

Studies on Development and Application of High-throughput Genomic and Bioinformatics Tools for Citrus Fruit Physiology and Breeding

メタデータ	言語: English
	出版者:
	公開日: 2014-12-11
	キーワード (Ja):
	キーワード (En):
	作成者: 藤井, 浩
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12099/49024

Studies on Development and Application of High-throughput Genomic and Bioinformatics Tools for Citrus Fruit Physiology and Breeding

(カンキツ果実の生理学と育種学のためのハイスループットなゲノム及び

バイオインフォマティクスツールの開発と応用に関する研究)

2013

The United Graduate School of Agricultural Science, Gifu University

FUJII, Hiroshi

CONTENTS

Chapter 1: INTRODUCTION	1
Chapter 2: Oligoarray analysis of gene expression in mature mandarin fruit	6
Section 1: Profiling ethylene-responsive genes in mature mandarin fruit	
using a citrus 22K oligoarray	7
Section 2: Profiling gibberellin (GA ₃)-responsive genes in mature fruit	
using a citrus 22K oligoarray	31
Section 3: Conclusion	45
Chapter 3: An algorithm and computer program for the identification of	
minimal sets of discriminating DNA markers for efficient cultivar	
identification	46
Chapter 4: High-throughput genotyping in citrus accessions using an SNP geno	typing
array	70
Chapter 5: GENERAL DISCUSSION	101
SUMMARY	106
ACKNOWLEDGEMENTS	113
REFERENCES	114

Chapter 1: INTRODUCTION

Citrus is one of the most economically important fruit species in the world. During the long history of the natural evolution, the fruits had diversified in the colors, shapes, fragrances and tastes as well as abundant secondary metabolic elements possessing great health values. These diversities have been used as the resources for citrus breeding to obtain attractive fruit. The efforts on breeding have generated the cultivars with seedless fruit. Along with the development of seedless cultivars, citrus breeding program has become complicated and difficult to improve through traditional breeding approaches (Talon and Gmitter, 2008) because the obtaining of hybrids was interfered by polyembryony, male sterility and self-incompatibility.

In this decade, genomic technology has rapidly advanced. The biological challenges can now be addressed also in citrus plant to understand genetic and physiological events on fruit traits (Talon and Gmitter, 2008). For the purposes, many genome analysis projects have been performed. They included expressed sequence tag (EST) analysis (Bausher et al., 2003; Shimada et al., 2003; Fujii et al., 2003a; Forment et al., 2005; Terol et al., 2007), EST database analysis (HarvEST http://harvest.ucr.edu; Fujii et al., 2003) and development and application of DNA marker. They were developed by cleaved amplified polymorphic sequences (CAPS) maker analysis (Omura, 2005), simple sequence repeat (SSR) marker analysis (Chen et al., 2012; Distefano et al., 2013), and applied to the linkage mapping (Omura, 2005), quantitative trait loci (QTL) analysis (Sugiyama et al, 2011), and cultivar typing (Omura, 2005). EST analysis made much progress in recent years to microarray technology for gene expression profiling (Shimada et al, 2005; Terol et al., 2007).

The cataloguing of ESTs has emerged in 1990s as a powerful tool capable of

obtaining a large set of expressed genes from genome. The citrus genome analysis team (CGAT) of the National Institute of Fruit Tree Science (NIFTS), National Agriculture and Bio-oriented Research Organization of Japan (NARO), started the EST analysis program in the 1990s (Hisada et al., 1996; Hisada et al., 1997; Moriguchi et al., 1998; Kita et al., 2000; Shimada et al., 2003; Fujii et al., 2003a). The EST program stimulates and supports molecular and physiological research on citrus fruit. Through the program, CGAT/NIFTS has collected 29,228 ESTs on 19 cDNA libraries covering different tissues and developmental stages (Fujii et al., 2006). Among the 19 libraries, 16 were derived from *C. unshiu* and the six remaining libraries were derived from *C. sinensis, C. limon*, and *C. kinokuni* hort. ex Tanaka. The 20,525 ESTs of adequate quality were submitted to the DNA Data Bank of Japan (DDBJ) and released (Table 1-1). Fujii et al. (2003b) also constructed an in house EST database to manage EST sequences, accession numbers, and functional annotations as user-friendly database.

The large collection of ESTs has been applied to reveal the gene expression patterns, gene regulation, and sequence diversity (Brandle et al., 2002), and development of EST databases have contributed to discover the genes associated with fragrance (Shimada et al., 2005a; Shimada et al., 2005b; Shimada et al., 2005c) and to induce the precocious flowering while assaying the gene functions in fruit (Endo et al., 2005, Endo et al., 2006). The gene repertory analysis indicated that the easy peeling of citrus fruit rind, which is an important trait for commercial value in citrus, is related with the gene expression involved in relaxation of the cell wall (Brummell and Harpster, 2001). After a prototype cDNA microarray with 2,213 spots has been produced to promote the molecular analysis of fruit development and quality using the EST database (Shimada et al., 2005d), the custom citrus 22K oligoarray had been developed as the tools for functional genomics (Fujii et al., 2006). In the procedure of EST microarray

design, the EST sequences were subjected to clustering. The collection of 29,228 ESTs grouped into 13,896 putative unigenes. Each unigene was translated into its amino acid sequence and subjected to a similarity search against amino acid and motif databases using Fasty, Blastx, and motif search algorithms. Among the 13,986 unigenes, 6,759 (48.6%) showed similarity to genes with known functions and 759 (5.5%) showed similarity to only functional domains.

In addition to the use of EST information on fruit physiology and molecular biology, the ESTs have been used to generate DNA makers for genome mapping. The CAPS markers were used to construct linkage maps of several mapping populations of citrus and they have been applied to obtain the selection markers for breeding (Omura, 2005). The traits related to fruit quality, such as sugar and acid contents, peel thickness, rind and pulp color and carotenoid content, and seed characteristics, such as polyembryony, embryo color, seed number, and seedlessness, were analyzed and mapped on the CAPS linkage maps as QTLs (Omura, 2005; Sugiyama et al., 2011). The CAPS markers also provided the molecular tools to identify cultivars (Omura, 2005).

Recently, the international consortium on citrus genome analysis publicly released the haploid Clementine (Citrus clementina) and the diploid sweet orange (C. sinensis) genomes (Gmitter et al.. 2012; Citrus Genome Database http://www.citrusgenomedb.org/). Furthermore, the draft genome sequence of the dihaploid sweet orange has been produced (Xu et al., 2013) and made available to the global research community annotation (Citrus sinensis project. http://citrus.hzau.edu.cn/orange/). Despite the challenges of working with citrus, understanding important characteristics from the gene expression level is insufficient. It is believed that the important characteristics of citrus fruits are under complex genetic regulation. In addition, the heterozygosity of the citrus genome makes more difficult to

understand genotype-phenotype relation and to identify the key regulatory gene. It is necessary to make excellent use of the high-throughput genomic tools available to understand the regulations. In this thesis, high-throughput genomic technology, such as the oligo-microarray, SNP genotyping array, and analytical software, were developed and applied to citrus to provide the basis for comprehensive use of citrus genome information, which has been accumulated quickly. Chapter 2 details a gene expression analysis using the 22K citrus oligo-microarray that was performed to profile gene expression in mature mandarin fruit undergoing plant hormone treatment. In Chapter 3, the development of an algorithm and computer program for efficient cultivar identification using DNA makers is described. Chapter 4 discusses the development of a 384 SNP genotyping array for high-throughput genotyping and how the array was applied to 98 citrus accessions and a population. The results obtained in this study, the expression analysis of many genes related to important characters, the analysis of genome-wide genotyping among many varieties and the software for efficient cultivar identification, or the combination of these three analyses will be necessary to understand important characters of citrus.

Table 1-1.	The EST catalogs anal	yzed in CGAT/NII	SL				
Library	Originating cultiva	Species	Tissue and stage	No. of clones r	No. of DDBJ egistered	Accession number	Reference
NSS	'Valencia' orange	Citrus sinensis	Young seed	577	577	C21828-C21914 DC899990-DC900479	Hisada et al. 1996
FRI	'Miyagawa wase'	C. unshiu	Fruit pulp, developing	1,051	1,051	C21915-C24319 DC893414-DC893590	Hisada et al. 1997
FRM	'Miyagawa wase'	C. unshiu	Fruit pulp, maturation	385	385	C81631-C81927 DC893591-DC893680	Moriguch et al. 1998
ALM	'Miyagawa wase'	C. unshiu	Albedo, maturation	623	623	C95196-C95572 DC892843-DC893089	Kita et al. 2000
OVA	'Miyagawa wase'	C. unshiu	Ovary, flowering	827	827	AU186170-AU186562 DC893681-DC894116	Shimada et al. 2003
ALP	'Miyagawa wase'	C. unshiu	Albedo, initiation stage of rind peeling	941	941	AU300309-AU300928 DC893090-DC893413	Fujii et al. 2003a
WFY	'Miyagawa wase'	C. unshiu	Whole fruit, young	1,689	1,689	DC894117-DC895805	
BFC	'Miyagawa wase'	C. unshiu	Rind, coloring	1,650	1,650	DC884963-DC886612	
FBI	'Miyagawa wase'	C. unshiu	Flower bud, 30 days before flowering	2,367	2,367	DC888010-DC890376	
GSA	'Miyagawa wase'	C. unshiu	Seed, imbibition 4 days	1,920	1,042	DC890377-DC891418	
RGP	'Miyagawa wase'	C. unshiu	Root, seedling 2 weeks	096	553	DC896389-DC896941	
SLG	'Miyagawa wase'	C. unshiu	Shoot, seedling 2 weeks	1,920	991	DC897089-DC898079	
YJS	'Miyagawa wase'	C. unshiu	Juice sac, 60 days after flowering	1,926	1,035	DC900480-DC901514	
PCC	'Miyagawa wase'	C. unshiu	Callus, proliferating	096	583	DC895806-DC896388	
EIC	'Miyagawa wase'	C. unshiu	Callus, embryogenesis	1,152	752	DC887258-DC888009	
STG	'Miyagawa wase'	C. unshiu	Stigma, flowering	3,552	1,910	DC898080-DC899989	
ANT	'Miyagawa wase'	C. unshiu	Anther, flowering	2,600	1,480	DC883483-DC884962	
TTT	'Lisbon' lemon	C. limon	Leaf, young	2,016	1,424	DC891419-DC892842	
EGJ	Kisyu-mikan	C. kinokuni	Ovule, 60-70DAF	2,112	645	DC886613-DC887257	
			Total	29,228	20,525		

Chapter 2: Oligoarray analysis of gene expression in mature mandarin fruit

During fruit development and ripening, complex physiological and biochemical changes are regulated by hormonal, nutritional, and environmental controls (Giovannoni, 2004). Citrus fruit is generally classified as non-climacteric fruit (Kader, 1992) but can respond to exogenous ethylene, which stimulates fruit ripening along with chlorophyll degradation and carotenoid accumulation in peel (Goldschmidt et al., 1993). Many ripening-related genes have been isolated and characterized in *Citrus* species, and it is well documented that ethylene regulates chlorophyll degradation and regulates carotenoid accumulation at the transcriptional level (Jacob-Wilk et al., 1999; Kato et al., 2004; Kato et al., 2006; Rodrigo et al., 2004; Rodrigo et al., 2006).

Gibberellin (GA₃) delays ethylene-, or sucrose- induced peel color change by the repression of chlorophyll degradation and by the repression of carotenoid accumulation (Cooper and Henry, 1968; Trebitsh et al., 1993; Iglesias et al., 2001; Rodrigo and Zacarias, 2007). Iglesias et al. (2001) consider that GA appears to control the timing of chlorophyll disappearance by inhibiting or reducing chlorophyll biosynthesis. After the natural reduction of endogenous GA levels in mature fruit, color change may be stimulated by the basal level of endogenous ethylene, along with the de novo synthesis of chlorophyllase. Thus, ethylene and GA are assumed to play important roles in the endogenous regulation of maturation and senescence in mature citrus fruit, but little is known about the effects of GA on transcriptional regulation during fruit ripening.

In tomato and *Arabidopsis*, ethylene-regulated genes were investigated using microarray analysis, and it was demonstrated that a large number of transcription factors and some putative signaling components, which were transcriptionally associated with fruit maturation and ripening, were highly regulated by ethylene, providing a new insight into the molecular basis of ethylene-mediated ripening (Zhong and Burns, 2003;

Alba et al., 2005).

Recently, 2.2K and 12K cDNA microarrays (Shimada et al., 2005) and (Forment et al., 2005) were developed in *Citrus* species and applied to the global analysis of transcriptome dynamics during the development and ripening of citrus fruit. Using 12K cDNA microarrays, Cercós et al. (2006) identified more than 2,200 putative unigenes with significant expression changes during fruit development, which were involved in the metabolism of carbohydrates, acid, secondary, cell expansion, and transcription regulators.

In this Chapter, the citrus custom 22K oligoarrays were used to understand complicated transcriptional regulation during fruit development and ripening. It will provide a new insight of the ethylene or gibberellin regulatory mechanism in citrus.

Section 1. Profiling ethylene-responsive genes in mature mandarin fruit using a citrus 22K oligoarray

Mature citrus fruit exhibit a relatively low respiration rate and level of ethylene production and are generally classified as non-climacteric fruit (Kader, 1992). This low level of exogenous ethylene is assumed to play a role in the endogenous regulation of maturation and senescence (Goldschmidt, 1998). Ethylene has significant effects on plant development to regulate germination, senescence, abscission, fruit ripening, drought, wounding, chilling, and pathogen infection (Abeles et al., 1992). In climacteric fruit, such as tomato, numerous studies of ethylene biosynthesis and response have been reported, and ethylene has been shown to control the ripening process through the regulation of gene transcription (Giovannoni, 2004). However, the ripening mechanism in non-climacteric fruit remains unclear, and it would appear that a unique program regulates the development and ripening of citrus fruit.

In general, ethylene treatment is ineffective with regard to the ripening of non-climacteric fruit, such as grape (Brady and Speirs, 1991), strawberry (Atta-Aly et al., 2000), and cherry (Given et al., 1988), however, citrus fruit responds to exogenous ethylene, which stimulates fruit ripening by enhancing respiration and changes in peel color (chlorophyll degradation and carotenoid accumulation) (Goldschmidt et al., 1993). In addition, some reports have indicated that there have been marked increases in the endogenous levels of ethylene production following various events, such as wounding (Hyodo and Nishino, 1981), pathogen attack (Achilea et al., 1985), chilling temperature (McCollum and McDonald, 1991), and detached young fruit (Katz et al., 2005), although mature citrus fruit produces only small amounts of ethylene and lacks an autocatalytic rise in its production. Thus, complex regulations of ethylene production and perception might exist during fruit development. Recently, ripening-related genes have been isolated and characterized in Citrus species, which are involved in chlorophyll degradation (Jacob-Wilk et al., 1999), carotenoid biosynthesis (Kato et al., 2004; Kato et al., 2006; Rodrigo et al., 2004; Rodrigo et al., 2006), and ethylene biosynthesis and perception (Katz et al., 2004; Katz et al., 2005). Most of these genes respond to exogenous ethylene, and their transcriptions are up-regulated in mature fruit. In contrast, significant transcriptional changes of ethylene biosynthesis and receptor genes were not detectable against ethylene and propylene treatments in mature fruit (Katz et al., 2004). Therefore, a full understanding of the ethylene regulatory mechanism in citrus fruit will be of value.

In this experiment, the ethylene-responsive genes in citrus mature fruit were investigated using a citrus 22K oligoarray containing 21,495 independent ESTs from *Citrus* species. Seventy-two hours after ethylene treatment, 1,493 genes were identified as ethylene-responsive genes with more than 3-fold expression change; an interesting

aspect of gene regulation by ethylene was observed, namely, that more than half of the ethylene-responsive genes were repressed, and it was assumed that these transcriptional changes might enhance the ripening process. In addition, transcriptional regulations related to chlorophyll degradation, carotenoid biosynthesis, and ethylene perception in the mature fruit were also discussed.

Materials and methods

Plant material and ethylene treatment

Satsuma mandarin (*C. unshiu* Marcovitch, cv. Miyagawa wase) cultivated at the Citrus Research Division Okitsu (Shimizu, Shizuoka, Japan) of NIFTS were used as materials. Samples of fruit at 150 days after anthesis (DAF) were collected. For the ethylene treatment of fruit, higher concentration of ethylene (100µl·L⁻¹) was applied in each container in order to complete degreening within 72 h and monitor ethylene responsive genes during short time period. Both ethylene treatment and air treatment were conducted at 25°C. The flesh flavedo tissue was excised and immediately frozen in liquid nitrogen and stored at -80°C until RNA extraction and the quantification of carotenoids and chlorophylls.

Carotenoid and chlorophyll quantification in flavedo

Quantification of 6 representative carotenoids, all *trans*-violaxanthin (*trans*-Vio), 9-*cis*-violaxanthin (*cis*-Vio), lutein (Lut), β -cryptoxanthin (B-Cry), α -carotene (A-Car), and phytoene (Phy), was carried out by the method of Kato et al. (2004). Samples were homogenized in 40% (v/v) methanol containing 10% (w/v) magnesium carbonate basic. Pigments were extracted from the residues using an acetone : methanol (7:3 [v/v]) solution containing 0.1% (w/v) 2,6-di-*tert*-butyl-4-methylphenol and partitioned into diethyl ether. The extracts containing carotenoids esterified to fatty acids were saponified with 20% (w/v) methanolic KOH. After the saponification, water-soluble extracts were removed from the extract by adding NaCl-saturated water. The pigments repartitioned into the diethylether phase were recovered and evaporated to dryness. Subsequently, the residue was redissolved in 5 mL of an MTBE: methanol (1:1 [v/v] solution. An aliquot (20 μ L) was separated by a reverse-phase HPLC system (Jasco, Easton, USA) fitted with a YMC Carotenoid S-5 column of 250- x 4.6-mm-i.d. (Waters, Milford, USA) at a flow rate of 1 mL min⁻¹. The eluent was monitored using a photodiode array detector (MD-910, Jasco). The peaks were identified by comparing their specific retention times and absorption spectra with the authentic standards. The standard curves for the carotenoid quantification were prepared with those of the authentic standards at 286 nm for Phy and 452 nm for trans-Vio, cis-Vio, Lut, B-Cry, and A-Car. The carotenoid concentration was estimated by the standard curves and expressed as milligrams per gram fresh weight. According to the method of Shimada and Shimokawa et al. (1978), the chlorophyll (a + b) content was determined by measuring the absorbance at 642 and 662nm. Carotenoid and chlorophyll quantification was performed in three replications.

RNA isolation and fluorescent labeling of probes

Total RNA was extracted by the methods of Ikoma et al. (1996) from flavedo tissues of non-treatment at 0 h and at 24 h, 48 h, and 72 h after ethylene treatment or air treatment. At least three independent RNA extractions were used in probe labeling for experimental reproducibility. The total RNA (400 ng) of all samples was labeled with the fluorescence Cy5, while non-treatment at 0 h was labeled with Cy3 according to the instructions for the Low RNA input linear amplification and labeling kit (Agilent technologies, Santa Clara, USA). Labeled cRNA was purified using the Qiagen RNeasy mini kit (Qiagen, Hilden, Germany). Hybridization and washing were performed according to the manufacturer's instructions. Glass slides were hybridized overnight at 60°C in a hybridization buffer containing a fragment of Cy3- or Cy5-labeled cRNA. After hybridization, slides were washed in 6×SSC, 0.005% Triton X-100 for 10 min at room temperature and 0.1×SSC, 0.005% Triton X-100 for 5 min at 4°C. After drying the slides with gaseous nitrogen, hybridized slides were scanned with the use of a microarray scanner (Agilent technologies). The intensities of the Cy5 and Cy3 fluorescent signals from each spot were automatically normalized, and the ratio value (Cy5/Cy3) was calculated using Feature Extraction version 7.1 software (Linear & LOWESS analysis, Agilent technologies). Data analysis was carried out using GENESPRING 7.00 (Silicon Genetics, Redwood City, USA). Genes with more than a 3-fold expression change between ethylene treatment and air treatment at each experimental time (24 h, 48 h, and 72 h) were accepted as ethylene-responsive genes in this experiment.

Northern gel blot analyses

For Northern blot analysis, total RNA was extracted by the methods of Ikoma et al. (1996) from flavedo tissues at 0 h, 24 h, 48 h, and 72 h after ethylene treatment. Ten microgram from each RNA sample was subjected to electrophoresis on a 1.2% agarose gel containing 8% (v/v) formaldehyde and transferred to a nylon membrane (Hybond-NX, Amersham Pharmacia Biotech, Little Chalfont, UK). The cDNA probes of 7 representative ethylene-regulated genes identified by microarray analysis were prepared with the use of a PCR DIG labeling kit (Roche Molecular Biochemicals, Tokyo, Japan). Hybridization and detection were conducted according to the

manufacturer's directions (Roche Molecular Biochemicals).

Results and discussion

Identification and functional classification of 1,493 ethylene-responsive genes

A citrus 22K oligoarray including 21,495 independent EST probes derived from Citrus species and 1,080 control spike probes was used in this study to identify ethylene-responsive genes in mature fruit. The fold change of each gene expression was calculated based on the mRNA expression ratio between ethylene treatment samples and air treatment samples at every 24h. In the 72 h after the ethylene treatment, 1,493 genes showed more than a 3-fold change in the mRNA expression ratio. Table 2-1 showed representative ethylene resopnsive genes with 3-fold expression change between Ethylene and air treatments. Of 1,493 genes, the expression of 554 genes was up-regulated, while 939 genes were down-regulated, indicating that ethylene tended to repress transcription in this fruit stage. Ethylene-induced esterase, pathogenesis-related (PR) protein, and 9-cis-epoxycarotenoid dioxygenase had high ethylene sensitivity, and they were radically induced by exogenous ethylene within 24h with more than a 30-fold change. In contrast, the chlorophyll a/b-binding protein (CAB), ribulose-1,5-bisphosphate carboxylase (RBC), and extensin-like protein were down-regulated by more than 30-fold. To confirm the results from the microarray analysis, 7 representative genes, each with a different responding pattern against ethylene, were selected and subjected to Northern blot analysis (Fig. 2-1). As shown in Fig. 2-1, aminocyclopropanecarboxylate (ACC) oxidase 1 (ACO1), ethylene-induced significantly induced. esterase. and PR protein were and xyloglucan endotransglycosylase (XET), RBC, and flowering time (FT) genes were suppressed after exogenous ethylene treatment. The regulation patterns were different among these genes, but the genes were either induced or suppressed by exogenous ethylene or by constitutive activation of the ethylene-signaling pathway. The signal intensities of each Northern band visually reflected changes detected in the microarray, demonstrating the fidelity of the experiments.

A total of 1,493 ethylene-responsive genes were compared by TBLAST X similarity search (e-value <1e-5) with all cDNAs of Arabidopsis (downloaded from the TAIR. Since each cDNA of Arabidopsis provided functions according to gene ontology annotations for Arabidopsis (GOSLIM in TAIR), the genes were assigned the functions according to GOSLIM on the basis of their similarity with the cDNA of *Arabidopsis*. As a result, 939 genes were assigned to three aspects of GOSLIM (Table 2-2). Certain genes were often assigned to more than one category in each aspect of GOSLIM; thus, the total did not equal 100%. Among the molecular functions, the category of "other enzyme activity" was the most affected by ethylene, and 176 genes (11.8% of 1,493 genes) responded to ethylene treatment. Among the biological processes, the categories of "other metabolic processes" (22.4% of 1,493), "other physiological processes" (19.9%), and "other cellular processes" (19.9%) were significantly affected by ethylene. Among the cellular components, the categories of "other membranes" (18.0%), "chloroplast" (8.0%), and "other cellular components" (7.5%) were affected by ethylene treatment. Thus, more than one half of the ethylene-responsive genes were repressed in these Go Term categories. This aspect might suggest that ethylene demotes numerous biological processes and plays an important role in fruit ripening and senescence.

Hierarchical clustering of 1,493 ethylene-responsive genes

To visualize ethylene-responsive expression patterns in 72 h, the 1,493 genes were subjected to cluster analysis and divided into 2 major clusters (Fig. 2-2). As shown in

Fig. 2-1, ethylene treatment caused drastic transcriptional changes of these genes in comparisons with air treatment, and most of the genes quickly responded to exogenous ethylene within 24 h of the treatment. Cluster 1 consisted of 939 genes that were down-regulated after the ethylene treatment. Many genes related to photosynthesis, chloroplast biogenesis, sugar metabolism, transcription, and cell wall metabolism were quite evident. Interestingly, ethylene repressed the transcription of most genes involved in photosynthesis and chloroplast biogenesis, such as the CAB, the photosystem I subunit, and RBC. This result indicated that repression of photosynthesis-associated genes was controlled at the transcriptional level by ethylene. Similar repression of photosynthesis by ethylene was observed in Arabidopsis (Zhong and Burns, 2003). In the sugar metabolism, starch synthase, gulcose-6-phosphogluconate dehyrogenase and hexokinase 2 were down-regulated, while hexose carrier, a sucrose transporter, and acidic invertase were up-regulated. The expression of genes related to the sugar metabolism is generally reduced during ripening, although not all of them are similar (Hennig et al., 2004). In ripening fruit of 'Fortune' mandarin, sucrose translocation rather than sucrose synthesis was considered to play a major role in the maintenance of the sucrose levels in flavedo due to the low activity of sucrose phosphate synthase (Holland et al., 1999), and sucrose broken down to hexoses was mediated by sucrose synthase, acid invertase, and alkaline invertase. Cell wall modification genes were also regulated by ethylene. Most genes were down-regulated by exogenous ethylene, such as cellulose synthase, pectate lyase, polygalacturonase, pectinacetylesterase, xyloglucan and endotransglycosylase. In contrast, expansin, ethylene-induced esterase and beta-galactosidase, UDP-galactose-4-epimerase, and germin-like protein were up-regulated. There is less information for the transcriptional regulation of cell wall genes against ethylene in citrus mature fruit. In grapefruit, arabinosyl and galactosyl

residues were most abundant in flavedo tissue, and fruit ripening accelerated softening through hydrolysis for these galactosidase galactosyl and arabinosyl residues of cell wall by β -galactosidase and UDP-galactose-4-epimerase (Mitcham and McDonald, 1993). However, it was reported that ethylene had no effect on the loss of mature fruit weight and firmness in 'Shamouti' orange (Porat et al., 1999). This result suggested that drastic cell wall modification was not occurred by ethylene treatment during mature fruit, unlike climacteric fruits, and unique regulation system of cell wall genes should exist in citrus mature fruit. Interestingly, divergent effects of ethylene have reported in peach, so that regulatory activity by ethylene can either be positively and negatively according to the different genes (Trainotti et al., 2003). In strawberry, exogenous ethylene decreased pectin esterase in ripe and senescing fruits (Castillejo et al., 2004). Therefore, it is possible that cell wall genes such as pectate lyase and polygalacturonase were down-regulated by ethylene in mature fruit. Ethylene activates pathogen defense and several cell-wall-related genes were also induced by pathogen attack (Maleck et al., 2000). In orange, expansin was induced by glassy-winged sharpshooter (GWSS) derived elicitors (Mozoruk et al., 2006).

Cluster 2 contained 554 genes that were radically up-regulated after ethylene treatment. There were the genes involved in resistance, defense, stress, amino acid synthesis, protein degradation, secondary metabolism, protein kinase, and other signaling components. Cysteine proteases, polyubiquitin, and proteasome were up-regulated, and these proteins were implicated in the ubiquitin-mediated protein degradation pathway, which might be associated with the initiation of the fruit senescent process, as reported by Cercós et al., (2006). Ethylene is known to play a key role in various aspects of plant defense against abiotic stress, such as wounding and ozone exposure as well as insect and microbial attack (Kunkel and Brooks, 2002). Genes such

as osmotin, beta-glucanase, chitinase, and the PR protein were induced, as well as oxidative-burst proteins of peroxidase and glutathione S-transferase. Reactive oxygen molecules were generated in the initial steps of response to pathogen attack (Bolwell and Wojtaszek, 1997). Recently, the GWSS - derived elicitors induced genes that were characterized in orange using a nylon filter cDNA microarray, and significant transcriptional changes occurred for the genes involved in direct defense, defense signaling, cell wall modification, photosynthesis, and abiotic stress (Mozoruk et al., 2006). Several ethylene-responsive genes characterized in our experiment were overlapped in these elicitor-induced genes. Plant defense responses are regulated through a complex signaling network with a cross talk among salicylic acid (SA), jasmonic acid (JA), and ethylene-signaling pathways. Some of them might be activated positively or negatively through this cross talk among plant hormone-signaling pathways.

Ethylene regulates chlorophyll degradation at the transcriptional level

It is well known that ethylene results in the enhancement of color change by increasing chlorophyll degradation and the promotion of carotenoid biosynthesis (Goldschmidt et al., 1993). In this experiment, the application of exogenous ethylene accelerated chlorophyll breakdown, and degreening was completed within 72 h (data not shown). The chlorophyll contents and ratio of chlorophylls a to b were investigated in flavedo tissues at 0 h and 72 h after treatments (Table 2-3). In a comparison of air treatment, ethylene accelerated the loss of chlorophyll, and the content of chlorophyll became one-half. The chlorophyll a content in the ethylene-treated fruit decreased along with chlorophyll degradation, indicating that chlorophyll a was more predominantly degraded than chlorophyll b. In citrus 22K oligoarrays, 4 chlorophyll-related gene

homologues were included: magnesium chelatase (accession no. CK665296), chlorophyllase (accession no. CF838747), chlorophyll synthase (accession no. CD575834), and NADPH-protochlorophyllide oxidoreductase (accession no. DC885363). The gene expression of chlorophyllase was extremely up-regulated by exogenous ethylene, while magnesium chelatase was down-regulated (Fig. 2-3A). Other genes showed similar expression patterns between ethylene and air treatments. This ethylene-enhanced chlorophyllase gene expression is in good agreement with the result of Jacob-Wilk et al. (1999). In addition, ethylene treatment significantly suppressed the transcription of magnesium chelatase, which mediates the insertion of Mg^{2+} into protoporphyrin IX and is the first unique enzyme of the chlorophyll biosynthetic pathway. Thus, ethylene was found to play binary roles in enhancing the decomposition of chlorophyll and suppressing chlorophyll biosynthesis at the transcriptional level.

Ethylene regulates the transcriptional changes of carotenoid biosynthesis genes and affects carotenoid composition

The contents of 6 representative carotenoids (*trans*-Vio, *cis*-Vio, Lut, B-Cry, A-Car, and Phy) in the flavedo tissue were characterized in ethylene-treated and air-treated fruit at 0 h and 72 h (Table 2-3). Within 72 h of the ethylene and air treatments, the total carotenoid contents increased from 58.0 μ g·g-1 up to 220.4 μ g·g-1 (air treatment) and 234.8 μ g·g-1 (ethylene treatment). It was reported that optimum ethylene and temperature treatments improved fruit color development (Wheaton and Stewart, 1973). In Satsuma mandarin, more than 20°C temperature treatment enhances carotenoid accumulation in peel of detached fruit (Hasegawa and Iba, 1983). Interestingly, the total carotenoid contents of ethylene- and air-treated fruit for 72 h were almost identical, but their carotenoid composition differed. For example, B-Cry in ethylene-treated fruit was

almost twice that of air-treated fruit. On the other hand, the *trans*-Vio and *cis*-Vio ratio (29.39%) of total carotenoids was lower in ethylene-treated fruit than air-treated fruit (46.42%). Thus, ethylene treatment affected the ratio of B-Cry and violaxanthin (Vio) content during the 72 h treatment.

A citrus 22K oligoarray allows the profiling of 10 genes related to carotenoid biosynthesis in flavedo tissue (Fig. 2-3B), including phytoene synthase (CitPSY), phytoene desaturase (*CitPDS*), ζ -carotene desaturase (*CitZDS*), lycopene ε -cyclase (*CitLCYe*), lycopene β -ring hydroxylase (*CitLCYb*), β -ring hydroxylase (*CitHYb*), zeaxanthin epoxidase (CitZEP), carotenoid isomerase (CitCRTISO), and carotenoid cleavage dioxygenases (CitCCD1 and CitNCED2). Comparing these gene expression patterns in ethylene- and air-treated fruits, it is noteworthy that ethylene treatment exclusively enhanced the transcription of CitCCD1 and CitNCED2, and their fold change in expression was, at maximum, 39 times higher than that in air-treated fruit. They radically responded to exogenous ethylene within 24h and maintained a higher transcriptional level up to 72 h in spite of the lack of response in air-treated fruits. These enzymes mediate the cleave reaction of epoxycarotenoids into xanthoxin, which is the main regulatory step in abscisic acid (ABA) biosynthesis in citrus (Kato et al., 2006; Rodrigo et al., 2006). A similar result was reported, namely, that CsNCED1 was up-regulated in orange flavedo by exposure to ethylene (Rodrigo et al., 2006). The expressions of *CitPSY*, *CitHYb* and *CitZDS* were also up-regulated in ethylene treatment within 24h, while CitZEP expression was not affected. This high response of carotenoid cleavage dioxygenases to ethylene could explain the lower Vio content in ethylene-treated fruit than air-treated fruit for 72h. The higher amount of trans-Vio and cis-Vio in air-treated fruits than ethylene-treated one could be explained by highly ethylene-induced CitCCD1 and CitNCED2, which mediated these epoxycarotenoids into

xanthoxin. In addition to this, most upstream carotenoid biosynthesis genes were up-regulated by ethylene while *CitZEP* gene expression was not so induced. These balance change of these transcription led to the increase of B-Cry.

Thus, ethylene up-regulated the transcription of most carotenoid biosynthesis genes. The responsive pattern and sensitivity to ethylene were different among these genes. Their different responding patterns to ethylene would cause a change in the transcriptional balance of carotenoid biosynthesis genes, directly affecting the carotenoid composition in the fruit. Similar result was obtained in orange that the change of carotenoid composition was consistent with the change of related gene expression caused by ethylene treatment (Rodrigo and Zacarias, 2007).

Ethylene perception signal transduction

Ethylene regulates its own biosynthesis and receptor genes (Wang and Ecker, 2002). Many components of the ethylene signal transduction pathway have been isolated and characterized in recent years in *Arabidopsis* (Bleecker and Schaller, 1996) but little is known about the transcriptome dynamics of ethylene signal transduction in citrus fruit. A citrus 22K oligoarray allows the profiling of the following ethylene biosynthesis and ethylene signal transduction components functionally characterized in plants: ACC synthase (ACS), ACC oxidase (ACO), the ethylene receptor (ETR), basic leucine zippers, the carbon catabolite repressor-associated factor (CTR1), mitogen-activated protein kinases, 14-3-3 proteins, ethylene-responsive factors, and ethylene-responsive element-binding proteins. Most biosynthesis genes and signal transduction components did not show any significant expression change (< 2 fold) after exogenous ethylene treatment (data not shown). Only 2 genes, ACO1 (accession no. DC894173) and ethylene receptor homologue 2 (ETR2) (accession no. CF931498), showed more than

2-fold expression changes by exogenous ethylene treatment (Fig. 2-3C). Katz et al., (2004) reported that the gene expressions of CsACS1, CsACS2, CsACO1, CsETR1, and ethylene response sensor 1 (CsERS1) were independent from ethylene and propylene treatments in mature citrus. Similar results were obtained in this experiment, except for CsACO1. ETR2 has different structures from CsETR1 and CsERS1 and was newly identified as an ethylene-responsive gene in mature citrus fruit. Genetic and biochemical studies have revealed that ethylene receptors work as a negative regulator in the ethylene perception-signaling pathway and that the binding of ethylene with the receptor inactivates them (Chang and Stadler, 2001). Recently, a new interesting finding was reported, namely, that the amino-terminal domain of CTR1 could interact with the His kinase domains of the ethylene receptor (Clark et al., 1998) and that the binding affinity of CTR1 has a higher type I (ETR1 and ERS1) than ETR2 (Cancel and Larsen, 2002), suggesting the possible hypothesis that the structural variation of these receptors might affect ethylene sensitivity. Therefore, our results would provide a new insight for ethylene perception in citrus fruit, namely, that type II ethylene receptors might be related to low sensitivity to ethylene in mature fruit. Interestingly, FaETR2 showed highly induced by exogenous ethylene in strawberry (Trainotti et al., 2005). They considered that CTR1 might be released by type II ethylene receptor by lower amounts of ethylene and small amount of endogenous ethylene might be sufficient to trigger some physiological response. The biochemical function of these ethylene receptors (CsETR1, CsERS1, and ETR2) should be elucidated to understand the different ethylene sensitivities between young and mature fruit.

