K value. The results of the elbow 

method are shown in Figure 6.3. The vertical axis corresponds to the sum of the squares of the 

distances between samples and the centre of their cluster, and the horizontal axis represents the 

number of clusters. We selected the K value of 4 as the optimal value and used this value for 

our K-means clustering. The AMAC counts for each cluster are detailed in Table 6.5. Cluster 1 

comprised more than 70% of all AMACs. 

 

 
Figure 6.4 Share of observations by the day of the week. 
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Figure 6.5 Share of observations by the hour. 

 

Figure 6.4 shows the average observation rate with respect to the day of the week, and 

Figure 6.5 shows the average observation rate with respect to the hour. We can see that cluster 

1 had a clear upward trend during weekends and had a peak time between 13:00 and 17:00. 

Cluster 2 also had a higher observation ratio on weekends than weekdays, but a decreasing 

trend appeared on Sunday. Cluster 2 had a rather high observation count from 10:00 to 16:00. 

The average observation ratio of cluster 3 on weekdays was higher than that on weekends and 

had two peaks at about 8:00 and 18:00. By contrast, there was no obvious change in cluster 4 

both weekly and hourly. 

 

 
Figure 6.6 Percentage of observed locations 
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Figure 6.6 shows the percentage of observations in each location (sensor) per cluster. The 

horizontal axis corresponds to the sensor location (see Table 6.2). Devices in cluster 1 often 

appeared at sensor locations 6, 7, 10, 14, 15, 19, and 20. Location 7 is a parking place 

exclusively for sightseeing buses. Moreover, location 14 is a typical access route to Kiyomizu 

Temple. It is therefore possible to consider that many tourists disembark the sightseeing buses 

at Shimizuzaka parking and then walk to Kiyomizu Temple via locations 14 and 15. Kiyomizu 

Temple is located to the right of sensor 15 shown in Figure 6.1. For cluster 2, the sensors at 

locations 7, 14, and 15 had more observations than other places. Cluster 3 often appeared at 

locations 6, 10, 19, and 20. Cluster 4 often appeared at locations 10, 19, and 20. Clusters 3 and 

4 were often observed at sensors along Higashiojidori (a main road where sensors 1, 6, 10, 11, 

19, and 20 were installed). Supermarkets, convenience stores, and apartments are distributed 

along this street. Furthermore, the Higashiyama Ward office is located near the Higashioji 

Matsubaradori (sensor 19). These clusters may capture movements, such as daily shopping and 

business behaviour.  

Cluster 1 is considered to include many tourists, especially same-day visitors, because the 

observation time was several hours and often occurred at weekends, and there were many 

observations near Kiyomizu Temple, the famous sightseeing spot (a World Heritage Site). As 

for cluster 2, there were also many observations near Kiyomizu Temple, but the observation 

time was about 2 days at weekends. A decreasing trend appeared on Sundays, which suggests 

that some visitors left the detection area on Sundays. Cluster 3 is considered to include travellers 

who show daily activities (i.e., commuters) because the peak observations occurred in the 

morning and evening, and there were more observations on weekdays than weekends. From the 

perspective of spatial distribution, many observations were captured along Higashiojidori, 

which is one of the main roads connecting the north and south parts of Kyoto city. Cluster 4 is 

considered to include residents because peak observations occurred more than 5 days per week 

on average and more than 22 hours per day. Moreover, there were no large fluctuations in the 

trend of the share of observations according to the day of the week (Figure 6.4) and by time 

within a day (Figure 6.5). The average number of observed sensors reflects the areas of activity 

in each different cluster. We can see that users in clusters 1–3 often moved between more than 

three places, especially in cluster 2, in which users moved to more than seven places. Users in 

cluster 4 moved to less than three places. Moreover, this cluster had a much higher number of 

observations for each AMAC. I identified the cluster characteristics based on these analyses 

(Table 6.6).  
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Table 6.6 Summary of classification results and estimated attributes. 
Classification factor Cluster 1  Cluster 2  Cluster 3 Cluster 4 

