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Figure-1 Characteristics of TRAIL-R in humans 
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Figure-2 TRAIL-induced apoptosis pathways 
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Table-1 Results of Dulanermin and Conatumumab in clinical trials 
(A and B) Abbreviations: BV, bevacizumab; Chemo, chemotherapy; CR, 
complete response; PR, partial response; n, number of patients; RCT, 
randomized-controlled trials 
Anticancer activity was considered when the addition of the TRAIL-receptor 
aganist demonstrated statistically significant activity compared with the standard 
therapy 
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Kumazaki et al., 2015 ) 

 
Figure-3 
(A) Western blot analysis was performed to determine steady-state expression of DR5, 
DR4, and adaptor molecule FADD. -actin was used as an internal control. Also shown 
are the steady-state expression levels of DR5 mRNA as relative ratios with respect to 
the GAPDH expression level. The expression level of mRNA was calculated by the 

Ct method. Means S.D. indicated by error bars are shown. (B)The photomicrograph 
shows the results of immunofluorescence staining for DR5 (anti-DR5) on the cell 
surface and in the cytosol of DLD-1 and DLD-1/TRAIL cells. Nuclei were counterstained 
in blue with Hoechst33342. 



14 
 

4 Warburg  

Warburg Warburg

TCA

Otto Warburg

7, 40 Warburg

PKM Warburg Figure-4 PKM

PEP

41 PKM

PKM1 PKM2 2

8 9 11 PKM1 8 10 11

PKM2 42 hnRNPA1

hnRNPA2 PTBP1 9

10 PKM2 43-45

90% PTBP1

PKM2 46  



15 
 

TCA 1 36ATP

2ATP ATP

TCA

ATP

ATP

2 TCA

reactive oxygen species; ROS

ROS

ROS

PKM1

PKM2

PKM2

PKM2 PKM2

PPP

 

Warburg



16 
 

 

 

 

 

 

 

 

 

 

Figure-4 Warburg effect 
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Figure-5 Signaling crosstalk between CCN1 and TNF-  or FasL in fibroblasts 

 

 

 

 

 

 



20 
 

3 Warburg PTBP1 TRAIL  

1  

TRAIL

TRAIL

DR4/5

TRAIL

TRAIL

TRAIL

 

 

 

 

 

 

 

 

 

 



21 
 

2 PTBP1 TRAIL  

Warburg PTBP1/PKM

90%

PTBP1 2

DLD-1 DLD-1/TRAIL

PTBP1 PTBP1

DLD-1/TRAIL PTBP1

Fig-6A  

 

(A) 

 

 

 

 

Figure-6 
(A) Western blot analysis was performed to determine the steady-state expression of 
PTBP1 in TRAIL-sensitive DLD-1 and –resistant DLD-1 cells. -actin was used as an 
internal control. 
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Figure-6 
(B) TRAIL-sensitive and -resistant DLD-1 cells were transfected with siR-PTBP1 (2 nM) 
for 48 h and then treated with rTRAIL (5, 10 ng/ml) for 24 h. The cell viability was 
estimated at 72 h after the transfection. The cell viability of the control (0; PBS alone) is 
indicated as 100 %. The growth inhibition effect by TRAIL with and without the 
transfection with siR-PTBP1 was assessed by the average value of the growth inhibition 
ratios (GI) at each TRAIL concentrations (5, 10 ng/ml). We defined the synergistic effect 
(Syn) by introduction of siR-PTBP1 as the ratios of siR-PTBP1 to control siRNA GI value. 
(C) Western blot analysis was performed to determine the level of the active form of 
caspase-8. -actin was used as an internal control.  
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Figure-6 
(D) TRAIL-sensitive and -resistant DLD-1 cells were transfected with control or PTBP1 
siRNA (siR-PTBP1; 2 nM) for 48 h. Western blot analysis was performed to determine 