Ethylene-responsive transcription factors

The citrus 22K oligoarray contained 350 probes with DNA-binding domains

corresponding to the orthologues of Arabidopsis transcription factors. In the experiment, 24 transcriptional factors were identified as ethylene-responsive transcription factors with 3-fold expression changes. The functional classification of 24 responsive genes was conducted in reference to the functional classification of Arabidopsis transcriptional factors. There are 5 MYB family cDNAs, 2 WRKY family cDNAs, and 2 bHLH family cDNAs, among others. The 6 genes showed low homologies against Arabidopsis transcription factors. The expression of 13 genes showed down-regulation in response to exogenous ethylene treatment, and 11 genes showed up-regulation. These transcription factors are particularly interesting because their transcriptions were ethylene-regulated and their transcriptional accumulation might be associated with fruit ripening. Recently, MADS-box factors have been involved in many other aspects of plant development in addition to the regulation of flowering time. Vrebalov et al. (2002) revealed that the MADS-box transcriptional factor controlled the tomato never-ripening phenotype, a ripening inhibitor. In fact, the mRNAs of citrus MADS-box transcription factors accumulated during fruit development and were assumed to play some roles in fruit development and ripening (Endo et al., 2006). Causier et al., (2002) proposed that transcription factors, such as the MADS-box family, might regulate ripening in non-climacteric fruit, which do not require the ethylene pathway to ripen and act as global regulators of fruit development. Therefore, some of the identified transcription factors might play an important role to regulate gene expressions involved in fruit ripening, such as chlorophyll degradation and carotenoid accumulation. Toward a better understanding of these actual gene functions, a gene silencing or ectopic expression experiment will be required.

Fold expression change

					>
0h 24h 48h 72h	ID	Annotation	24h/0h	48h/0h	72h/0h
	MWYAR52A	ACO1	7.2	7.3	-3.3
	VS28993A	Ethylene- induced esterase	48.5	120.5	116.1
	CF653559	PR protein	30.4	41.2	10.8
	ANT0329	MYB	8.7	9.7	1.7
	MAM9A24A	XET	-11.5	-10.2	-2.73
	BFC5B47A	RBC	-64.4	-72.6 -	102.7
	AB027456	CiFT	-50.2	-49.3	-48.3

Fig.2-1. Northern blot analysis of 7 representative ethylene responsive genes identified by microarray analysis. Ten μ g of total RNA from ethylene treated peels was loaded in each lane (0 h, 24 h, 48 h and 72 h after ethylene treatment). To the right of each blot is the EST ID, EST annotation, the ratio of fold expression change between ethylene treatment (E24h, E48h, E72h) and non treatment(C0h).

Fig. 2-2. Hierarchical cluster analysis of 1439 ethylene responsive genes with more than 3-fold expression changes between ethylene and air treatments (ethylene/air signal intensity ratio). The color scale indicates a signal intensity of each gene. Tree at the left side of the matrix represents gene relationship and upper tree indicates experiment relationship.

Fig. 2-3. Expression profiles of chlorophyll (A), carotenoid (B) and ethylene (C) related genes during 72 h after ethylene and air treatments. Fold expression change between ethylene treatment and air treatment (ethylene/air signal intensity ratio) was calculated for each gene. Log scale is applied to the X-axis.

EST	anda	Annotation	E24b/A24b	E486/4486	E726/4486	Un/Down
Amino acid svi	thesis	Amotation	E24II/A24II	L4011/A4011	E/211/A4011	Op/Down
CK028	622 Amino agid corrier protei	n	12.45	8 40	8.01	I ID
V\$282	2 avaisavalarata dahudra	11 ganasa	2.64	2.80	1.02	
CO012	500 Alanina glyovylata aminy	atransferaça	2.04	2.45	4.22	UD
ANT2	0244 Bronchod shein omine og	id aminatronaforaça 2	3.41	2.45	2.19	
ANI2_	DS84 Cabalancing in day and day	nd aminotransferase 2	4.70	2.70	3.18	Dreen
MWYA	K88A Cobatamine-independent	methionine synthase.	0.49	0.31	0.39	Down
MOAD	ES4R Coffee arabica methionin	e synthase	0.43	0.27	0.33	Down
FBI145	6C Glutamate decarboxylase		0.32	0.42	0.41	Down
ANT2_	1143 Glutamine synthetase		3.65	3.14	3.04	UP
CK701	455 Glycine hydroxymethyltri	ansferase	0.07	0.09	0.12	Down
FBI108	6A L-asparagine amidohydro	lase	9.85	13.87	15.25	UP
ANT2_	1463 Nitrate transporter (ntp ge	ene)	0.14	0.06	0.09	Down
MFI7H	D2D Serine hydroxymethyltrar	nsferase	0.20	0.21	0.24	Down
CN188	023 Tryptophan synthase		3.12	3.77	3.39	UP
Cell wall metal	polism					
LLL04	11 Alpha-glucan phosphoryl	ase	0.28	0.27	0.32	Down
BFC4E	30A Beta-galactosidase		14.15	17.27	13.84	UP
CF5092	249 Cellulose synthase		0.27	0.24	0.24	Down
MAPF	.94R Cellulose synthase cataly	tic subunit	0.29	0.24	0.26	Down
ANT00	28 Endo-xyloglucan transfer	ase	0.06	0.06	0.05	Down
VS2899	D3A Ethylene-induced esterase	e	31.46	25.86	26.75	UP
VS2864	Expansin 1		3.07	1.32	2.05	UP
MAPFI	203A Extensin-like protein		0.03	0.04	0.04	Down
BFC4D	19A Germin-like protein		0.65	0.20	0.31	Down
MOA1	5892 Pectate lyase		0.04	0.04	0.04	Down
FBI077	1A Pectin methylesterase		0.29	0.21	0.21	Down
CK934	694 Pectinacetylesterase		0.42	0.38	0.23	Down
MFI7J6	7D Pectinesterase		0.47	0.24	0.20	Down
ANT2	0794 Polygalacturonase		0.29	0.22	0.73	Down
СК939	533 UDP-galactose-4-enimer:	ase	12 35	10.09	7 24	UP
MOAL	5779 Xyloglucan endotransgly	cosvlase	0.17	0.20	0.62	Down
CK036	995 Xyloglucosyl transferase		3.24	2.18	1.60	UP
Eatty acid biog	withesis and oxidation		5.24	2.10	1.00	01
MEI87	DID Omaga 6 fatty agid desat	117020	0.27	0.21	0.21	Down
STC10	A guil Co A gumtheteese	ulase	0.27	1.54	1.52	LID
Linid dogradati	Acyi-CoA synthetase		5.55	1.34	1.32	UP
	10 12 1		0.46	0.25	0.05	D
AN103	10 13-lipoxygenase		0.46	0.35	0.25	Down
FBI112	Fatty acid hydroperoxide	Iyase	0.09	0.10	0.13	Down
CK665	268 GDSL-motif lipase		0.25	0.24	0.25	Down
CF5072	.11 Steryl ester lipase-like pro	otein	0.24	0.12	0.18	Down
Photosynthesis	and chloroplast biogenesis					
BQ624	10kd polypeptide of phot	tosystem II	0.33	0.42	0.54	Down
MOA1	i603 Early light-induced prote	ein-like protein	0.28	0.27	0.41	Down
MOA1	6819 Geranylgeranyl hydrogen	ase (Ggh)	0.31	0.35	0.41	Down
FBI190	9D Glyceraldehyde-3-phosph	nate dehydrogenase	0.45	0.32	0.37	Down
CK934	598 NADP-dependent glycera	aldehydephosphate dehydrogenase subunit B	0.25	0.25	0.25	Down
CO913	035 NADPH oxidase		0.29	0.44	0.39	Down
EGJ_12	273 33kDa precursor protein o	of oxygen-evolving complex	0.32	0.34	0.30	Down
LLL05	43 Chloroplast matK		0.33	0.66	0.63	Down
SHA01	H03_F1 Chloroplast nucleoid DNA	A binding protein	0.88	0.30	0.30	Down
FBI216	0A Chloroplast oxygen-evolv	ving enhancer protein	0.13	0.19	0.12	Down
MOA1	5447 Chloroplast phosphoglyce	erate kinase	0.34	0.75	0.79	Down
CD576	128 Crystallinum phosphoribu	ulokinase	0.06	0.12	0.09	Down
MWYF	162R Gamma subunit of ATP sy	ynthase.	0.24	0.23	0.22	Down
FBI169	3R Geranylgeranyl reductase		0.18	0.28	0.29	Down
MWYF	573F Glycolate oxidase		6.19	5.99	5.82	UP
LLL11	00 Light inducible tissue-spe	ecific ST-LS1	0.32	0.43	0.43	Down

Table 2-1 Re	presentative eth	vlene resor	nsive ge	enes with 3-fo	ld expression	change he	etween Ethy	vlene and air	treatments (I	Ethy	(lene/Air ratio)	
14010 2-1 KC	presentative eth	yiene resor	marve ge	mes with 5-10	iu expression	i change be	rween Luiy	yiche and an	treatments (1	Luiy	ache An Tatio)	14

Conti	nued					
	EST code	Annotation	E24h/A24h	E48h/A48h	E72h/A48h	Up/Down
	ANT2_0766	Phosphate transporter	0.10	0.10	0.11	Down
	EGJ_0860	Phosphate-responsive protein	0.18	0.20	0.22	Down
	BFC2E01R	Phosphoenolpyruvate carboxykinase	0.30	0.34	0.30	Down
	EGJ_0741	Phosphoglycolate phosphatase	0.30	0.34	0.34	Down
	EGJ_1317	Photosystem I psaH protein.	0.15	0.18	0.17	Down
	BFC3A60D	Photosystem I reaction center subunit PSI-N	0.16	0.23	0.26	Down
	CK933507	Photosystem I subunit XI	0.08	0.13	0.11	Down
	LLL0827	Photosystem II reaction center (PsbW)	0.23	0.19	0.21	Down
	BFC3A44A	Phototropic-responsive NPH3 family protein	0.35	0.27	0.21	Down
	ANT2 0849	Phytochelatin synthetase	0.14	0.12	0.11	Down
	 MWYF542A	Plastidic glucose 6-phoaphate	0.12	0.08	0.09	Down
	MWYAR05A	Plastocvanin	0.08	0.08	0.10	Down
	LLL0930	PSI-K subunit of photosystem I f	0.09	0.09	0.09	Down
	LLL1995	Ribulose-1 5-bisphosphate carboxylas	0.08	0.08	0.07	Down
	VSSI011D	Rubisco activase beta form precursor (RCA2)	0.08	0.09	0.10	Down
	MOAFA81R	Type I chlorophyll 3/b binding protein	0.20	0.14	0.12	Down
	СК 934974	Type I chlorophyll a/b binding protein	0.08	0.14	0.12	Down
	BEC4A24A	Thioredoxin E isoform	0.38	0.76	0.76	Down
	EGI 1224	Triosa phosphate translocator	0.58	0.70	0.70	Down
Plant	horomone related	Those phosphate transiocator	0.08	0.07	0.00	Down
riant	EDI2162E	Allana avida avalaça	0.22	0.32	0.37	Down
	PD625110	A PA responsive protein	0.23	0.32	0.37	Down
	ANT2 1260	Aux/LAA protoin	0.21	0.33	0.41	Down
	AN12_1309	Auxin associated motoin	0.17	0.25	0.23	Down
	EDUCODA	Auxin-associated protein	0.13	0.45	0.42	Down
	FBI1082A	Auxin-regulated IAA8	0.20	0.25	0.54	Down
	CF931498	Ethylene receptor (ETR2)	4.62	3.77	3.02	UP
	FBII182R	Ethylene-inducible protein	4.56	3.74	2.57	UP
	CF509669	Ethylene-responsive family protein	0.24	0.32	0.47	Down
	CF837667	GH3-like protein	5.74	5.57	7.63	UP
	CK933029	Gibberellic acid-induced gene Gasa4	0.29	0.37	0.37	Down
_	AN12_0636	Ripening-related protein	6.33	5.02	3.11	UP
Prote	n degradation					
	YJS0628	Delta proteasome subunit	5.96	3.63	3.90	UP
	ANT2_0868	Fasciclin-like AGP 12	0.37	0.32	0.23	Down
	STG1185	Polyubiquitin	3.75	2.16	1.64	UP
	BFC4D36S	Adenosylhomocysteinase (AHC2)	4.07	3.64	3.04	UP
	CK938754	Aspartic proteinase 5	0.22	0.38	0.46	Down
	CK934091	Formate dehydrogenase	6.78	2.88	2.06	UP
	MWYB720A	Phytochelatin synthetase family protein	0.14	0.11	0.12	Down
	MAPAT76A	Cystein proteinase	1.61	2.61	3.47	UP
	MFI6MA5D	Small ubiquitin-like modifier 2	3.30	2.92	2.50	UP
	MFI6MA0R_2	Urate oxidase	3.13	4.95	3.60	UP
Prote	in kinase and other signa	aling components				
	MWYAV31D	Leucine-rich repeat transmembrane protein kinase	3.87	3.23	2.87	UP
	CD576318	APS-kinase	3.00	2.14	1.41	UP
	MAPF178F	CBL-interacting protein kinase 5 (CIPK5)	0.19	0.18	0.39	Down
	FBI0632R	Cyclin-dependent kinases CDKB	0.27	0.22	0.32	Down
	ANT2_0895	Cytokinin signal transduction regulator (RR2)	14.97	6.86	8.95	UP
	FBI1751A	Leucine-rich repeat transmembrane protein kinase	0.32	0.33	0.31	Down
	MOA16936	Protein kinase family protein	3.31	2.33	2.04	UP
	MWYBU53F	SOS2-like protein kinase	4.35	3.91	3.38	UP
Resis	tance, defense, stress and	d PR				
	MAP9C16R	Dehydrin	0.19	0.25	0.27	Down
	ANT2_0655	Glutathione S-transferase	0.37	0.29	0.26	Down
	CK936454	Peroxidase (POX2)	22.47	9.23	7.17	UP
	CN187002	Peroxidase (POX3)	10.62	6.55	4.64	UP
	ANT2_1324	Polygalacturonase-inhibitor protein	0.35	0.42	0.29	Down
	SHA02H08_F1	Type I proteinase inhibitor-like protein	18.08	47.18	15.07	UP

Conti	nued					
	EST code	Annotation	E24h/A24h	E48h/A48h	E72h/A48h	Up/Down
	STG2_0541	Gamma-thionin protein	0.25	0.34	0.38	Down
	BFC2B72A	NADPH-cytochrome P450 oxydoreductase	4.79	5.31	3.60	UP
	STG1140	Chitinase III	9.29	13.87	9.06	UP
	VSSK008D	Cold stress protein	0.04	0.04	0.03	Down
	CD575783	Cytochrome P450	0.21	0.19	0.19	Down
	ANT0147	Dehydration-responsive protein-related	0.13	0.15	0.13	Down
	ANT0966	Elicitor-inducible cvtochrome P450 (CYP92A5)	3.27	2.34	2.20	UP
	CD573771	Fiddlehead-like protein (FDH)	0.26	0.34	0.72	Down
	CO912812	Gamma-glutamylcysteine synthetase	6 38	3.91	3 47	UP
	BO624413	Heat shock protein 83	2 10	3 33	2 19	UP
	BFC2E35A	Hydroxycinnamoyl transferase	6 38	8 26	10.33	UP
	CN186287	Metallothionein-like protein (MT45)	17.71	13.87	17.19	UP
	MAMBH57A	Miraculin-like protein 3	4 39	7 89	5 49	UP
	MOA16155	Nodulin family protein	5.23	4 80	3.80	UP
	PCC0717	Osmotin	4 34	5 55	4 76	UP
	MAMB485R	Polygalacturonase-inhibiting protein	0.35	0.48	0.31	Down
	CE653559	PR 1h protein p	32.10	37.54	31.40	UP
	1111689	PR4-type protein	3 /1	2.94	1 23	UP
	CO913068	Putative aconitate hydratase	2.90	2.04	2.67	UP
	MAM8881A	Staaroyl ACP desaturase	2.90	2.01	2.07	UP
	CN182240	steeroyl agul aguing protein deseturges	2.80	2.70	2.00	UP
	CIN182240	stearoyi-acyi carrier protein desaturase	2.89	2.77	2.20	UP
c	1 1 1 1	wound-induced protein.	2.27	8.33	2.32	UP
Secor	dary metabolism		4.52	6.10	6.05	LID
	MAMBH04A	I ropinone reductases	4.53	5.12	6.05	UP
	MWYF940K	Ascorbate oxidase-related protein.	0.17	0.17	0.38	Down
	AN10201	Geranylgeranyl pyrophosphate synthase	4.67	4.02	3.72	UP
	LLL0814	Limonoid UDP-glucosyltransferase	2.19	3.47	2.37	UP
	MOA15608	3-hydroxy-methylglutaryl coenzyme A reductase	0.28	0.25	0.26	Down
	BFC3A26A	9-cis-epoxycarotenoid dioxygenase 1 (NCED1)	33.24	23.00	26.40	UP
	CF836703	9-cis-epoxycarotenoid dioxygenase 2 (NCED2)	15.14	10.55	6.86	UP
	STG2_1091	Caffeoyl-CoA 3-O-methyltransferase	0.13	0.18	0.22	Down
	EGJ_1463	Chalcone isomerase	0.16	0.11	0.19	Down
	MOA16374	Chalcone reductase	3.62	1.04	1.03	UP
	FBI0692A	Chalcone synthase	0.10	0.09	0.09	Down
	CN189470	Cinnamoyl-CoA reductase	2.61	3.33	3.45	UP
	VSSH017D	Flavanone 3-hydroxylase	0.36	0.32	0.27	Down
	BFC4G87C	Geranylgeranyl pyrophosphate synthase	4.57	3.39	3.43	UP
	ANT2_0601	Isoflavone reductase homolog 2 (IFR2)	1.58	1.92	3.81	UP
	LLL0283	Mg protoporphyrin IX chelatase (Chl H) mRNA	0.04	0.07	0.07	Down
	MOA14689	Oxidoreductase (20G-FeII)	3.88	3.99	4.11	UP
	LLL1313	Phenylalanine ammonia-lyase	3.23	1.78	1.81	UP
	MAMB463R	Terpene synthase	2.13	6.39	7.28	UP
	CK933805	Transcription factor LIM, putative	0.38	0.37	0.32	Down
	STG0952	UDP-glucose-flavonoid-3-O-glucosyl transferase	0.23	0.24	0.21	Down
Sugar	metabolism					
	EGJ_0068	Carbohydrate oxidase gene	0.21	0.15	0.31	Down
	GSA1095	Chloroplast granule-bound starch synthase (GBSSI) gene,	0.35	0.58	0.58	Down
	ANT2_1130	(1-4)-beta-mannan endohydrolase, putative	0.36	0.28	0.29	Down
	CO912461	1-deoxy-D-xylulose-5-phosphate reductoisomerase	3.24	2.84	2.54	UP
	MWYGA88A	Acid invertase	3.67	1.86	1.96	UP
	CK939901	ADP-glucose pyrophosphorylase small subunit	0.21	0.26	0.85	Down
	CN188922	Aldose 1-epimerase family protein	0.23	0.31	0.26	Down
	CF508941	Carbonate dehydratase	0.30	0.31	0.42	Down
	FBI1584R	Glucosyltransferase-5	0.12	0.17	0.14	Down
	BFC4G65D	Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) subunit A	0.04	0.05	0.04	Down
	FBI1629A	Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) subunit B	0.04	0.04	0.03	Down
	BE208888	Glycosyl hydrolase family 9 protein	0.58	0.28	0.51	Down
	CK932841	Glycosyl transferase family 8 protein	0.15	0.14	0.11	Down
	ANT0194	Gulucose-6-phosphogluconate debydrogenase (G6PDH)	3.39	2.84	2.29	UP
	MOA15223	Hexokinase 2 (Hxk2)	0.30	0.25	0.21	Down
		· · · · ·				

FST code	Annotation	E246/4246	E486/4486	E72b/A48b	Un/Down
ANIT2 0200	Annotation	26.59	17.(2	12.70	Up/Down
AN12_0396	Hexose carrier (Hexy)	20.38	17.02	13.70	UP
CN 192432	Putative sugar transporter (st3 gene)	3.40	3.60	2.90	UP
BFC3C0/A	Starch synthase	0.11	0.11	0.15	Down
MOA14956	UDP-glucose dehydrogenase	0.28	0.16	0.16	Down
STG2_1368	UDP-xylose synthase	0.27	0.25	0.23	Down
Transcription Factor					
CK934325	Aux22d	0.10	0.09	0.08	down
CF509669	Ethylene-responsive protein	0.25	0.32	0.48	down
STG0694	Homeobox leucine zipper protein	7.85	6.90	6.84	up
ANT0329	Myb family transcription factor	7.29	6.51	5.37	up
BQ623221	Myb family transcription factor	3.12	3.45	3.04	up
CF509156	Myb family transcription factor	0.16	0.16	0.21	down
CF838547	Myb family transcription factor	11.25	9.10	7.80	up
EGJ_0492	Myb family transcription factor	6.54	5.80	3.71	up
MWYB731F	NAC domain protein	3.66	3.84	3.17	up
BFC5E05D	Putative transcription factor	5.68	3.75	3.69	up
CB293768	Putative transcription factor	0.19	0.21	0.19	down
BFC4G38R	Putative transcription factor	0.30	0.27	0.23	down
MOA9P37A	Putative transcription factor	0.29	0.23	0.21	down
CK938765	Putative transcription factor	0.20	0.25	0.25	down
EGJ_0316	Putative transcription factor	0.30	0.39	0.46	down
CK933805	Putative transcription factor	0.39	0.37	0.33	down
ANT2_1578	Putative transcription factor	0.35	0.20	0.21	down
BFC2A96S	Putative transcription factor	0.30	0.35	0.39	down
CK938806	Putative transcription factor	10.12	8.64	6.18	up
CN189405	Putative transcription factor	5.62	5.27	4.96	up
MWYBO18A	Putative transcription factor	0.24	0.16	0.21	down
STG1783	Putative transcription factor	616	7.10	4.58	up
CN190833	WRKY family transcription factor	6 26	5.40	4.10	up
MAPEM69E	WRKY family transcription factor	0.27	0.37	0.34	down

|--|

Gene ontology annotations for *Arabidopsis* (GO SLIM) functional assignments for ethylene responsive 1493 genes with more than 3-fold expression changes.

Go Term	Total (%)	No. of down-regulated genes	No. of up-regulated genes
Molecular function			
DNA or RNA binding	27 (1.8%)	21	6
Hydrolase activity	97 (6.5%)	60	37
Kinase activity	25 (1.7%)	16	9
Nucleic acid binding	2 (0.1%)	1	1
Nucleotide binding	26 (1.7%)	9	17
Protein binding	40 (2.7%)	23	17
Receptor binding or activity	5 (0.3%)	3	2
Structural molecule activity	5 (0.3%)	4	1
Transcription factor activity	53 (3.5%)	37	16
Transferase activity	99 (6.6%)	60	39
Transporter activity	41 (2.7%)	24	17
Other binding	116 (7.8%)	80	36
Other enzyme activity	176 (11.8%)	91	85
Other molecular functions	49 (3.3%)	32	17
Molecular function unknown	157 (10.5%)	112	45
No similarity to Arabidopsis cDNA	554 (37.1%)		
Biological process			
Cell organization and biogenesis	25 (1.7%)	19	6
Developmental processes	37 (2.5%)	19	18
DNA or RNA metabolism	2 (0.1%)	2	0
Electron transport or energy pathways	78 (5.2%)	47	31
Protein metabolism	56 (3.8%)	43	13
Response to abiotic or biotic stimulus	89 (6.0%)	56	33
Response to stress	88 (5.9%)	50	38
Signal transduction	21 (1.4%)	14	7
Transcription	37 (2.5%)	24	13
Transport	130 (8.7%)	81	49
Other biological processes	160 (10.7%)	95	65
Other cellular processes	274 (18.4%)	160	114
Other metabolic processes	334 (22.4%)	191	143
Other physiological processes	297 (19.9%)	178	119
Biological process unknown	185 (12.4%)	116	69
No similality to Arabidopsis cDNA	554 (37.1%)		
Cellar component			
Cell wall	18 (1.2%)	12	6
Chloroplast	119 (8.0%)	83	36
Cytosol	19 (1.3%)	9	10
ER	9 (0.6%)	7	2
Extracellular	11 (0.7%)	7	4
Golgi apparatus	1 (0.1%)	1	0
Mitochondria	58 (3.9%)	31	27
Nucleus	56 (3.8%)	33	23
Plasma membrane	9 (0.6%)	7	2
Plastid	55 (3.7%)	49	6
Ribosome	3 (0.2%)	2	1
Other cellular components	112 (7.5%)	91	21
Other cytoplasmic components	101 (6.8%)	76	25
Other intracellular components	90 (6.0%)	76	14
Other membranes	269 (18.0%)	190	79
Cellular component unknown	231 (15.5%)	128	103
No similarity to Arabidopsis cDNA	554 (37.1%)		

Pigment	Control	Air	Ethylene ^a
	0h	72h	72h
Total carotenoids (mg ⁻¹ FW)	58.0 ± 1.5	220.4 ± 9.8	234.8 ± 13.3
All trans-Violaxanthin	11.98 ± 3.6	52.3 ± 4.5	35.3 ± 5.8
9-cis-Violaxanthin	11.0 ± 2.3	49.7 ± 6.8	33.7 ± 8.5
Lutein	16.8 ± 2.4	78.62 ± 8.2	92.4 ± 5.6
β -cryptoxanthin	8.31 ± 2.4	27.1 ± 3.9	52.52 ± 3.6
α -carotene	1.4 ± 0.2	0.7 ± 0.1	1.9 ± 0.3
Phytoene	8.93 ± 1.4	11.6 ± 2.1	18.9 ± 2.3
Total chlorophylls (mg ⁻¹ FW)	12.5 ± 1.6	11.2 ± 2.1	4.2 ± 0.8
Chlorophyll a	9.5 ± 0.7	8.4 ± 0.6	1.7 ± 0.3
Chlorophyll b	3.0 ± 0.6	2.8 ± 0.4	2.6 ± 0.4
Chlorophyll <i>a/b</i> ratio	3.2	3.0	0.6

Table 2-3. Chlorophyll and carotenoid contents in the examined fruit peels.

^aTreatment: see text.

Section 2: Profiling gibberellin (GA₃)-responsive genes in mature fruit using a citrus 22K oligoarray

In Section 1,1493 ethylene-responsive genes were identified and found that ethylene repressed the transcription of most genes involved in photosynthesis and chloroplast biogenesis, while it induced the transcription of several genes related to resistance, defense, stress, amino acid synthesis, protein degradation, and secondary metabolism. Therefore, transcriptional profiling using microarray technology is expected to provide new insight into the GA regulatory mechanism of citrus fruit. In this experiment, GA₃-responsive genes in mature citrus fruit were investigated using a citrus 22K oligoarray. 231 genes were identified as GA₃-responsive genes; genes that showed an expression change of 3-fold or greater in the 72 h after GA₃ treatment, compared to expression after air treatment. It was found that GA₃ up-regulated the expression of genes related to photosynthesis and of pathogen-related genes and repressed the expression of some of the ethylene-inducable genes that are involved in fruit ripening.

Materials and methods

Plant material and gibberellin treatment

Satsuma mandarin (*C. unshiu* Marc.), cultivated at the Citrus Research Division Okitsu of NIFTS, was used. Samples of fruit at 150 DAF were collected. For the gibberellin treatment of fruit, 60 μ M GA₃ was sprayed on fruits. Both GA₃ treatment and air treatment were conducted at 25°C. The flavedo tissue was excised and immediately frozen in liquid nitrogen and stored at -80°C until RNA extraction.

Chlorophyll and carotenoid quantification in flavedo

Chlorophyll (a + b) content was determined by measuring the absorbance at 642 nm and 662 nm according to the method of Shimada and Shimokawa et al. (1978). Quantification of 6 representative carotenoids (*trans*-Vio, *cis*-Vio, Lut, B-Cry, A-Car, and Phy) was carried out by the method of Kato et al. (2004). An aliquot (20 µL) was separated by a reverse-phase HPLC system (Jasco) fitted with a YMC Carotenoid S-5 column of 250- x 4.6-mm-i.d. (Waters) at a flow rate of 1 mL min⁻¹. The eluent was monitored using a photodiode array detector (MD-910, Jasco). Chlorophyll and Carotenoid quantification was performed in three times.

RNA isolation and microarray analysis

Total RNA was extracted by the methods of Ikoma et al. (1996) from flavedo tissues of untreated fruit at 0 h and from either GA₃-treated or air-treated fruit at 24 h, 48 h, and 72 h after treatment. At least three independent RNA extractions were used in probe labeling for experimental reproducibility. The total RNA (400 ng) of all samples was labeled with Cy5, while non-treatment at 0 h was labeled with Cy3 according to the instructions for the Low RNA input linear amplification and labeling kit (Agilent technologies). Labeled cRNA was purified using the Qiagen RNeasy mini kit (Qiagen). Hybridization and washing were performed according to Section 1. The intensities of the Cy5 and Cy3 fluorescent signals from each spot were automatically normalized, and the ratio value (Cy5/Cy3) was calculated using Feature Extraction version 7.1 software (Linear & LOWESS analysis, Agilent technologies). Data analysis was carried out using GENESPRING 7.3.1 (Silicon Genetics). The fold change of each gene expression was calculated based on the mRNA ratio between GA₃ treatment samples and air treatment samples at equivalent time points. Genes with a 3-fold or greater expression

change between GA₃ treatment and air treatment at each experimental time (24 h, 48 h, and 72 h) were accepted as GA₃-responsive genes.

Northern blot analysis

Ten microgram from each RNA sample was subjected to electrophoresis on a 1.2% agarose gel containing 8% (v/v) formaldehyde and transferred to a nylon membrane (Hybond-NX, Amersham Pharmacia Biotech). The cDNA probes of 6 representative GA₃-responsive genes identified by microarray analysis were prepared with the use of a PCR DIG labeling kit (Roche Molecular Biochemicals). Hybridization and detection were conducted according to the manufacturer's directions (Roche Molecular Biochemicals).

Results and discussion

Identification and functional classification of 231 GA₃-responsive genes

A citrus 22K oligoarray was employed to identify GA₃-responsive genes in mature fruit. Out of 21,495 independent EST probes, 231 genes showed a 3-fold or greater change in the ratio of mRNA levels 72 h after GA₃ treatment compared to mRNA levels after 72 h of air treatment. To monitor the results of microarray analysis, the signal intensity of several representative genes was compared between Northern blot and microarray analysis. The fidelity of the experiments was confirmed (Fig. 2-4). The 231 GA₃-responsive genes were compared by TBLAST X similarity search (e-value <1e-5) against all cDNAs of *Arabidopsis* (downloaded from TAIR. Since each *Arabidopsis* cDNA entry in TAIR provided functional information (GOSLIM in TAIR), the Satsuma mandarin genes were assigned functions according to GOSLIM on the basis of their similarity to cDNAs of *Arabidopsis* (Table 2-4). GA₃ treatment affected genes that had
been assigned to the following functional categories: 'other enzyme activity' (15.2%), 'hydorase activity' (12.1 %) (in the molecular function categories) and 'other metabolic processes' (30.7 %), 'other physiological processes' (28.6 %), 'other cellular processes' (28.6 %) (in the biological processes categories). In the cellular components catagories, 'other membranes' (25.1 %) and 'chloroplast' (9.5 %) were affected by GA₃ treatment. Ethylene treatment had the effect of down-regulation on similar categories as shown in Section 1. GA₃ treatment, however, in this fruit stage, had the predominant effect of up-regulating genes within these categories. 79 genes showed this contrasting response between ethylene and GA₃ treatments. Only 27 genes were functionally annotated and, of these, most genes were related to 'secondary metabolism', 'photosynthesis and chloroplast biogenesis', and 'resistance, defense, stress and PR' (Table 2-4). GA₃ treatment increased the expression of genes related to 'photosynthesis and chloroplast biogenesis', including 6.1 kDa polypeptide of photosystem II, CAB type I, chloroplast sedoheptulose-1,7-bisphosphatase (Table 2-5), all of which are down-regulated by ethylene treatment. The effect of GA on photosynthesis is controversial because contradictory results have been obtained from different plants, such that GA increased or decreased photosynthetic capacity and photosynthetic rate (Dijkstra et al, 1990; Yuan and Xu, 2001; Ashraf et al., 2002). These results indicate that GA₃ has a positive effect on photosynthesis in mature citrus fruit peel.

*Clustering analysis of 213 GA*₃*-responsive genes*

To visualize GA₃-responsive expression patterns 72 h after GA₃ treatment, the 231 genes were subjected to cluster analysis and divided into 2 major clusters (Fig. 2-5). Drastic transcriptional changes of these genes were seen following GA₃ treatment compared to that seen following air treatment. Cluster 1 consisted of 95 genes that were

down-regulated after GA₃ treatment, listed in Table 2-4. GA₃ treatment repressed some of the genes that had been ethylene-induced in Section 1. For example, NCED1 is one of the cleave reaction enzymes converting epoxycarotenoids into xanthoxin, which is the main regulatory step in ABA biosynthesis in citrus (Rodrigo et al., 2006; Kato et al., 2006). *NCED1* was one of the highly inducible genes in mature fruit by ethylene treatment. GA₃ treatment down regulated the mRNA levels of this gene. This would result in the repression of the metabolic conversion of carotenoids to ABA. In *Arabidopsis* seed germination, GA reduced ABA levels by affecting ABA biosynthesis (Ogawa et al., 2003).

Cysteine proteases have been implicated in the ubiquitin-mediated protein degradation pathway and might be associated with the initiation of the fruit senescent process (Cercós et al., 2006). P450, (CF507320), which was down-regulated by GA₃, had high homology to brassinosteroids-6-oxidase of grape, which was a key gene in brassinosteroid (BR) biosynthesis and mediates the conversion of 6-deoxocastasterone to castasterone in grape (Symons et al., 2006). They considered that BR level was associated with ripening in grapes, which is a non-climacteric fruit, as is citrus. Citrus invertase 1 (*CitINV1*) is associated with the brake-down of sucrose to hexoses, regulates sucrose concentration during fruit ripening and regulates sucrose synthase and acid invertases (Holland et al., 1999; Kubo et al., 2001). In tomato fruit (Jeffery et al, 1984) and in citrus fruit, ethylene treatment enhanced enzyme activity and gene expression of invertase. GA₃ reduced the transcription of these ethylene-inducable genes, which are associated with ripening in mature citrus fruit.

Cluster 2 contained 136 genes up-regulated by GA₃ treatment, listed in Table 2-5. Several genes involved in resistance, defense and stress, or cell wall modification were either up- or down-regulated by GA₃ treatment. Some cell wall modification genes are also induced by pathogen attack (Maleck et al., 2000; Mozoruk et al., 2006). Some genes showed similar patterns of response to ethylene treatment, however, the opposite response was also observed. Chitinase is a well-known antifungal protein and belongs to the pathogenesis-related (PR) group of proteins, and its gene expression was markedly induced by elicitor treatment in flavedo (Porat et al., 2001). GA₃ treatment induced chitinase expression whereas ethylene did not induce chitinase expression. A similar result was obtained in tomato; chitinase expression was induced by MeJA, GA and wounding signal, but not by ethylene and ABA (Wu and Bradford, 2003). GA up-regulated several citrus flavor related genes such as (E)- β -ocimene synthase, gamma-terpinene synthase and HMG-CoA synthase. Monoterpenes play ecological roles in pollinator attraction, allelopathy, and plant defense. Several monoterpenes and sesquiterpenes were reported to take part in direct plant defense (Langenheim, 1994). In addition, citrus miraculin-like protein was reported to have protease inhibitor activities and defensive function against pathogen (Tsukada et al., 2006). Various WRKY-DNA binding proteins, belonging to a large group of zinc-finger proteins, are implicated primarily in defense responses but are also implicated in plant development (Eulgem et al., 2000). Thus, it was considered that GA₃ treatment, directly or indirectly, might induce the transcription of these genes related to resistance, defense and stress. Generally, plant defense responses are regulated through a complex signaling network with cross talk between SA, JA, and ethylene-signaling pathways. Some pathways might be activated positively or negatively through this cross talk. Therefore, these results indicate that the GA response pathway takes part in cross talk with the pathogen-related pathways in mature citrus fruit.