Average number of 

observation days 

1.04 1.40 3.63 5.76 

Average number of 

observation hours 

2.29 14.41 109.6 158.75 

Average number of 

observation sensors 

3.74 7.73 4.89 2.68 

Average number of 

observations 

7.02 29.22 30.99 1768.9 

Share of observations 

by time 

Peak at 15:00 No obvious peak, 

distributed uniformly 

between 10:00 and 16:00 

Peak at 8:00 

and 18:00 

Distributed 

uniformly all 

day long 

Share of observations 

by day of week 

Weekend > weekday Weekend > weekday Weekday > 

weekend 

Little 

difference  

Share of observations 

by each sensor 

Many observations 

near Kiyomizu 

Temple and 

Higashiojidori 

Many observations near 

Kiyomizu Temple 

Many 

observations 

near 

Higashiojidori 

Many 

observations 

near 

Higashiojidori 

Estimated attribute Same-day visitors Overnight visitors Commuters Residents 

6.5 Extracting frequent trip patterns 

To gain more insight into the movement behaviour of tourists in the Higashiyama area, I 

applied the SPM technique to AMACs of clusters 1 and 2. In our dataset, a set of pedestrian 

trips (Wi-Fi probe request observation records) during one day is considered a time series 

sequence of their visiting destinations. Each time series sequence was assigned a letter that 

represents the items in that sequence; in our study, our alphabet contained 20 elements; each 

element was the name of the Wi-Fi packet sensor. 

Identifying all frequent sequential patterns in a transaction database, especially in large 

databases such as those found in healthcare, requires an efficient algorithm to deal with the 

large search space. Several algorithms, such as SPADE (Sequential PAttern Discovery using 

Equivalence classes), have been developed. Zaki (2001) proposed this algorithm that uses many 

strategies to make SPM more efficient. One of the most important features in SPADE is the 

database layout, which is transformed from horizontal into vertical id-list database format in 

this algorithm. Another important principle is the equivalent classes. With them, the search 

space is decomposed into small pieces. Then, these pieces can be processed in the memory 

independently. Within each equivalence class, depth-first search is used for enumerating the 

frequent sequences. CSPADE is an extension of the SPADE algorithm and incorporates 

constraints on sequences, such as lengths or width limitations on the sequences, minimum or 

maximum gap constraints on consecutive sequence elements, or time windows (Zaki, 2000). 

CSPADE has been applied to protein folding (Exarchos et al., 2006), hepatitis classification 
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(Aseervatham and Osmani, 2005), and satellite image processing (Julea et al., 2008). Recently, 

Ibrahim and Shafiq (2019) used SPM to discover taxi movement patterns in the city of Porto, 

Portugal. Their dataset included 442 taxi trajectories acquired during one year (Dua and 

Taniskidou, 2017). I processed the data using the CSPADE algorithm and R package 

‘arulesSequences’ (Buchta et al., 2020). 

6.5.1  Definitions and data preparation 

In this section, I first introduce some preliminary concepts, and then formulate the SPM 

problem. As described by Zaki (2000), the problem of mining sequential patterns can be stated 

as follows: Let  1 2I= i  i ,...,  im， be a finite set of items, for example, (A, B, C, D, E, F, and G). 

A subset of I is called an itemset. We also call an event an itemset. An event is a non-empty 

unordered collection of items. Without loss of generality, we assume the items in an event are 

sorted in alphabetic order. A sequence  1, 2, ..., S = In je e e e   is a temporally ordered list of 

events where each event  1je j n   is an itemset; for example, <(A, B, C), (D, E), (F, G)>. 

Let 2S  be another sequence denoted as <(A), (E), (G)>. Sequence 2S is called a subsequence 

of sequence S  since (A) ⊆ (A, B, C) and (E) ⊆ (D, E) and (G) ⊆ (F, G). The length of the 

sequence is the total number of items in the sequence. For example, the length of sequence 

     ,S   =     ,  ,  ,  ,  ,A B C D E F G   is 7, and the length of      2 ,S   = ,   A E G   is 3. To 

facilitate understanding, imagine that customer 1 in Table 6.7 bought items A and B at time 10, 

then bought item B at time 20, and finally bought items A and B at time 30. In addition, customer 

2 bought items A and C at time 20, then bought items A–C at time 30, and finally bought item 

B at time 50. Comparing their sequences, the subsequence AB → B seems to be frequent.  