the expression of Warburg effect-related genes. -actin was used as an internal control. 
(E) TRAIL-sensitive and -resistant DLD-1 cells was transfected with control or 
siR-PTBP1 (2, 5 nM) for 72 h. The ATP and lactate production were normalized to cell 
numbers, and that of the Control (0) is indicated as “1”. 
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Figure-6 
(F) TRAIL-resistant DLD-1 cells were pretreated with 2-DG (5 mM) for 24 h and then 
treated with rTRAIL (5, 10, 25 ng/ml) for 24 h. The cell viability was estimated at 48 h 
after the start of treatment. The cell viability of the control (0; DMSO alone) is indicated 
as 100 %. Western blot analysis was performed to determine the level of the active form 

of caspase-8. -actin was used as an internal control. 
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Figure-6 
(G) TRAIL-sensitive DLD-1, TRAIL-resistant SW480 and MCF10A cells were 
transfected with control or siR-PTBP1 (2 nM) for 48 h. Western blot analysis was 
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performed to determine the expression of Warburg effect-related genes. -actin was 
used as an internal control. (H) TRAIL-resistant SW480 and MCF10A cells were 
transfected with siR-PTBP1 (2 nM) for 48 h and then treated with rTRAIL (5, 10 ng/ml) 
for 24 h. The cell viability was estimated at 72 h after the transfection. The cell viability 
of control (0; PBS alone) is indicated as 100 %. The growth inhibition effect by TRAIL 
with and without the transfection with siR-PTBP1 was assessed by the average value of 
the growth inhibition ratios (GI) at each TRAIL concentrations (5, 10 ng/ml). We defined 
the synergistic effect (Syn) by introduction of siR-PTBP1 as the ratios of siR-PTBP1 to 
control siRNA GI value. Data are expressed as means  SD of 3 different experiments. 
*p<0.05, as indicated by the brackets (Student’s t test). 
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Figure-7 
(A) TRAIL-sensitive and -resistant DLD-1 cells were transfected with control or 
siR-PTBP1 (2, 5 nM) for 48 h. Western blot analysis was performed to determine the 
expression levels of PTBP1 and DR5. (B) TRAIL-resistant DLD-1 cells were transfected 
with control and PTBP1 expression plasmid vectors (0.2 g/ml) for 24 h. Western blot 
analysis was performed to determine the levels of PTBP1 and DR5. (C) TRAIL-sensitive 
and -resistant DLD-1 cells were transfected with siR-PTBP1 (2, 5 nM) for 48 h. The 
results of immunofluorescence staining for anti-DR5 antibody binding on the cell surface 
and in the cytosol of untreated (0: Control siRNA) or siR-PTBP1 transfected cells are 
shown. Nuclei were counterstained in blue with Hoechst33342. Anti-DR5 antibody 
bound to the cell surface, which is indicated by the white arrows. 
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Figure-8 
(A)TRAIL-sensitive DLD-1 cells were pretreated with NAC (1 mM) for 6 h and then 
incubated with siR-PTBP1 (5 nM) and/or rTRAIL (5, 10 ng/ml) for 24 h. The cell viability 
was estimated at 72 h after the treatment. Data were obtained from 3 independent 
experiments. The cell viability of the control (Control; Control-siRNA alone) is indicated 
as 100 %. (B) TRAIL-sensitive DLD-1 cells were pre-treated with NAC (1 mM) before 
the transfection with siR-PTBP1. Western blot analysis was performed to determine the 
expression level of DR5 protein. -actin was used as an internal control. (C) 
TRAIL-sensitive DLD-1 cells treated with NAC (1 mM) and/or siR-PTBP1 (5 nM). The 
results of immunofluorescence staining for anti-DR5 binding on the cell surface and in 
the cytosol of untreated (0: Control-siRNA) or siR-PTBP1 transfected cells are shown. 
Nuclei were counterstained in blue with Hoechst33342. Anti-DR5 antibody bound to the 
cell surface, which is indicated by the white arrows. *p<0.05, as indicated by the 
brackets (Student’s t test). 
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Figure-9 
(A) DLD-1/TRAIL cells were transfected with siR-PTBP1 (2, 5 nM) for 48 h. The 
expression levels of CCN1 mRNA as a relative ratio with respect to the GAPDH 
expression level was evaluated by RT-qPCR. Also shown is the expression level of 
CCN1 protein determined by performing Western blot analysis. Means (S.D) indicated 
by error bars are shown. (B) Control and CCN1-expression plasmid vectors (0.2 g/ml) 
were used to transfect DLD-1/TRAIL cells for 24 or 48 h. Western blot analysis was 
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performed to determine the expression of CCN1 with -actin used as the internal control. 
(C) Control and CCN1-expression plasmid vectors (0.2 g/ml) were used to transfect 
DLD-1/TRAIL cells for 24 h, and the cells were then exposed to rTRAIL (10, 25, 50 
ng/ml) for 24 h. The cell viability was estimated at 48 h after the treatment. The cell 
viability of the control (0; PBS alone) is indicated as 100 %. Western blot analysis was 
performed to determine the expression of activation of caspase-8 with -actin used as 
the internal control. (D) MCF10A cells transfected with control or siR-PTBP1 (2 nM) for 
48 h. The expression levels of CCN1 mRNA as relative ratios with respect to the 
GAPDH expression level was evaluated by RT-qPCR. The expression level of input 
DNA is indicated as “1”. (E) DLD-1/TRAIL cells were transfected with control or 