Profiling GA₃ regulation of chlorophyll, carotenoids and ethylene biosynthesis

It is well known that ethylene promotes chlorophyll degradation and carotenoid biosynthesis and that GA represses these color changes (Goldschmidt et al., 1993). In this experiment, chlorophyll contents and 6 representative carotenoids were investigated in flavedo tissues at 0 h and 72 h after treatments (air or GA₃) (Table 2-6). No significant difference was seen in either chlorophyll content or in Chlorophyll a/b ratios between fruits at equivalent time points. Total carotenoid content increased from 105.9 μ g·g-1 to 217.0 μ g·g-1 (air treatment) and 209.1 μ g·g-1 (GA₃ treatment), 72 h after treatment, possibly due to moderate temperature (Wheaton and Stewart, 1973). No significant difference was not observed between carotenoid composition of GA₃ and air treated fruits. Similar results were obtained in orange, where GA₃ did not have a significant effect on total carotenoid content and prevented most of the ethylene-induced carotenoid changes (Rodrigo and Zacarias, 2007).

Citrus 22K oligoarray enabled the profiling of 4 chlorophyll metabolic genes and 10 carotenoid metabolic genes. Concerning chlorophyll metabolism, GA₃ treatment only affected magnesium chelatase and it up-regulated its transcription (Fig. 2-6A). The expression levels of chlorophyll synthase, NADPH-protochlorophyllide oxidoreductase, and chlorophyllase did not significantly change between GA₃ and air treated fruits. Magnesium chelatase is the first unique enzyme of the chlorophyll biosynthetic pathway and mediates the insertion of Mg²⁺ into protoporphyrin IX. Ethylene treatment repressed gene expression of magnesium chelatase and enhanced chlorophyllase gene expression. Of the genes examined that relate to chlorophyll biosynthesis, GA₃ affected only magnesium chelatase but induced an opposite effect to ethylene. This result agreed with the hypothesis of Jacob-Wilk et al. (1999), that chlorophyll levels are determined by the balance between synthesis and breakdown. In carotenoid metabolism, GA₃ treatment down-regulates almost all biosynthesis genes (Fig. 2-6B). Particularly, it

highly repressed the gene expression of CitCCD1 and CitNCED2, CitPSY and CitHYb. In orange, it was reported that GA reduced the ethylene-induced expression of early carotenoid biosynthesis genes and the accumulation of Phy, phytofluence and β -citraurin (Rodrigo and Zacarias, 2007). In Satsuma mandarin, the transcriptional accumulation of carotenoid cleavage dioxygenases was higher compared to orange (Kato et al., 2006) and their mRNA accumulation results in a natural carotenoid component (high content of B-Cry) during fruit ripening. Ethylene treatment enhanced mRNA accumulation of these carotenoid cleavage dioxygenases as well as accumulation of CitPSY and CitHYb. Thus, GA3 treatment appeared to have a contrasting effect to ethylene, as it repressed the transcription of carotanoid biosynthesis genes. Our results are in accord with the hypothesis that GA levels are important in the formation of peel coloration (Iglesias et al., 2001). GA₃ treatment did not cause any significant expression changes in ethylene biosynthesis genes and signal transduction components, except for ACO1. There is possibly cross talk between plant hormone and pathogen-response pathways, with regard to the transcriptional regulation of ACO1, because ACO1 expression also responded to ethylene treatment.

GA ₃ treatment			Fold ex	pression	change
0h 24h 48h 72h	ID	Annotation	24h/0h	48h/0h	72h/0h
	MOAE983A	Chitinase	3.8	13.1	21.6
	CF653559	PR1 protein	3.1	5.3	10.8
	MAM9A24A	XET	0.2	0.1	0.1
	LLL1596	WRKY	1.4	1.7	2.5
	MWYAR52A	ACO1	4.1	2.1	3.6
	FBI0478A	β-mannnosidase	0.5	0.2	0.2

Fig. 2-4. Northern blot analysis of 6 representative GA_3 -responsive genes identified by microarray analysis. Ten µg of total RNA from GA_3 treated flavedo was loaded in each lane (24 h, 48 h and 72 h after GA_3 treatment). To the right of each blot is the EST ID, EST annotation, the ratio of fold expression change between GA_3 treatment (24 h, 48 h and 72 h) and air treatments (0 h).

Fig. 2-5. Hierarchical clustering of 213, GA_3 -responsive, genes that showed a 3-fold or greater expression change between GA_3 and air treatments (GA_3 / air signal intensity ratio). Two major clusters showed distinctive expression profiles either up- or down-regulated by GA_3 treatment. The color scale indicates a signal intensity of each gene. Tree at the left side of the matrix represents gene relationship.

Fig. 2-6. Expression profiles of chlorophyll (A) and carotenoid (B) related genes 72 h after GA₃ or air treatments. Fold expression change between GA₃ and air treatments (GA₃/ air intensity ratio) was calculated for each gene. Log scale is applied to the X-axis.

Table 2-4.
Gene Ontology annotations for Arabidopsis (GO Slim) functional assignments for GA ₃ -responsive 231 genes with 3-fold
expression changes.

Go Slim Term	Total (%)	No. of down-regulated genes	No. of up-regulated genes
Molecular function			
DNA or RNA binding	6 (2.6%)	3	3
Hydrolase activity	28 (12.1%)	15	13
Kinase activity	2 (0.9%)	1	1
Nucleic acid binding	0 (0.0%)	0	0
Nucleotide binding	5 (2.2%)	4	1
Protein binding	12 (5.2%)	8	4
Receptor binding or activity	0 (0.0%)	0	0
Structural molecule activity	2 (0.9%)	0	2
Transcription factor activity	7 (3.0%)	3	4
Transferase activity	22 (9.5%)	5	17
Transporter activity	7 (3.0%)	5	2
Other binding	24 (10.4%)	8	16
Other enzyme activity	35 (15.2%)	12	23
Other molecular functions	14 (6.1%)	2	12
Molecular function unknown	33 (14.3%)	13	20
No similarity to Arabidopsis cDNA	54 (23.4%)	26	28
Biological process			
Cell organization and biogenesis	7 (3.0%)	2	5
Developmental processes	4 (1.7%)	3	1
DNA or RNA metabolism	0 (0.0%)	0	0
Electron transport or energy pathways	1 (0.4%)	1	
Protein metabolism	9 (3.9%)	5	4
Response to abiotic or biotic stimulus	18 (7.8%)	8	10
Response to stress	23 (10.0%)	6	17
Signal transduction	10 (4.3%)	6	4
Transcription	8 (3.5%)	3	5
Transport	8 (3.5%)	4	4
Other biological processes	37 (16.0%)	16	21
Other cellular processes	66 (28.6%)	23	43
Other metabolic processes	71 (30.7%)	27	44
Other physiological processes	66 (28.6%)	24	42
Biological process unknown	43 (18.6%)	17	26
No similality to Arabidopsis cDNA	54 (23.4%)	26	28
Cellar component			
Cell wall	10 (4.3%)	3	7
Chloroplast	22 (9.5%)	10	12
Cytosol	8 (3.5%)	0	8
ER	0 (0.0%)	0	0
Extracellular	6 (2.6%)	2	4
Golgi apparatus	0 (0.0%)	0	0
Mitochondria	15 (6.5%)	3	12
Nucleus	14 (6.1%)	3	11
Plasma membrane	2 (0.9%)	0	2
Plastid	8 (3.5%)	4	4
Ribosome	0 (0.0%)	0	0
Other cellular components	15 (6.5%)	7	8
Other cytoplasmic components	20 (8.7%)	7	13
Other intracellular components	12 (5.2%)	7	5
Other membranes	58 (25.1%)	25	33
Cellular component unknown	39 (16.9%)	13	26
No similarity to Arabidonsis cDNA	54 (23 4%)	26	28

Tuble 2 5: Représentative Gri, resophisive genes	whit is tota of greater expression enange between i	Surviene and an t	readments (0/13)	rii iulio).	
EST code	Annotation	GA ₃ 24h/C24h	GA ₃ 48h/C48h	GA ₃ 72h/C72h	Up/Down
Amino acid synthesis					
MOAHE09R	Phenylalanine-ammonia lyase	1.5	2.5	3.1	Up
CD575911	Aspartyl aminopeptidase	0.6	0.3	0.3	Down
CF417508	Phenylalanine ammonialyase 1	0.6	0.4	0.3	Down
CN190923	Tyrosine aminotransferase	0.6	0.4	0.3	Down
FBI1086A	L-asparagine amidohydrolase	3.7	2.6	2.6	Up
MOACM40A	S-adenosylmethionine synthetase	1.0	3.0	4.1	Up
MOA15207	Tryptophan synthase, alpha subunit	1.0	1.3	3.3	Up
Cell wall metabolism and fatty acid biosynthesis					
CK665263	Cellulase	0.4	0.5	0.3	Down
MWYFM39D	Pectate lyase	0.4	0.4	0.3	Down
MAM9A24A	Xyloglucan endotransglycosylase XET2	0.3	0.2	0.1	Down
BFC3A85A	Lipoxygenase	0.9	3.4	4.3	Up
BQ623531	Germin-like protein 3	0.8	1.5	3.8	Up
CF509179	Germin-like protein 6	0.8	1.7	4.4	Up
FBI1121R	Fatty acid hydroperoxide lyase (HPL)	1.2	3.2	3.7	Up
Photosynthesis and chloroplast biogenesis					
SLG1643	6.1 kDa polypeptide of photosystem II	1.2	1.0	3.2	Up
MOAFA81R	Chlorophyll a/b binding protein type I	1.6	3.1	2.8	Up
CO913035	NADPH oxidase	1.2	1.5	3.0	Up
EGJ 0860	Phosphate-responsive protein	3.0	2.4	1.3	Up
FBI1693R	Geranylgeranyl reductase	13	2.2	3.0	Un
FBI1909D	Glyceraldehyde-3-nhosnhate dehydrogenase	1.0	1.8	3.1	Un
FBI2160A	Chloroplast oxygen_evolving enhancer protein	3.1	2.3	3.1	Un
1110020	PSL K subunit of photogration I	1.2	2.5	2.0	Un
MWWA DOS A	PSI-K subuill of photosystem I	1.2	2.4	3.0	Up
MW FAR03A	Plastocyanin Di ci li di ci di di ci	1.3	1.9	3.1	Up
MWYF542A	Plastidic glucose 6-phoaphate	1.0	2.2	3.1	Up
Plant normone related		12.0	11.1	12.1	I.I.
MW YAR52A	ACC oxidase	12.0	11.1	13.1	Up
V 828993A	Ethylene-induced esterase	4.3	4.0	3.1	Up
LLL0654	Salicylic acid carboxyl methyltransferase	5.8	6.1	5.0	Up
STG2_0165	Ethylene response factor 5 (ERF5)	0.6	0.4	0.3	Down
Protein kinease and degradation					
MAPAT76A	Cystein proteinase	0.6	0.3	0.3	Down
STG1600	Miraculin-like protein 3	1.1	2.3	8.7	Up
SHA02H08_F1	Type I proteinase inhibitor-like protein	8.6	3.3	15.0	Up
CK935793	Ser/Thr protein kinase	10.2	1.1	1.1	Up
Resistance, defense, stress and PR					
CF507320	Cytochrome P450 enzyme	0.7	0.5	0.3	Down
RGP0454	17.6 kD class I small heat shock protein	0.5	0.9	0.3	Down
MAM8881A	Stearoyl-ACP desaturase	0.5	0.4	0.2	Down
FBI2074F	Acidic chitinase 1	1.0	1.7	3.0	Up
MOAE983A	Acidic chitinase 2	1.2	4.0	16.4	Up
MAPAT10R	Cold stress protein	1.1	1.8	4.5	Up
CD575783	Cytochrome P450	3.2	3.2	3.3	Up
STG2_0974	Elicitor-inducible cytochrome P450	3.1	2.0	1.8	Up
FBI1167F	Peroxidase 1	4.4	5.0	5.0	Up
LLL1596	Peroxidase 2	4.4	5.4	4.7	Up
CF653559	PR1b protein.	2.9	5.9	10.5	Up
Secondary metabolism					
BFC3A26A	9-cis-epoxycarotenoid dioxygenase 1 (NCED1)	0.5	0.2	0.1	Down
MAMB463R	Monoerpene synthase	0.5	0.5	0.2	Down
BFC4F50A	(E)-b-ocimene synthase	1.9	6.4	4.4	Up
MWYB722A	Ascorbate oxidase	2.2	7.8	8.1	Un
CK934829	Caffeate O-methyltransferase	1.0	2.8	4 9	Un
EGI 1059	g_terninene synthase	0.8	2.0	3.2	Un
EBI0917R	HMG-CoA synthase 2	1.3	3.4	3.2	Un
Sugar metabolism	Third Corrsynmuse 2	1.5	5.4	5.2	Op
Sugar metabolism	A aid invertees (CitINIV1)	0.6	0.2	0.4	Doum
EGI 0068	Carbohydrate ovidese	17	2.2	4.0	Down Us
EGJ_0008	Carbonyunate oxidase	1.7	3.4	4.0	Up
S1G2_0001	Soronoi transporter	5.5	2.1	2.0	Up
Transcription factor		0.7	0.2	0.4	D
CK935601	Flowering time (F1)	0.7	0.3	0.4	Down
MOA16528	DINA-binding protein	1.1	1.7	3.6	Up
LLL0373	WRKY family transcription factor	1.6	2.6	3.3	Up

Table 2-5 Representative GA	-resonnsive genes with 3	8-fold or greater expressio	n change between I	Ethylene and air t	reatments (GA ₂ /Air ratio)

Pigment	Control	Air	Gibberellin ^a
	0h	72h	72h
Total carotenoids (mg ⁻¹ FW)	105.92 ± 10.3	217.0 ± 8.7	209.1 ± 11.3
All trans-Violaxanthin	22.87 ± 3.6	54.5 ± 5.2	50.3 ± 7.8
9-cis-Violaxanthin	22.3 ± 3.5	46.3 ± 6.8	54.7 ± 6.8
Lutein	34.2 ± 3.2	77.5 ± 7.9	73.7 ± 9.3
β -cryptoxanthin	16.82 ± 4.5	26.5 ± 3.4	17.9 ± 2.3
α -carotene	1.8 ± 0.3	0.7 ± 0.1	1.1 ± 0.3
Phytoene	7.93 ± 1.5	11.5 ± 2.0	11.4 ± 2.1
Total chlorophylls (mg ⁻¹ FW)	12.5 ± 1.6	11.2 ± 2.1	13.5 ± 0.4
Chlorophyll a	9.5 ± 0.7	8.4 ± 0.6	10.0 ± 0.4
Chlorophyll b	3.0 ± 0.6	2.8 ± 0.4	3.5 ± 0.3
Chlorophyll <i>a/b</i> ratio	3.2	3.0	2.8
Chlorophyll <i>a/b</i> ratio	3.2	3.0	2.8

Table 2-6. Chlorophyll and carotenoid contents in the examined fruit peels.

^aTreatment: see text.

Section 3: Conclusion

We have identified 1,493 ethylene-responsive genes and 213 GA₃-responsive genes with more than 3-fold expression change in the ratio of mRNA levels after ethylene and GA₃, respectively using a citrus 22K oligoarray. Although the level of a specific gene transcript does not necessarily mean a corresponding alteration at the protein level, the obtained results provide a new insight into the role of ethylene in the chlorophyll and carotenoid metabolism and the ethylene signal transduction in citrus fruit. GA₃ oppositely regulated these gene transcriptions, which were either induced or repressed by ethylene. Considering that citrus fruit produce tiny amounts of ethylene, the endogenous level of GA₃ might be important for the endogenous regulation of maturation and senescence in mature citrus fruit. In addition, it was found that the GA response pathway was likely to take part in cross talk with the pathogen-related pathway in mature citrus fruit.

More than half of the identified genes are functionally unknown but may also play significant roles. The identification and determination of the biological function of these unknown genes will contribute to an understanding of the unique ethylene and GA₃ biology in citrus fruits. Further experiments will be required to understand their function. Meanwhile, it will be necessary to advance the bioinformatics study. Specifically, there is a possibility that the information of the gene expression is obtained from EST database and the database of high throughput gene expression data.

Chapter 3: An algorithm and computer program for the identification of minimal sets of discriminating DNA markers for efficient cultivar identification

Development of a new algorithm and software for data mining is one of aspect of bioinformatics study to obtain newly biological knowledge from data by the experiment.

Fruit tree varieties such as citrus, apple, sweet cherry, peach, Japanese pear andchestnut are frequently bred in Japan, and more than 1,100 fruit tree varieties are listed in the Japanese Ministry of Agriculture, Forestry and Fisheries' most recent catalog of fruit varieties tree (http://www.hinsyu.maff.go.jp/tokei/contents/9 2011kaju.pdf). In recent years, protection of breeders' rights for these varieties has become of central importance to the fruit tree cultivation industry; at least one infringement case related to a Japanese fruit tree-breeder's rights to a specific sweet cherry variety has already made its way through the courts (Tahira, 2008). Also of key interest to this industry are concerns about the origins of specific food products resulting from fruit-tree cultivation (e.g. orange juice). Inadequate identification of specific varieties can hinder governmental food-inspection and -labeling efforts.

Thus, we suggest that accurate identification of fruit tree varieties at a genetic level is necessary for both the protection of breeders' rights and the improved management of food-inspection mandates. Various types of DNA markers, including restriction fragment length polymorphism (RFLP), randomly amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR), have previously been studied in fruit trees (Wunsch and Hormaza 2002). Recently, SSRs have become the markers of choice in mapping plant genomes because of this technique's co-dominant inheritance, large number of alleles and suitability for automation (Yamamoto et al., 2003). SSR markers have been used for variety identification of peach (Aranzana et al., 2003), grapevine (This et al., 2004), apple (Galli et al., 2005), almond (Dangle et al., 2009), olive (Ercisli et al., 2011) and Japanese pear (Yamamoto et al., 2002) trees, among other fruit tree varieties; this includes several Japanese fruit tree varieties with documented breeders' rights (e.g. sweet cherry (Takashina et al., 2009), Japanese pear (Terakami et al., 2010), peach (Yamamoto et al., 2003), apple (Moriya et al., 2011) and Japanese chestnut (Yamamoto et al., 2003), apple (Moriya et al., 2011) and Japanese chestnut (Yamamoto et al., 2008). Such genotypic analysis typically results in the creation of computer-generated variety/marker "summary" tables that list all possible markers for the studied fruit tree varieties.

In many cases where DNA markers are used, it is not necessary to use all of the markers listed in such summary tables to differentiate between specific fruit tree varieties. Thus, we determined that the development of a minimal marker set—a marker set that can differentiate between all fruit tree varieties shown in a particular summary table and that is as small as possible—could be expected to simplify and streamline the marker-identification process. Not only would this aid in determining the genetic background of specific varieties to help enforce breeders' rights, but it would also permit easier inspection of large-quantity fruit imports due to the minimal marker set's concomitant reduction in the number of markers required for accurate inspection. However, as the number of markers or varieties increases in a summary table, it becomes increasingly difficult to accurately identify a minimal marker set without a concrete methodology and an appropriate computer program capable of doing so.

Several previous studies have attempted to identify minimal marker sets. The Minimum SNPs computer program (Robertson et al., 2004) has identified highly informative sets of single-nucleotide polymorphisms (SNPs) in entire multi-locus sequence typing (MLST) databases for bacteria (Aanensen and Spratt, 2005). To choose

47

optimum marker sets for grapevines, RAPD primers were evaluated using the discrimination power parameter (*D*), as defined from polymorphic information, and attempts were made to identify the most efficient RAPD primer set for differentiating between 224 grape varieties (Tessier et al., 1999). In Gerber et al., (2003), 20 SSR markers were used for 4,370 accessions of grapevine germplasm, with these SSR markers evaluated by the probability of identity (PI) as computed using the Famoz software package (Gerber et al., 2003). As a result, a minimal set of nine SSR markers is now routinely used in the laboratory for identification purposes and for checking the homogeneity of the accessions (Laucou et al., 2011). However, the intent of these methods for identifying a minimal marker set was to evaluate the identification capability of each individual marker statistically by some index, and to select only those with the highest index value. That is, these methods did not consider the combination of markers in the first place and thus were unable to provide a solution for accurately obtaining minimal marker set(s) because the studied subjects were often a wide group of varieties and genetic resources used for the characterization of germplasms.

Another previous study reported an algorithm and its related GGDS software program, which was based on an integer-linear programming (ILP) formula (Gale et al., 2005). This particular program was capable of accurately identifying minimal marker sets for a given summary table for wheat, but the program is not available at present; in addition, it was designed exclusively to analyze binary data for dominant markers and thus was incapable of examining co-dominant markers.

In this study, we designed an algorithm and a related computer program that identifies with certainty all minimal marker sets for a given summary table using co-dominant markers. While our research focuses on the practical use of such technology for the genotypic identification of fruit tree varieties to protect breeders'

48

rights for the fruit tree cultivation industry, we expect that the algorithm and computer program described here would also prove useful to other fields.

Implementation

Program architecture

Our platform-independent, Perl-based MinimalMarker software is licensed by the National Agriculture and Food Research Organization, and can be downloaded from http://fruit.naro.affrc.go.jp/eng/MinimalMarker_en.html. The cost-free program can be easily run on standard laboratory-type computer systems and does not require access to high-capacity servers. Successful execution of the program requires a Perl5 (or higher) environment. The MinimalMarker program operates in the command line and requires input files in a comma-separated value (CSV) format; results are output to a text file. Optional features included with the software allow users to obtain optimal discriminating marker sets by considering the experimental features of particular DNA markers and by accelerating the computing process.

Algorithm

The goal of this study is to devise an algorithm and an accompanying program that uses co-dominant markers for the identification of all minimal marker sets for a summary table such as that shown in Supplemental Table 3-1 (Yamamoto et al., 2003).

As such, we first simulated a testable dataset by producing a "pretend" sample summary table (Table 3-1). We then used this sample table to test the algorithm against five DNA markers and five fruit tree varieties for the identification of appropriate minimal marker sets.

When developing a workable algorithm for accurate identification of a specific

marker, the most important principles are as follows:

- The marker set(s) that can discriminate all varieties in a given summary table is the marker set(s) that can discriminate between any pair of varieties displayed in a given summary table.
- 2) Minimal marker set(s) is (are) the marker set(s) that can discriminate between any pair of varieties in a given summary table and that is (are) as small as possible. The algorithm we designed (described below) does just that. Fig. 3-1 shows the flow diagram for the algorithm. The algorithm shown in Fig. 3-1 involves an exhaustive method without adding considerable mathematical novelty, and the use of an improved algorithm (as described later) does not necessarily mean that the new method can identify minimal marker sets. However, in the past it has been thought that there was no example of this application to the discrimination of minimal marker sets for cultivar identification by DNA markers.

Producing the possibility-of-discrimination table

The first step in our algorithm is to calculate whether two or more varieties have exactly the same genotypes in all markers. If such pair of varieties is found, they are treated as the same variety following steps because at least one marker type must be different for each pair of varieties in a given summary table as a principle of this algorithm. This is not unusual for the fruit tree since there are many bud mutation varieties. The next step is to produce the possibility-of-discrimination table that serves as the foundation for all subsequent actions. In our example, Table 3-1 is used to produce the possibility-of-discrimination between all pairs of varieties for each marker, shown in Table 3-2.

That is, if the genotypes of a variety pair in Table 3-1 are the same for a particular

marker, a value of "0" is assigned to the corresponding position in Table 3-2; this indicates that the specific marker cannot discriminate between these two varieties. If the genotypes are different, a value of "1" is assigned, indicating that the marker is capable of that particular discrimination. For example, in Table 3-1, marker *M1* identifies genotypes "aa" and "ab" in varieties *V1* and *V2*, respectively. As these two genotypes differ, we conclude that *M1* can be used to discriminate between *V1* and *V2*, and thus a "1" is placed at the intersection of column *V1V2* and row *M1* in Table 3-2.

Discrimination of minimal marker set

Using the aforementioned possibility-of-discrimination table, we can search for the minimal marker set. For example, in Table 3-2 the sum of each column is greater than 1 in all combinations of two displayed varieties, which shows that there exists more than one markers capable of distinguishing between every pair of varieties. Consequently, a combination of the fewest markers that satisfies all the column sums being at least one is a minimal marker set. We must therefore examine whether this requirement is met while concomitantly incrementally increasing the number of markers. In the case of one marker, no single marker satisfies this condition, as there is a zero in every row in Table 3-2. However, in the subset of combinations of two markers, both *M1* with *M2* and *M2* with *M4* meet the condition, as shown in Tables 3-3A and 3-3B; these are each therefore minimal marker sets.

In general, in our algorithm, let V be the number of varieties and M be the number of markers in a given summary table, and let n be the number of markers in a subset. The dimension of the table of discrimination probability is $M \times_v C_2$. The number of marker subsets is ${}_MC_n$, where n is increased incrementally from 1. Next, we examined whether the column sum in all columns is at least one for all subsets that consist of n markers. Thus, the first subset of n markers that meets the condition is defined as a minimal marker set. As more than one minimal marker set may meet the aforementioned condition, it is necessary to calculate the column sums for all subsets of the same size as the first minimal marker set found; this permits accurate identification of all of the summary-table minimal marker subsets. In the process of the marker development for variety discrimination, we needed to first develop numerous redundant markers until we were able to obtain markers that provided adequate discrimination power to protect breeder's right. By overviewing markers that compose all minimal marker sets, we could distinguish essentially important markers. In practice, when the DNA marker is applied to unknown varieties, the marker type might at times obtain more than one null result. This may be due to mispriming or non-priming of the primer. Therefore, it is important that the algorithm provide with two or more minimal marker sets.

Computational effort

An exhaustive search such as that suggested in the aforementioned algorithm is generally infeasible or at the very least time consuming (Martin, 2011).

In consideration of the computational cost of the algorithm:

Let m be the number of markers in a minimal marker set. The number of combinations of two varieties is shown in Eq. (1) below:

$${}_{\nu}C_{2} = \frac{V(V-1)}{2} = \frac{1}{2}V^{2} - \frac{1}{2}V$$
(1)

This leads to polynomial time.

The number of subsets that must be checked until all minimal marker sets are found is

shown in Eq. (2) below:

$$\sum_{n=1}^{m} {}_{M}C_{n} = \sum_{n=1}^{m} \frac{M!}{n!(M-n)!}$$
(2)

When M=m, this number is maximized as shown in Eq. (3) below:

$$\sum_{n=1}^{M} {}_{M}C_{n} = \sum_{n=1}^{M} \frac{M!}{n!(M-n)!} = 2^{M} - 1$$
(3)

The algorithm is thus likely to be exponential if m is not small enough. The time and memory required for an algorithm are usually measured in terms of asymptotic notation. For our present algorithm, the asymptotic notation can be denoted as $O(2^n)$. This shows a possibility that the computing time increases exponentially as the number of markers increases.

Method of using the largest discrimination power

To avoid the problems of exponential running time when m is too large, we incorporated into our approach a method using the largest discrimination power as an optional software feature to accelerate the computation. The possibility-of-discrimination table such as Table 3-2 can be simplified through transformation by row subtraction, row and column translocation. Eventually, one will find the minimal marker set. This procedure is shown below:

- Search for all the two-variety combination(s) in the table where the sum of the column is one. If this requirement is met, add the corresponding contributing marker(s) in the candidate minimal markers set(s).
- 2) Find the row with the maximum discrimination and move it the first row. Through

column translocation, ensure the upper-left cell to be 1. Subtract all the other rows with the first row. If a cell has a number -1, it can be redefined as 0. *M2* is added as the candidate minimal markers set(s) in Table 3-4A and 3-4B. This adds up to $(M-1) \times {}_{\nu}C_2$ times of subtraction.

- 3) Find a row excepting the first one to have the maximal discrimination. Through the table transformation, move it to the second row and make sure the second cell from the left is 1. Subtract all other rows with this second row, which is *M1* in Table 3-4C and 4D. This should be no more than $(M-2) \times {}_{\nu}C_2$ times of subtraction.
- 4) Repeat the above procedure and stop when one cannot find a row with number 1 in it. All these calculations add up to $< (M-1)(M-2)/2 \times {}_{v}C_{2}$ number of calculations. The markers corresponding to the first row to the last row containing 1 then constitute the minimal marker set. In this case, *M1* with *M2* are obtained as a minimal marker set.
- 5) Even if the table transformations are considered, the asymptotic notation can be denoted as $O(M^2 \times V^2)$. We can assume the number of varieties is a constant, even if it is large. The asymptotic notation can then be denoted as $O(M^2)$, polynomial complexity.

A concrete example demonstrating the method of using the largest discrimination power to greatly decrease computational effort is shown in below "Results" section. In this case, the result corresponds to those discovered using the basic algorithm. However, the method of using the largest discrimination power does not guarantee whether the marker sets obtained are minimal or whether all minimal marker set(s) are identified for the given summary table (The acceleration achieved using the option is shown in the below "Results" section.).

In addition, the program was designed with nine additional options that allow users to obtain optimal discriminating marker sets by considering the experimental features of particular DNA markers. For example, when the smallest number of markers of minimal marker set(s) is three, and the –s option defines four markers and the –e option defines four markers, MinimalMarker searches the marker set composed of four markers. In practice, this option proves significant in that the required labor might not change for assessing three or even four of the markers, depending on experimental conditions. In addition, there are markers that the experimenter may wish to use or to avoid. In this case, MinimalMarker does not select marker set(s) including redundant markers. That is, MinimalMarker never selects marker set(s), such as the marker set composed of three markers (=minimum number of markers), added as an arbitrary marker. Therefore we opted to use the term "minimal marker set". Moreover, the –m option accelerated the computation while providing shielding from potential faults associated with exponential running time (Table 3-5).

Results

Validation of the identification of minimal marker set(s) with both sample and published datasets

As described below, our algorithm and the accompanying MinimalMarker program proved effective in finding minimal marker sets in multiple fruit tree-specific datasets. When we applied MinimalMarker to the sample data (Table 3-1), two minimal marker sets that each contained two markers, *M1* with *M2* and *M2* with *M4*, were discovered. These results are consistent with those shown in the above description of the algorithm. For discrimination among grapevine varieties, researchers in a previous study identified six microsatellite markers with many (13–23) allelic forms (This et al., 2004), and proposed that these could be used as a standard optimal marker set. In the present study, we applied MinimalMarker to this grapevine dataset, and found that all varieties could be discriminated using two markers, *VVMD27* and *VVMD5*, which was consistent with the results in the above-mentioned report (This et al., 2004).

The previous study reported that the GGDS software program (Gale at al. 2005) provided a variety/marker summary table with 22 dominant markers and 22 varieties, and showed only one minimal marker sets, $\{A, C, G, I, S, T, U\}$, as a concrete example. We applied MinimalMarker to the dataset, and found 24 minimal marker sets. One of them was $\{A, C, G, I, S, T, U\}$.

We also applied MinimalMarker to a summary table that contained 18 peach varieties analyzed by 17 SSR markers (Supplemental Table 3-1) (Yamamoto et al., 2003). However, all the SSR markers for the "Akatsuki" variety and its bud mutation derivative "Gyosei" were exactly the same in the table. MinimalMarker could consider "Akatsuki" and "Gyosei" to be the same variety and could thus keep running the algorithm after outputting the message that "Akatsuki" and "Gyosei" had the same genotypes in all markers. Accordingly, the following six minimal marker sets each containing three markers were obtained: {*M1a*, *M4c*, *MA023a*}, {*M4c*, *MA007a*, *MA023a*}, {*M4c*, *MA007a*, *MA035a*}, {*M4c*, *MA015a*, *MA027a*} and {*M4c*, *MA027a*, *MA035a*}. We also confirmed that these results were consistent with those calculated by hand.

The program was also applied to summary tables for sweet cherry (Takashina et al., 2009), Japanese pear (Terakami et al., 2010), apple (Moriya et al., 2011) and Japanese chestnut (Yamamoto et al., 2008); results were validated by the researchers who produced the tables.

Performance test

For the performance test, we applied MinimalMarker to an unpublished dataset of

citrus varieties compiled by us in which 98 varieties were analyzed using 256 SNP markers described in Chapter 4. The entire dataset and seven subsets subsequently generated from the original dataset by reducing the number of varieties and markers were tested. The number of varieties in the tested datasets was either 49 or 98, with each run using 64, 128, 192 and 256 markers (Table 3-6). All varieties in the eight datasets had different genotypes with the SNP markers. Tests were performed under default conditions (see Table 3-5) using the method of using the largest discrimination power option –m2 (Table 3-5) for acceleration on a Macintosh machine (OS: Mac OS X 10.6.8; CPU: 28GHz Intel Core 2 Duo; Memory: 4GB), and the elapsed time was measured.

Computation times are shown in Table 3-6. Using the default settings, the computation time increased exponentially with the number of markers, taking 1,322,428 seconds—approximately 15 days—to compute the entire 98-variety/256 SNP-marker dataset. This increased computation time might thus limit the size of datasets used when MinimalMarker is run using regular (non-laboratory-grade) personal computers. Similarly, as the computation time increased as the number of markers in a minimal marker set increased, the elapsed time might be longer for SNP markers—where the allele number is four in theory but two in practice—than for SSR markers, which typically have rich polymorphism.

With the method of using the largest discrimination power option, the elapsed time was substantially shorter than with the default option, and increased linearly as the number of markers increased (Table 3-6). As the discrimination power between the markers often have large overlaps, the algorithm may not take much time, making it closer to an equation of linear complexity. It took 129 seconds to compute the entire 98-variety/256SNP marker dataset; the ratio between the time required for the 49 and 98

variety-datasets was about four, even as the number of markers changed. Therefore, the elapsed time can be estimated by using the method of the largest discrimination power option with a subset of the dataset that has a reduced number of markers or varieties.

The reduced number of marker subsets found using the power option was ${}_{M}C_{m}$ =₂₅₆C₇= 13,161,885,792,000, representing 97.2% of the number that should be investigated normally in the entire 98-variety/256 SNP-marker dataset. The reduced number of combinations of two varieties by the option was 3,045 (= the largest discrimination power) and it was 64.1% of the total number of combinations of two varieties (=4,753) in the entire 98-variety/256 SNP-marker dataset.

The number of markers in a minimal marker set was the same for the default computation and for computation with the method of using the largest discrimination power option in seven of the eight datasets shown in Table 3-6; in these seven datasets, the minimal marker sets found using the power option were among those found by the default computation. Therefore, if identifying a strictly minimal marker set is not required for a specific task, the option might be useful for faster variety identification of sufficiently small marker sets.

Discussion

Several approaches using genetic statistics have been attempted for finding minimal marker sets for the identification of fruit tree varieties (Robertson et al., 2004; Tessier et al., 1999; Laucou et al., 2011; Martin, 2011). However, these techniques cannot be used to find marker sets containing the smallest number of markers for discriminating all varieties in a particular summary table.

The previously reported GGDS software program (Gale et al., 2005) can be used to identify all minimal marker sets for a given summary table. Yet because GGDS was

designed for use with only dominant markers because input data are restricted binary data, we developed MinimalMarker to use with summary tables containing co-dominant markers such as the SSR markers that are more commonly used for discriminating between varieties of fruit tree varieties (Takashina et al., 2009; Terakami et al., 2010; Moriya et al., 2011; Yamamoto et al., 2008). Incidentally, MinimalMarker also operates with dominant markers or with both co-dominant markers and dominant markers, regardless of the number of alleles, because the markers' genotypes are replaced by alphabetic characters in the software and subsequently treated via string manipulation. The method using GGDS (Gale et al., 2005) should combine ILP solvers with GGDS, therefore the knowledge of ILP would be requested from the researchers. The algorithm of MinimalMarker is simple does not need other software.

To increase the usability of MinimalMarker, we have added a method of using the largest discrimination power option (Table 3-5) to accelerate computation speeds, although this option does not ensure that strictly minimal marker sets will be found. It should be noted that missing data caused by an inability of the marker primer to hybridize with a specific variety's genome cannot be included in MinimalMarker calculations (i.e. missing data lead to incorrect summing of column figures).