 

Table 6.7 Example sequence of shopping 

database. 
SID EID Items 

Customer 1 

10 AB 

20 B 

30 AB 

Customer 2 

20 AC 

30 ABC 

50 B 
 

Table 6.8 Example sequence of Wi-Fi 

database. 
SID EID Location 

AMAC 1  

10 S1 

30 S3 

40 S4 

AMAC 2  

30 S1 

40 S2 

50 S4 
 

 

Similarly, as shown in Table 6.8, we can recognise that AMAC 1 was observed by sensor 

S1 at time 10, then observed by sensor S3 at time 30, and finally observed by sensor S4 at time 
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40. AMAC 2 was observed by sensor S1 at time 30, then observed by sensor S2 at time 40, and 

finally observed by sensor S4 at time 50. The moving sequence from S1 to S4 is frequent for 

both AMACs in this example. Actually, some AMACs were observed by two different sensors 

at the same time. The reason may be because of the overlap of the detection areas of the two 

sensors. To cope with this situation, I filtered the AMAC record by RSSI. A record having a 

weaker RSSI means it was farther from the sensor, and thus I removed it. 

 

Table 6.9 Definitions and calculation method. 
Support 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋, 𝑌) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝑋 𝑎𝑛𝑑 𝑌

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠
 

Confidence 
𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋, 𝑌) =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝑋 𝑎𝑛𝑑 𝑌

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝑋
 

Lift 
𝐿𝑖𝑓𝑡(𝑋, 𝑌) =

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋, 𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑌)
 

 

As described before, Wi-Fi packet sensor data include AMAC, timestamp, and sensor ID. 

It is a kind of sequential data in which each record is represented as a sequence of ‘events’. The 

transaction is the minimum processing unit; in my dataset, one packet record is treated as a 

transaction. The rules for expressing frequent patterns are called association rules, and the 

extracted patterns are evaluated by the association rules. Support, confidence, and lift are given 

as indicators of the association rule. The calculation methods of the indicators are presented in 

Table 6.9, where X corresponds to an intermediate sequence and Y to a final destination. The 

task of SPM is to identify frequent sequences, where frequency is defined as having support 

above a user-defined threshold. 

Support indicates the rate of occurrence of a specific trip pattern (X, Y) out of all possible 

trip patterns. In other words, it is the occurrence probability of the trip pattern (X, Y). 

Confidence indicates the probability of going to destination Y when X is observed. The closer 

the confidence to 1, the more likely Y will occur after X occurs. Lift indicates the correlation 

between X and Y. If the lift equals 1, it means that X and Y are independent. If the lift exceeds 

1, it means that X and Y are positively correlated. For example, consider the rule ( X Y ) with 

a lift value greater than 1, i.e., the occurrence of X is positively correlated with the occurrence 

of Y. If X increases, then the occurrence of Y also increases. If the value of the lift is less than 

1, then X and Y are negatively correlated. We can say that a sequence is frequent if its support 

values are larger than the predetermined threshold. With these definitions and a sufficiently high 

support threshold, we can identify patterns that more pedestrians will meet; otherwise, if we set 

support with too low a threshold, the algorithm could generate many insignificant patterns, 
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which means a lower number of pedestrians meeting a pattern. Our target research area, the 

Higashiyama area, contains many tourist spots within a small area. There are multiple routes 

heading to the same destination, and a huge number of movement patterns may occur because 

of sightseeing excursions. Therefore, the threshold for support was set as 0.001, which means 

1 out of 1000 people will meet that pattern. The movement pattern is defined as a typical pattern 

if its support exceeds 0.001. 

The gap value is an important indicator of travel patterns. Notably, Wi-Fi packet sensor data, 

which is a kind of location-dependent data, cannot observe pedestrian data if there is no sensor 

at a location. This is an issue, for example, when a movement pattern from sensor X to Y is 

confirmed because it is impossible to distinguish whether the movement is from sensor X to 

sensor Y directly, or there is a stop in-between at location Z where there is no sensor. Staying 

behaviour is more likely to happen as the moving time between two points increases. Therefore, 

in this chapter, considering some tourists may stop to take a photograph or visit other places 

between locations X and Y, I set the gap time as 1 hour. This means it count the items only when 

the time difference between transactions is less than 1 hour. Considering the gap time, the case 

only includes one visit to location Y after location X within 1 hour. 

6.5.2  Results of the generated patterns 

The data information for the CSPADE algorithm is given in Table 6.10. The results of the 

algorithm are presented in Table 6.11. 