PTBP1-expression plasmid vectors (0.2 g/ml) for 24 h. Western blot analysis was 
performed to determine the expression of PTBP1 and CCN1 proteins, with -actin used 
as the internal control. *p<0.05, as indicated by the brackets (Student’s t test). 
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Figure-10 Schematic diagram of the mechanism and machinery involved in the 
TRAIL-induced apoptosis by silencing PTBP1 
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1.  

Recombinant Human TRAIL-Apo2L Ligand (#4354-10; BioVision, CA, USA) 2-

-D- (Sigma-Aldrich, St. Louis, MO,USA) N- -L-

(Sigma-Aldrich, St. Louis, MO, USA)  

 

 

2.  

DLD-1 SW480 Japanese Collection Research 

Bioresources Cell Bank (Osaka, Japan) MCF10A American 

Type Culture Collection (ATCC Manassas, VA, USA)

6 MycoAlert Mycoplasma Detection Kit (LT07-118; Lonza, 

Rockland, ME, USA) DLD-1 DLD-1/TRAIL

SW480 10 %FBS RPMI-1640(189-02025; Invitrogen, Carlsbad, CA, USA)

5 % CO2 37 MCF10A MEBM(CC3150; Lonza, 

Tokyo, Japan) 5 % CO2 37  



43 
 

(%)  

 

 

3.  

3-1  

Protein lysis buffer (10 nM Tris-HCL 0.1% SDS 1% 

NP-40 0.1% 150 mM NaCl 1 mM EDTA) 1% 

Protease inhibitor cocktail Phosphatase inhibitor cocktail II III

20

13,000rpm 4 20

DC Protein assay kit (Biorad, 

Hercules, CA, USA) SDS sample buffer 

(62.5 mM Tris-HCL 2% SDS 10% 50 mM DTT 0.01%

) 50 g/μL 98 5

5  

 

3-2  

(Wako) Super Sep Ace (Wako)
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blotting buffer (25 mM Tris 0.2 M 20%

) 5 PVDF (PerkinElmer Life Sciences, Boston, MA, 

USA) 3 5 blotting buffer

5 blotting buffer PVDF

15 V 370 mA 40  

 

3-3  

0.1% Tween 20 50 mM Tris-HCL buffer (TBST) 5%

1 TBST

(2%BSA 0.01% TBST) 4

TBST 5% Luminate 

Forte Western HRP Substrate (WBLUF0500; Millipore)

Luminescent image analyzer LAS-4000 UV mini (Fujifilm, Tokyo, Japan)

PTBP1 (#8776) DR5 (#8074)  Caspase-8 (#9496)