In DNA-marker-based discrimination of fruit tree varieties and other species, a sample genotype can be evaluated as a different variety if the genotype differs from a known variety for at least one marker. In contrast, even if all the genotypes for a sample and a variety are identical, then the varieties are not necessarily the same. When an unknown sample differs from the known varieties, a minimal marker set can determine that the sample is different from the varieties listed in a given summary table using the fewest markers. If the sample is a variety that appears in the table, the minimal marker set will identify the variety because the minimal marker set discriminates all varieties in the table; in this case, it becomes necessary to apply more markers to prove it to be the same variety, but MinimalMarker greatly simplifies such analysis. This makes finding a minimal marker set advantageous when a large number of samples are involved. Whenever a new variety or a new marker is added, calculation by MinimalMarker is required.

In Japan, the implementation of MinimalMarker has contributed to the selection of SSR markers used to establish the official protocol for identifying Japanese pear and sweet cherry varieties for the protection of breeders' rights (Takashina et al., 2007); similarly, the protocol for genotypic identification of apple and Japanese chestnut (Yamamoto et al., 2008) was prepared using MinimalMarker.

The genotyping process can be costly in terms of laboratory consumables, labor and time when a large number of samples and SSR markers are involved (Gale et al., 2005), but establishing a minimal marker set permits efficient discrimination of varieties. Such concerns led us to devise an algorithm and the accompanying MinimalMarker software to identify all appropriate minimal marker sets that contain the smallest number of markers while still discriminating all varieties in a particular summary table.

Although MinimalMarker is currently used primarily for the genotypic identification of fruit tree varieties, the program is also useful for analyzing other species' markers. We similarly expect that this program would prove useful for both genomics researchers and inspection agencies that perform large-scale analysis of DNA markers to authenticate food labeling.

Availability and requirements

As previously described, the MinimalMarker computational tool is made available cost-free to the scientific community and general public by Japan's b Website (http://www.naro.affrc.go.jp/org/fruit/eng/MinimalMarker_en.html). Successful execution of the program requires a Perl5 (or higher) environment.

Fig 3-1. Flow diagram of the MinimalMarker algorithm. M is the number of markers in a given summary table, and n is a counter.

Marker	Variety							
	VI	V2	V3	V4	V5			
Ml	aa	ab	aa	ab	aa			
M2	aa	ab	ab	aa	bb			
М3	aa	aa	aa	aa	bb			
M4	aa	aa	ab	ab	aa			
M5	ab	ab	bb	ab	aa			

Table 3-1. A summary table with five co-dominant markers (M1–M5) and five diploid varieties (V1–V5) as imaginary test data

Marker	Possibility of discrimination between two varieties								
	<i>V1V2</i>	V1V3	V1V4	V1V5	V2V3	V2V4			
M1	1	0	1	0	1	0			
M2	1	1	0	1	0	1			
<i>M3</i>	0	0	0	1	0	0			
M4	0	1	1	0	1	1			
M5	0	1	0	1	1	0			
Sum of column	2	3	2	3	3	2			

Table 3-2. Possibility of discrimination between two varieties by each marker, as derived from Table 3-1

Note: "1" and "0" indicate discriminating and non-discriminating markers, respectively.

А										
Morker	Possibility of discrimination between two							varieties		
IVIAIKEI	V1V2	V1V3	<i>V1V4</i>	V1V5	V2V3	V2V4	V2V5	<i>V3V4</i>	V3V5	V4V5
M1	1	0	1	0	1	0	1	1	0	1
M2	1	1	0	1	0	1	0	1	1	1
Sum of column	2	1	1	1	1	1	1	2	1	2
В										
Morker			Possibil	lity of dis	scriminat	ion betw	een two	varieties		
Marker	V1V2	V1V3	<i>V1V4</i>	V1V5	V2V3	V2V4	V2V5	<i>V3V4</i>	V3V5	V4V5
M2	1	1	0	1	0	1	1	1	1	1
M4	0	1	1	0	1	1	0	0	1	1
Sum of column	1	2	1	1	1	2	1	1	2	2

Table 3-3. Possibility of discrimination between two varieties by each marker in two minimal marker sets, as derived from Table 3-2

Note: "1" and "0" indicate discriminating and non-discriminating markers, respectively. (A) and (B) show that both the combination of M1 and M2, and of M2 and M4, are minimal marker sets because all column sums are at least one.

А Possibility of discrimination between two varieties Sum of Marker row V1V2 V1V3 V1V5 V2V4 V3V4 V3V5 V4V5 V1V4 V2V3 V2V5М2 MlМЗ M4M5Sum of column

Table 3-4. Possibility-of-discrimination table reduced by the method of using the largest discrimination power option from Table 3-2

В

Markar	Possibility of discrimination between two varieties								Sum of		
Marker	V1V2	V1V3	V1V5	V2V4	V2V5	V3V4	V3V5	V4V5	V1V4	V2V3	row
M2	1	1	1	1	1	1	1	1	0	0	8
<i>M1</i>	0	0	0	0	0	0	0	0	1	1	2
<i>M3</i>	0	0	0	0	0	0	0	0	0	0	0
<i>M</i> 4	0	0	0	0	0	0	0	0	1	1	2
M5	0	0	0	0	0	0	0	0	0	1	1
Sum of column	1	1	1	1	1	1	1	1	2	3	

С

Marker	Possib discrim betwe vari	Sum of row		
	V1V4	V2V3	-	
<i>M1</i>	1	1	2	
М3	0	0	0	
M4	1	1	2	
M5	0	1	1	
Sum of column	2	3		
D				

Marker	Possib discrim betwe vari	Sum of row	
	V1V4	V2V3	-
M1	1	1	2
М3	0	0	0
<i>M4</i>	0	0	0
M5	0	0	0
Sum of column	1	1	

Option	Arguments	Significance
-p[0/1/2]	0: Do not print the table (default)1: Print the table2: Print the table and the program quits	The table shows the possibility of discrimination between two varieties by each marker, as in Table 2.
-W	2. Frink the table and the program quits	Under the condition that at least two markers are required for discriminating between every pair of varieties, minimal marker set(s) are searched.
-s[number]	Number of markers which starts search	Specifies the number of markers required to start the search. In case of dominant markers, at least 7 markers are required to identify 100 varieties. In this case, the search is completed quickly using the -s7 option switch.
-e[number]	Number of markers which stops the search	Specifies the number of markers required to end the search. Even if no minimal marker set is identified, the search can be stopped when it is expected that the computation time will be too large to be practical.
	-1: Search the total number of markers.	
-n[number]	Row number of the marker One or more specification is possible (exn1 -n2)	Specifies markers that must be included in the minimal marker sets.
-x[number]	Row number of the marker One or more specification is possible (exx1 -x2)	Specifies markers that must be excluded from the minimal marker sets.
-v[number]	Column number of the variety(ies)	Specifies variety(ies) and the minimal marker set(s) that discriminate the specified variety(ies) from other varieties
	One or more specification is possible (exv1 -v2)	in a summary table.
-m[0/1/2]	0: Enumeration method	Computation is accelerated using the branch-and-bound method. The same result is obtained by the enumeration method and the branch-and-bound method. Computation is drastically accelerated using the method of using the largest discrimination power, but it does not guarantee whether the marker sets obtained are minimal nor whether all minimal marker set8s) are identified.
	 Branch-and-bound method (default) Method of using the largest discrimination power 	
-b[0/1]	0: Arithmetic operation	Computation is accelerated using the bit operation when the amount of computation time required to obtain the results becomes too large. The same result is obtained by the arithmetic operation and the bit operation.
	1: Bit operation (default)	

Table 3-5. Program options for MinimalMarker

A Default							
		98 varieties		49 varieties			
Number of SNP markers	Elapsed time (seconds) [a]	Number of markers in a minimal marker set	Number of minimal marker sets	Elapsed time (seconds) [b]	Number of markers in a minimal marker set	Number of minimal marker sets	[a/b]
64	329	8	255	172	7	8560	1.9
128	5214	7	21	700	6	210	7.5
192	136965	7	288	14417	6	8569	9.5
256	1322428	7	4607	77961	6	176341	17

Table 3-6. Performance test of MinimalMarker under default (A) and the largest discrimination power option (B)

B With method of	of using the larg	est discriminatio	n power option	for acceleration	(refer Table 5)		
Number of SNP markers		98 varieties		49 varieties			
	Elapsed time (seconds) [a]	Number of markers in a minimal marker set	Number of minimal marker sets	Elapsed time (seconds) [b]	Number of markers in a minimal marker set	Number of minimal marker sets	[a/b]
64	25	8	6	6	7	89	4.1
128	34	8	234	8	6	19	4.3
192	74	7	26	18	6	164	4.1
256	129	7	80	30	6	478	4.3

SSR marker —	Variety								
	Akatsuki	Yuuzora	Saotome	Chiyohime	Yoshihime	Masahime	Akizora	Natsutome	Hakuhou
Mla	80/84	80/84	84/84	80/84	80/84	80/80	80/80	80/84	80/84
M4c	78/94	78/94	78/88	88/94	80/94	80/94	74/94	80/94	74/78
M6a	193/197	193/197	195/197	195/201	193/197	193/197	193/197	193/197	193/197
M12a	177/195	195/195	177/195	177/177	177/195	177/195	177/195	177/195	177/195
M15a	136/136	136/136	132/136	136/136	136/136	136/136	116/136	136/136	116/136
MA006b	295/295	295/295	295/301	295/301	295/295	295/295	295/295	295/295	295/295
MA007a	111/133	111/133	111/111	111/121	133/133	133/135	133/133	111/133	111/133
MA013a	197/213	197/213	211/227	197/227	197/213	197/213	197/211	197/213	197/211
MA014a	167/167	167/167	150/167	167/167	163/167	167/167	163/167	163/167	163/167
MA015a	178/178	178/263	180/185	178/180	178/178	178/263	178/185	178/178	178/185
MA017a	165/165	165/165	177/177	177/177	165/165	165/165	165/177	165/165	165/177
MA023a	192/214	214/214	192/192	192/206	214/214	214/214	192/192	192/214	192/214
MA024a	245/245	245/245	243/245	243/245	245/245	245/245	245/245	245/245	245/245
MaA027a	147/160	147/160	145/147	147/160	147/191	147/191	147/191	147/160	147/191
MA030a	238/238	238/238	238/238	238/238	238/238	236/238	238/238	238/238	238/238
MA031a	123/131	123/123	123/131	123/123	123/131	123/123	123/131	123/131	123/131
MA035a	167/179	179/179	167/167	167/167	179/179	167/179	167/167	179/179	167/179

Supplemental Table 3-1. The summary table obtained using 17 SSR markers for 18 peach tree varieties from Yamamoto et al. (2003).

Note: The figures in each cell show the length of the SSR fragments.

	Variety									
SSR marker	Hakutou	21-18	Gyosei	Hikawa Hakutou	Abe Hakutou	Kawanaka jima Hakutou	Kouyou Hakutou	Shimizu Hakutou	Ookubo	
M1a	80/80	80/80	80/84	80/84	80/80	80/80	80/80	80/84	80/84	
M4c	78/94	78/80	78/94	80/94	78/80	74/94	80/94	80/94	78/80	
M6a	193/197	193/197	193/197	193/201	197/197	197/201	197/201	193/201	197/201	
M12a	195/195	195/195	177/195	177/195	177/195	177/195	177/195	177/195	177/195	
M15a	136/136	136/136	136/136	116/136	136/136	136/147	136/136	136/136	136/136	
MA006b	295/295	295/295	295/295	295/297	295/295	295/295	295/295	295/295	295/295	
MA007a	121/133	133/135	111/133	133/135	133/133	121/133	121/121	111/133	111/133	
MA013a	197/213	197/213	197/213	197/213	213/213	197/213	197/213	197/197	197/213	
MA014a	163/167	163/167	167/167	163/167	163/167	150/167	160/167	163/167	163/167	
MA015a	178/263	178/263	178/178	178/263	178/178	178/185	178/263	178/185	178/185	
MA017a	165/165	165/165	165/165	173/177	165/165	165/177	165/177	165/177	165/177	
MA023a	214/214	214/214	192/214	192/192	192/214	214/214	206/214	206/214	192/216	
MA024a	245/245	245/245	245/245	245/245	245/245	245/245	245/245	245/245	245/245	
MaA027a	160/191	189/191	147/160	189/191	147/160	147/160	153/160	153/191	147/160	
MA030a	238/238	236/238	238/238	236/238	236/238	238/238	236/238	236/238	236/238	
MA031a	123/123	123/123	123/131	123/123	123/123	123/123	123/131	123/131	123/123	
MA035a	179/179	179/179	167/179	167/167	179/179	167/179	167/179	167/179	167/179	
Chapter 4: SNP genotyping by custom genotyping array in citrus accessions

Citrus cultivars contain a variety of secondary metabolites, such as flavonoids (Murakami et al., 2000), carotenoids (Tsushima et al., 1995), and limonoids (Lam and Hasegawa 1989; Lam et al., 1989), which have health promoting functions in humans. Recently, it has become important to breed new cultivars enriched with such substances. For example, increasing the content of B-Cry, which is a carotenoid component with cancer preventative activity (Tsushima et al., 1995), is an important breeding objective for citrus in Japan. However, there are many genetic factors involved in increasing B-Cry (Kato et al., 2004). Quantitative trait loci (QTL) analysis is a powerful approach to map the genetic factors for important traits, such as B-Cry content (Sugiyama et al., 2011). The accuracy in mapping a trait loci, including OTLs, depends on the DNA marker density and the number of individuals, provided the genetic background of the mapping population is the same. To improve mapping efficiency and quality, high-throughput technologies have been required to perform genotyping with a large number of markers on a large number of progeny. Until now, many genetic maps of citrus have been constructed by traditional DNA markers such as restriction fragment length polymorphism (RFLP), cleaved amplified polymorphic sequences (CAPS), or simple sequence repeats (SSR). However, it was difficult for researchers to map each target trait locus in the different segregating populations because generating new linkage maps using traditional markers was a time- and labor-consuming procedure.

Compared with other DNA markers used for genetic mapping, single nucleotide polymorphisms (SNPs) have two advantages as genotyping markers. First, SNPs are the most frequently detectable variation in the genome sequences of various organisms. For example, it has been shown that one SNP occurs per 21 bp in potato (Rickert et al., 2003), per 78 bp in barley (Russell et al., 2004), per 164 bp in citrus (Jiang et al., 2010),

and per 232 bp in rice (Feltus et al., 2004). In comparison one SSR occurs per 8000 bp in rice (Goff et al., 2002).

Second, several high-throughput technologies utilizing SNPs have been developed in human genome analysis (Kwok 2001; Steemers et al., 2006; Syvänen 2005) and also in some crop species such as rice (Masouleh et al., 2009; Tung et al., 2010).

Among the SNP genotyping technologies, the bead array, such as the GoldenGate® Assay (Illumina Inc.), has been applied successfully to various plant species, including rice (*Oryza sativa* L.) (Tung et al., 2010), barley (*Hordeum vulgare* L.) (Rostoks et al., 2006), soybean (*Glycine max* (L.) Merrill) (Hyten et al., 2008), white spruce (*Picea glauca* Moench) and black spruce (*Picea mariana* (Mill.) Britton) (Pavy et al., 2008), loblolly pine (*Pinus taeda* L.) (Eckert et al., 2009) and sugi (*Cryptomeria japonica* D. Don) (Uchiyama et al., 2011). Because the assay is capable of multiplexing from 96 to 1536 SNPs in a single reaction, applying the high-throughput genotyping system would quickly create high-density genetic maps for marker-assisted breeding of various important traits.

There have been attempted to develop arrays for SNP markers in citrus (Close et al., 2006; Ollitrault et al., 2011). However, a detailed flowchart of the high-throughput SNP genotyping system, from SNP screening to validation of genotyping results, has not been established so far in citrus. In this study, we surveyed SNPs by direct sequence comparison of the sequence tagged site (STS) fragment amplified from genomic DNA of cultivars representing the genetic diversity of citrus breeding in Japan, and developed a prototype multiplexed SNP genotyping GoldenGate platform to establish the high-throughput genotyping system in citrus. The assay using the SNP genotyping platform was applied to a hybrid population of 88 progeny and 103 citrus accessions. The reliability of the SNP genotyping call results was confirmed using parentage

analysis, since datasets derived from DNA markers often contain missing or questionable genotype calls (Close et al., 2009).

Development of high-throughput SNP genotyping array, which incorporates the reliable SNPs, is able to finish the genotyping for any citrus population within a few months. The technology will actively promote the genetic analysis of citrus, such as QTL analysis, linkage mapping.

Materials and Methods

PCR primer design for STS sequence comparison

To design PCR primers for SNP discovery in genomic sequences of citrus cultivars, we evaluated expressed sequence tags (ESTs) in the DNA Data Bank of Japan (DDBJ: http://www.ddbj.nig.ac.jp/index-e.html), HarvEST (http://harvest.ucr.edu/), and our private citrus EST database (Fujii et al., 2003b). The EST sequences were clustered by Visual Bio Clustering software (NTT software, Tokyo, Japan) to select representative ESTs from redundant sequences. The representative ESTs were used as candidate sites of STS amplification and SNP discovery. The exon-intron-junction of ESTs were predicted using software MAEZATO (Fujii et al., 2010a) to design intron spanning primers as introns are more polymorphic regions. STS primers for amplification and sequencing were designed using OLIGO primer analysis software (Molecular Biology Insights Inc., Cascade, USA). In addition to the newly developed STSs, STSs that were previously developed to generate CAPS markers (Omura, 2005) were also used for sequence comparisons among cultivars to detect SNPs.

PCR amplification and SNP discovery

PCR was performed on citrus genomic DNA of Clementine (C. clementina hort. ex

Tanaka), 'Miyagawa wase' (C. unshiu Marc.), 'Trovita' orange (C. sinensis Osbeck), 'Duncan' grapefruit (C. paradisi Macf.), Kishu mikan (C. kinokuni hort. ex Tanaka), Ponkan (C. reticulata Blanco), Mediterranean mandarin (C. delicious Tenore), and a haploid clone derived from Clementine (Oiyama and Kobayashi 1993). The haploid was used to obtain reference sequences. These eight citrus cultivars cover the majority of alleles used in citrus breeding programs for table fruits in Japan. The PCR products were purified by Whatman DNA binding unifilters (Whatman Ltd.) to remove the excess primers, subjected to direct sequencing by BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems Inc.), and sequenced by ABI PRISM® 3100 Genetic Analyzer (Applied Biosystems Inc.). The ABI sequence file obtained was directly imported to CodonCode Aligner (CodonCode Corporation) to detect mutation sites. SNPs were discovered using CodonCode Aligner's "Find Mutation" tool. For array analysis of candidate SNPs, only those that displayed base substitutions occurring in more than 2 of the 8 cultivars were selected. To detect SNPs in a shortcut analysis, the genomic sequence comparison of a subset of STSs was performed on 'Okitsu 46 Gou' ('Sweet Spring' ('Ueda unshiu' (C. unshiu) × Hassaku (C. hassaku hort. ex Tanaka)) × 'Trovita' orange) and 'Kankitsu Chukanbohon Nou 5 Gou' ('Lee' (Clementine \times 'Orlando' tangelo ('Duncan' grapefruit \times 'Dancy' tangerine (C. tangerina hort. ex Tanaka)) × 'Mukaku-kishu' (C. kinokuni hort. ex Tanaka), the parents of the hybrid population for the SNP genotyping assay. In addition, a small subset of 31 genes was deduced from in silico identification of SNPs in contigs assembled from EST sequences of C. unshiu and C. sinensis that were downloaded from DDBJ.

SNP selection and bead array construction

The candidate SNPs were used to construct Illumina bead arrays of 384 SNPs for the GoldenGate Assay. To optimize the SNPs chosen, three conditions were selected: SNP without any other SNP within 60 bp or less in the sequence; SNP without any other SNP in the zone located 20 bps downstream; and SNP with an appropriate designability rank score. A designability rank score, which summarizes a number of parameters, was given to each SNP by Illumina's algorithm, with the score ranging from 0 to 1.0 based on specificity and likelihood of success of genotyping in the GoldenGate Assay. A rank score of <0.4 had a low success rate, 0.4 to <0.6 had a moderate success rate, and >0.6 had a high success rate. A total of 384 SNPs with a designability rank score of 0.8 or higher were selected. In some cases more than one SNP was chosen in the same gene to allow validation of haplotype mapping.

Annotation of STSs used for SNP analysis

EST sequences used as SNP sources were annotated by a TBLASTX similarity search against the coding sequence of *Arabidopsis* in The Arabidopsis Information Resource (http://www.arabidopsis.org/), and the annotation was assigned (Table 4-1).

Plant materials for genotyping assays

The hybrid population consisted of 88 progeny generated by crossing 'Okitsu 46 Gou' and 'Kankitsu Chukanbohon Nou 5 Gou'. The two parent clones were used to evaluate the parental genotypes, and the results for SNP genotyping can be compared with previously performed CAPS genotyping. These plants were cultivated in the research field of the Citrus Research Division Okitsu of NIFTS. Ninety-seven diverse genotypes were selected from cultivars bred in Japan with their parents and accessions

from NIFTS Citrus Germplasm Collection (Table 4-2). Among them, HF, 'Kankitsu Chukanbohon Nou 5 Gou' and 'Tamami' had the duplicated analysis with sample code of TY9 with TY10 and TY12, TY62 with TY104, and TY48 with TY57, respectively.

All genotypes were cultivated at the Citrus Research Division Okitsu or the Citrus Research Station Kuchinotsu (Minamishimabara, Nagasaki) of NIFTS. Genomic DNA of the 88 hybrid progeny and 98 germplasm accessions including the hybrid parents with replicates (Table 4-2) for breeding was isolated from young leaves. After freeze-drying, leaf material was ground using a MM 300 Mixer Mill (Retsch Inc.), and DNA extraction was performed using a QIAmp DNA Mini Kit (Qiagen) according to the manufacturer's protocol. A total of 192 samples were adjusted to concentrations of 80 ng/µl using distilled water.

SNP genotyping assay and validation

Based on the description by Fan et al. (2003), Illumina's GoldenGate Assay utilizing a bead array platform was performed on the candidate SNPs. The assay was outsourced for SNP genotyping (Moritex Inc.), performed as per the manufacturer's protocol, and genotyping reports were generated.

According to the manufacturer's description (http://www.illumina.com/Documents/products/technotes/technote_gencall_data_analys is_software.pdf), the scores generated by the SNP signal calling system software were used to validate the SNP genotyping for each DNA sample and for each SNP.

We also examined the parentage analysis as another evaluation step for the reliability of SNP genotyping, since an SNP genotype should be the allele combination derived from the parental genotypes according to the co-dominant inheritance mode. As listed in Table 4-2, 74 germplasm accessions and 88 individuals of the hybrid

population genotyped in this assay could be used for parentage analysis. The computer program MARCO (Fujii et al., 2010b) was used for this lineage test.

Results

Construction of SNP genotyping array

A total of 1497 SNPs in 416 STSs and 18 EST contigs were detected from our three data sources (Table 4-3). The SNPs, along with the flanking sequences, were screened by the design rules of the GoldenGate Assay as described in the Materials and Methods, and 25.7% of all the SNPs detected were selected for the assay (Table 4-3). Using the 384 SNPs selected from 283 independent STSs (Tables 4-2, Table 4-3, Table 4-4), an Illumina custom GoldenGate Array for citrus was constructed and termed *CitSGA-1* hereafter. Among the 384 SNPs set on *CitSGA-1*, 286 SNPs were selected from the sequence comparisons among the eight citrus, 82 from comparing between two cultivars, and the remaining 16 from the *in silico* analysis (Table 4-3). From the 283 STSs, 199 STSs produced 1 SNP each. From the remaining 84 STSs, 71 STSs produced 2 SNPs each. In addition, 10 STSs, 2 STSs and 1 STS produced 3 SNPs, 4 SNPs, and 5 SNPs, respectively (Table 4-1, Table 4-5).

Screening of SNP markers for genotyping

1) Screening of SNPs and DNAs by signal call scores for genotyping on CitSGA-1

One hundred and ninety-two DNA samples (Table 4-2) were genotyped using *CitSGA-1* with 384 SNPs, which resulted in a total of 73,728 individual SNP calls. However, the results included 2169 (2.9%) "No Calls," based on the aforementioned criteria, obtained using the GenCall software. The GenCall scores generated are primarily designed for ranking and filtering out failed genotypes, sample DNAs, and/or

SNPs, and the scores have values from 0 to 1. Scores below 0.2 indicate poor quality of signal and were termed as No Calls for failed genotypes, while scores above 0.7 usually indicate well-behaving genotypes.

To evaluate the typing accuracy for each SNP on the array, the call frequency score, which is the ratio of the number of samples on which the genotyping succeeded among the total 192 samples, was applied. The call frequency scores over 0.9 indicate valid SNPs according to the manufacturer's criteria. Thus, 15 SNPs (SI066, SI087, SI090, SI121, SI147, SI225, SI249, SI256, SI303, SI310, SI319, SI354, SI364, SI370 and SI377) were invalid and omitted by the call frequency scores from the following analyses (Table 4-3).

For evaluation of DNA samples, we used "GC10" and "GC50" scores that are calculated by taking the 10th and 50th (median) percentile of the GenCall scores. DNA samples with GC10 \geq 0.5 and GC50 \geq 0.7 were identified as valid according to the manufacturer's criteria. As a result, eight DNA samples, QT18, QT73, QT86, QT87, QT88, TY50 ('Osceola'), TY62 ('Kankitsu Chukanbohon Nou 5 Gou'), and TY99 ('Kincy'), were excluded using the proceeding analyses. Therefore, a total of 184 DNA sample calls were selected as reliable DNA samples. The 184 DNA samples included replicates, three 'HF9' (TY009, TY010, and TY012), and two 'Tamami' (TY048, TY057); therefore, the number of independent DNA samples was 181.

The analysis on 184 DNA samples, including the replicates, with 369 SNPs resulted in a total of 67,896 (92.1%) individual genotyping calls, in which 142 No Calls remained.

2) Exclusion of Monomorphic SNPs

We searched for monomorphic SNPs among the remaining 369 SNPs. Consequently, 26 SNPs were called termed as the single homozygous genotype across

77

all the DNA samples, and 17 SNPs were also called as the single homozygous genotype but with No Calls in some DNA samples. Thus, these 43 SNPs were judged as monomorphic SNPs and were omitted from the following analyses (Table 4-3). A total of 326 SNPs, including 59,784 individual genotyping calls with 80 No Calls, were used for further analyses.

Monomorphic rates among the three sources of SNP discovery, the detection from comparing eight citrus cultivars, the detection by comparing two citrus cultivars and the detection *in silico*, were 8.3%, 14.6% and 43.8%, respectively.

3) SNP typing validation by parentage discrepancy

We used the parentage analysis as another evaluation step for evaluating the reliability of SNP genotyping, since the genotype of an SNP should be the combination of the parental genotypes according to the co-dominant inheritance mode. In a certain SNP, if a discrepancy of parentage exists between the parents and progeny, at least one of the parents or progeny will have been mis-genotyped. Therefore, the analysis provides important information on the evaluation of accuracy of SNP genotyping and the omission of the invalid SNPs.

Table 4-2 shows all the 77 combinations of parent-progeny relationships among cultivars used in SNP genotyping. Among them, TY50, TY62 and TY99 had already been omitted by the GenCall score-based criteria, and TY2 (No.971594), TY3 (No.971614), TY21 ('Kuchinotsu 36 Gou'), TY28 (KyEn5-En-6), TY79 ('Reiko'), TY47 ('Encore'), TY56 ('Setoka'), TY97 ('Kinnow'), and TY91 ('Southern Red') were omitted from the analysis because they showed mismatches in a previous lineage test using MARCO (Fujii et al., 2010b). The remaining 65 combinations of parent-progeny, in which discrepancies had not been detected previously, were used in the genotype

assay. However, 382 discrepancies of parentage were detected in 29 SNPs including 35 No Calls. Fifty of 65 combinations of parent–progeny had discrepant SNPs. Therefore, these discrepancies would be derived from miscalling the genotyping of 29 SNPs but not from a misunderstanding of lineages. Thus, the 29 SNPs were omitted from the following analyses. At that point, a total of 297 SNPs, including 54,648 individual genotyping calls with 45 No Calls remained (Table 4-3).

Re-construction of a set of SNP markers screened by the validation cut-off procedure

1) Reduction of SNPs that have No Call

Previous validation procedures for SNP genotyping lead to the deletion of 2124 No Calls from a total of 73,728 individuals analyzed. Only 45 No Calls remained in 20 SNPs representing 3680 genotyping calls in 184 DNA samples. We decided to delete the No Call SNPs to keep the robustness of the SNP markers for many citrus cultivars and progenies. Consequently, the 20 SNPs were omitted from the following analyses. Therefore, the 277 SNPs that remained, which included 50,968 individual genotyping calls, were selected as reliable SNPs (Table 4-3).

2) Reproducible and non-redundant SNP set

Among the remaining 277 SNPs that were selected by previous steps as reliable, nine SNPs appeared in replicate to check the reproducibility of the genotyping. Those included pairs of SI15 and SI337, SI19 and SI30, SI28 and SI292, SI95 and SI181, SI124 and SI284, SI170 and SI302, SI201 and SI252, SI220 and SI315, and SI272 and SI327. Among the paired SNP markers, no different genotyping were observed. Therefore, we eliminated the replicates from the 277 SNPs and selected the remaining 268 as independent reliable SNPs in *CitSGA-1*.

Reproducibility was also investigated for the 268 reliable SNPs. The reproducibility of the assay was evaluated using three sample replicates of HF9 (TY9, TY10, and TY12) and two sample replicates of 'Tamami' (TY48 and TY57) (See Table 4-2). All genotypes were concordant among replicates in all reliable 268 SNPs. Moreover, the reproducibility of the assay was evaluated using two SNP replicates from the nine SNP pairs mentioned above. All genotypes were concordant among replicates among replicates in the 184 samples.

3) Source of SNP detection and detection rate of reliable SNPs

The 277 reliable SNPs, including replicates, were classified by the sources of SNP detection. As described previously, the first class of SNPs were derived from the comparisons of eight citrus cultivars, and these comparisons provided 212 (77.2%) of the 286 SNPs placed on *CitSGA-1*. In the second class, where SNPs were derived from the comparison of two citrus cultivars, 'Okitsu 46 Gou' and 'Kankitsu Chukanbohon Nou 5 Gou', 57 reliable SNPs (69.5%) were observed out of 82 SNPs tested. In the third class, using the *in silico* source, the number of reliable SNPs was 8 (50.0%) of 16 assayed SNPs. The success rate of the *in silico* source was obviously inferior to that of the wet sequence comparison sources, especially since 7 of 16 (43.7%) assayed SNPs were monomorphic (Table 4-3).

Evaluation of Applicability of SNP genotyping

1) Ratio of heterozygous loci

The percentage of heterozygous SNP loci in the 268 reliable SNPs varied among 98 cultivars from 8.9% (TY69, 'Hirado Buntan' pomelo, *C. grandis* Osbeck) to 70.7% (TY59, 'Trovita' orange) with an average of 41.2% and a median of 44.7% (Table 4-6).

The percentage of heterozygous SNP loci in the 268 reliable SNPs varied from 1.0% (SI021, SI021, SI074, SI115, SI333, and SI360) to 80.6% (SI202) with a median of 45.9% (Table 4-4).

2) Mapping to Citrus genome of STS that originates SNP

The whole genome sequences for Clementine (*C. clementina*), as constructed by JGI, are now available on the Citrus Genome Database (http://www.citrusgenomedb.org/). The Clementine genome (v. 0.9) is 296 Mb spread over 1128 scaffolds with 2.3% gaps at 6.5× coverage.

We have mapped STSs that originate SNPs to both scaffolds by BLASTN. Of 384 STSs that originated SNPs, the e-value of 3 in Clementine were larger than 1E-10 (Table 4-4) and scaffolds were not identified between them.

3) Minimal marker sets for cultivar identification

It is sometimes unnecessary to use all the DNA markers listed to discriminate all the cultivars of a particular crop. That is, if a minimal marker set, a marker set that can differentiate between all cultivars shown in a cultivar/marker type table and that is as small as possible, is found, it is possible to discriminate cultivars efficiently both in terms of labor and time. We attempted to identify SNPs in the present study using the program, MinimalMarker described in Chapter 3.

We used a genotyping subset consisting of 98 germplasm accessions and 246 SNPs that showed independent and reliable genotyping results for MinimalMarker. The program outputted 4607 minimal marker sets containing seven markers, *i.e.* SI001, SI006, SI009, SI131, SI191, SI247, and SI259. By using 7 markers, all 98 germplasm accessions could be discriminated from each others.

Discussion

Throughput of SNP genotyping in citrus

In this research, we constructed a prototype 384 SNP citrus array (*CitSGA-1*) for the GoldenGate Assay and in addition performed a survey to obtain reliable SNPs using this system. We successfully applied this array to SNP genotyping in citrus. In total, SNP genotype data were obtained for 351 (91%) of the 384 SNPs on *CitSGA-1* (Table 4-5). The 91% success rate is comparable to the 90% success rate previously reported in barley (Rostoks et al., 2006), 89% in soybean (Hyten et al., 2008), and 81.6% and 82.0% in white spruce and black spruce, respectively (Pavy et al., 2008).

Marker data sets derived from DNA markers often contain missing or questionable genotype calls (Close et al., 2009). Therefore, we have eliminated missing or questionable genotype calls in several steps, such as monomorphic SNPs, that have discrepancies of parentage or No Calls. Consequently, 268 independent reliable SNPs have been obtained. Through the analysis, it was recommended to validate the following procedures: (1) Adoption of SNPs by call frequency scores (over 0.9) according to the manufacturer's criteria, (2) Adoption of sample by GC10 and GC50 scores according to the manufacturer's criteria, (3) Removal of No Call SNPs, (4) Removal of SNPs with discrepancy of parentage, and (5) Removal of No Call SNPs.

Comparison of sources for SNP discovery on reliability of genotyping

To detect SNPs for *CitSGA-1* we used three sources, two re-sequencing sources and an *in silico* source. As shown in the results, 212 of the 286 (77.2%) reliable SNPs were from the eight citrus source and 57 of the 82 (69.5%) reliable SNPs were from the two cultivars source. SNPs from the genomic sequence comparison among the eight citrus cultivars had a higher SNP genotyping success rate than those from the comparison of the two cultivars. However, SNP success rates were not significantly different. The reason may be that the cultivars used as the two cultivar sources, 'Okitsu 46 Gou' and 'Kankitsu Chukanbohon Nou 5 Gou' are hybrids derived from plural sources with diversified genome sequences. SNPs in genomic sequences from these two cultivars would widely cover those obtained from the eight cultivars.

Compared with the two re-sequencing sources, the number of reliable SNPs using the *in silico* source was 8 of the 16 (50.0%) assayed SNPs. The success rate of the *in silico* source was obviously inferior to that of the wet sequence comparison sources, especially since 7 of the 16 (43.7%) assayed SNPs were monomorphic (Table 4-3). A similar tendency was also observed in the monomorphic ratios. Among the SNPs detected by comparisons of two citrus cultivars, the incidence of monomorphism may be caused by plural targeted genes existing in the genome. The high monomorphic rate of SNPs detected by the *in silico* source may be due to the EST sequence errors and the assembly of ESTs that were derived from different transcript regions. However, the cause of monomorphisms in SNPs detected from comparing eight citrus cultivars remains unclear.

Applicability of cultivar genotyping of CitSGA-1

When the number of No Calls of each DNA sample was counted, it was the largest in TY69 ('Hirado Buntan' pomelo) with 20. Five of the 20 No Calls occurred in only 'Hirado Buntan'. This may be due to mis-priming or non-priming of the primer. Because pomelo is classified distantly from other mandarins used in this assay by DNA markers (Federici et al., 1998), it suggested that there were a lot of SNPs in pomelo germplasms, which were not revealed while comparing the limited cultivars mainly consisting of mandarins and sweet orange. It was considered that the above mentioned primers would not function only in 'Hirado Buntan' for the SNP assay; however, pomelo is an important breeding parent in Japan so we eliminated SNPs that would be less available for pomelo. For further analysis, allele or haplotype diversity in pomelo and mandarins in relation to the lineages of grapefruit or sweet oranges should be discussed based on detailed data.