Table 6.10 CSPADE algorithm data. 
 AMAC count Packets count Average chain length 

Cluster 1 116,448 817,720 7.02 

Cluster 2 27,962 817,039 29.2 

 

Table 6.11 CSPADE algorithm results. 
 Number of patterns Average support Average confidence Average lift 

Cluster 1  35,848 0.0028 0.44 1.76 

Cluster 2 7,575,202 0.0026 0.49 1.18 

 

The number of patterns extracted for cluster 2 exceeds the AMAC count. This is because 

multiple patterns were extracted from one AMAC. For cluster 1, the number of patterns is less 

than the AMAC count. This may be due to many of the tourists moving as a group; cluster 2 

has a greater variety of movement patterns than cluster 1. 
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Figure 6.7 Relationship between support and 

confidence (cluster 1). 

 
Figure 6.8 Relationship between support and 

confidence (cluster 2). 

 
Figure 6.9 Relationship between support and 

lift (cluster 1). 

 
Figure 6.10 Relationship between support 

and lift (cluster 2). 

 

Figures 6.7 and 6.8 show the relationship between support and confidence of the patterns. 

The confidence is widely distributed, ranging from about 0 to 1 for each of clusters 1 and 2. 

Confidence close to 1 indicates that movement patterns always head to a specific location. 

Figures 6.9 and 6.10 show the relationship between support and lift of the patterns. The lift 

value is widely distributed, ranging from about 0 to 8 for each of clusters 1 and 2. In addition, 

the lift value converges to about 1 in the range of high support. Most of the patterns with high 

confidence and lift value have low values of support. Although it seems to be a typical 

movement pattern, it cannot be confirmed that it is a golden route, i.e., one that is used most 

often. By contrast, there are some patterns with moderate support values (after which the 

scatterplot starts to become sparse) but still relatively high confidence (greater than 0.5) and lift 

(greater than 1) values. 

6.5.3 Extracting golden routes  

If pickup patterns are based on only one indicator, most of the movement patterns with high 

support are between two or three locations, it is hard to say that they represent a typical trip 

pattern. In addition, a movement pattern with high confidence or lift value has rather low 

support, so it is uncertain whether many tourists are following the pattern. Therefore, I extracted 

those patterns whose support, confidence, and lift values exceeded their average values. A total 
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of 3155 patterns (8% of the total) were extracted for cluster 1 and 686,595 patterns (9% of the 

total) were extracted for cluster 2.  

Too many patterns are difficult to display on the map and to confirm that they are typical 

patterns. By contrast, too few patterns indicate that the extracted patterns do not fully reflect 

tourist behaviour. Sorting these patterns in descending order of support revealed that many 

patterns only contain one or two locations, and also many duplicate patterns. To shortlist the 

generated patterns, I selected the longest trip pattern in the case when there were subsequences.  

 

Table 6.12 Patterns for deriving the golden route of cluster 1. 
Patterns Support Confidence Lift 

<{"S15"},{"S14"},{"S7"}> => <{"S7"}> 0.0434 0.60 2.39 

<{"S7"},{"S14"},{"S15"}> => <{"S15"}> 0.0408 0.72 2.05 

<{"S14"},{"S17"}> => <{"S20"}> 0.0389 0.72 2.30 

<{"S17"},{"S16"}> => <{"S15"}> 0.0365 0.72 2.07 

<{"S20"},{"S17"}> => <{"S16"}> 0.0350 0.54 3.21 

<{"S14"},{"S15"},{"S14"}> => <{"S7"}> 0.0345 0.52 2.06 

<{"S15"},{"S17"}> => <{"S20"}> 0.0331 0.74 2.35 

 

I only chose patterns if they contained three or more different locations with lift values 

larger than 1 from sorted patterns. Table 6.12 indicates the seven patterns that were selected for 

cluster 1. For cluster 2, I stopped at the last pattern in Table 6.13 because there were many 

duplicate patterns below this pattern (the pattern count was 1127). We define the golden routes 

as the routes deriving from these patterns (Tables 6.12 and 6.13). 

 

Table 6.13 Patterns for deriving the golden route of cluster 2. 
Patterns Support Confidence Lift 

<{"S7"},{"S18"}> => <{"S19"}> 0.1036 0.77 1.59 

<{"S7"},{"S14"},{"S15"},{"S14"},{"S7"},{"S7"},{"S7"}> 

=> <{"S20"}> 

0.0990 0.79 1.36 

<{"S20"},{"S17"},{"S16"},{"S16"},{"S15"}> => 

<{"S15"}> 

0.0877 0.88 1.23 

<{"S20"},{"S15"},{"S15"},{"S14"},{"S7"}> => <{"S20"}> 0.0875 0.71 1.22 

<{"S19"},{"S18"},{"S14"},{"S15"}> => <{"S15"}> 0.0872 0.91 1.27 

<{"S15"},{"S14"},{"S14"},{"S7"},{"S7"},{"S7"},{"S17"}> 

=> <{"S20"}> 

0.0869 0.91 1.57 

<{"S15"},{"S14"},{"S14"},{"S13"}> => <{"S8"}> 0.0850 0.61 1.97 

 