CCN1 (#14479) Santa Cruz Biotechnology (Santa Cruz, CA, USA) FADD 

(M035-3) MBL (MEDICAL & BIOLOGICAL LABORATORIES CO, LTD, Nagoya, 

Japan) PKM1 (NBP2-14833SS) PKM2 (NBP1-48308SS) Novus 

Biologicals (Littleton, CO, USA) anti- -actin 
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antibody (A5316; Sigma-Aldrich)  

 

 

4. Real-time PCR 

4-1 RNA  

RNA NucleaseSpin miRNA kit (TaKaRa, Osaka, Japan)

RNA UV spectrophotometry  

 

4-2 mRNA  

PrimeScript RT reagent kit (TaKaRa) 37 15 85 5 4 RNA

cDNA Quantitative reverse 

transcription-PCR (qRT-PCR) Universal SYBR select Master Mix 

(Applied Biosystems, Forester City, CA) Tabele-2

GAPDH mRNA 95 30

95 5 60 60

40 95 15 60 30 95 15

3 Ct mRNA  
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Primers          Sequences 

DR5 forward      5’-GAGAGACTATAAGAGCGT-3’ 

DR5 reverse      5’-CTTCCTGAAGAGAACCACAC-3’ 

GAPDH forward   5’-TCTAGACGGCAGGTCAGGTCCACC-3’ 

GAPDH reverse   5’-CCACCCATGGCAAATTCCATGGCA-3’ 

Table-2 Sequences of primers using in this study 

 

4-3 miRNA  

miRNA TaqMan MicroRNA Assay (Applied Biosystems)

TawMan MicroRNA Reverse Transcription Kit (Applied Biosystems)

stem-loop RT primer (Applied Biosystems) RNA 16

30 42 30 85 5 4 10 RT qRT-PCR

TapMan MicroRNA Assay PCR primer (Applied Biosystems)

THUNDERBIRD Probe qPCR Mix (TOYOBO, Osaka, Japan) 95

30 95 5 60 60 40 Ct

miRNA RNU6B

3  
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5.  

0.5×105 cells/mL 6

24

siRNA (Invitrogen) Tabel-3 Control

RNA Hokkaido System Sciences (Sapporo, Japan) siRNA

Lipofectamine RNAiMAX (Invitrogen)

48

 

 

Gene         Sequences 

PTBP1       5’-AUCUCUGGUCUGCUAAGGUCACUUC-3’ (siR-PTBP1) 

Control       5’-GGCCUUUCACUACUCCUCA-3’ 

Table-3 Sequences of siRNAs using in this study 

 

 

6. ChIP  

DLD-1/TRAIL siR-PTBP1 5%CO2 37 48

ChIP ChIP-IT Express Enzymatic (53009; Active Motif, 
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Carlsbad, CA, USA) DR5 antibody (Cell Signaling Technology)

Antibody against Suz12 (39357; Active Motif)

rabbit IgG (53025; Active Motif)

DNA Real-time PCR Input DNA

 

 

 

7. L-lactate  

DLD-1 DLD-1/TRAIL siR-PTBP1

5%CO2 37 48 L-Lactate Assay Kit (700510; 

Cayman Chemical Company, Ann Arbor, MI, USA) L-lactate

 

 

 

8. ATP  

DLD-1 DLD-1/TRAIL siR-PTBP1 5%CO2

37 48 ATP Determination Kit (A22066; 
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Invitrogen) ATP

 

 

 

9.  

Cell Signaling Technology DLD-1

DLD-1/TRAIL siR-PRBP1 48

Smear Gell (SG-01; GenoStaff, Tokyo, Japan)

4% 15

PBS (1×PBS 5%

0.3% TritonTMX100) 60

4

PBS 2

Anti-Rabbit IgG (H+L), F (ab’)2 Fragment Alexa 

Fluor 488 (#4412; Cell Signaling Technology)

Hoechst33342 fluorescent F-actin probe Rhodamine Phalloidin 

(Cytoskeleton, Denver, Co, USA)

BIOREVO fluorescence 
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microscope (Keyence, Osaka, Japan)  

 

 

10.  

3 ±

Student’s t test 5%

p 0.05, p 0.01, p 0.001  
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