Possible application of CitSGA-1

The number of chromosomes in haploid citrus is nine generally, but the number of SNPs per chromosome is 43 in average when all the 384 SNPs on the genotyping array were available. Therefore, the prototype 384 SNP array could be useful to roughly map the breeding trait loci at the marker density depending on the number of heterozygous loci for each cultivar. However, the information obtained by the prototype analysis system in the experiment would be applicable to construct a higher multiplex custom assay such as an over 1500 SNPs system. In addition, since most of the STSs were mapped on scaffolds by whole genome analysis of clementine, as shown in Table 4-4, tight mapping could be performed.

Moreover, it was shown that 98 germplasm accessions could be identified by combining the reliable SNPs obtained in this study. Therefore, these SNPs are immediately applicable for citrus cultivar identification.

STS name	SNP name ^a	DDBJ EST accession number for STS primer design	Species of EST derived ^b	Assigned Arabidopsis locus	Annotation of Arabidopsis locus
A10014	SI058:SI153:SI312	C95210	Cu	AT5G25110.1	CIPK25; SnRK3.25
Al0218	SI350	C95269	Cu	AT4G11150.1	TUF (VACUOLAR ATP SYNTHASE SUBUNIT E1)
A10302	SI090:SI311	C95329	Cu	AT3G57520.2	AtSIP2 (Arabidopsis thaliana seed imbibition 2)
A10304	SI259: SI293	C95332	Cu		no homology
A10307	SI029	C95335	Cu	AT1G69530.2	ATEXPA1 (ARABIDOPSIS THALIANA EXPANSIN A1)
A10308	SI045	C95336	Cu	AT4G21490.1	NDB3; NADH dehydrogenase
A10327	SI065:SI344	C95360	Cu	AT1G12440.2	zinc finger (AN1-like) family protein
A10329	SI185	DC892963	Cu		no homology
A10409	SI201:SI252	C95388	Cu	AT4G15560.1	CLA1 (CLOROPLASTOS ALTERADOS 1)
A10413	SI275:SI299	C95392	Cu	AT3G23920.1	BAM1 (BETA-AMYLASE 1)
A10415	SI120:SI310	C95396	Cu	AT5G19010.1	MPK16
Al0417	SI244:SI255	C95398	Cu		no homology
Al0515	SI178	DC893061	Cu	AT2G26330.1	ER (ERECTA)
A10524	SI043-SI341	C95551	Cu	AT5G02290.2	NAK
410625	\$1329	C95496	Cu	AT5G60870.2	regulator of chromosome condensation (RCC1) family protein
A10633	SI123	C95520	Cu	AT1G28520.2	VOZI (VASCULAR PLANT ONE ZINC FINGER PROTEIN)
A10635	\$1212	C95540	Cu	AT1G20520.2	working hinding
A10637	51515	C95540	Cu	AI3013223.1	
A10637	81353	C95541	Cu	1720210/01	no nomology
B10003	51354	DC884981	Cu	AT3G51860.1	CAX3 (CATION EXCHANGER 3)
Bf0004	81273	DC884983	Cu	AI 3G49140.1	unknown protein
Bf0005	S1194	DC884984	Cu	A12G33700.1	protein phosphatase 2C putative
Bf0008	SI309	DC885005	Cu	AT3G17980.1	C2 domain-containing protein
Bf0011	SI218	DC885033	Cu	AT5G20080.1	NADH-cytochrome b5 reductase putative
Bf0024	SI093	DC885129	Cu	AT1G43900.1	protein phosphatase 2C putative
Bf0027	SI372	DC885151	Cu	AT4G25100.4	FSD1 (FE SUPEROXIDE DISMUTASE 1)
Bf0028	SI001	DC885165	Cu	AT1G11720.1	ATSS3 (starch synthase 3); starch synthase
Bf0029	SI193:SI283	DC885170	Cu	AT3G25820.1	ATTPS-CIN (terpene synthase-like sequence-18-cineole)
Bf0033	SI356:SI379	DC885228	Cu	AT4G30210.2	ATR2 (ARABIDOPSIS P450 REDUCTASE 2)
Bf0103	SI155	DC885333	Cu	AT5G08100.1	L-asparaginase
Bf0109	SI233	DC885420	Cu	AT2G40490.1	HEME2; uroporphyrinogen decarboxylase
Bf0110	SI297	DC885426	Cu	AT3G63520.1	CCD1 (CAROTENOID CLEAVAGE DIOXYGENASE 1)
Bf0115	SI054:SI295	DC885474	Cu	AT4G34640.1	SQS1 (SQUALENE SYNTHASE 1)
Bf0116	SI260	DC885486	Cu	AT2G13360.2	AGT (ALANINE:GLYOXYLATE AMINOTRANSFERASE)
Bf0123	SI141	DC885557	Cu	AT5G01220.1	SQD2 (sulfoquinovosyldiacylglycerol 2
Bf0130	SI063:SI188	DC885666	Cu	AT5G51380.1	F-box family protein
Bf0145	SI272:SI327:SI368	DC885769	Cu	AT5G02810.1	PRR7 (PSEUDO-RESPONSE REGULATOR 7)
Bf0147	SI165	DC885795	Cu	AT4G12320.1	CYP706A6
Bf0150	SI316:SI370	DC885821	Cu	AT1G79440.1	ALDH5F1
Bf0158	SI376	DC885888	Cu	AT5G51190.1	ERF (ethylene response factor)
Bf0159	SI074	DC885890	Cu	AT3G27090.1	unknown protein
Bf0161	SI089:SI348	DC885944	Cu		no homology
Bf0164	SI263	DC885962	Cu	AT1G765501	pyrophosphate-fructose-6-phosphate 1-phosphotransferase alpha subunit putative
Bf0165	SI280	DC885967	Cu	AT5G47120.1	ATBI1 (BAX INHIBITOR 1)
Bf0171	\$1381	DC886014	Cu	111001/12011	no homology
Bf0174	\$1282	DC886036	Cu	AT5G63120.2	athylana responsive DEAD box PNA balicase nutative (PH30)
Bi0174	\$1262	DC886050	Cu	AT1G18640.2	DSD (2 DEOSDEOSEDINE DEOSDEATASE)
DI01//	51000	DC000070	Cu Cu	AT 1018040.2	2 avaglutarata danandant diavuganasa nitetiin
B10185	51508	DC886132	Cu	AT 50 59 50.1	2-oxogiutarate-dependent dioxygenase putative
BI0193	51100:51109	DC886216	Cu	A15048150.2	rALL (phytochrome a signal transduction 1)
Bt0195	\$1369	DC886240	Cu	AY607026.1z	Citrus reticulata: NHX1 gene
Bf0200	\$1335	DC886299	Cu	AT1G25350.1	OVA9 (ovule abortion 9)
Bf0204	SI326	DC886340	Cu	AT5G67030.1	ABA1 (ABA DEFICIENT 1)
Bf0205	SI236	DC886360	Cu	AT2G23320.1	WRKY15; calmodulin binding
Bf0212	SI332	DC886446	Cu	AT3G01500.3	CA1 (CARBONIC ANHYDRASE 1)
Bf0213	SI097	DC886474	Cu	AT4G12770.1	heat shock protein binding
Bf0229	SI253	DC886577	Cu	AT4G14040.1	SBP2 (SELENIUM-BINDING PROTEIN 2)
Bf0233	SI359	DC886598	Cu	AT2G45550.1	CYP76C4
Bf1117	SI224	DC885323	Cu		no homology
Bf1186	SI245	DC885875	Cu		no homology

Table 4-1 Relationship of assigned Arabidopsis loci, and their annotation, to STSs and SNPs on the citrus genotyping array CitSGA-1.