Based on Buchta et al. (2020), the CSPADE rules result is shown as < >, where each item 

of the pattern is displayed inside {" "}, the comma between {" "} separates items that appear 

one after another, and the arrow (=>) points to the destination of the pattern. Figures 6.11 and 

6.12 help to visualise the generated golden route. 
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Figure 6.11 Golden route of cluster 1. 

 

Figure 6.12 Golden route of cluster 2. 

 

Based on the above-mentioned analysis, it is apparent that most of the generated patterns 

were trips to Kiyomizu Temple (S15) for both clusters 1 and 2. This is consistent with the reality 

that most tourists travelling to the Higashiyama area visit the Kiyomizu Temple. In addition, 

cluster 2, which includes overnight visitors, has a longer trip pattern and more variety of 

movement patterns than cluster 1 (same-day tourists). These patterns include the two main roads 

to Kiyomizu Temple, one from sensor 20 to sensor 15 and the other from sensor 19 to sensor 

15, which is consistent with the geographic structure. Moreover, our results indicate that cluster 

2 wanted to visit places other than Kiyomizu Temple. They visited more locations than cluster 

1, which is also justified by the clustering result. 

6.5.4 Extracting patterns that are not apparent 

To check whether the SPM method can be used to extract more patterns that are not apparent 

to us. I selected patterns with support lower than the last pattern in Table 6.12 (0.0331) for 

cluster 1 and patterns with support lower than the last pattern in Table 6.13 (0.0850) for cluster 

2. Tables 6.14 and 6.15 summarised these patterns.  
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Table 6.14 Non-obvious patterns of cluster 1. 
Patterns Support Confidence Lift 

<{"S8"},{"S9"}> => <{"S10"}> 0.0196 0.62 2.03 

<{"S11"},{"S12"}> => <{"S13"}> 0.0122 0.53 3.28 

<{"S20"},{"S10"}> => <{"S6"}> 0.0106 0.48 1.77 

<{"S13"},{"S12"}> => <{"S11"}> 0.0095 0.51 3.95 

<{"S13"},{"S9"}> => <{"S10"}> 0.0095 0.55 1.81 

<{"S2"},{"S3"}> => <{"S3"}> 0.0080 0.50 6.14 

<{"S8"},{"S13"},{"S14"}> => <{"S14"}> 0.0080 0.65 1.87 

<{"S20"},{"S19"},{"S10"}> => <{"S6"}> 0.0074 0.56 2.08 

<{"S13"},{"S4"}> => <{"S2"}> 0.0073 0.45 3.28 

<{"S14"},{"S12"}> => <{"S11"}> 0.0072 0.44 3.43 

<{"S13"},{"S8"},{"S9"}> => <{"S10"}> 0.0064 0.64 2.12 

<{"S1"},{"S6"},{"S10"},{"S11"}> => <{"S19"}> 0.0028 0.59 2.14 

 

Table 6.15 Non-obvious patterns of cluster 2. 
Patterns Support Confidence Lift 

<{"S6"},{"S10"},{"S15"},{"S15"},{"S14"},{"S18"},{"S19"},{"S10"}> => <{"S6"}> 0.0037 0.73 1.70 

<{"S11"},{"S12"},{"S13"},{"S14"},{"S14"},{"S14"},{"S14"},{"S13"}> => <{"S8"}> 0.0037 0.60 1.94 

<{"S10"},{"S18"},{"S14"},{"S15"},{"S15"},{"S14"},{"S11"}> => <{"S6"}> 0.0037 0.57 1.34 

<{"S2"},{"S2"},{"S9"},{"S12"},{"S12"},{"S12"},{"S14"}> => <{"S14"}> 0.0037 0.89 1.19 

<{"S1"},{"S6"},{"S14"},{"S15"},{"S15"},{"S14"},{"S10"}> => <{"S6"}> 0.0037 0.66 1.55 

<{"S9"},{"S11"},{"S12"},{"S12"}> => <{"S13"}> 0.0037 0.58 1.51 

<{"S6"},{"S10"},{"S19"},{"S14"},{"S14"},{"S15"},{"S14"},{"S14"},{"S19"}> => <{"S19"}> 0.0037 0.73 1.51 

<{"S12"},{"S11"},{"S11"},{"S6"},{"S6"}> => <{"S1"}> 0.0037 0.52 1.83 

<{"S15"},{"S14"},{"S13"},{"S8"},{"S12"}> => <{"S11"}> 0.0037 0.60 2.13 

<{"S15"},{"S14"},{"S14"},{"S14"},{"S14"},{"S13"},{"S12"},{"S10"}> => <{"S6"}> 0.0037 0.54 1.28 

<{"S6"},{"S8"},{"S8"},{"S13"},{"S13"},{"S14"},{"S14"},{"S15"}> => <{"S15"}> 0.0037 0.90 1.25 

<{"S10"},{"S11"},{"S13"},{"S10"}> => <{"S6"}> 0.0026 0.66 1.54 

<{"S14"},{"S7"},{"S7"},{"S13"},{"S8"},{"S9"},{"S10"}> => <{"S6"}> 0.0026 0.60 1.40 

<{"S7"},{"S13"},{"S8"},{"S8"},{"S4"},{"S4"}> => <{"S2"}> 0.0026 0.66 2.48 

<{"S5"},{"S5"},{"S5"},{"S9"},{"S13"},{"S14"}> => <{"S14"}> 0.0026 0.91 1.22 

<{"S19"},{"S14"},{"S14"},{"S15"},{"S14"},{"S14"},{"S8"},{"S8"},{"S4"}> => <{"S4"}> 0.0026 0.63 3.89 

 

Figures 6.13 and 6.14 help to visualise the extracted patterns. Compared with Figures 6.11 

and 6.12, it can be identified that tourists also visited the area where sensors 8 to 13 were 

installed other than Kiyomizu Temple. This area is popular with traditional buildings and there 

are many food/cafes and shops in this quaint region. Moreover, there is a good photo angle on 

the street between sensors 11 and 12, with Hokan-Ji Temple (near sensor 12) as the background, 

as Figure 6.15 shows. 



 

91 

 

 

Figure 6.13 Non-obvious patterns of cluster 

1 

 

Figure 6.14 Non-obvious patterns of cluster 

2 

 

 

 

Figure 6.15 A screenshot of the street between sensors 11 and 12 from google street view 
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6.6 Conclusions and future research 

This chapter used Wi-Fi packet sensors to identify the type of smart device users and the most 

frequently used routes by tourists in Kyoto city. The MAC address from enabled wireless 

communication devices was key to tracing traveller movements in the targeted area. Passive 

probe data from enabled wireless communication devices were integrated with clustering 

analysis and the SPM method. Clustering analysis was used to identify the type of smart device 

users, and the CSPADE algorithm was used to extract frequent sequential patterns related to 

destinations visited. As a result, the smart device users were categorised into four groups: same-

day visitors, overnight visitors, commuters, and residents. Moreover, it was found that the 

frequent trip patterns of tourists involved trips to Kiyomizu Temple, which means that most of 

the tourists travelling to the Higashiyama area will visit the Kiyomizu Temple. These findings 

are useful for developing strategies for destination management, tourism management, and 

disaster evacuation planning in the Higashiyama area. For example, we can match the trajectory 

information of tourists with maps to discover their POIs. Through analysing the volume and 

stay time at a POI, we can know their interest and preference of the sightseeing spot. Then we 

can give them a label based on their preference and deliver advertisement content that they will 

like, thus promoting more consumption of tourists more accurately. These analytical methods 

may be applicable to other tourist destinations and pedestrian flow studies, such as passenger 

flow inside a transfer station. I expect that we can extract frequent patterns even when they are 

not apparent to us. Based on the SPM results, it can identify the significant location for the 

further development plan and estimate the next destination of the pedestrians. This kind of 

information will positively affect business stores along the street and save time for drivers who 

want to pass through the area. In addition, providing such information to some smart device 

applications would enable tourists to arrange their visiting destinations in line with less busy 

periods. This study provides novel information to the authorities and organisations involved in 

traffic and tourism management. The findings will allow them to make sound decisions on 

policies and plans to relieve congestion, as well as to improve the quality of life of residents 

and the tourism industry’s environment, and enhance sustainable tourism development in the 

area. This technology can also help in monitoring the pedestrian’s travel changes before and 

after the COVID-19 pandemic and emergency declaration. For example, it can observe the 

volume and stay time of pedestrians at a public place like a mall or restaurant and can also 

observe the use of public transportation and cross-city mobility. Such analysis will be done in 

further study.  
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Chapter 7: Conclusion, key contributions and 

future work 

This research mainly aims to gain a better understanding on analysing pedestrian behaviour 

utilising Wi-Fi packet sensor data. In this final chapter, we summarise outcomes of the results 

in section 7.1, and key contributions related to science and society in section 7.2. We latter 

discuss the opportunities for future studies in section 7.3. 