SNF nume SNF nume DBM ST actional actions Assigned actional actional actionactional actional actionactional actional actionacti	Continued					
B1204 55/64 DCRS159 C.u. ATICOD12.1 Imilian Lancedure protein prainive B1208 S1707 DCRS159 Cu. ATICOD12.1 Article protein prainive B1208 S123 DCRS0409 Cu. ATICOD1201 HASI (SDAAVI ASE 5) Cp0619 S133 DCRS0409 Cu. ATICOD2011 HASI (SDAAVI ASE 5) Cp0679 S133 DCRS0411 Cu. ATICOD2011 HASI (SDAAVI ASE 5) Cp0674 S133 DCRS0424 Cu. ATICOD2014 HaSI (SDAAVI ASE 5) Cp173 S127 S1256 CCRS04341 Cu. ATICOD2014 HaSI (SDAAVI ASE 5) Cp173 S127 S1256 CCRS04341 Cu. ATICOD2014 HASI (SDAAVI ASE 5) Cp174 S127 S1256 CCRS0434 Cu. ATICOD2014 HASI (SDAAVI ASE 5) F0104 S164 DCRS049 Cu. ATICOD2014 HASI (SDAAVI TC CARDOXYLASE 5) F0104 S164 DCRS0497 Cu. ATICOD2014 HASI (SDAAVI TC CARDOXYLASE 5) F0104 S164 DCRS0410 Cu. ATICOD2014 HASI (SDAAVI TC CARDOXYLASE 5) F0104 <td< th=""><th>STS name</th><th>SNP name^a</th><th>DDBJ EST accession number for STS primer design</th><th>Species of EST derived^b</th><th>Assigned Arabidopsis locus</th><th>Annotation of Arabidopsis locus</th></td<>	STS name	SNP name ^a	DDBJ EST accession number for STS primer design	Species of EST derived ^b	Assigned Arabidopsis locus	Annotation of Arabidopsis locus
H128 S7/8 DC88 Co. AF4626601 induct protein patients BD018 S5122 DC8850 Co. AF4626602 SAL SIGAAVLASE 7 Cy689 S155 DC87310 Ch AF4263702 Inchormance patients Cy689 S154 DC87312 Cl AF4263702 Inchormance patients Cy689 S155 DC87312 Cl AF4606802 GRA Michaes alphaSen Koll Statum Cy6174 S157 DC87318 C.C. AF4606802 GRA Michaes alphaSen Koll Statum GRA Michaes alphaSen Koll Statum Cy6174 S157 DC88188 C.C. AF3626010 HC14EXERDERULXEE GRA Michaes alphaSen Koll Statum F9010 S156 DC88199 C.G. AF362010 HC14EXERDERULXEE GRA Michaes alphaSen Koll Statum GRA Michaes AlphaSen Koll Stat	Bf1204	SI364	DC885762	Cu	AT1G20120.1	family II extracellular lipase putative
B2018 S122 DC68609 Cu AT42090011 SX1 (SDAMYLARE 1) Cy6819 S007 DC68949 GUS AT4635490 Lead Analyses protein Cy6979 S1340 CK33549 Cu AT46354001 GUS domini-containing protein Cy1713 S127-S1296 CK33549 Cu AT4604001 GUS domini-containing protein Cy1714 S144 DC688193 Cu AT4604001 GUS domini-containing protein Cy1714 S1474 DC688193 Cu AT46029401 MC61 (MS00 (MIN1 CAS1) P10124 S1167-S272 DC688097 Cu AT4602911 GUS domini-containing region many sectors P10124 S1167-S272 DC688097 Cu AT4602911 CuB (MS00 (MIN1 CAS1) P10143 S1167 DC688010 Cu AT4603211 cals region	Bf1208	SI108	DC885159	Cu	AT4G26600.1	nucleolar protein putative
Cy689 SU05 CCS34105 FM AT203292.1 Quebase alphabes fold minity protein Cy6890 SU35 CCS34105 Maxematic CAC (RUBISCO ACTIVASE) Cy6960 SU340 CXR34341 Cu AT2037930 CXC (RUBISCO ACTIVASE) Cy6976 SU307 CR33438 Cu AT2603801 CR6 demain-containing protein Cy6976 SU27 SU2731220 CCR34748 Cu AT3603801 SU6 demain-containing protein Cy6174 SU37 DCR38048 Cu AT3603801 SU6 demain-containing protein Cy6174 SU67 DCR38049 Cu AT3604801 SU6 demain-containing protein P1019 SU24 DCR38049 Cu AT3604301 RUERLY (LURANT EXCRUDUX1SE2) P1019 SU27 DCR38109 Cu AT3604311 atalytic-contain binding 'logicalse hydrolyzing Oglycoyi compounds P1019 SU27 DCR38109 Cu AT3604314 atplic-contain binding 'logicalse hydrolyzing Oglycoyi compounds P1019 SU25 DCR3810 Cu AT36043181 <td>Bf2018</td> <td>SI232</td> <td>DC886503</td> <td>Cu</td> <td>AT4G09020.1</td> <td>ISA3 (ISOAMYLASE 3)</td>	Bf2018	SI232	DC886503	Cu	AT4G09020.1	ISA3 (ISOAMYLASE 3)
CybP0 513 CDS121 CDS125 Pite All Constraints CybP0 S138 CCS125 Cl AT203700. RC4(REICX OCTTVAST) CybP0 S139 CR33293 Cu AT462500. ClS30200. ClS30293 Cyb124 S142 CR33293 Cu AT462500. ClS30293 Clu AT462400. ClS30294 ClS30294 ClS3029 ClS30294	Cp0813	SI047	DC898430	Cu	AT2G36290.1	hydrolase alpha/beta fold family protein
Cy6970 S134 DC/S227 CI AT2C/9776.3 ACA (RUBINCO ACTIVASI) Cy6976 S140 CK33441 Ca AT4627601 CB domain-containing motion Cy1718 S127 S1226 CK33333 Ca AT4620801 US domain-containing motion Cy1718 S127 S1226 CK33334 Ca AT4620801 US domain-containing motion Cy1718 S127 S1226 CK33344 Ca AT36030910 US domain-containing motion F1010 S1246 DCS88929 Ca AT3603010 ITH (TMANRE EXPCUENTOL 1) EXPL F1014 S116 DCS8890 Ca AT3602305 IE (RURANTE EXPCUENTOL 1) EXPL F1014 S116 DCS8810 Ca AT4602750 IC (RURANTE EXPL IC (RURANTE EXPL F1014 S105 DCS8810 Ca AT46027510 INFCS (MADSOLPYNINATE CARCENTAESE 2) F1015 S207 DCS8810 Ca AT46027510 INFCS (MADSOLPYNINATE CARCENTAESE 2) F1015 S207 DCS8810 Ca AT46027510	Cp0849	SI355	CD574105	Pt	AT2G38550.1	unknown protein
Cy069 S130 CK33441 Cu ATG 556401 End-framemizen prainive Cy1624 S1397 CK333593 Cu ATG 640080. epina N=terminal hemology (ENTH) domai-containing protein Cy1234 S1404 DCR83048 Cu- XT 650400. ASI factorial ASI factorial Cy1234 S1404 DCR83049 Cu ATG 20400. RCS (UNSPORE)(UNSPC 64000000) F10144 S1167.3272 DCR83097 Cu ATG 202400. RTG (CYR)(UNSPC 640000001) Cu ATG 20240. RTG (UNSPORE)(UNSPC VIXPUTXPUTXF CAREOXPLASE 2) F10143 S1167.3272 DCR83079 Cu ATG 20251. CER (ECERTERIUM T Ch 4000000000000000000000000000000000000	Cp0870	SI338	DC892827	Cl	AT2G39730.3	RCA (RUBISCO ACTIVASE)
Cy124 S1273 S2B6 CH3233 Cu AT46274601 CBS domain-containing proxim Cy1748 S1273 S2B6 C193233 Cu AT5604001 GBS ribesmal protein L24 chloroplast (C124) Febrie S1264 DCS85034 Cu AT1620401 TH11 (THAMINE REQUENTS 1) Febrie S1264 DCS85039 Cu AT1622401 TH11 (THAMINE REQUENTS 1) Febrie S1264 DCS8809 Cu AT1622401 TH11 (THAMINE REQUENTS 1) Febrie S1264 DCS8809 Cu AT1622401 TH11 (THAMINE REQUENTS 1) Febrie S1267 DCS88109 Cu AT16022401 CT81 (CTA) transmithme receptor protein kinase Febrie S1267 DCS88109 Cu AT4637210 IPCE (CNOLENAL FACTOR 1) Febrie S1267 DCS88109 Cu AT4637210 IPCE (CNOLENAL FACTOR 1) Febrie S1263 DCS88101 Cu AT46372101 IPCE (CNOLENAL FACTOR 1) Febrie S1263 DCS88101 Cu AT46037201 IPCE (CNOLENAL FACTOR 1) </td <td>Cp0996</td> <td>SI340</td> <td>CK938441</td> <td>Cu</td> <td>AT1G56560.1</td> <td>beta-fructofuranosidase putative</td>	Cp0996	SI340	CK938441	Cu	AT1G56560.1	beta-fructofuranosidase putative
Cy128 SI25:2526 CU3233 CU AF4-6408.00 epsil N-terminal bonology (ENTH) dominational transmit protein Edp002 S1092 DC381544 Cu AT5669101 AGL8 (agamea-like k) Piol10 S1104 DC381504 Cu AT5669101 AGL8 (agamea-like k) Piol13 S1164 DC388059 Cu AT5669101 FR (ERCTA), transmembrane receptor piole in fusice Piol14 S1161 DC388077 Cu AT56241181 cathylic/ cations binding / hydralane hydrolyzing O-glycoxyl campounds Piol23 S1202 DC388100 Cu AT56241181 cathylic/ cations binding / hydralane hydrolyzing O-glycoxyl campounds Piol23 S1202-S1075 DC388100 Cu AT45637801 NICS (Nucleosamechoreantin ascenshy factor prop C 5) Piol23 S1205-S1075 DC388100 Cu AT45637801 NICS (Nucleosamechoreantin ascenshy factor prop C 5) Piol23 S1205-S1075 DC388100 Cu AT45037201 NICS (Nucleosamechoreantin ascenshy factor prop C 5) Piol24 S1075 DC388105 Cu AT45037201 NICS (NUCO 10A)	Cp1624	SI307	CF835489	Cu	AT4G27460.1	CBS domain-containing protein
Cp114 JU/04 DC83594 Cu AT3C54400. 905 Discoral protein L34 discoglass (CL2) Ph010 S126 DC83594 Cu AT3C242001 TH1 (THAMINE REQUIRING 1) Ph014 S151 DC83890 Cu AT3C242001 ATPC2 (PH05PH00NOLP PRUVATE ABXYLASE 2) Ph014 S151 DC83890 Cu AT3C242001 ATPC2 (PH05PH00NOLP PRUVATE ABXYLASE 2) Ph0159 S1207 DC83807 Cu AT3C232181 CHERCETA, transmithment ecopar potein kinase Ph0150 S1207 DC83810 Cu AT4C372191 NFC5 CNoIcosomethomatin ascembry factor prop C 5 Ph0231 S105.5107 DC838140 Cu AT4C37210 rybits can bennology Ph0231 S105.3107 DC838130 Cu AT4C375210 rybits can bennology Ph0231 S105.310 DC838130 Cu AT4C3175310 rybits can bennology Ph0241 S107.310 DC838137 Cu AT4C3175310 rybits can bennology Ph0251 S105.3100 DC838137 Cu AT4C3175310 <td< td=""><td>Cp1738</td><td>SI237:SI296</td><td>CK933293</td><td>Cu</td><td>AT4G40080.1</td><td>epsin N-terminal homology (ENTH) domain-containing protein</td></td<>	Cp1738	SI237:SI296	CK933293	Cu	AT4G40080.1	epsin N-terminal homology (ENTH) domain-containing protein
Edi/D2 SID2 DC88893 Cu AT35009101 ACL8 (agamoshick is) PH0110 SID4 DC888039 Cu AT2642901 ATTPC2 (PH0SPH0ENOLPYRUVATE CARBOXYLASE 2) PH0143 SID61 DC888039 Cu AT2642901 RERECTA): transmemkrae receptor protein knase PH0144 SID61 DC888061 Cu AT3623231 ERE (ECR1PERLMA) Execution (CR1PERLMA) PH0140 SID29 DC888100 Cu AT3623181 cathylic/ catoo binding //ydolase bydolyzing O-gycoyl componds PH0233 SID29.S1D79 DC888100 Cu AT36242811 PR01/PC01/PC01/PC01/PC01/PC01/PC01/PC01/PC	Cp2154	SI164	DC887048	$\mathbf{C}n\times\mathbf{C}k$	AT5G54600.1	50S ribosomal protein L24 chloroplast (CL24)
Field Stafe DCS88021 Cu ATTG22400 THI (THAMNE REQUERNCI) F00143 S161 DCS88059 Cu ATTG22030.1 ER (EBECTA); transmembrane receptor protein kinane F00144 S191 DCS88051 Cu ATTG22030.1 ER (EBECTA); transmembrane receptor protein kinane F00159 S1227 DCS88071 Cu ATTG22030.1 ERC (EBECTA); transmembrane receptor protein kinane F00159 S1227 DCS88016 Cu no bomology F00123 S1025 S1079 S1169 DCS88161 Cu no bomology F0023 S1025 S1079 S1169 DCS88161 Cu AT4G25220 tyceake family protein F0034 S1053 DCS88216 Cu AT4G152501 tyceake family protein F0034 S1053 DCS88316 Cu AT4G152501 tyceake family protein F0035 S0362, S120 DCS88317 Cu AT4G152501 tyceake family protein F0037 S125, S101 DCS88315 Cu AT4G152501 tyceake family protein F00372<	Edp002	SI092	DC885494	Cu	AT5G60910.1	AGL8 (agamous-like 8)
Ph0141 SU67 DCS88099 Cu AT2G42001 ATPC2 (PH02PH0EPH0EPH0EPH0EPH0EPH0EPH0EPH0EPH0EPH0E	Fb0110	SI246	DC888023	Cu	AT1G22940.1	TH1 (THIAMINE REQUIRING 1)
Ph0143 SD5161 DC888099 Cu AT2CG520.9 CREICENCTRANCE and SUBSERIAL Cu Ph0144 S1191 DC888007 Cu AT1GG22051 CERICENCTRANCE and SUBSERIAL Cu an homology Ph0123 S2209 DC888100 Cu an homology Ph0233 S1025-S1079-S1169 DC888161 Cu AT4G237301 NFCS (Nacleosomic/shromatin assembly factor group C 5) Ph0234 S109 S1574 DC888161 Cu AT4G23201 Optic (PROTOBERNAL FACTOR 1) Ph0235 S109 S1574 DC888161 Cu AT4G152201 Optic family protein Ph0351 S109 S1574 DC888303 Cu no homology an homology Ph0451 S109 S1274 DC888303 Cu AT4G15201 Optic family protein Ph0452 S109 S1274 DC888303 Cu AT4G15201 Scale family motein Angement protein protein protein protein protein Ph0451 S109 S1274 DC888303 Cu AT4G15201 Scale family motein Angement protein protein protein protein Ph0452 S109 S100 DC888037	Fb0124	SI167: SI212	DC888039	Cu	AT2G42600.1	ATPPC2 (PHOSPHOENOLPYRUVATE CARBOXYLASE 2)
Fb0144 S1919 DC8880671 Cu A TGC20251 CER1 (ECERTERINT 1 Fb0159 S1227 DC888077 Cu A TGC2031 cation binding / hydrolaxe hydrolyzing Orghycoryl compounds Fb0130 S1230 DC888108 Cu an bornology Fb0231 S025 S079 S1106 DC888106 Cu A TGC20320 FyCRC Nucleosomechromatin assembly factor group C 5 Fb0231 S025 S107 S1106 DC888106 Cu A TGC20320 eytleas family protein Fb0301 S105 S127 DC888230 Cu A TGC20320 eytleas family protein Fb0305 S026 S220 DC888303 Cu A TGC2030 macros protein Fb0305 S026 S220 DC888337 Cu A TGC12301 macros protein Fb0305 S026 DC289075 Cu A TGC130301 indicology macros protein Fb0305 S026 DC289075 Cu A TGC130301 indicology macros protein Fb0305 S026 DC289075 Cu A TGC130301 indicology macros protein	Fb0143	SI361	DC888059	Cu	AT2G26330.1	ER (ERECTA); transmembrane receptor protein kinase
Fb01:99 S2227 DC888070 Cu AT5G24181 calalysic canco handing / hydrolase hydrolyzing O-glyceoyl compounds Fb0233 S1209 DC888100 Cu no homology Fb0233 S1205/S109/S1169 DC888160 Cu AT4C377301 NTCS (Nucleossmechanomia assembly factor group C 5) Fb0234 S1209/S107/S1169 DC888216 Cu AT4C37301 NTCS (Nucleossmechanomia assembly factor group C 5) Fb0236 S1198/S1374 DC888236 Cu AT4G33201 cyclase family protein Fb0356 S108/S-S1220 DC888316 Cu AT4G14801 nascent polypeptide associated complex alpha chain protein protein Fb0357 S1218/S130 DC888317 Cu AT4G14801 nascent polypeptide associated complex alpha chain protein protein Fb0357 S1218/S1301 DC888397 Cu AT4G155601 C1A1 (COROPLASTOS ALTERADOS 1) Fb0457 S1218/S1301 DC889716 Cu AT5G37362 ZTL ////////////////////////////////////	Fb0144	SI191	DC888061	Cu	AT1G02205.1	CER1 (ECERIFERUM 1
Fb0180S1209DC88108Cuno homologyFb0233S102-S1079-S1010DC888108CuNCS (Naclossmechtomatin ascentby factor group C-5)Fb0234S120-S1205DC888231CuAT4G325201POE1 (POTODERMAL FACTOR 1)Fb0391S1053DC888231CuAT4G325201cyclase family proteinFb0395S1184DC888236CuAT4G325301cyclase family proteinFb0375S1384DC888236CuAT4G319801no homologyFb0375S1384DC888376CuAT4G175401unknown proteinFb0375S121-S1374DC888375CuAT4G175401unknown proteinFb0375S122-S13743DC888975CuAT4G175401plastid developmental protein DAG patativeFb0375S122-S13743DC888975CuAT4G175401plastid developmental protein DAG patativeFb0375S122-S1374DC889075CuAT4G175401plastid developmental protein DAG patativeFb0375S126-S1370DC889075CuAT4G153701SUT4/SUTA/SUT6/SUTERADOS 1)Fb1611S1071DC890751CuAT4G153701SUT4/SUT708 ATTERADOS 1Fb1615S126-S1370DC890371CuAT4G153701SUT4/SUT708 ATTERADOS 1Fb1616S1074DC890371CuAT4G153701SUT4/SUT708 ATTERADOS 1Fb1617S106-S1177DC890371CuAT4G153701SUT4/SUT708 ATTERADOS 1Fb1617S106-S1177DC890371CuAT4G53701SUT4/SUT708 ATT	Fb0159	SI227	DC888077	Cu	AT5G24318.1	catalytic/ cation binding / hydrolase hydrolyzing O-glycosyl compounds
FM223 SX240 DC88148 Co on beamology FM223 SK025.0079-SH160 DC88160 Ca AT4G29701 NTC5 (Nalcosome/chromatin assembly factor group C 3) FM2243 SK129S-SH26 DC888161 Ca AT4G29701 PUT1 (PROTDREMAL FACTOR 1) FM293 SK198-SH374 DC888236 Ca AT4G297301 evacuantarie-CoA figue family protein FM0451 SK193 DC888236 Ca AT4G197301 naccent polyperjide associated complex alplat chain protein putative FM0452 SK095-SK343 DC888317 Ca AT4G197301 unknown protein FM0457 SK195-SK343 DC888317 Ca AT4G155040 IC1AI (CL0ROPLASTOS ALTERADOS 1) FM0475 SK195-SK343 DC888915 Ca AT4G157301 Bindi developmental protein DAG putative FM0475 SK126-SK191 DC889015 Ca AT1G275102 Bindi developmental protein DAG putative FM0475 SK225 DC889015 Ca AT1G37201 Bindi developmental protein DAG putative FM0495 SK026 DC89001 <	Fb0180	SI209	DC888100	Cu		no homology
F90233 S1025:S1079:S1169 DCS88160 Cu AT4G27730.1 NFCS (Nucleosomec/chromatin assembly factor group C-5) F90293 S120-S1255 DCS88161 Cu AT4G35220 cyclase family protein F90391 S108-S1374 DCS88236 Cu AT4G35200 cyclase family protein F90354 S103-S1374 DCS88316 Cu AT4G163201 no homology F90354 S103-S1270 DCS88317 Cu no homology F90354 S103-S1270 DCS88325 Cu AT4G15801 CLAN (CLOROPLASTOS ALTERADOS 1) F90375 S121-S5100 DCS889015 Cu AT4G15801 CLAN (CLOROPLASTOS ALTERADOS 1) F90376 S122-S DCS889015 Cu AT1G17301 bindingr inositiol or phosphaticylinositol kinase F10411 S1071 DCS89051 Cu AT1G37304 SUV14 (SU(VAR)3-9 HOMCIOG 4 F11731 S1264 DCS89059 Cu AT1G37701 elil division control portin DCC6b parative (CDC6b) F12139 S109-S1117 DCS89037 Cu AT1G37701 <t< td=""><td>Fb0223</td><td>SI240</td><td>DC888148</td><td>Cu</td><td></td><td>no homology</td></t<>	Fb0223	SI240	DC888148	Cu		no homology
FN0234 S1250.S1265 DC 888114 Cu AT2642840.1 PDF1 (PROTODERMAL FACTOR 1) FN0231 S1198.S1374 DC 888231 Cu AT4505320.0 cyclase family protein FN0357 S1384 DC 888303 Cu no homology FN0356 S139 DC 888316 Cu AT47604380.0 no homology FN0356 S1016 / S127 DC 888326 Cu AT1627330.1 unknown protein no homology FN0376 S1015 / S1216 DC 888326 Cu AT1614130.1 plastid developmental protein DAG putative FN0376 S1026 DC 889015 Cu AT2617930.1 plastid developmental protein DAG putative FN1511 S1026 DC 890051 Cu AT1603730.1 SKF 6 STRUBBEILG-RECEPTOR FAMLY 6) FN1515 S1264 DC 890051 Cu AT1603730.1 SKF 6 STRUBBEILG-RECEPTOR FAMLY 6) FN151 S1264 DC 890051 Cu AT1603730.1 SKF 6 STRUBBEILG-RECEPTOR FAMLY 6) FN151 S1269 DC 890333 Cu AT1604730.0 SKF	Fb0233	SI025:SI079:SI169	DC888160	Cu	AT4G29730.1	NFC5 (Nucleosome/chromatin assembly factor group C 5)
Ph293 S1198.S1374 DC 888236 Cu AT4G3520.1 cyclase family protein F10031 S1033 DC 888236 Cu AT4G10480.1 accent polypeptide associated complex alpha chain protein putative F10036 S1036 \cdot S1373 DC 888316 Cu AT4G10480.1 maccent polypeptide associated complex alpha chain protein putative F10037 S1215 S1301 DC 888335 Cu AT4G15560.1 CLA1 (CLOROPLASTOS ALTERADOS 1) F10072 S1215 S1301 DC 888937 Cu AT1G73730 bindiary incoincil or phosphaidylinoxiol kinase F10075 S1224 DC 889976 Cu AT1G73730.1 Bindiary incoincil or phosphaidylinoxiol kinase F10161 S1071 DC 889976 Cu AT1G73730.1 SUVH 45 (WLRAJS-3 HOADLO 4) F191916 S1234 DC 890059 Cu AT1G73730.1 SUVH 45 (WLRAJS-3 HOADLO 4) F191916 S1234 DC 890319 Cu AT1G73730.1 SETA-OHASLA (BARS) HOADLO 4) F191916 S1234 DC 890334 Cu AT4G35700.1 BiTA-OHASLA (BARS 1) (BTA-HYDROXYLASE 1)	Fb0234	SI250:SI265	DC888161	Cu	AT2G42840.1	PDF1 (PROTODERMAL FACTOR 1)
Fb0301S053DC888236Cu	Fb0293	SI198:SI374	DC888231	Cu	AT4G35220.1	cyclase family protein
Fb0357 S134 DC88303 Cu no homology Fb0364 S107. DC88316 Cu AT4G10480 inscent polyspeid associated complex alpha chain protein putative Fb0365 S106.S.232.9 DC883317 Cu no homology Fb0372 S215.S1501 DC88335 Cu AT4G15500 LA1 (CLOROPLASTOS ALTERADOS 1) Fb0976 S22.5 DC888997 Cu AT4G15500 LA1 (CLOROPLASTOS ALTERADOS 1) Fb0976 S102.6 DC889976 Cu AT1G13700 Indiagi inosido or phosphatidylinosida limase Fb1916 S104.6 DC88976 Cu AT1G537000 ICVL(ZETLUPE) Fb1916 S123.6 DC890051 Cu AT1G07201 ell division control protein CDC6b putative (CDC6b) Fb2130 S1069-S1117 DC89021 Cu AT4G18800 AG(AAMOUS) Grad041 S105 DC89137 Cu AT4G18800 AG(AAMOUS) Grad041 S105 DC89137 Cu AT4G18800 AG(AAMOUS) Grad041 S114-S1380 AB075547 Cu AT3G679301 IETLINDEFICIENT 1); zeaxanthin epoxidase </td <td>Fb0301</td> <td>SI053</td> <td>DC888236</td> <td>Cu</td> <td>AT5G63380.1</td> <td>4-coumarateCoA ligase family protein</td>	Fb0301	SI053	DC888236	Cu	AT5G63380.1	4-coumarateCoA ligase family protein
Fb0364S1373DC888316CuAr4G10480.1auscent polypeptide associated complex alpha chain protein putative no homologyFb0372S4062.3243DC888336CuAT4G135600(LANONE proteinFb0976S122.51301DC888335CuAT4G135600(LAICORPLASTOS ALTERADOS 1)Fb0976S122.9DC888997CuAT4G135700Ilexid developmental protein DAG putativeFb0976S122.9DC889975CuAT4G137301Ilexid developmental protein DAG putativeFb19751S126.4DC889766CuAT4G137301RF6 (STRUBBELICARCEPTOR FAMILY 6)Fb1751S126.4DC889766CuAT4G137001RF6 (STRUBBELICARCEPTOR FAMILY 6)Fb1751S126.4DC889766CuAT4G13701cell dvision control protein CDC6b putative (CDC6b)Fb2159S1205S1205CuAT4G13701cell dvision control protein CDC6b putative (CDC6b)Fb2159S1205S1205CuAT4G25701BETA-OHASE 1 (BTA-HYDROXYLASE 1)Gm0041S1009AF296158CuAT4G257001RETA-OHASE 1 (BTA-HYDROXYLASE 1)Gm0043S1232DC893235CuAT4G1670801AIT604701Gm0044S1045AB07547CuAT3G570301LUT2 (UTEIN DEFICIENT 1); zearanthin epoxidaseGm0066S1342AB114651CuAT3G570301LUT2 (UTEIN DEFICIENT 1); zearanthin epoxidaseGm0067S1204AB14655CuAT3G570301LUT2 (UTEIN DEFICIENT 1); zearanthin epoxidaseGm0068S1806 <t< td=""><td>Fb0357</td><td>SI384</td><td>DC888303</td><td>Cu</td><td></td><td>no homology</td></t<>	Fb0357	SI384	DC888303	Cu		no homology
Fb0365 St036-S320 DC888317 Cu no homology Fb0372 St052-S343 DC888326 Cu ATIG27301 inknown protein Fb0827 S1215-S1501 DC888935 Cu ATIG17301 inknown protein Fb0976 S222 DC88907 Cu ATIG114301 plastid developmental protein DAG putative Fb0995 S1026 DC889015 Cu ATIG173701 SRIG STRUBELIG-RECEPTOR FAMILY 6) Fb1916 S0711 DC88976 Cu ATIG73701 SRIG STRUBELIG-RECEPTOR FAMILY 6) Fb1916 S7336 DC890291 Cu ATIG77701 ell division control protein CDC60 putative (CDC6b) Fb2190 S10059 AF296158 Cu ATIG77701 ell division control protein CDC6b putative (CDC6b) Gn0041 S1029 DC89329 Cu ATIG697801 REV (REVOLITA) Gn0043 S1233 DC89375 Cu ATIG697801 REV (REVOLITA) Gn0064 S114-5330 AB075547 Cu ATIG697301 LTIB J	Fb0364	SI373	DC888316	Cu	AT4G10480.1	nascent polypeptide associated complex alpha chain protein putative
Fb0372 S/052:SJ343 DC888326 Cu ATIG27530.1 unknown protein Fb0827 S1215:S1301 DC888355 Cu AT4G15560.1 CLA1 (CLOROFLATSO ALTERADOS 1) Fb0976 S/229 DC888997 Cu ATIG11430.1 plastid developmental protein DAG potative Fb0976 S/229 DC889716 Cu ATIG1740.1 binding / mositol of phosphaidylinositol kinase Fb1611 S1071 DC889716 Cu ATIG37300.1 SR76 (STRUBBELG-RECEPTOR FAMILY 6) Fb1751 S1264 DC890791 Cu ATIG37300.1 SR76 (STRUBBELG-RECEPTOR FAMILY 6) Fb2159 S1205-S1300 DC890329 Cu AT3G13960.1 SUVH4 (SU(VAR)3-9 HOMOLOG 4 Fb2159 S1205-S1300 DC890329 Cu AT4G25700.1 BETA-OHASE (IGETA+HYDROXYLASE 1) Gn0041 S1009 AF296158 Cu AT4G169780.1 AFIH431 Gn0043 S1233 DC893252 Cu ATG669780.1 BETA-OHASE (IGETA+HYDROXYLASE 1) Gn0051 S11445180 AB075547 Cu AT16667800.1	Fb0365	SI036:SI320	DC888317	Cu		no homology
Fb0827 S1215.S1301 DC888335 Cu AT4G15560.1 CLA1 (CLOROPLASTOS ALTERADOS 1) Fb0976 S7229 DC8889917 Cu AT1G1140.1 plastid develomental protein DAG putative Fb0995 S1026 DC888916 Cu AT2G17930.1 binding / inositol or phosphatidylinositol kinase Fb1611 S1071 DC889716 Cu AT5G57360.2 TL/LZEITLUPE) Fb1751 S1264 DC889766 Cu AT5G57360.2 SUL/ZEITLUPE) Fb1751 S1264 DC890051 Cu AT5G57360.2 SUL/ZEITLUPE) Fb1751 S1264 DC890051 Cu AT2G1320.1 SUMSA39 HOMOLOG 4 Fb2130 S1069-S1110 DC890291 Cu AT2G1320.1 BETA-OHASE 1 (BETA-HYDROXYLASE 1) Gn0041 S1032 DC893134 Cu AT4G18960.1 AG (AG AMOUS) Gn0043 S1239 DC893257 Cu AT1G67970.1 ATHB13 Gn0064 S1144:S1380 AB075547 Cu AT1G6790.1 LUT2 (LUTEN DEFICENT 1); zeaxanthin epoxidase <t< td=""><td>Fb0372</td><td>SI052:SI343</td><td>DC888326</td><td>Cu</td><td>AT1G27530.1</td><td>unknown protein</td></t<>	Fb0372	SI052:SI343	DC888326	Cu	AT1G27530.1	unknown protein
Fb0976 S1229 DC888997 Cu ATIG11430.1 plastid developmental protein DAG putative Fb0995 S1026 DC889015 Cu AT2G17930.1 binding / inositol or phosphatidylinositol kinase Fb1611 S1071 DC889716 Cu AT5G3700.2 ZTL (ZETTLUPE) Fb1751 S1264 DC889761 Cu AT5G13960.1 SUVH4 (SU(VAR)3-9 HOMOLOG 4 Fb2130 S1069-S1117 DC890291 Cu AT5G13960.1 SUVH4 (SU(VAR)3-9 HOMOLOG 4 Fb2130 S1069-S1117 DC890291 Cu AT4G2700.1 EFT-oHASE 1 (BETA-HYDROXYLASE 1) Gn0040 S1015-S1337 DC890129 Cu AT4G18960.1 AG (AGAMOUS) Gn0040 S1015-S1337 DC893138 Cu AT4G18960.1 AG (AGAMOUS) Gn0041 S1030 DC893137 Cu AT1G69730.1 HTHB13 Gn0043 S1289 DC893137 Cu AT1G69730.1 LT2 (LUTEN DEFICIENT 1); zeasanthin epoxidase Gn0066 S1352 AB114651 Cu AT5G57030.1 LU72 (LUTEN DEFICIENT 2	Fb0827	SI215:SI301	DC888835	Cu	AT4G15560.1	CLA1 (CLOROPLASTOS ALTERADOS 1)
Fb0995 S1026 DC889015 Cu AT2G17930.1 binding / inositol or phosphatidylinositol kinase Fb1611 S1071 DC889716 Cu AT3G57360.2 ZTL (ZEITLUPE) Fb1751 S1264 DC889876 Cu AT1G53730.1 SRF6 (STRUBBLIG-RECEPTOR FAMILY 6) Fb1916 S1336 DC890051 Cu AT1G57370.1 SRF6 (STRUBBLIG-RECEPTOR FAMILY 6) Fb2130 S1069-S1117 DC890291 Cu AT1G07270.1 elf division control protein CDC6 bp utative (CDC6b) Fb2159 S2205-S1300 DC890329 Cu AT4G25700.1 BETA-0HX0RSL (BETA-HYDROXYLASE 1) Gn0040 S1015-S1337 DC893194 Cu AT4G1890.1 AG (AGAMOUS) Gn0043 S1223 DC893252 Cu AT1G67730.1 REV (REVOLUTA) Gn0044 S1145130 DC893275 Cu AT1G69780.1 ATHB13 Gn0051 S1306-S1366 DC895375 Cu AT1G69780.1 AEV (REVOLUTA) Gn0067 S1204-S1349 AB14651 Cu AT3G67030.1 LUT2 (LUTEIN DEFIC	Fb0976	SI229	DC888997	Cu	AT1G11430.1	plastid developmental protein DAG putative
Fb1611 S1071 DC889716 Cu AT5G57360.2 ZTL (ZEITLUPE) Fb1751 S1264 DC890876 Cu AT1G53750.1 SRF6 (STRUBBELIG-RECEPTOR FAMILY 6) Fb1916 S/236 DC890051 Cu AT3G13960.1 SUVH 48 (VQR3.5-9 HOMOLOG 4 Fb2139 S1069-S1117 DC890291 Cu AT3G13960.1 SUVH 48 (VQR3.5-9 HOMOLOG 4 Fb2159 S1025-S1100 DC890329 Cu AT3G13960.1 SUVH 48 (VQR3.5-9 HOMOLOG 4 Gn0041 S1009 AE296158 Cu AT4G18960.1 AG (AdMOUS) Gn0043 S1035.S1337 DC893194 Cu AT4G18960.1 AG (AdMOUS) Gn0043 S1323 DC895343 Cu AT1G69780.1 ATHB13 Gn0051 S1306-S1366 DC895375 Cu AT1G69780.1 ATHB13 Gn0066 S1352 AB114651 Cu AT1G69780.1 ATB1 (ABD CPCIENT 1); zexanthin epoxidase Gn0069 S1086-S1375 AB114655 Cu AT3G57030.1 LUT2 (LUTEIN DEFICIENT 2); loopene epsilon cyclase	Fb0995	SI026	DC889015	Cu	AT2G17930.1	binding / inositol or phosphatidylinositol kinase
Fb1751 SI264 DC889876 Cu ATIG53730.1 SRF6 (STRUBBELIG-RECEPTOR FAMILY 6) Fb1916 \$\$336 DC890051 Cu AT5G13960.1 SUVH4 (SU(VAR)3-9 HOMOLOG 4 Fb2130 SI069-S1117 DC890291 Cu AT1G07270.1 cell division control protein CDC66 putative (CDC6b) Fb2139 \$\$205.S1300 DC890291 Cu AT12G07310.1 BETA-OHASE I (BETA-HYDROXYLASE 1) Gn0014 \$\$1009 AT293194 Cu AT4C25700.1 BETA-OHASE I (BETA-HYDROXYLASE 1) Gn0040 \$\$1015.S1337 DC893225 Cu AT4G5780.1 REV (REVOLUTA) Gn0043 \$\$1323 DC893225 Cu AT1G6780.1 ATHMUS Gn0044 \$\$104.\$\$1380 AB075547 Cu AT162730.1 F-box family protein Gn0051 \$\$1364.\$\$1380 AB075547 Cu AT3G57030.1 LUT2 (LUTEIN DEFICIENT 1); zeaxanthin epoxidase Gn0066 \$\$1352 AB114651 Cu AT3G57030.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0067 \$\$1204.\$\$1349 AB114655 <td< td=""><td>Fb1611</td><td>SI071</td><td>DC889716</td><td>Cu</td><td>AT5G57360.2</td><td>ZTL (ZEITLUPE)</td></td<>	Fb1611	SI071	DC889716	Cu	AT5G57360.2	ZTL (ZEITLUPE)
Fb1916 SI336 DC890051 Cu AT5G13960.1 SUV14 (SU(VAR)3-9 HOMOLOG 4 Fb2130 S1069.S1117 DC890291 Cu AT1G07270.1 cell division control protein CDC6b putative (CDC6b) Fb2159 SI205.S1300 DC890329 Cu AT4G35700.1 BETA-OHASE 1 (BETA-HYDROXYLASE 1) Gn0014 S1009 AF296158 Cu AT4G35700.1 BETA-OHASE 1 (BETA-HYDROXYLASE 1) Gn0043 S1233 DC893225 Cu AT4G18960.1 AG (AGAMOUS) Gn0044 S1239 DC893543 Cu AT1G69780.1 ATHB13 Gn0051 S1306.S1366 DC895375 Cu AT1G69780.1 FAbst failly protein Gn0064 S1144.S1380 AB07557 Cu AT1G6730.1 ABA1 (ABA DEFICIENT 1); zeaanthin epoxidase Gn0066 S1532 AB114651 Cu AT3G657030.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0067 S1204.S1349 AB114655 Cu AT3G6520.1 CCH1SN DEFATURASE 3; phytoene dehydrogenase Gn0071 S1363 CK935339 Cs	Fb1751	SI264	DC889876	Cu	AT1G53730.1	SRF6 (STRUBBELIG-RECEPTOR FAMILY 6)
Fb2130 S1069:S1117 DC890291 Cu AT1G07270.1 cell division control protein CDC6b putative (CDC6b) Fb2159 Sf205:S1300 DC890329 Cu AT2G43120.1 pirin putative Gn0014 S1009 AF296158 Cu AT4G25700.1 BETA-OHASE 1 (BETA-HYDROXYLASE 1) Gn0040 S1015:S1337 DC893194 Cu AT4G18960.1 AG (AGAMOUS) Gn0043 S1323 DC893225 Cu AT1G67980.1 AFHEVOLUTA) Gn0044 S1206:S1366 DC895335 Cu AT1G67780.1 Fbox family protein Gn0051 S1306:S1366 DC895375 Cu AT1G67730.1 ABA1 (ABA DEFICIENT 1); zeaxanthin epoxidase Gn0066 S1352 AB114651 Cu AT1G67730.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsion cyclase Gn0067 S1204:S1349 AB114652 Cu AT3G5703.01 LUT2 (LUTEIN DEFICIENT 2); lycopene epsion cyclase Gn0071 S1363 CK935329 Cs AT3G5270.10 LUTEIN DEFICIENT 2); lycopene epsion cyclase Gn0074 S1165 C2047 <t< td=""><td>Fb1916</td><td>SI336</td><td>DC890051</td><td>Cu</td><td>AT5G13960.1</td><td>SUVH4 (SU(VAR)3-9 HOMOLOG 4</td></t<>	Fb1916	SI336	DC890051	Cu	AT5G13960.1	SUVH4 (SU(VAR)3-9 HOMOLOG 4
Fb2159 S/205/S1300 DC890329 Cu AT2G43120.1 pirin putative Gn0014 S1009 AF296158 Cu AT4G25700.1 BETA-OHASE 1 (BETA-HYDROXYLASE 1) Gn0040 S1015/S1337 DC893194 Cu AT4G18960.1 AG (AGAMOUS) Gn0043 S1223 DC893225 Cu AT5660690.1 REV (REVOLUTA) Gn0048 S1289 DC895343 Cu AT1G6780.1 ATH13 Gn0051 S1306/S1366 DC895375 Cu AT1G6780.1 ABA1 (ABA DEFICIENT 1); zeaxanthin epoxidase Gn0066 S1352 AB114651 Cu AT1G6780.1 ABA1 (ABA DEFICIENT 1); zeaxanthin epoxidase Gn0067 S1204:S1349 AB114652 Cu AT3G5703.01 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0069 S1086:S1375 AB14655 Cu AT3G57703.01 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0071 S1036 CR33529 Cs AT3G52730.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase If00003 S1130 C22344 Cu	Fb2130	SI069:SI117	DC890291	Cu	AT1G07270.1	cell division control protein CDC6b putative (CDC6b)
Gn0014 S1009 AF296158 Cu AT4G25700.1 BETA-OHASE 1 (BETA-HYDROXYLASE 1) Gn0040 S1015:S1337 DC893194 Cu AT4G18960.1 AG (AGAMOUS) Gn0043 S1323 DC893225 Cu AT5G60690.1 REV (REVOLUTA) Gn0048 S1289 DC895343 Cu AT1G69780.1 AFB13 Gn0051 S1306:S1366 DC895375 Cu AT5G67030.1 ABA1 (ABA DEFICIENT 1); zeaxanthin epoxidase Gn0064 S1144:S1380 AB075547 Cu AT5G67030.1 ABA1 (ABA DEFICIENT 1); zeaxanthin epoxidase Gn0066 S1352 AB114651 Cu AT5G57030.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0067 S1204:S1349 AB14652 Cu AT5G57030.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0069 S1086:S1375 AB14653 Cu AT3G52730.1 CD12 (CAROTENOID CLEAVAGE DIOXYGENASE 1) Gn0071 S1363 CX2934 Cu AT3G52730.1 UD72 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0074 S1176 C20344	Fb2159	SI205:SI300	DC890329	Cu	AT2G43120.1	pirin putative
Gn0040 SI015:SI337 DC893194 Cu AT4G18960.1 AG (AGAMOUS) Gn0043 SI323 DC893225 Cu AT5G60690.1 REV (REVOLUTA) Gn0048 SI289 DC895343 Cu AT1G69780.1 ATHB13 Gn0051 SI306:SI366 DC895375 Cu AT1G69780.1 ARB1 (ABA DEFICIENT 1); zexanthin epoxidase Gn0064 SI144:SI380 AB075547 Cu AT1G60620.1 CRTISO (CAROTENOID ISOMERASE); carotenoid isomerase Gn0066 SI352 AB114651 Cu AT1G6620.1 CUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0066 SI204:SI349 AB11452 Cu AT5G57030.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0066 SI208:SI375 AB114652 Cu AT5G57030.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0074 SI163 CK935329 Cs AT3G6320.1 CUC1 (CAROTENOID CLEAVAGE DIOXYGENASE 1) Gn0074 SI176 AB046992 Cu AT4G14210.1 PDS3 (PHYTOENE DESATURASE 3); phytoene dehydrogenase If00205 SI226	Gn0014	SI009	AF296158	Cu	AT4G25700.1	BETA-OHASE 1 (BETA-HYDROXYLASE 1)
Gn0043 S1323 DC893225 Cu AT5G60690.1 REV (REVOLUTA) Gn0048 S1289 DC895343 Cu AT1G69780.1 ATHB13 Gn0051 S1306/S1366 DC895375 Cu AT1G27340.1 F-box family protein Gn0064 S1144/S1380 AB075547 Cu AT5G67030.1 ABA1 (ABA DEFICIENT 1); zeaxanthin epoxidase Gn0066 S1352 AB114651 Cu AT1G06820.1 CRTISO (CAROTENOID ISOMERASE); carotenoid isomerase Gn0067 S1204/S1349 AB114652 Cu AT5G67030.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0069 S1086/S1375 AB14655 Cu AT5G657030.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0071 S1363 CK935329 Cs AT3G63520.1 CD13 (CAROTENOID CLEAVAGE DIOXYGENASE 1) Gn0073 S1130 C22334 Cu no homology If0205 S/256 C22047 Cu AT3G53790.2 universal stress protein (USP) family protein If0208 S1083:S1317 C22162 Cu AT1G67350.1<	Gn0040	SI015:SI337	DC893194	Cu	AT4G18960.1	AG (AGAMOUS)
Gn0048 SI289 DC895343 Cu ATIG69780.1 ATHB13 Gn0051 SI306.SI366 DC895375 Cu ATIG27340.1 F-box family protein Gn0064 SI144.SI380 AB075547 Cu ATSG67030.1 ABA1 (ABA DEFICIENT 1); zeaxanthin epoxidase Gn0066 SI352 AB114651 Cu ATIG69780.1 LUT2 (LUTEIN DEFICIENT 1); zeaxanthin epoxidase Gn0067 SI204:SI349 AB114652 Cu ATIG657030.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0069 SI086:SI375 AB114655 Cu ATG657030.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0071 SI363 CK935329 Cs AT3G63520.1 CCD1 (CAROTENOID CLEAVAGE DIOXYGENASE 1) Gn0074 SI176 AB046992 Cu AT4G14210.1 PDS3 (PHYTOENE DESATURASE 3); phytoene dehydrogenase 1f0003 SI130 C2234 Cu no homology 1f0206 SI208 C221047 Cu AT3G53790.2 unknown protein (USP) family protein 1f0208 SI083:SI317 C22162 Cu <td>Gn0043</td> <td>SI323</td> <td>DC893225</td> <td>Cu</td> <td>AT5G60690.1</td> <td>REV (REVOLUTA)</td>	Gn0043	SI323	DC893225	Cu	AT5G60690.1	REV (REVOLUTA)
Gn0051 S1306.S1366 DC895375 Cu ATIG27340.1 F-box family protein Gn0064 S1144.S1380 AB075547 Cu AT5G67030.1 ABA1 (ABA DEFICIENT 1); zeaxanthin epoxidase Gn0066 S1352 AB114651 Cu AT1G08820.1 CRTISO (CAROTENOID ISOMERASE); carotenoid isomerase Gn0067 S1204.S1349 AB114652 Cu AT5G57030.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0069 S1086.S1375 AB114655 Cu AT3G5320.1 CCD1 (CAROTENOID CLEAVAGE DIOXYGENASE 1) Gn0071 S1363 CK935329 Cs AT3G63520.1 CCD1 (CAROTENOID CLEAVAGE DIOXYGENASE 1) Gn0074 S1176 AB046992 Cu AT4G14210.1 PDS3 (PHYTOENE DESATURASE 3); phytoene dehydrogenase If0003 S1130 C2234 Cu no homology If0205 S/256 C22047 Cu AT3G53790.2 universal stress protein (USP) family protein If0208 S1083:S1317 C22162 Cu AT1G48460.1 unknown protein If0210 S1042 C22239	Gn0048	SI289	DC895343	Cu	AT1G69780.1	ATHB13
Gn0064SI144:SI380AB075547CuAT5G67030.1ABA1 (ABA DEFICIENT 1); zeaxanthin epoxidaseGn0066SI352AB114651CuAT1G06820.1CRTISO (CAROTENOID ISOMERASE); carotenoid isomeraseGn0067SI204:SI349AB114652CuAT5G57030.1LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclaseGn0069SI086:SI375AB114655CuAT5G57030.1LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclaseGn0071SI363CK935329CsAT3G63520.1CCD1 (CAROTENOID CLEAVAGE DIOXYGENASE 1)Gn0074SI176AB046992CuAT4G14210.1PDS3 (PHYTOENE DESATURASE 3); phytoene dehydrogenaseIf0003SI130C22334Cuno homologyIf0205SI256C22047CuAT3G52730.1ubiquinol-cytochrome C reductase UQCRX/QCR9-like family proteinIf0208SI083:SI317C22162CuAT1G48460.1unknown proteinIf0210SI042C22223Cuno homologyIf0211SI226C22289Cuno homologyIf0216SI174C23944CuAT4G00380.1Is0001SI177DC883613CuAT1G67350.1Is0002Si339DC84052CuAT5G4340.1Is0003SI318DC895944CuAT2G29420.1Is0004Si268DC896307CuAT4G22810.1Is0005Si279DC896365CuAT4G27740.1unknown proteinTuU7)Insnown protein	Gn0051	SI306:SI366	DC895375	Cu	AT1G27340.1	F-box family protein
Gn006S1352AB114651CuAT1G0682.0CRTISO (CAROTENOID ISOMERASE); carotenoid isomeraseGn0067S1204:S1349AB114652CuAT5G57030.1LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclaseGn0069S1086:S1375AB114655CuAT5G57030.1LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclaseGn0071S1363CK935329CsAT3G63520.1CCD1 (CAROTENOID CLEAVAGE DIOXYGENASE 1)Gn0074S1176AB046992CuAT4G14210.1PDS3 (PHYTOENE DESATURASE 3); phytoene dehydrogenase1f0003S1130C22334Cuno homology1f0205S/256C22047CuAT3G52730.1ubiquinol-cytochrome C reductase UQCRX/QCR9-like family protein1f0206S1208C22133CuAT1G48460.1unknown protein1f0210S1042C22223Cuno homology1f0211S1226C22289Cuno homology1f0216S/174C23944CuAT1G67350.1unknown protein1s0001S/177DC883613CuAT1G67350.1unknown protein1s0002S/339DC884052CuAT3G514340.1TUB41s0003S1318DC895944CuAT4G25810.1XTR6 (XYLOGLUCAN ENDOTRANSGLYCOSYLASE 6)1s0005S/279DC896365CuAT4G27740.1unknown protein	Gn0064	SI144:SI380	AB075547	Cu	AT5G67030.1	ABA1 (ABA DEFICIENT 1): zeaxanthin epoxidase
Gn0067 S1204:S1349 AB114652 Cu AT5G57030.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0069 S1086:S1375 AB114655 Cu AT5G57030.1 LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclase Gn0071 S1363 CK935329 Cs AT3G63520.1 CCD1 (CAROTENOID CLEAVAGE DIOXY GENASE 1) Gn0074 S1176 AB046992 Cu AT4G14210.1 PDS3 (PHYTOENE DESATURASE 3); phytoene dehydrogenase 1f0003 S1130 C22334 Cu no homology 1f0205 S/256 C22047 Cu AT3G52730.1 ubiquinol-cytochrome C reductase UQCRX/QCR9-like family protein 1f0206 S1208 C22133 Cu AT3G53790.2 universal stress protein (USP) family protein 1f0208 S1083:S1317 C22162 Cu AT1G48460.1 unknown protein 1f0210 S1042 C22223 Cu no homology 1f0211 S1226 C22289 Cu no homology 1f0216 St/174 C3944 Cu AT4G00380.1 XH/XS domain-containing protein / XS zinc f	Gn0066	SI352	AB114651	Cu	AT1G06820.1	CRTISO (CAROTENOID ISOMERASE): carotenoid isomerase
Gn0069S1086:S1375AB114655CuATSG57030.1LUT2 (LUTEIN DEFICIENT 2); lycopene epsilon cyclaseGn0071S1363CK935329CsAT3G6350.1CCD1 (CAROTENOID CLEAVAGE DIOXYGENASE 1)Gn0074S1176AB046992CuAT4G14210.1PDS3 (PHYTOENE DESATURASE 3); phytoene dehydrogenaseIf0003S1130C22334Cuno homologyIf0205S/256C22047CuAT3G52730.1ubiquinol-cytochrome C reductase UQCRX/QCR9-like family proteinIf0206S1208C22133CuAT3G53990.2universal stress protein (USP) family proteinIf0208S1083:S1317C22162CuAT1G48460.1unknown proteinIf0210S1042C22223Cuno homologyIf0211S1226C22289Cuno homologyIf0216S/174C23944CuAT4G00380.1Is0001S/177DC883613CuAT1G64340.1Is0002S/339DC884052CuAT3G6350.1Is0003S1318DC895944CuAT2G29420.1Is0004S1268DC896307CuAT4G2740.1Is0005S/279DC896365CuAT4G2740.1	Gn0067	SI204:SI349	AB114652	Cu	AT5G57030.1	LUT2 (LUTEIN DEFICIENT 2): lycopene epsilon cyclase
Gn0071SI363CK935329CsAT3G63520.1CCD1 (CAROTENOID CLEAVAGE DIOXYGENASE 1)Gn0074SI176AB046992CuAT4G14210.1PDS3 (PHYTOENE DESATURASE 3); phytoene dehydrogenase1f0003SI130C22334Cuno homology1f0025S/226C22047CuAT3G52730.1ubiquinol-cytochrome C reductase UQCRX/QCR9-like family protein1f0206SI208C22133CuAT3G53990.2universal stress protein (USP) family protein1f0208S1083:SI317C22162CuAT1G48460.1unknown protein1f0210S1042C22223Cuno homology1f0211SI226C22289Cuno homology1f0216S1174C23944CuAT4G0380.11f0216S1177DC883613CuAT1G67350.1unknown protein1s0001S1177DC883613CuAT1G67350.1unknown protein1s0002S1339DC884052CuAT3G63501.1unknown protein1s0003S1318DC895944CuAT2G29420.1AT3G1U7 (ARABIDOPSIS THALIANA GLUTATHIONE S-TRANSFER TAU 7)1s0004S1268DC896307CuAT4G25810.1XTR6 (XYLOGLUCAN ENDOTRANSGLYCOSYLASE 6)1s0005S/279DC896365CuAT4G27740.1unknown protein	Gn0069	SI086:SI375	AB114655	Cu	AT5G57030.1	LUT2 (LUTEIN DEFICIENT 2): lycopene epsilon cyclase
Gn0074S1176AB046992CuAT4G14210.1PDS3 (PHYTOENE DESATURASE 3); phytoene dehydrogenase1f0003S1130C22334Cuno homology1f0026S/256C22047CuAT3G52730.1ubiquinol-cytochrome C reductase UQCRX/QCR9-like family protein1f0026S1208C22133CuAT3G53990.2universal stress protein (USP) family protein1f0208S1083:S1317C22162CuAT1G48460.1unknown protein1f0210S1042C22223Cuno homology1f0211S1226C22289Cuno homology1f0216S/174C23944CuAT4G0380.11s0001S/177DC883613CuAT1G64340.1unknown protein1s0002S/339DC884052CuAT3G644340.1TUB41s0003S1318DC895944CuAT2G29420.1AT3G1U7 (ARABIDOPSIS THALIANA GLUTATHIONE S-TRANSFER TAU 7)1s0004S1268DC896307CuAT4G2740.1XTR6 (XYLOGLUCAN ENDOTRANSGLYCOSYLASE 6)1s0005S/279DC896365CuAT4G27740.1unknown protein	Gn0071	SI363	CK935329	Cs	AT3G63520.1	CCD1 (CAROTENOID CLEAVAGE DIOXYGENASE 1)
InformInfor	Gn0074	SI176	AB046992	Cu	AT4G142101	PDS3 (PHYTOENE DESATURASE 3): phytoene dehydrogenase
IncodeSilesClass iClass iIntendegy1f00205S/256C22047CuAT3G52730.1ubiquinol-cytochrome C reductase UQCRX/QCR9-like family protein1f00206SI208C22133CuAT3G53990.2universal stress protein (USP) family protein1f00208SI083:SI317C22162CuAT1G48460.1unknown protein1f0210SI042C22223Cuno homology1f0211SI226C22289Cuno homology1f0216S/174C23944CuAT4G0380.11s0001S/177DC883613CuAT1G67350.1unknown protein1s0002S/339DC884052CuAT5G44340.1TUB41s0003SI318DC895944CuAT2G29420.1ATGSTU7 (ARABIDOPSIS THALIANA GLUTATHIONE S-TRANSFER TAU 7)1s0004SI268DC896307CuAT4G25810.1XTR6 (XYLOGLUCAN ENDOTRANSGLYCOSYLASE 6)1s0005S/279DC896365CuAT4G27740.1unknown protein	If0003	SI130	C22334	Cu		
HoteHereHereHereHereH0206SI208C22133CuAT3G53990.2universal stress protein (USP) family proteinH0208SI083:SI317C22162CuAT1G48460.1unknown proteinH0210SI042C22223Cuno homologyH0211SI226C22289Cuno homologyH0216S/174C23944CuAT4G0380.1JR0010S/177DC883613CuAT1G67350.1unknown proteinJs0002S/339DC884052CuAT3G644340.1TUB4Js0003S1318DC895944CuAT2G29420.1AT3G1U7 (ARABIDOPSIS THALIANA GLUTATHIONE S-TRANSFER TAU 7)Js0004SI268DC896307CuAT4G25810.1XTR6 (XYLOGLUCAN ENDOTRANSGLYCOSYLASE 6)Js0005S/279DC896365CuAT4G27740.1unknown protein	If0205	SI256	C22047	Cu	AT3G527301	ubiquinol-cytochrome C reductase UOCRX/OCR9-like family protein
InternalInterna	If0206	SI208	C22133	Cu	AT3G53990.2	universal stress protein (USP) family protein
InterviewCalledCalledCalledInterviewIf0210SI042C22223Cuno homologyIf0211SI226C22289Cuno homologyIf0216SI174C23944CuAT4G0380.1Is0001SI177DC883613CuAT1G67350.1Is0002S1339DC884052CuAT5G44340.1Is0003S1318DC895944CuAT2G29420.1Is0004S1268DC896307CuAT4G25810.1Is0005S/279DC896365CuAT4G27740.1unknown protein	If0208	SI083-SI317	C22162	Cu	AT1G48460 1	unknown protein
InvasionInvasio	If0210	SI042	C22223	Cu		no homology
InclusionStateCaleInclusionIf0216SI174C23944CuAT4G00380.1XH/XS domain-containing protein / XS zinc finger domain-containing protIs0001SI177DC883613CuAT1G67350.1unknown proteinIs0002S/339DC884052CuAT5G44340.1TUB4Is0003S1318DC895944CuAT2G29420.1ATGSTU7 (ARABIDOPSIS THALIANA GLUTATHIONE S-TRANSFER TAU 7)Is0004S1268DC896307CuAT4G25810.1XTR6 (XYLOGLUCAN ENDOTRANSGLYCOSYLASE 6)Is0005S/279DC896365CuAT4G27740.1unknown protein	If0211	SI226	C22225	Cu		no homology
IncludeSIL17CL2744CuAT1600300.1ALTA GOMMENT AS domain-containing protein (AS And Finger domain-cont	If0216	SI174	C23944	Cu	AT4G00380 1	XH/XS domain-containing protein / XS zinc finger domain-containing protein
LocalArrodytypetIs0002S/339DC884052CuArt5G44340.1TUB4Is0003S1318DC895944CuAr2G29420.1ArtGSTU7 (ARABIDOPSIS THALIANA GLUTATHIONE S-TRANSFER TAU 7)Is0004S1268DC896307CuAr4G25810.1XTR6 (XYLOGLUCAN ENDOTRANSGLYCOSYLASE 6)Is0005S/279DC896365CuAr4G27740.1unknown protein	Is0001	\$1177	DC883613	Cu	AT1G67350.1	unknown protein
IsobaIsobaDecodo2CuATOGHSMUIDDAIsobaSI318DC895944CuAT2G29420.1ATOSTU7 (ARABIDOPSIS THALIANA GLUTATHIONE S-TRANSFER TAU 7)IsobaSI268DC896307CuAT4G25810.1XTR6 (XYLOGLUCAN ENDOTRANSGLYCOSYLASE 6)IsobaSI279DC896365CuAT4G27740.1unknown protein	Is0007	SI220	DC884052	Cu	AT5G/4340 1	TIR4
ISU005 SI318 DC895944 Cu A12G29420.1 TAU 7) Is0004 SI268 DC896307 Cu AT4G25810.1 XTR6 (XYLOGLUCAN ENDOTRANSGLYCOSYLASE 6) Is0005 SI279 DC896365 Cu AT4G27740.1 unknown protein	150002	51559	DC004032	cu	A15044540.1	ATGSTU7 (ARABIDOPSIS THALIANA GLUTATHIONE S-TRANSFERASE
Is0004 SI268 DC896307 Cu AT4G25810.1 XTR6 (XYLOGLUCAN ENDOTRANSGLYCOSYLASE 6) Is0005 S/279 DC896365 Cu AT4G27740.1 unknown protein	1s0003	\$1318	DC895944	Cu	AT2G29420.1	TAU 7)
Is0005 S1279 DC896365 Cu AT4G27740.1 unknown protein	Is0004	SI268	DC896307	Cu	AT4G25810.1	XTR6 (XYLOGLUCAN ENDOTRANSGLYCOSYLASE 6)
	Is0005	SI279	DC896365	Cu	AT4G27740.1	unknown protein
Is0006 SI358 DC896409 Cu no homology	Is0006	SI358	DC896409	Cu		no homology

Continued					
		DDBJ EST		Assigned	
STS name	SNP name ^a	accession number	Species of EST	Arabidopsis	Annotation of Arabidopsis locus
		design	derived	locus	
Is0007	SI032	DC896765	Cu	AT2G18370.1	protease inhibitor/seed storage/lipid transfer protein (LTP) family protein
Is0008	SI314	DC896803	Cu	AT5G14570.1	ATNRT2.7 (Arabidopsis thaliana high affinity nitrate transporter 2.7)
Is0009	SI162	DC897578	Cu	AT3G24200.2	FAD binding / monooxygenase/ oxidoreductase
Is0010	SI206	DC898118	Cu	AT5G54160.1	ATOMT1 (O-METHYLTRANSFERASE 1)
Is0011	SI334	DC898183	Cu	AT4G30080.1	ARF16 (AUXIN RESPONSE FACTOR 16)
Is0012	SI173	DC899883	Cu	AT5G05960.1	protease inhibitor/seed storage/lipid transfer protein (LTP) family protein
Is0013	SI012	DC901296	Cu	AT1G68220.1	unknown protein
Lp0024	SI010:SI302	AU300371	Cu	AT2G18050.1	HIS1-3 (HISTONE H1-3)
Lp0032	SI286	DC893131	Cu		no homology
Lp0102	SI080: SI319:SI360:SI378	AU300902	Cu	AT4G25310.1	oxidoreductase 20G-Fe(II) oxygenase family protein
Lp0105	SI113:SI163:SI254	AU300400	Cu	AT2G17820 1	ATHK1 (histidine kinase 1)
Lp0112	SU170	AU300448	Cu	AT3G52300.1	ATPO (ATP SYNTHASE D CHAIN MITOCHONDRIAL)
Lp0112	SI276	AU300466	Cu		no homology
Lp0226	\$1210	AU300802	Cu	AT4G34110.1	PAB2 (POLV(A) RINDING 2)
Lp0220	\$1220	C81702	Cu	/114054110.1	na hamalagu
Mf0010	\$1048-\$1140	C81792	Cu		no homology
Mf0012	61121	C81631	Cu		no homology
MI0012	51151	C81031	Cu		in innoingy
M10039	51010.5114/	C81/80	Cu	175004750 1	
M10070	51017	C81837	Cu	AI 3G04/30.1	r Iro-Al Pase innibitor protein putative
MI00/9	\$1067	C81861	Cu	AI 5G58490.1	cinnamoyi-CoA reductase ramity
Mf0084	SI383	C81872	Cu	AT3G62290.1	ATARFATE (ADP-ribosylation factor ATE)
Mf0086	\$1220:\$1315	C81880	Cu	AY 2616/1.1	Citrus x paradisi:HSP19 class II
Mf0092	S1138	C81907	Cu	AT2G36530.1	LOS2; copper ion binding
Mi0095	\$1290	C81912	Cu	AI 3G5 /280.1	unknown protein
Mf0096	<i>SI249</i> :SI333	C81915	Cu	AT3G18040.2	MPK9 (MAP KINASE 9)
Mf0098	SI235: <i>SI365</i>	C81916	Cu		no homology
Ov0002	SI110:SI179	AU186184	Cu	AT1G14320.1	SAC52 (SUPPRESSOR OF ACAULIS 52)
Ov0005	SI243:SI331	AU186258	Cu	AT5G17920.1	ATMS1
Ov0015	SI304	AU186310	Cu	AT4G25150.1	acid phosphatase putative
Ov0020	SI055:SI143:SI213	AU186345	Cu	AT3G56940.1	CRD1 (COPPER RESPONSE DEFECT 1)
Ov0104	SI216	AU186385	Cu	AT3G19270.1	CYP707A4
Ov0105	SI126	AU186386	Cu	AT5G15080.1	protein kinase putative
Ov0106	SI278	DC901398	Cu	AT5G25150.1	acid phosphatase ctivity
Ov0109	SI172:SI202	AU186389	Cu	AT5G25230.1	elongation factor Tu family protein
Ov0117	SI040	AU186413	Cu		no homology
Ov0118	SI357	AU186414	Cu	AT2G45440.1	DHDPS2 (DIHYDRODIPICOLINATE SYNTHASE)
Ov0127	SI124:SI284	AU186445	Cu	AT5G14670.1	ATARFA1B (ADP-ribosylation factor A1B)
Ov0301	SI078	AU186450	Cu	AT5G47390.1	myb family transcription factor
Ov0305	SI028:SI292	AU186464	Cu	AT5G58420.1	40S ribosomal protein S4 (RPS4D)
Ov0306	SI382	AU186465	Cu	AT4G35550.1	WOX13 (WUSCHEL-RELATED HOMEOBOX 13)
Ov0314	SI107	AU186489	Cu	AT2G16600.2	ROC3; peptidyl-prolyl cis-trans isomerase
Ov0403	SI136:SI298	DC893934	Cu	AT2G05100.1	LHCB2.1
Ov0412	SI050:SI222:SI325	DC893973	Cu		no homology
Ov0426	<i>SI051:SI291</i> :SI351:SI371	DC894006	Cu	AT3G44110.1	ATJ3
Ov0429	SI342	AU186558	Cu	AT3G13510.1	unknown protein
Ov0508	SI322	DC894044	Cu	AT2G39730.3	RCA (RUBISCO ACTIVASE)
Tf0004	SI219:SI330	DC884099	Cu	AT1G61140.1	EDA16 (embryo sac development arrest 16
Tf0013	SI161:SI362	DC886674	$\mathbf{Cn}\times\mathbf{Ck}$	AT1G44900.1	ATP binding / DNA binding / DNA-dependent ATPase
Tf0016	SI345	DC886929	$Cn \times Ck \\$	AT3G55730.1	MYB109 (myb domain protein 109)
Tf0017	SI148: SI171:SI217:SI242:	DC886985	$Cn \times Ck$	AT5G47390.1	myb family transcription factor
Tf0019	51285 SI056-SI347	DC887091	$Cn \times C^{l_r}$	AT1G75710 1	zinc finger (C2H2 type) family protein
Tf0020	SI154	DC887181	$Cn \times Ck$	AT4G36740 1	ATHB40 (ARABIDOPSIS THAI JANA HOMEOROX PROTEIN 40)
Tf0020	SI111-SI288	DC898171	Cu	AT2G17100 1	ubiquitin family protein
Tf0020	SI046	DC898182	Cu	AT5G25100 1	ethylene-responsive element-hinding protein putative
Tf0027	\$1277	DC898260	Cu	AT4G00060 2	STK (SEEDSTICK): protein binding / transcription factor
Tf0045	\$1303-\$1221	DC890852	Cu	AT1G27050 1	ATHR54 (ARARIDOPSIS THAT IANA HOMEOROY DROTEIN 54)
Tf0040	SI202.01221	BO622105	Ca	AT3G12250 1	high mobility group (HMG1/2) family protein
T 10049	51528 \$1104-\$1242	BQ6220100	Co	AT3G/7600 1	ATMVR04 (MVR DOMAIN PROTEIN 04)
110030	51104.51540	BQ023221	CS .	AI 504/000.1	ALMED 74 (WITD DOWAIN FROTEIN 74)

Continued					
STS name	SNP name ^a	DDBJ EST accession number for STS primer design	Species of EST derived ^b	Assigned Arabidopsis locus	Annotation of Arabidopsis locus
Tf0051	SI027:SI214	BQ623496	Cs	AT3G48440.1	zinc finger (CCCH-type) family protein
Tf0053	SI305	BQ624296	Cs	AT1G53670.1	MSRB1 (methionine sulfoxide reductase B 1)
Tf0054	SI238	BQ624467	Cs	AT1G76580.1	transcription factor
Tf0056	SI061:SI137	BQ624834	Cs	AT1G66230.1	MYB20 (myb domain protein 20)
Tf0058	SI257	BQ624935	Cs	AT3G20740.1	FIE (FERTILIZATION-INDEPENDENT ENDOSPERM)
Tf0059	SI101	BQ624977	Cs	AT3G17850.1	protein kinase putative
Tf0061	SI150:SI186	BQ625130	Cs	AT5G65670.2	IAA9 (INDOLE-3-ACETIC ACID INDUCIBLE 9)
Tf0062	SI223	CB290239	Cs	AT3G09600.1	myb family transcription factor
Tf0065	SI142	CB290624	Cs	AT5G62000.3	ARF2 (AUXIN RESPONSE FACTOR 2)
Tf0066	SI221	CB290927	Cs	AT1G52890.1	ANAC019 (Arabidopsis NAC domain containing protein 19)
Tf0067	SI033:SI187:SI239	CB291001	Cs	AT3G16350.1	myb family transcription factor
Tf0068	SI106	CB291749	Cs	AT2G26150.1	ATHSFA2
Tf0069	SI199	CB292181	Cs	AT1G43700.1	VIP1 (VIRE2-INTERACTING PROTEIN 1)
Tf0070	SI277	CB292225	Cs	AT1G35460.1	basic helix-loop-helix (bHLH) family protein
Tf0071	SI084:SI146	CB292689	Cs	AT2G41350.2	unknown protein
Tf0075	SI059:SI248	CB293244	Cs	AT3G12020.1	kinesin motor protein-related
Tf0076	SI266	CB293271	Cs	AT5G04410.1	NAC2
Tf0077	SI135	CB293496	Cs	AT4G30935.1	WRKY32
Tf0079	SI270:SI294	CB293578	Cs	AT4G11660.1	AT-HSFB2B
Tf0081	SI038-SI324	CB293768	Cs	AT2G31380.1	STH
Tf0083	SI129	CB293916	Cs	AT4G22920.1	NYE1 (NON-YELLOWING 1)
Tf0085	SI094-SI211	CD573622	Pt	AT5G03415.1	DPB
Tf0087	SI166:SI271:SI287	CD573723	Pt	AT4G18020.2	APRR2
Tf0088	SI066	CD573726	Pt	AT1G27660 1	ethylene-responsive protein -related
Tf0092	\$1099	CD574584	Pt	AT4G32880.1	ATHR-8 (HOMEOROX GENE 8)
Tf0092	\$1006	CD574865	Df	AT1G69580.2	transcription factor
Tf0143	SI127	DC885186	Cu	AT5G24120.1	SIGE (SIGMA FACTOR F)
Tf0144	\$1125-\$1180-\$1102	DC885340	Cu	AT3G19860.2	basis baliy loop baliy (bHI H) family protein
Tf0149	SI125.51169.51192	DC8855940	Cu	AT5G13080.1	WDEV V75
Tf0140	\$1129-\$1260	DC885880	Cu	AT2C04720.1	WKK 175
Tf0149	\$126.31209	DC886233	Cu	AT1G03840.1	MCD (Magnia)
T0150	51202	DC880390	Cu	AT1003840.1	MOR (Magpic)
T10151	51159.51281	DC888223	Cu	AT4G24440.2	ranscription initiation factor frA gamma chain
110164	81251	DC889433	Cu	AT2G19260.1	ELM2 domain-containing protein
110166	51156	DC890056	Cu	AI5G13960.1	SUVH4 (SU(VAR)3-9 HOMOLOG 4)
110167	SI230:SI241:SI247	DC890115	Cu	AI1G08540.1	SIG2 (RNA POLYMERASE SIGMA SUBUNIT 2
110168	S1175	DC890126	Cu	AT3G43240.1	ARID/BRIGHT DNA-binding domain-containing protein
110170	S1116	DC891569	CI	AI3G12680.1	HUAI (ENHANCER OF AG-4 1)
Tf0177	SI133	DC900310	Cu	AT4G31420.1	zinc finger (C2H2 type) family protein
Tf0199	SI023:SI157	DC900398	Cu	AT1G54610.3	protein kinase family protein
Tf0201	SI195	BQ625052	Cu	AT1G16060.1	ovule development protein putative
Tf0203	SI121	CB291458	Cu	AT5G44180.1	homeobox transcription factor putative
Tf0205	SI274	CB292412	Cu	AT1G04850.1	ubiquitin-associated (UBA)/TS-N domain-containing protein
Tf0208	SI181	CX546428	Pt	AT3G02380.1	COL2 (constans-like 2)
Tf0210	SI183	CD574434	Pt	AT2G02080.1	AtIDD4 (Arabidopsis thaliana Indeterminate(ID)-Domain 4)
Tf0212	SI196	CD574499	Pt	AT1G13220.2	LINC2 (LITTLE NUCLEI2)
Tf0214	SI020	CD574660	Pt	AT4G00050.1	UNE10 (unfertilized embryo sac 10)
Tf0219	SI076:SI267	CD576023	Pt	AT3G57800.2	basic helix-loop-helix (bHLH) family protein
Tf0221	SI057: SI225	CF418134	Cs	AT5G66055.1	AKRP (ANKYRIN REPEAT PROTEIN)
Tf0230	SI140	CF509456	Cs	AT5G55760.1	SRT1 (sirtuin 1)
Tf0232	SI258: SI261	CF509665	Cs	AT2G17900.1	SDG37
Tf0238	SI114	CF653350	Cs	AT2G17730.1	zinc finger (C3HC4-type RING finger)
Tf0240	SI184	CF828177	Cs	AT1G04600.1	XIA (MYOSIN XI A)
Tf0243	SI231	CF829056	Cs	AT2G37060.3	NF-YB8 (NUCLEAR FACTOR Y SUBUNIT B8)
Tf0245	SI021	CF830462	Cs	AT3G15510.1	ATNAC2 (ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 2)
Tf0251	S1005	CF831040	Cs	AT5G23150.1	HUA2 (ENHANCER OF AG-42)
Tf0257	SI049	CF832981	Cs	AT1G63650.2	EGL3 (ENHANCER OF GLABRA 3)
Tf0258	SI234	CF833637	Cs	AT1G19700.2	BEL10 (BEL1-LIKE HOMEODOMAIN 10)
Tf0263	SI013	CF835628	Cs	AT3G24520.1	AT-HSFC1

Contin	nued					
STS n	ame	SNP name ^a	DDBJ EST accession number for STS primer design	Species of EST derived ^b	Assigned Arabidopsis locus	Annotation of Arabidopsis locus
Tf02	65	SI197	CF835803	Cs	AT3G61150.1	HDG1 (HOMEODOMAIN GLABROUS 1)
Tf02	79	SI073	CK665314	Cs	AT1G63650.1	EGL3 (ENHANCER OF GLABRA 3)
Tf02	80	SI158:SI200	CK665679	Cs	AT4G36920.1	AP2 (APETALA 2)
Tf02	89	SI207	CK933416	Cs	AT4G23860.1	PHD finger protein-related
Tf03	01	SI182	CK934342	Cs	AT4G16780.1	ATHB-2 (ARABIDOPSIS THALIANA HOMEOBOX PROTEIN 2)
Tf03	02	SI105	CK934596	Cs	AT3G03750.2	SET domain-containing protein
Tf03	03	SI082	CK934654	Cs	AT5G04240.1	ELF6 (EARLY FLOWERING 6)
Tf03	09	SI190	CK935320	Cs	AT2G47900.1	AtTLP3 (TUBBY LIKE PROTEIN 3)
Tf03	17	SI145	CK936562	Cs	AT3G47640.1	basic helix-loop-helix (bHLH) family protein
Tf03	19	SI152	CK937012	Cs	AT5G20510.1	AL5 (ALFIN-LIKE 5)
Tf03	20	SI203	CK937275	Cs	AT2G42830.1	SHP2 (SHATTERPROOF 2)
Tf03	21	SI003	CK937318	Cs	AT1G69310.2	WRKY57
Tf03	23	SI030	CK937389	Cs	AT1G69490.1	NAP (NAC-like activated by AP3/PI)
Tf03	26	SI085	CK938083	Cs	AT2G23740.1	nucleic acid binding / transcription factor/ zinc ion binding
Tf03	28	SI039:SI180	CK938765	Cs	AT1G59640.1	ZCW32
Tf03	30	SI064:SI139	CK938961	Cs	AT5G48150.2	PAT1 (phytochrome a signal transduction 1)
Tf03	32	SI081	CK939458	Cs	AT1G77450.1	anac032 (Arabidopsis NAC domain containing protein 32)
Tf03	34	SI034	CK939708	Cs	AT5G63470.1	NF-YC4 (NUCLEAR FACTOR Y SUBUNIT C4)
Tf03	35	SI014:SI168	CK939747	Cs	AT2G40815.1	unknown protein
Tf03	39	SI019	CK940145	Cs	AT1G69490.1	NAP (NAC-like activated by AP3/PI)
Tf03	42	SI151	CN182953	Cs	AT5G41370.1	XPB1
Tf03	45	SI011	CN183639	Cs	AT5G60450.1	ARF4 (AUXIN RESPONSE FACTOR 4)
Tf03	48	SI118	CN185079	Cs	AT3G53340.1	NF-YB10 (NUCLEAR FACTOR Y SUBUNIT B10)
Tf03	50	SI132	CN185280	Cs	AT5G23050.1	AAE17 (ACYL-ACTIVATING ENZYME 17)
Tf03	51	SI122	CN185598	Cs	AT3G23240.1	ERF1, ATERF1
Tf03	53	SI087	CN186263	Cs	AT1G09770.1	ATCDC5 (ARABIDOPSIS THALIANA CELL DIVISION CYCLE 5)
Tf03	54	SI070	CN186267	Cs	AT1G01520.1	myb family transcription factor
Tf03	56	SI134:SI160	CN186308	Cs	AT3G51960.1	bZIP family transcription factor
Tf03	57	SI018	CN186402	Cs	AT5G66730.1	zinc finger (C2H2 type) family protein
Tf03	58	SI098	CN186577	Cs	AT5G48150.2	PAT1 (phytochrome a signal transduction 1)
Tf03	60	SI112	CN188939	Cs	AT1G76880.1	trihelix DNA-binding protein putative
Tf03	62	SI062	CN189405	Cs	AT1G20700.1	WOX14 (WUSCHEL RELATED HOMEOBOX 14)
Tf03	63	SI002:SI096	CN189628	Cs	AT3G61150.1	HDG1 (HOMEODOMAIN GLABROUS 1)
Tf03	68	SI102	CN191477	Cs	AT3G04070.1	anac047 (Arabidopsis NAC domain containing protein 47)
Tf03	73	SI088	DC901064	Cu	AT3G10030.1	aspartate/glutamate/uridylate kinase family protein
Tf03	76	SI072	DC898619	Cu	AT4G25470.1	ATCBF2
Tf03	86	SI044:SI095	CD573987	Pt	AT3G02380.1	COL2 (constans-like 2);
Tf03	96	SI035	CD575233	Pt	AT3G57800.2	basic helix-loop-helix (bHLH) family protein
Tf03	97	SI008	CF417964	Cs	AT3G30530.1	ARABIDOPSIS THALIANA BASIC LEUCINE-ZIPPER 42 (ATBZIP42)
Vs00	02	SI103:SI115	C21910	Cs	AT1G75310.1	AULI
Vs00	03	SI077	C21853	Cs		no homology
Vs00	05	SI022:SI075	C21850	Cs		no homology
Vt00	32	SI024	DC900011	Cs	AT3G24240.1	leucine-rich repeat transmembrane protein kinase putative
Wy00)15	SI041	DC894276	Cu	AT2G36790.1	UGT73C6
Wv00	016	SI068	DC895604	Cu	AT4G15270.1	glucosyltransferase-related
Wy00)19	SI031	DC894422	Cu	AT2G26580.2	YAB5 (YABBY5)
Wv00	020	SI007	DC894174	Cu	AT1G04410.1	malate dehydrogenase cytosolic putative
Wv00	023	SI037	DC895741	Cu	AT2G41680.1	NTRC (NADPH-DEPENDENT THIOREDOXIN REDUCTASE C)
Wy00)24	SI091	DC894238	Cu	AT3G27890.1	NOR (NADPH:QUINONE OXIDOREDUCTASE)
Wv00)25	SI004	DC895710	Cu	AT5G13180 1	ANAC083 (ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 83)
Wy00	034	SI367	DC894870	Cu	AT4G36750 1	quinone reductase family protein

Table 4-2 Citrus	plant materials for	the GoldenGate	Assay ^a .
C I ID	DI () 1	0 1 /	D 11

Table 4-2 Cit	Plant materials for th	Sood married	Assay".	Commis ID	Diant matanial	Saad manart	Dollon morent
TV1	No 960203	TV15	TV77	TV54	Clementine mandarin	seeu parent	r onen parent
TV2	No 971594	TV32	TV17	1 1 34 TV55	'Shiranui'	TV52	TV73
TV3	No.971534	TV32	TV17	TV56	Sataka'	TV22	TY74
TV4	No 980389	TV8	TV37	TV57 ^c	'Tamami'	TV52	11/4
TV5	27000Jy 25	110	TY40	1 Y 5 / TV 5 9	'Danay' tangarin	1152	
TV6	270001y-25	TV52	TV50	TV50	'Trovite' orongo		
110 TV7	E-04/	TV47	T 1 30 T 75	TV60	'Nerkou'	TV75	TV54
11/ TV9	LIE15	114/ TV75	T 1 75	T 1 00	Nankou (Nishinakaani?	TV52	T 1 54
Truch		11/5 TV75	TY50	Trucade	Warkitay Chukarkahar Nay 5 Cau'	1 1 32 TV79	T 1 39
1 Y 9°	ПГ9 ЦЕО	11/5 TV75	TY50	TY62	Wankitsu Chukanbohon Nou 5 Gou	11/0 TV52	1 1 76 TV76
1 Y 10 TV11	111.9	TV75	T 1 59	TV64	(Heyeke?	TV75	TY72
TV10b	111-24	TV75	T 1 59	TV65	Hayaka	TV52	TV72
TV12	ПГ9 ЦЕОБа 20	TV12	TY 47	TV66	Harahima'	1 1 32 TV6	T 175
TV14	пг9Еп-29	1 1 1 2 TV75	114/ TV69	TV67	Harevolve?	1 1 0 TV 47	TY72
1 I 14 TV15	JIIU Wyshinatay 18 Cay?	TV20	T 1 08	TV69	naieyaka	114/	11/5
TV16	'Kuchinotsu 18 Gou	1 1 50 TV7	1 1 47 TV77	TV60	Hyuganaisu		
1 I 10 TV17	'Kuchinotsu 20 Gou	1 I / TV7	T 1 / /	TV70	'Deee'		TV54
1 Y 1 /	Kuchinotsu 27 Gou	1 Y /	1 Y //	1 Y /0	Page	TV12	1 Y 54
1 Y 18 TV10	Kuchinotsu 33 Gou	1 Y 29 TV20	1 ¥ 47	1 Y / I TV72	Benibae	1 Y 12	1 ¥4/
TY 19	Kuchinotsu 34 Gou	TY29	1 Y 47	1 Y /2 TV72	Benimadonna Domkon E2428	1 1 00	1 1 45
TY21	'Kuchinotsu 35 Gou	TV27	114/ TV74	TV74	POIKall-F2428		
1 1 21 TV22	'Kuchinotsu 30 Gou	1 1 27 TV52	11/4 TV47	1 I /4 TV75	Mincou		
TV22	'Kuchinotsu 37 Gou	TV20	1 1 47 TV80	TV76	Mukalay Kigany'		
TV24	'Kuchinotsu 38 Gou	TV20	1180	1 1 /0 TV77	Wawkawi Kisyu	TV52	TV72
1 1 24 TV25	Kuchinotsu 40 Gou	1130	TV27	1 I / /	Youkou	1 1 52 TV54	TY00
TV26	'Kuchinotsu 49 Gou		TV37	11/8 TV70	'Paikau'	TV27	T 1 90
TV27	Kuchinoisu 50 Oou	TV52	TY47	TV80	'Pohinson'	TV54	TV90
TV28	KyEn5/En_6	TV27	TV47	TV81	No 990343	TV22	TY71
TY29	KyOw14	TY52	TY75	TY82	'Setomi'	TY 52	TY73
TV30	KyOw21	TV52	TY75	TV83	'Sweet Spring'	TV75	TV101
TV31	KyOw21/Cc-33	TV30	TV54	TV84	'Seminole' tangelo	11/5	TV58
TV32	KyOw21/D-4	TV30	TV58	TV85	Shikaikan		1150
TY33	LeeAo35	TY78	TY75	TV86°	'Okitsu 46 Gou'	TY83	TY59
TY34	LeeAo9	TY78	TY75	TY87	'Kara' mandarin	TY75	TY53
TY35	No 1010	TY60	TY5	TY88	'Okitsu 60 Gou'	TY86	TY65
TY36	No 1011	TY60	TY5	TY89	'Temple'	1100	1100
TY37	No.1408	TY7	TY38	TY90	'Orlando'		TY58
TY38	No.2681	TY52	TY49	TY91	'Southern Red'	TY87	TY73
TY39	'Okitsu 45 Gou'	TY52	TY48	TY92	'Okitsu 56 Gou'	TY39	OT89
TY40	'Okitsu 57 Gou'	TY86	TY65	TY93	'Okitsu 47 Gou'	TY52	TY48
TY41	'Okitsu 58 Gou'	TY86	TY65	TY94	'Akemi'	TY52	TY84
TY42	M5	TY52	TY80	TY95	'Okitsu 55 Gou'	TY86	
TY43	'Aki' tangor	TY75	TY59	TY96	Mediterranean mandarin		
TY44	'Amaka'	TY52	TY47	TY97	'Kinnow'	TY53	TY96
TY45	'Amakusa'	TY29	TY70	TY98	'Bakamikan'		
TY46	'Ariake'	TY59	TY54	TY99	'Kincy'	TY53	TY58
TY47	'Encore' mandarin	TY53	TY96	TY100	'Pixie'		
TY48 ^c	'Tamami'	TY52		TY101	Hassaku		
TY49	'Otani-iyokan'			TY102	Tankan-T132		
TY50	'Osceola'	TY54	TY90	TY103	'Kuchinotsu 39 Gou'	TY47	TY75
TY51	'Kanpei'	TY61	TY73	TY104 ^{de}	'Kankitsu Chukanbohon Nou 5 Gou'	TY78	TY76
TY52	'Kiyomi' tangor	TY75	TY59	QT1-88 ^f	AG population	TY86	TY104
TY53	'King' mandarin				-		

^a Illumina, Inc. ^bRepeat of plant material; HF9. ^cRepeat of plant material; 'Tamami'. ^dRepeat of plant material; 'Kankitsu Chukanbohon Nou 5 Gou'. ^eParents of mapping population. ^fHybrid population including 88 individuals.

Table 4-3 Comparing the success rate of the GoldenGate® Assaya using a 384 SNP genotyping array, CitSGA-1, among three sources of SNP discovery.

The method of SNP discovery	(a) Number of candidate SNP (STS)	(b) Number of assayed SNP (STS) Percentage of SNP selected for CitSGA-1 (b/a%)	(c) Number of invalid SNP that call frequency score was under 0.9 ^h (c/b%)	(d) Number of monomorphic SNPs (d/b%)	(e) Number of SNP including discrepancy in parentage (e/b%)	(f) Number of SNP including "No Call	(g) Number of relaiable SNP (b - c - d - e - f) Percentage of relaible SNP (g / b %)
Detection form eight citrus ^b	1174 (332°)	286 (219 ^g) 24.4% (66.0%)	11 3.80%	24 8.30%	22 7.70%	17	212 ⁱ (169) 74.1% (77.2%) 18.1% (50.9%)
Detection form two citrus ^c	277 (84°)	82 (63 ^g) 29.6% (75%)	4 4.90%	12 14.60%	6 7.30%	3	57 ^j (44) 69.5% (69.8%) 20.6% (50.4%)
Detection by <i>in</i> silico ^d	46 (18)	16 (16) 34.8% (88.9%)	0 0.00%	7 43.80%	1 6.30%	0	8 ^k (8) 50% (50%) 17.4% (44.4%)
Total	1497 (434 ^f)	384 (283 ^f) 25.6% (65.2%)	15	43	29	20	277 ¹ (221) 72.1% (78.1%) 18.5% (50.9%)

^a Illumina, Inc.

^bClementine (*Citrus clementina* hort. ex Tanaka), 'Miyagawa wase' (*C. unshiu*), 'Trovita' orange (*C. sinensis*), 'Duncan' grapefruit (*C. paradisi*), Kishu mikan (*C. kinokuni* hort. ex Tanaka), Ponkan (*C. reticulata*), Mediterranean mandarin (*C. deliciosa*) and a haploid derived from Clementine (Oiyama and Kobayashi. 1993).

^c 'Okitsu 46 Gou' and 'Kankitsu Chukanbohon Nou 5 Gou'.

^d *in silico* SNPs were detected in aligned ESTs derived from *C. sinensis* and *C. unshiu*.

e Including 15 repeats.

^f Excluding repeats.

^g Including 15 repeats.

^h Invalid data criteria according to manufacturer's criteria.

^{ijkl}each figure has SNP repeats: repeats whithin i is one, repeats between i and j is five, repeats between i and k is one, repeats within k is one. Totally I has nine repeats.

 SNP name	Method of SNP discovery ^a	STS Sequence including the SNP ^b	Heterozygous loci (%)	Citrus clementina Scaffold number mapped STS sequence ^c
 SI001	8	TATCAGCTCCATCAAAACTAAATCCATTTGGTTCAAGATCTAGG[C/G]CTTGTGCTCTCTCTTTATC	59.2	19 **
SI002	8	AIGGTCAACAICAAAIACAGTGTCAIAAAGTCCIACAGGAG CCCAAAATCAGCAGGCAATGTTGTGGTCACGGTACTGCTTAAACCACCAAAACCATTAATG[T/G]T ACCAACACCAAGTTCTAAACTTGAGTTTGGCATTGGAGGACCCATTGA	4.1	3 **
SI003	8	AAAACAGAGGGTTACATCAGAAACCGTATTAAATCCGTCAAC[C/G]GTTTGTCTGACTCAATTCT TTCTGTTGTCGTTTCTGTAACGGGTGCAAATG	46.9	39 **
SI005	8	GCACGTGTTTGCTCGCTGGTGATGCATGACCATCTTC[A/G]TTAAATGTAATGCTAGGAAGATCT TCTTCTTCATCATCTTCAAATACATGAGAAGACAAA	36.7	10 **
SI006	8	TTTGGTGCTCTTGGTCTTACGGGAAGAAAAAAGGAAAAGATTTTTTTT	35.7	39 **
SI007	8	AATAACTCAACCAAAAAAAATCACCAAACTTTACTATTAATCAAGGGGAGAAAAATATTT[A/G]A GTTTAATACCATGCATCATCCTTGACAAGCTCACGGACAGGCTTTTCCCCAGCTGCAGT	55.1	27 **
SI009	8	CCTGTACGGATACATAACATGTAAGCATCATCAAAAAGAGGGGCGAAATTTTCTGTTCATA[T/C]AA CCAACCAATAACATTAGGAC	51	6 **
SI010	2	GCGAAGTGCTTCAGCTGCACTGCCAATATTTTCCTGAAATTCGCTGGGAGCTCATC[T/C]TTGTG CTTCTTTCCATGTACTTGGCTATTGCGTATGGGCTTGAACCGCTCTTATCTTGC	56.1	25 **
SI012	in silico	ACAAAAGACACCGAAACTTTGTGAATTAATCTACACAGACAATAATTAAGCTTTCTCAAA[T/G]T CATTGCCAGGTTGCTGCTGCTGCATAGCCATGCCCAGGCCTTCATTTC	48	67 **
SI014	8	AGAGGGGGGGGGGCACGTIGAAGTCTATAGCAGAGAGCCTATTTTCTAGGGAAAGGGT[1/C]C TGGGAACCGCAACTATTGCCTTGAAAGAATTTTTGGCCAAGTATAGTAAAAATTCTGAG	32.7	16 ***
SI015	2	TACAAACACCTCC AAAATACAACACAAATACCAAAATACCAAAATACCAACACACACACACACACACACACACACACACACACAC	38.8	21 **
SI018	8	GCAAGGACCIGGAAAAIACAGCCCCACAAAII/CJGCAIIIGIACICIIIIAGIGCCACAAACIII GGAGTGTGCTITATAATCAGACTGCAC TTTCCCLLITTTTTTTTTTTTTTTTTTTTTTTTTTTTT	25.5	25 **
SI019	8	TELECARATIAI GIALGAAAI GIAGAAAAG LIGAAI EGGA/GGA/GAAGGAAI GGIACI TI T TCAGCCCACGAGACAGGAAGAATACCCAATGGGA/CGAGCCCC ALA ATCCTTA CACTTCA A IC/CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	41.8	39 **
SI020	8	GCCATTCTGTTATAAGCATCCATGC	3.1	3 **
SI021	8	GCACTTGTATTCTATGGAGGCAAGCCTCCTAAAGGTATCAAGACCAATTGGATCATGAT TTGAACAAAATTGGATGCCTCCTAAAGGTATCAAGACCAATTGGATCATGCAT	1	69 ***
SI022	2	CTTTGCCGCTTCTATGTAGTCCCAATCCCTGGAAATTGAGGAAATTGAGGAAATAGTCTTTGTC CAAGGTTAAATGCTTCCAATCCCATCCC	56.1	19 **
SI023	8	TGCTTCACCGGGACATTAAAGGCTCTAATTGAAGACACTGCAAGGCGCTGAGGGGGGCGTAAA	15.3	1 ***
SI024	8	TCATGAGTTCTGGATCAAAGACATCGCTTATTTTCCAGCTCGCATGCTGCTTATCCCAC ACACTAACAATCGTCCATGGATCAGATCGCATTCCAATGGAAGTCAACAACTTTGTCTCTGA/CIA	31.6	24 ***
SI025	8	TCATATGCAAAAAAAAAAAATACTAAATAGTAAGTGACAATCTTATGAAATTCAGCAATAAAG TCCTCCAAGACCATGATAAAAGCTCATCACGAAAAAACATGCCTAAATGATACCATAGATIA/GIC	20.4	32 **
SI026	8	TCACTTTGCTGCAACATTACAAAAAGAGAAAAAGCCAATCAAAACTTCTATAACACCAG CTTTTTATCAGTTTTGACCATTAGCATAAGAATCTGAACTTGGTTTGACCACATCAAGCIT/CIAC	56.1	25 ***
SI027	8	TGAGTTTTCTATTTTGTGACCTCTAGTTCTTGGTTTTTGAAATACAGGGTCAAAACGT AATCTTGATTTTAGATCTATTAGTTATATAGGAGTAGCAGTTTCTTTTCATTCTTCTGCCTT/CIGCCC	45.9	12 ***
SI028	8	TAITCTTTGCAGAATTGTTGGTTTGAGGTACTGAGATTGTTATGTCCTTTTTTTT	56.1	2 **
\$1030	8	GAAGGAATGGTACTTTTTCAGCCCACGAGACAGGAAGTATCCCAATGGGACGAGGCCT AAGAGTGGATCTGGGAAACCACCAGCTGCATGTTGCAGTGGAGCCTCAGCTCTTGCATCT[A/G]	22.5	39
\$1032	in silico	CTGCAACAAGCACTGCTGATAAGAAAACCGCTTGTGGATGCATTAAGACAGCAGCCCAGA GAAATGAATGGAATG	41.8	151
51033	8	ATTTGATTTTTTGAGGTTTTTGTTGTTAATGATGATGTTATGTCTTGGTAAATCTTC CGCTATATCATTCTTTTGCAGTGTTCTCCTTTTATTCTCTTCTGTGTGGATCCAAGACCG[T/C]AGA	3.1	33
51034	8	GTTAGTTCCAAAAATAAACATCTCACAAGCCTTGGCAAATATGACAGGGGCCTCTGCT GTTTGCCTTTAAAACCTGTACAGGG[A/G]AGTGGGTCAGACTAGGACCACCCTATTTTACCTGCT	4.1	6
81035	2	CAAATTTACACTTCCGACAATCAA AAAACAAGTTTCAGTTCCACTTGTTTTATTTTA	61.2	o 25 **
51037	8	AATCCTACATAAGTTCTGAGTCCCATAGTATACCGCCACCAAA TAAATCTTTTTGCTTTTATTGTTTTCT[T/G]TCTTTTATGATTTTCCTTGGTTTTGATATGTAATT	51	25
51038	8	TGTTGATTTTTCCTGTTATTTTT GAATGGGGAATATGGGTCATGGGTTCGGGGAAAGTTCGGCTCTCAGAGATGGGTCGATGG[A/G]	57.1	10 ***
SI039	0	GGAATCAACAGTGACTGAGCAGAGTGGTGGGTGGGGGGGG	35.7	25 **
SI042	2	AATTACGCGTGCGGTTGGGAGGATCAAGATAGGATTG ATGTACACGGGTCAGTTCGTGTACTGCGGCAAGAAAGCCACTCTGATGGTTGGT	45.9	25 **
SI042	2	GCCCGTTAGATCTATCCCTGAAGGAGCTGT TTGTATCATCCTAATCTTGTAAAATTGATCGGCTATTGCTTAGAGGATGACCACCGGCTT[T/C]TGG	16.3	16 **
SI044	2	TGTATGAATTTATGCCCAAGGGCAGCTT ATCAGTCATCAATGTTGCGGAGAACATTTGATCAACTTCAACTTCAGCATCGGTTCTCTT[A/C]GC	33.7	80 **
SI045	8	GAACCTGCCCCTGATACGTGGTCTAGTTTCCGCATAGGCC CCAACACTTGACGGAGCTCTAATCTT[T/G]ATCCCTGCACGTTTGATGTATTTGCTAAA	65.3	3 *
SI048	8	AAGCAACAACAACAACCAGGAGAACCATCCCAACAACCCCAGTAGAAACTAAGGTCCAAA[T/C	27.6	10 *
SI049	8	TCTCTAAGATGGACAAAGCCTCTCTGCTTGGTGATGC[T/C]ATTACCTATATCACTGACCTCCAGA TGAAAATCAGGGTTTTGGAGACAGAGAAGGATATG	5.1	3 **
SI050	2	TACTCGTTAATCTTATTTCCCTTTGCTTCTTAATTAATCAAATTTGATGGGGGGTCTTT[T/C]GTTT TGATTGCATGCAGATAATTATTAATGCTCCCATTTTGGTACTATGCTTTGAATGCTC	59.2	15 ***
SI053	8	CAGCAACCTCCGGATGGGACAGAAGCAAGTGTTCTAGTTCTGCAGGGGCAACCTACACAA[T/C] GTAACAACAACGGAAATGGAAATGGAAATATTAGCTGTATGATCTTAACAAACCAAATCA	5.1	5 ***
SI055	2	GTTGGCTCACTTGGCTGGTACACAATGTGCTGTCAAGTTCTACATATTGACAATTGATT[T/C]GCA GCACAGAAATCTTCATAAACTTCTGTAAAAAGCACACAAAGCTCAGCCACAGAC	54.1	47 **
SI056	8	GCTGTAAACGGCTCATCAACTCGGTCTGCTTCCGTGTCGGCGAGATCCAACGGTTGTCGG[A/G] CGTATTCGTCATCTTCCAGAGGCATGCAATTCAGGAAACTTTCTGGGTGTTATGAATGTC	36.7	22 ***
SI057	8	TTTTTTATTAACTCTTAAAATGATTCAATACCAA[T/G]AAGTGGTTTCTGCAGTTTAATCTTAG GTCAGATTGAGTAGTTAGTTAGAGCTGGAATGTT	32.7	25 **
 SI058	8	TAGAATTTTGTCTTTTGAATCAGGACTATAATTGTATCCCTATGAATTATCAATTATGAT[A/G]ATAA TACTGCGATAAGGGGATCCAAGAA	19.4	63 **

Table 4-4 STS sequences including SNPs and ratio of heterozygous loci in SNPs, and the result of BLASTN analyses of SNP sequences against *Citrus clementina* scaffolds derived from Citrus Genome Database [http://www.citrusgenomedb.org/].