7.1 Summary of thesis 

Chapter 2 summarised various data collection methods for pedestrian behaviour analysis. 

Compared with other pedestrian data collection methods, Wi-Fi packet sensor based data 

collection system does have advantages such as convenience to handle the data, and an ability 

of obtaining long-term observations data and real-time observation data at low cost. However, 

the Wi-Fi packet sensor observes the smart devices carried by users instead of observing the 

pedestrians directly (manual count or video-based methods), thus the correlation between the 

sensor observation and real pedestrian data should be clarified. 

 

Chapter 3 can be regarded as a fundamental analysis based on the question ‘What factors 

affect the data collection of the Wi-Fi packet sensor and whether it is suitable for collecting 

pedestrian data utilizing the Wi-Fi packet sensor?’ 

 

It is concluded that both the installation height and type of sensor can influence the detection 

results. Furthermore, it identified that the Wi-Fi packet sensor is more suitable to observe 

pedestrians than vehicles through comparing the approximation functions for modelling vehicle 

and pedestrian flow. I also explored whether I could categorise our campus Wi-Fi packet sensor 

data to elucidate pedestrian behavioural patterns and checked the spatial and temporal variation 

of pedestrian flow. As a result, I could characterise the campus data into three groups namely: 

undergraduate students, stationary devices and graduate students. Moreover, a Sankey diagram 

was used to show the spatial and temporal variation of pedestrian flow. 

 

Chapter 4 deals with the question ‘How the installation conditions influence the 

observation result of the sensor and how the pedestrian count can be estimated?’ 



 

96 

 

This chapter quantified the influence factors of the Wi-Fi packet sensor based on the two-

sensors method. The Wi-Fi packet sensor does not observe pedestrians directly but it detects 

the device carried by the people. It is therefore needed to understand the correlation between 

the real pedestrian count and sensor observations. Based on the analysis in this chapter, the 

correlation between the Wi-Fi packet sensor observations and real pedestrian count may fit well 

with the exponential function was identified and how the installation height and environmental 

conditions influence the data collection of the sensor was estimated. 

 

Chapter 5 addressed the question ‘Is it possible to evaluate the crowding level of visitors 

of a street?’  

 

Based on the quantified installation parameters of the sensors in chapter 4. This chapter 

attempted to evaluate the PLoS of any segment. Based on the installation height and 

surrounding condition information, it is possible to estimate the pedestrian flow count of a 

segment and then estimate the PLoS level with the sidewalk width. The links that has high LoS 

level are consistent with the most frequent trip patterns in chapter 6. 

 

Chapter 6 addressed the question ‘Whether it is possible to analyse the behaviour of a 

specific group (tourist) with this anonymization data?’ 

This chapter tried to extract attributes of the smart device users from the anonymous 

observations collected from a tourist area. As a result, I could characterise the smart device 

users into four groups: same-day visitor, overnight visitor, commuters, and stationary devices 

and residents. Moreover, it was found that the most frequent trip patterns of tourists matched 

our expectation and I concluded that the proposed method can extract ‘golden routes’ of other 

public places.  

7.2 Key contributions 

As one of the important parts of traffic, pedestrian research has always attracted the attention 

of researchers. The development of proposed technologies provides new chances to collect 

pedestrian data for the research of pedestrian behaviour. In this section, scientific and social 

contributions of this thesis are summarised as follows. 
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7.2.1 Scientific contributions 

This thesis explored how we can extract useful information from Wi-Fi packet sensor data for 

studying pedestrian mobility behaviour. The scientific contributions can be summarised as 

follows： 

1. Proposing an integrated data processing method of Wi-Fi packet sensor. 

The first contribution is to arrange Wi-Fi sensing data to something that can be used for 

transport (or pedestrian) analysis. It verified that it is possible to detect pedestrians and track 

their locations by means of Wi-Fi sensing technology. Because the MAC address is unique per 

device, it is possible to aggregate the observation of a specific pedestrian at different places and 

analyse the spatial-temporal behaviour of crowds. 

2. Proposing evaluation method of PLoS based on Wi-Fi packet sensor data. 

Although we need to improve the accuracy of the model, we could estimate the model to 

evaluate the pedestrian counts quantitatively from Wi-Fi sensing data. Also based on the 

estimated pedestrian count, we can evaluate PLoS following to HCM manual. 

3. Identifying the effectiveness of clustering analysis to infer traveller attributes. 

It is confirmed that clustering analysis can infer the traveller attributes: tourist, regular 

commuter and so on. It is generally said that it is difficult to infer these attributes from such 

passive big data like Wi-Fi or GPS, but clustering analysis contribute to tackle this issues. 

4. Identifying the effectiveness of Sequential Pattern Mining (SPM) to extract frequently 

used routes by travellers. 

It also confirmed that SPM can extract the frequently used routes based on the massive 

trajectory data collected by the Wi-Fi packet sensor. Providing this information to intended 

tourists can support them arranging the destination visiting sequence. 

7.2.2 Societal application 

The Wi-Fi packet sensor data can be applied to many fields. Based on this research we can 

extend its applications to: 

1. Showing importance of EBPM on tourism management 

The discussion in Chapter 5 concludes the effectiveness of ‘light up’ event on pedestrian or 

traffic flow. This example suggests that such tourists event may influence on traffic or 

pedestrian conditions positively or negatively. By using Wi-Fi sensor, we can evaluate the 

influence of such events onto traffic quantitatively. Like this, we need to move to ‘evidence-

based policy making’ (EBPM) even for tourism management.  
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2. Importance of marketing of travellers  

Clustering analysis could easily infer travellers into groups with different interests. Some 

types of travellers may flow into busier areas whereas others not. Different preference can be 

found in different type of traveller. This fact suggests an importance of providing different 

information for different people. 

7.3 Future work 

In chapter4, we have survey data of only six cross-sections. The parameters need to be justified 

with data collected from more cross-sections. The data used in the research is collected by 20 

Wi-Fi packet sensors and the study object is also a small area. It will be more significant to 

study pedestrian mobility behaviour in an urban area with more sensors. 

Complex urban transport systems include competing modes between pedestrians and 

vehicles. Pedestrian flow may influence largely onto traffic especially in cities like Kyoto where 

lots of tourists visit, and efficient control of pedestrian flow may contribute to improve the 

vehicle-traffic conditions. Therefore, there is a need to understand the network flow dynamics 

for both vehicles and pedestrians. Combining Wi-Fi packet sensor data and other data sources 

such as traffic detector data to analyse the interaction between vehicle traffic and pedestrian 

traffic should be done in the future study. 

The Wi-Fi packet sensor can also be used to: 

1. Urban design and management 

The Wi-Fi packet sensor data can help to capture and analyse how people move and interact 

with urban infrastructures. It can be used to analyse the demand of users from the temporal and 

spatial perspectives. The sensor can also be used to monitor the urban commuter behaviours 

such as their origin and destination which can be reference information for urban management 

and design. Moreover, this data collection method can also be applied for public security and 

emergency response, for example, regional heat map in public areas can provide necessary data 

support for social security.  

2. Public transportation systems 

The Wi-Fi packet sensor can also be used to monitor passenger crowding in buses, and trains, 

at bus stops and in railway/metro stations in real-time. The real-time crowding information can 

be transmitted to a smart subsystem to support the crowd control functionality through a 

communication infrastructure. The real-time crowding information can be used by PT operators 

for fast or proactive adaption of some service changes (increasing the frequency of service, 
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reallocating vehicles from one line to another, planning alternative routes) in order to cope with 

spatially and temporally localized crowding situations. Such information can also be reported 

by means of displays installed inside vehicles or at stations, or through mobile apps to allow 

for safe PT usage during exceptional events outbreak, such as COVID-19. 

3. Application in business 

This new population sensing technology also provides opportunities in retail analysis to 

predict future sales. For example, customer flow statistics, identify new and old customers, 

length of stay in the store, regional heat map, crowd trajectory, visiting cycle and so on. 

4. Support effectiveness of Smart Cities 

The key concept of smart cities is to continually observe the social conditions by using 

recent information technology. Wi-Fi sensing can also be used for data observation. It can also 

be used to dynamic pedestrian behaviour management in the urban environment since the data 

can be obtained in real time.  

 

 

 