_	SNP name	Method of SNP discovery ^a	STS Sequence including the SNP ^b	Heterozygous loci (%)	Citrus clementina Scaffold number mapped STS sequence ^c
_	SI059	8	TATGCCTATGGTAAGTTATTAAATAGTCTT[T/C]AGTGGAATTACATACTGTGGTTGGCCGCATAAC	42.9	2 *
	SI060	8	GGTTGCACTGCAACAGCAGCAACGGAATTGAATGATTGAATGCTTCATCATCCACACCCAACTGCA[C/G]C	64.3	29 ***
	SI062	8	TATATACTGTGACCCATTAATGACATCTGGTGGTGGGCACAAGATCAGTGCCAGACAGA	52	25 **
	\$1063	8	GGACTCCAACTCCAGTTCAAGCTTCAAATTCTGGAGAGAGCATTTTGATCAAGGGACTGGGA TCTCATGACCAGTTGACCACGATCCCA[A/G]CCACTGTCCAAATGGTCTTTCTGTGCGAAATTCT	58.2	6 **
	\$1064	8	CTTCATCAAATATAATCTGATTCCTT TCCACCAGGCCGTTTTGCAAGAGCATGGAGGAGGAACATCCACTGGGTGCCCTGAGCAAT[T/C]	12.2	10 ***
	51064	2	TGGAAATCAATGATGTGAATTATATGTTCATTCTCCACTGCTTCCCCAATGACGACATTT GTCTGCTGCGGCCTCTCAACAGTTGAGTGTTGA[T/G]CAGCCTGAGCCCCAAGCCAAGGGGCCT	55.1	2 **
	51065	2	ACCAGGTGCTTGAGTTGCAACAAGAAGGTCGGA TCAAGAGATAAATCCCTTGGCCTTCAAACTCTCGA[T/C]AGAGTCCTTGATGATTTGATCCATGG	55.1	2
	\$1067	2	GAATGAATTGTAAACCCAAGTCCATTAGCTTTTT CATGCCGGGATGAAGATACTCAG[A/C]TCCAAGGGAGAACAAATCAACAAAATGAAAAACCACA	57.1	8
	S1069	8	TAAAAGCAAAAAATTTAGAAGCT TAAGCAATCTTATTGGCAGATACGAAGTCATGCACAAAAGTACTTTCTAAAGGTTCAGAA[A/G]A	58.2	8 -
	SI070	8	ATGGGACAAGTGAACATGTACCTCCCCCCGACCAAAGAGAAAAGCAGCTCATCCATAC	2	3 ***
	SI071	8	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	34.7	95 ***
	SI073	8	GGGTTTTAATTAACATGGTACCTTCGCCTTTGTCTTGTAGTTTG	37.8	3 **
	SI074	8	AAAAAGTGAGAGCAAIAACTGGAAAGGAAAIGCAIG[A/G]TIAIGAIACCTCAGGAACAGAGAG CTCAAGACGAAATTTAGGACCATCGTAGTGATGCAA	2	5 **
	SI076	8	ACGAGTCTTTACAGACATAACTACAACA[A/G]TCAAGTGCATTTAGCTCAGGCCATGACAATCAT TTTGATTGTCGGAAGTGTAAATTTGAG	61.2	6 **
	SI077	2	AAGCTCCACTTGCCTAGCACAACCTCCATAATGTCTAGCTTGAGGTTGTATGGA[T/C]AGCAGCT ACAGATGAGACCATGGAGTCGACCCCACAGACATTGCGACCCATGCAGATCTT	50	22 **
	SI078	2	CTACTTTGAAATCTCTGTGTAATTTTAAGCTTAATTTCGGTGTTTTTCCAGTTGTCTTCA[T/C]TGT AATTTTGGTGTTAAAATATTCTAGTATAATAATAAAATTAGGTCATAGAGTTCGGGC	62.2	2 **
	SI079	8	GAGTTTCCTATTTTCTGATCTTTACTGTTGACCAAATTGGAACCTCAATTCATAAC[A/G]AGGTGA TCCATTTGTATGTTGTGCATGTGTAAGACTAAAGTCAATTTTCCTATACCTGTA	43.9	32 **
	SI082	8	CCTACTTTATCCGATAATTTGCC[A/G]TCACTCTCAGCTATTTCCTGCCTTTTCTTCT	23.5	114 *
	SI083	2	AGTCAAGAAACAACCTCAAAGATGATAGGAATTAAGGGCCAACATGA[T/C]GACCCACGCTTGT CAAGATTGGTCTCAAATGCAAGTTGAGCCGCACAACCAAC	46.9	32 **
	SI084	8	CGCAAAAGAGGTCCCCGCCTTCGAATACACGTCTCGGAGCGTTGCGCATTTGTACAACCT[C/G] GCAACTCTCTCGCAGGCCAAAACTAAAGCCGCCAACATCGTCGCCGCCGATTTTCGCCAA	55.1	13 -
	SI085	8	CTAATAXACATTACTCAAGCTACCCTTTAGTAATTTTGTT[T/G]GAAGCTGTAAAATTGTACTTTTT TAGGCGGTGGATTATGGAGATTGTTATGTTCTCATGG	42.9	25 **
	SI086	8	AGGCGCTACTCTTTACTTTGTTAT[A/G]AGTGGAATCCACCAAATTATTTAGTTGTTCGTTAAAAG	46.9	22 **
	SI088	8	AGCHATATGTGGAGACCAAGTTGGTACATTTATTGATCGGACAGGAAGAATGAGCTAGTA[T/G]G	54.1	47 **
	SI089	8	GCAATCTGCTGGCCGGGGGTGTCTTTGGGATGGGAAGGGCTAGGATTTTCAAGACCCCTC[A/G]A	13.3	20 ***
	SI092	8	GCCAGCAGAGCGTTAGCTCGATGTCCTGTCGGAGTATCCTC[A/G]TCCTCCTCTCCGCTGCCCCC	14.3	29 **
	SI094	8	GAATTAGGATTATCAATAAATAAGAAGTAAGAAGCAGGATGCCAATTATTTTGAGAAAGCTGACAT[A/T]TT	51	42 ***
	\$1095	2	GAGTACCTCATGTGGAAATCAGTTCCTACATGCTTTATCTTCCCTCTGATTGGATATG GCGAACCTGCCCTTGATACGTGGTCTAGTTTCCGCATAGGCCTTCCTT	53.1	80 **
	\$1006	0	GTCTTCTCGAATTTTCTTGTCTTCTTTTTTTCCCTGTATCTCAAGACTCTGGCCTC ATCCATGGCAGCCAAAGCAAGCTCCAAAAACATTGATCTTTCAATGGATCTATCGAGGCC[T/C]G	18.4	3 ***
	S1090	8	TAACGCCGGGACCTGATCTGTTCGGAGGCATAACAACTGGCAAGGCATTAGAAATCCCA TATGCAAGTACTAATAAAATATGAACATCGTTTGIT/CITGTTTGTCTCACCATGGGACTTTTT	61	9 *
	SI1099	8	TATTGTAGGGAAGAGAGCTGTCGGAGTTTGCATCCTGCAATGTCCCATTGAATTCCA[A/T]GA	59.2	19 ***
	\$1102	8	TACTGCCAFGACTGCFTGTGAGGFTGAACGACAACAFCTAAGGGFTCAACCTGGGGGAA CAAGGCTGCCTTCGGTGAGAAAGAGTGGTATTTTTTCAGTCCTAGAGACCGAAAGTACCC[T/G]	59.2	98 ***
	\$1103	2	AATGGAGCCAGGCCGAACAGGGCAGCTGCATCCGGGTATTGGAAGGCGACAGGCACGGAT CTCTATTCATGTGAATTATCATAGATCAGCTGATCTTTATCTGCCACTACTGGTCCCCTC[A/C]TTC	16.9	22 ***
	\$1104	0	$\label{eq:ccagtcacaattrcttrataaagagatgttaccttccaatgagataaattrttgcata\\ \mbox{tgcttttcttraagtgcatgcctt} [T/G]\mbox{tgcttttacagaagtgattagttggatgagcactgtt} \label{eq:ccagtcacattragttggatgagcactgtt} \label{eq:ccagtcacattragttggatgagcactgt} \label{eq:ccagtcacattragttggatgagcactgt} \label{eq:ccagtcacattragttggatgagcactgt} \label{eq:ccagtcacattragttggatggatgagcactgt} eq:ccagtcacattragttggatggatggatggatggatggatggatggat$	40.9	52 **
	51104	8	TGATGGTTGTTGCAGATGGGC TCTGGAGGATGTGGGGCATAGTGAGTGAGTGCGGACCGAGTTGCGGGTGCGGGTCTGAGTG[T/C]	40	33 2.**
	81105	8	GGGAATCGGTTGACTCAGAGAGGAATATCGGTGA AAATGTCGTCATTGGGGAAGCAGTGGAGAATGAACATATAATTCACATCATTGATTTCCA[A/G]AT	10.2	3
	SI109	8	TGCTCAGGGCACCCAGTGGATGTTCCTCCTCCATGCTCTTGCAAAACGGCCTGGTGGA GGCAAGGATGCTTTCCATTTGCGAGTGAGGGTGCACCCCTTCCATGTTCTCGGT/ClaTTAACAA	12.2	19
	SI110	2	GATGCTTTCGTGGTGCTGGGGCGGGT ALTTTCCCATTTA A COTTCCTTCA ACTCCTTCA A CA ACC ATTA A COTTC/T/CICC	45.9	16 **
	SI111	8	GAAAAATTACAAATGGTTAGGTAACCCTAGACTCATGTTTATGGCCCCATTAGC GAAAAATTACAAATGGTTACGTAACCCTAGACTCATGTTTATGGCCCCATTAGT	57.1	25 **
	SI112	8	GAAGAGATTCCAGGTGATGATTTATTAACTTTTGTCAAAGCTCCAGTCTCAAAGGTCCCA/GTTATGG	39.8	34 **
	SI113	2	CUTAAGUGTT FTGCTTGFTGAAGAICAAGCAGTACTACAAAGGATAGGAATCAGAATGCT[A/T]A AAAAGCTTGGAGCTGGTGGTGATCCTAGTCAAAGATGGAGAGGGCTGCCGTTGAAGCCATG	52	25 ***
	SI114	8	CAGATGAGTCTGGGATCGGGTGTCTCCTGTATTTGGTGAGCCATTTAGCCAGCGTCATTG[T/G]TG CTTATCTGCTTAGCCAACTTGATGATGATCCACAAATTGATCTT	2	25 **
	SI115	2	CCTTCCAATGAGATAAATTTTGCATAACTGCTCTCCCGCACTTGGTATTAACTGGTTTTT[A/T]AC ACTTGCAGATCCTTGGGCCTGATAGTGGTTGGCAGCCAATTCCACTAACAGATCTTAT	2	22 ***
	SI116	8	TGAAGTITTITAGTGGTCACATTCCTTATTGTTAATTAATCGAATTGTGATAATTTGTGT[C/G]TATC TATGCTGTTGTCAGGCCCTCATAATTTGAGCTTTTAGACTAAATAGTGTTTTAAAAA	34.7	6 ***
	SI117	8	GCCTTAAAAATAATCAAAATATTCAGTGTCATCGACATTCCTTCTAGATA[T/C]GTGCTTCTGGTCT TGTGCATAGTATTCAAAATAGAGGAGATTATAAATCCAGATT	58.2	8 **
	SI118	8	GAGGAAAAATAAAGTTACCTCCATCTGCACA[A/G]CATTGCAATCTCAGTATCAACA	56.1	101 *
		0	ACAGCIACAGCTAGTTGATGGTGATCGCGATCTTGATTATTCATTTT[A/G]ATTTTCTTGTTACTCA	(1.2	2 **

=	SNP name	Method of SNP discovery ^a	STS Sequence including the SNP ^b	Heterozygous loci (%)	Citrus clementina Scaffold number mapped STS sequence ^c
-	SI123	8	CTTGAAGAGATCATACTACATGGATCCACAACCATTGAACCATTTCGAGTGGCACCTTTA[T/C]G	5.1	19 ***
	\$1124	8	AGIAIGAGAICAAIAAGIGIGAIGCIIGCGCCIIGIAIAGAIIAGAACIGAAGCIIGII ATGTACATATGAATGTGTCTTTTGCCTTGTAACAATG[7/C]GTCTCTTGAAGGTTGAGGGTGGTCG	63.3	3 **
	31124	0	ACCATAGAGTGAAGCATATTGTTTGCCTTTTGTGG TTTTGGATTTTCTTGTCCTGATGGAAGATCCTATAGAACAATTTCA[A/T]TTCAGTAAAATGGCT	03.5	3
	SI125	8	СААТСАДАТААТТА	7.1	28 **
	SI127	8	GTTCATACCATGTGCTGGCGAAGATAATCAACTCGAGTTGGATGCTTGAGTTTCATCAGA[C/G]C CTTAACTTCATGTTTACGGACCATTTCCCTTGAAATATTTAAGTTCCCAGCAATTTCTC	45.9	6 ***
	SI128	8	AACTTACTCCCATGGTACATCACCAACAAGCATCCCAATCTCCATCATTGTCTTCATAAGT[A/G]GG	3.1	1 ***
	SI129	8	TTCATGGAGATGGCAATTTGTTAAACAATCACCCGGAATTACAGGAGGCTTTGGTTTGGG[T/C]C	39.8	2 ***
	61120	2	TATGTGTGGGGCTGAGCCTCAAAGGGAAGGATGCGAAIGCTGGGGGCCCACTCAAAGA TATGTGTGGGGCTGAGCCTCAAAGGGAAGGATGCGTCCCCTTTCCTTGAGAAGCTTGTGAT[T/C]G	50.2	10 ***
	31150	2	CTGATGTTGCTGGACTTGCCCCAGGAACTGGGACTCTTACAGTCTTTACAAATGAAAAT AATGAGTGAAAAACTTATCAAAAACGGAAGGACAAAATGAAAATTGGAACAGAGGCAAAAAGA[A/	39.2	19
	SI131	2	C]GGAAACTCCATTTCTCAACTACTAAGGAAAAGAAAAAAATTGATCATAAATTTTCTTAGG	57.1	13 **
	SI132	8	GAIGGGCTAGGTTTGAAGAGCTGAAATCAGTACCTTGAACAGAGGATTTAGTTTCTTTTG[1/C]A CTGCTGAATTGAAAGACATCCTCAGTTGATTCAAATCTGGTGGC	66.3	29 **
	SI133	8	CACCTTGAGGCCAGCGCAGCTGTAATGGCCACACTTATTTGCCGGTGACGGGCGGG	7.1	63 ***
	SI134	8	TCAATATCAAAATTCCAAATTTACCTCTTTTGTGGGTT[T/C]AGAGTTTAATTTGAAATGGATGATG	43.9	26 **
	01125	0	GGGAGGTTGATTTCTCGAACCAAGAAATGCTTAGC GGAGCGAGTCAACTCACTGAGCCACACCAACTGCAACTCACCGAGAATAATAAACAC[T/C]ATA	42.0	4.*
	81135	8	AAGGTAGTTTCTTTCTTTCGCTTTTTTTTTTTTTTTTTT	43.9	4
	SI137	8	CTTTCAGCATATATAGACTCATCTTTCGCAGCTTCATTTTGAGCTCTTTCTT	45.9	47 ***
	SI138	2	GGTCAAATGATCTTTCAAGATGAAATAAGAAGATGCTGACCTGATTATACTTTGCAAG[A/G]CGC TCTGACCTGCATGGTGCTCCTGTCTTAATTTGACCCTGATCATGAACAAGAAAACAA	49	2 **
	SI139	8	TTCCCCAGGTTGAACCCTTAGATGTTGTCGTTCAACCTCACAAGCAGTCATGGCAGTATC[A/T]T	59.2	19 ***
	SI140	8	TGAAGAATGGTAATAGAGTGAATTATGCTTTTTATCGTTGACTGTTGAAGAAAGA	54.1	4 **
	01110	0	GGTTAGCTTGAGATTGAATTTTACAACAATGTGGATCATGATTC ATTGTGTGTTCCAATTGTGATGTCGTATCACACTCATGTTCCAGTGTGAGTTTAATTCTC[A/T]TAT	50.0	. ***
	81141	8	GATTTTCCTGTCAAAAGTTTTTGCATGCACATGTTCTGTTTAGCTTAAATACAATTA	58.2	2
	SI142	8	GTGACTTTACTTCCAGAGTCAAACGTAACTACTTCATCGATTTTCATCATGGCTTTG	18.4	84 ***
	SI143	2	ACTGACACTGTTAGATGTCTTACTAAAACT[A/G]AAAATGCAAATGAAGAAAAGCAGGATATTGT TAAAGTGAGCTT	42.9	47 **
	SI144	8	AATTGTCATTTCCTTGGGTTGCTGCTTGGTGAAGAGGAGGAGAGAGA	15.3	17 ***
	SI145	8	CATTTGAATGATCTCTTTCTTGATCTTGCCAATGCTGTTGGTAATTTAGGACTCTTTAAT[A/T]GGC	65.3	12 ***
	01146	0	TTCTTTGCCATCCTTCTCCATACTGTGTCAACAAAATTGTCTGAAGTTCAAACCTGT CAGTTTCCTTGTAGCAATGGGCGACATTTCGCTGAGAAAAACTGCCGTGGAGGAGAAGAG[A/G]	54.1	12 **
	31140	0	GCTAAAGTACAGAAGGAGTCCAAAATTCTT TGCAATTGTTTATGCTTTTAAAAATCATTCCCCTAATGTTTGTT	54.1	15
	SI148	8	CTTATGTGCAGCCACTCGACACTCCAGCTGCATCACAGGACTTGTTTTCTGCCAACC	67.3	2 ***
	SI149	2	JCAACCCCAGAAICACICACAGGTCCAAA JCAACCCCAGTAGAAACTAAGGTCCAAA	29.6	10 **
	SI150	8	TTGGCCACCAATTAGATCATTAGGAAGAATTCATTGGCCACTTCGTCTAAGAATAATGA[T/C]GA AGTAGATGGAAAAGCAGGTTCCAGTGCTCTGTTTGTTAAGGTCAGCATGGATGG	55.1	1 ***
	SI151	8	AAGGTGAGAAAGAAGAAGAGAGAAAACGTGATTTTAGCAAACTAGAACTGAAACCTGATCATG[T/C]	19.4	12 ***
	\$1152	Ŷ	TGACTTGGATTTGTTGGTACTATGATTTGAGACTGATGACTTCTCCTTAACTTGTTTCTT[A/G]GCT	20.0	22 **
	31132	0	GCACCAGTTACAACTTCAAATAACGATGGAAGTTCATTTATCATG TTTGCCACCTTA A AGTTCATCCCCTTGGCA ACCCCTT/CITCA ATCTTTTCCATTATATGCCTGGCCG	58.6	32
	SI153	8	AATACCTTGACGTGAACATGGACCCCGTTTTC	12.2	63 **
	SI154	8	TCATAACTTGGTATTGATTGATTGATAATAATAATAATAACACCGCTGAGCATTACGTTAGTCTTT	44.9	25 ***
	SI155	8	GGATTTTGCTTATGAATAGCTATCCGCAGTTACTTAACAGTGGGTAACTAAAATGCAACT[T/C]AC TGATTTCAATTGCCACAGGCTTACTACATGGCCTTGCCTTTTCCAA	48	4 **
	SI156	8	GGGAATGAAAGATGCTATTAACCAATCTTCAAAGGTCTACGTATATGATGGACTCTATAC[A/G]GT	22.4	76 **
	\$1158	8	GTAACCACCAGTGTAAAAGGGAAAAGGGGAAAACAG GTAACCACCAGTGTAAAAGGAATATCATAACTACTCAACACAGGGCATAGATGGTATACCC[A/C]AA	62.2	3 **
	01150	0	TGTACCAACCACGAATGGTCTTCAAACAAATACTATCG CCATAGCCGTGAGACACATAGAATCAATGATACGAATGTCTGAAGCTCATGCCAGAATGC[A/G]C	02.2	
	81161	8	CTCAGACAGCATGTAACACAAGAAGATGTGAACATGGCCATCCGTGTCCTACTTGATTC	62.2	52
	SI163	2	CATTCTCGTTCATTATCTGCGGTTACCAGAGCTGTAAAAGCAATTATGGGAATGCTTTGA	10.2	25 ***
	SI166	8	CATGTTGCACACTTCTAATGCAGTACGTACGTACTTTCTTCTATTGCAGTAACTTCAAATATTC[A/T]TTG CTTGAGCACCATGATGAAGTGCATAGCGGTGAGATTTATTCTAATCTCCATGCACTG	4.1	61 ***
	SI167	8	TGGCTGTCATTGCTACAAAGGAATATCGTTCTATAGTATTCCAGGAACCTCGTTTTGT[T/C]GAATA	38.8	124 **
	SI169	8	ACTATAAAGATAATCTGCTCATCAATGC[A/C]TGCTGATTCTTCTGCTTTACAGCAGAATGACCAT	40.8	32 **
	01170	õ	TTCTGGATTTATGATGGGCTCTATTG GGACTTGATGGATTTGGGCTGCTTTGGTTTGG		52 55 **
	51170	2	AGGAGGAGGGGGGGGGGG GATGTCA AGACGA AATGTTA CAGCTTGTCCTCA AACTCAGATAGTGGTGTCATTTGCTC[T/C]TT	51	25
	SI172	2	CAAGCCCTTCCTCGATATCAGCAACAACAGCTGTGCAGCCTGTGTACCAGGCTCC	28.6	6 ***
	SI173	in silico	IGGUCAGAAICCAAGCTGCCTCTGTGCTGTTATGCTGTCTAATGTTGCTAAGAGCTCTGG[T/C]AT CAAGCCTGATGTTGCAATAACCATCCCCAAGCGCTGCAACCTTGCTGATCGCCC	28.6	16 **
	SI175	8	TACTTGTCTGCATGTCATTGTTAGTGTGCAACGAA[T/G]TAGTTTCTTAATGCTGGTAGTAACCAC	48	4 **
	SI176	8	GAATTAGATAGTGTCTACAAATACCGTGGATGGTTTGCCTGAAAATTCCAGTGAATGGAAG[A/T]G	55.1	30 ***
	CI170	0	AAIAAG11GGTCACG1GIGAAG11TCTTGTAATATCTGAAATGGTATGAAAATGCAAGT TTAACTCAGCTGGAAGTTATCGAACTCAG[T/C]GAAAACTCGTTCACCGGGACACTTGAAGCGT	65.2	 26 **
-	511/8	δ	GGTTCTTCCTGTTGCCAGCAACTCCAGCAA	65.3	20

SNP name	Method of SNP discovery ^a	STS Sequence including the SNP ^b	Heterozygous loci (%)	Citrus clementin Scaffold numbe mapped STS
\$1180	8	TTTTTTTGACGCTCAATTGACGGG[A/G]GGATTTCCTTTCTTTCAAAGTTACCAGATATTTAGATTT	56.1	12 **
	0	TTAAGATTTGAGATTCTGGTT GCGAACCTGCCCTTGATACGTGGTCTAGTTTCCGCATAGGCCTTCCTT	50.1	
S1181	8	GTCTTCTCGAATTTTCTTGTCTTCTTTTTTTTCCCTGTATCTCAAGACTCTGGCCTC	53.1	80 **
SI182	8	AGCACAACACTCTCAACCCAGTA	6.1	2 **
SI183	8	TTATTAAGATCTACAACAGCTAATTAATTGATCAATTAATT	67.3	15 *
\$1186	8	AATAACAGTAGCAGTGCACCTGCCGCCAAGTAAGTCCAAAGTTGGTTTTGCGTTAAATCT[T/C]G	10.2	1 ***
		GATTCAGTAAGATAGAAAAATTACAATCTTCCTTATTCGGTGACAGGGCACAGGTTGTG CAAAGGCAGATTGTTGTTTAGTCTCATCCTTTCTGGTATGAGTGTGGAATACCAGCCGAG[A/G]GA		
S1188	8	TGAAAGAGTATGATAAATTTGCAGATCTCCTTTCTTGATGCACATCAGGCCGAAGACG	59.2	6 ***
SI189	8	AGGAATGACCCAGGATTCTGATTTCCAA	48	28 **
SI190	8	TGGTCTCCTTGATGACAGGTCCAACTTTTTGGGCACCAAGTTCACAATCTATGATGGGCA[T/G]CC	58.2	3 ***
\$1191	8	TACCACCCAGGTTTGCAATTTGAGTTTGTCCAAAGTGTTGCTCTCTGAAACAAAAGTCCG[A/G]C	52	121 ***
51171	0	CATAGATCCAACTCACAAGGACAGAACAAGAAGCTGTGAAAGGCCACAACAGCTGTAGA GTTAGAGTCCTCATTCTCCAATCTTGCTCTCCCCCTGATGACTTGTTTCCAGAATCTTIC/GITTA	52	121
SI192	8	GCTGAACCTTGGGACCTACCACTTGGCTGTGCAACTGCAGATGCATATTG	69.4	28 **
SI194	8	GGC1CAGGCGGCACAAIGAICCGCAACAAIGIGCICGAGAACIIGICAIGGAAGCAICAC[A/G] CCTGAATTCATCTGATAATCTCACTGTGATTGTTATCTGCTTCTCCTCTTTGCAC	33.7	7 **
SI195	8	TTTTCAAAAGTGCAAGAAAGAAAGAGAGAAAAAAGTGTAACGT[A/G]AAACAAAATGCTTTGT	56.1	9 **
\$1196	R	CAGAAAACCCACTCTTTCCTTTACAACTAACTCTGCTAGTCGACTATTTATT	61	10 **
51170	U	TCTTTCAACTTTGAGCTGGACAAATCAATTTTCTTTTCCAACTCTTCAAGGTCCC TTTTAGTTTGTCCCGTAGAGATAAAAGGTTAAATTGAAAGGACAAAGGTTAGAATTGCCCA/G/G	0.1	10
SI197	8	TATCTGTTGGCAGGAGATAGATAGATAGAGAAAGAGA	4.1	3 **
SI198	8	CUACUGIAITACGAGCGACATGCCGTCGTTGGCTCGAAGGAGGGGCTGGGGCAGTACTT[A/G]T GGCTGCCCAAGAGTATTAAGAACGGGTCGCTTGCTAATAACTCGGAGATGAAGCTGCCG	29.6	26 ***
SI199	8	CCGTAGGGCCCACTCCGACACCTCCTTCCGCTTCGACGCTTCGACTCCTTCGACCCCTC[A/C]GA	51	34 ***
61201	0	TTCAAGCTGATCGGCTGGTGATCCATGGTC[A/G]ATGTATCTATCAGGAAGCACCATTGATCTCAA	27.0	22.4
51201	8	CTGCAGA GGAGCCTGGTACACAGGCTGCACAGCTTGTTGCTGATATCAGGAAGAGGAAGGGCTTGAAIA/GL	57.8	25
SI202	8	GAGCAAATGACACCACTATCTGAGTTTGAGGACAAGCTGTAAACACGTCTTGACATC	28.6	6 ***
SI203	8	TTATTAGTTAAATGATACCTGAAGTCATATATTTTGGATTTCTTATTTTGTACCTAGACC[T/C]TCCT GCAATTGTATAAGAATTTGGTTGTTGTTCTTGTCTGTGAAGATCTATTTAATTAGTAC	42.9	21 ***
SI204	8	GCAAAAAATGCATAACCAATGGTGTTAAGTT[T/C]CACCAAGCTAAAGTTATTAAGGTTATTCATGA	55.1	13 **
61207	8	AGAGICCAAAICIIIGIIGAIIIGCAAI CAGAAAATGCAATTTAAAGCATCTACATA[A/G]CATCAACAAGTGAAAATGGCTGAACACCATGG	(12)	10.00
\$1207	8	TTTGATATTTTACAATAAAAATATGAAT	64.3	12 **
SI208	2	ACATTCGATCCAACCATAACAAAATCACCAAAAATCACAACAAATCACAACA	35.7	2 ***
SI209	8	CCCCTCGGTCGCCGGCTGGTGGAAGAACGACCGTACAACGGACCA[A/G]ACTGGCGCGAAC ATCTCCCGCACGGTGCGGTTAGGCCAGGAGAAGAACGACCGTTTCTAC	54.1	6 **
SI210	8	AGCTAAGGTTACGGGAATGCTTTTGGAGATGGATCAGACTGAGGTTTTGCACTTGCTCGA[A/G]T	66.3	26 ***
	2	CACCAGAAGCTCTGAAAGCGAAAGTGGCTGAGGCAATGGAGGTTCTGAGGAATGTTGCT TTGATCCATTCTAGTGTGTGGGGGGCCCTTGAGAATGCCTTGACTTCCTGAAGTGATTACAG[T/C]AG		
51211	8	ACCTGTGCGGATATTATCTCCATGCCTTTGTGCTGATCCATATTTTGTT ATCCA ACCTCCTCTTGA ACTCTCGCGTTTTCA ACATCCA GCACACCACCA A A ATTCTA GCTC/CGC	25.5	42
SI213	2	TTGTGCGATTGGTCTGTAGAAAAAGAATTTCAGATACACACAC	30.6	47 ***
SI214	8	ACGACCTGGCCAGCCTGAGTGCAGTTACTTC[C/G]TAAGAACGGGAGACTGTAAGTATAAGTCTA ATTGCAAATATCATCCATCCAAAAAAATCG	68.4	12 **
SI215	8	CTCTTGGGCTATGGTACAGCCGTTCAGAGCTGTTTAGCTGCTTCTGCTTTATTGGAATCC[A/C]AT	36.7	7 ***
		GGGTTACGGCTGACTGTAGCTGATGCTCGATTCTGTAAACCACTGGATCATGCCCTCA GACCCGTGAAGGTAAAGAATACGACATACCAAAGGGACACATAGTTGGAACATCACCAGC[A/T]	10	
51216	2	TTTGCAAACCGGCTTCCTCATATTTACAAGAATCCAGACAGTTACGATCCTGATAGGTTT	48	65 ***
SI217	8	TGTTATGCTTTAAAATCATTCCCCTAATG	43.9	2 **
SI218	8	ATGTATCCTACGCCTCCTTTCCAATTCTTTGTTGGATTGTCTACAGTGTAGAACACCTGA[C/G]GTT TTTATCCCAAAGAATTAAATAAGACTAAGACTAATTCAAAGTTATCTATTTGTAACTAC	40.8	9 **
SI219	8	TGCTGCCCTGGAGATTCAAATGATCTTCATGGAGGAGATACACTTGATAATATCTCTGAT[A/G]AG	58.2	19 ***
81220	P	AAUQAAAAGAIUGUIGUAAAAIGTICGAITGAITGAATTAAGTTAGGTGGGGAGAAAG AGAGAGGAAGCGGGGGGGGGG	£1	4 10
\$1220	8	C]GGCAAGTTTATGAGGAAATTTGTGCTGCCTGAGAATGCTAACGTTGAAGCCATTTCGGCT	51	4 **
SI221	8	GGTTTTGTTTATTTTTGCAGTTAGATGATGGGTTCTGTGCAGA	49	69 **
SI222	2	GAGCATTCAAAGCATAGTACCAAAATGGAGCATTAATAATTATCTGCAATCAAT	59.2	15 ***
\$1223	8	TCTTTTTTTTCAATTGTTTTAAAGTAACTTGGGTTGGTTTTTACGTTGCGTTTACTTG[T/C]ACT	32.7	7 **
(122.1	~	GIUAACAAAATTGAAGCTTTAGGCTTTAGGCTTCTTCAAAGTTTTGAATTGGTTGG		·
\$1224	8	GCCCAGACCGACACCTCTGGCCACTCAGCCCAAGGTGGTC	22.4	39 **
SI226	2	GCTTTCTTTATTGCATGCGAATCGCCTCTCCTGCAACACATGTTAATCAGACTATG	51	34 **
SI228	2	AGCGCACGCATCACATAATTAATTAAAAAGAGATGGTGGTGGTGCTTCTTTCCATGAGCTTCCT[C/G]GT CTTCTTCCTTCGCTTCTTCTCTCCATGGTGCTGCTGGTAACCCAAATCCTCCCCGATCC	34.7	34 ***
\$1220	Q	AAAAAAATGAAAGAGATGTCATGATGC[A/G]TCTGGATCTGTATGTGTATGGCATATAAGAGCTAC	22.7	01 **
51230	o	TAGTACCAGTTTTGTCATATTTATA ATTTTATAACAGCGAATTGGTGTGTGTGTGTGGCTCGCTC	33./	71
SI231	8	TGTGATGGTGTTTTGGAAAATAAAGTCCTATAGTTT	24.5	16 **
SI232	8	IGUAALI IAGAIGUTACAIAFIGIGITIGITCAAGCAATATGCATGCCAACCGTATATTC[A/G]AGT TTTCTGATTTGTCTTTGAAATTCA	40.8	1 **
0102.5		CTTAACTCTTCCCTTTGTTTTATGGGTGTTTTCGCAAATTCTTGAAGTTGAAGGGAG[A/G]GGAGA		

Continued				Citure clow outing
SNP name	Method of SNP discovery ^a	STS Sequence including the SNP ⁶	Heterozygous loci (%)	Scaffold number mapped STS
SI237	8	AAACTTCAGAGACAACACGACGCCGCTTACTTGGGAACTCTCTTCGTGGGTCAGATGGTA[T/C]G	36.7	sequence ^c 23 **
SI238	8	ATAACAAGCTGGTGGCTCGTAACTTGCTGACAGAAGAAATGGTCAAGTTACAATACCAG[T/C]T GCAGTACAGATAGAGAAACTGGCTTGGCTTGGCCAAAGGAACGAGCAAGGTACGGTTAAGTTCCCA	51	22 ***
SI239	8	AGCTGTAGTTGACAAGTACCTCATGAATTTGGTTGATTGCTAATTTCATCAGAAATCGGT[7/C]GC	43.9	33 **
SI241	8	TACCAGTAGTTCCAGGCTTCT[C/G]ACTGCCAATGAAGAATGCAGTTGTCAGCAGGAATACAGG TGTGACTACTAGTACTAGTTA	41.8	91 **
SI242	8	CTACTTTGAAATCTCTGTGTAATTTTAAGCTTAATTTCGGTGTTTTTCCAGTTGTCTTCA[T/C]TGT	80.6	2 **
SI244	2	AATTTTGGTGTTAAAATATTCTAGTAT TTCCCAATTATCAGTACTCGGATCATAGACCTGACCT	59.2	19 ***
SI246	8	GAAAGATGCTGACACAAGGAGTTTCTCGAAGCAGCGAAAGCATGCTTCAAATTGTTG[T/C]G	43.9	36 **
SI247	8	GAAAGCCATTAGATATAACAAATGACCGCATCGATATIGCCCT GAAAGCCATTAGATATAACAAATGACTTTAT[A/G]AGCCTTTGAAAATGAAGCTGGTCCATCCTGA	54.1	91 **
SI248	8	GALIGGACIGITIGGIACACICIAATICAL CTCACTCATGCATGCTGCCTCCATTTTATCCACAATGCTTTGATTCTCCTCCTCCTCCTTTCT[A/C]CTCT	42.9	2*
SI250	8	GGGATTGATATGGGGTCTGCTGGGCTGGTGGGGTACATTGGGCGGCATAGGTGTGCCTAG[T/C]G	37.8	21 ***
SI251	8	TTCCTGGTTTTGGGTCAAGTACGAGCCTCCTGCAAGCTCTTTCCAACACTCACACTGAT ATTATGTTTGTCTATCACAAACAATTTCCTTCTAGTCA[C/G]CTGGTACAATAACAAAATGACGAG	43.9	4 **
\$1252	2	CAATAACTGTAAAAGGGCAAAGGACAATCAGACCAA TTCAAGCTGATCGGCTGGTGATCCATGGTC[A/G]ATGTATCTATCAGGAAGCACCATTGATCTCAA	37.8	23 *
\$1252	2	CTGCAGA CAAAACCCAAGATGGATCATGGAATCATGAGGTATGTAAATCTCTGTTTATGCCA[A/G]TGTGAGT	54.1	50 **
81255	° 2	GAATGGTTGGCCTTAAATTTTGTTCTGTTGTCTGCACTATGATCTGCAGCAT GCCACATATATCATCCCCCCAATCACCCCACTAGCAAAAAATGATCT[A/G]GCTGTAATCATCTTGT	17.2	10**
51255	2	$\label{eq:theta} TCATGACTGTCCAACGGTTTTTTTGCATTCATACTT\\ TACTTGTTAATTTCTCTCTTCATTCGAATTGATCAT[A/G]TTTTATTTTGATAAGTGGACAAAATCAT$	17.5	19.1
81259	8	TANGGGGNAGGTTTCTCAA ACAACATCTTATTTGGTAATTGGAGCCTGTAGTAAAACCATCCCGAAAGAAA	51	47*
\$1260	8	TGTTTTGAAAACTCTTGATAATCCGTATATCTCGTTTTGCTCTTCTGTTGAAAGAATAT CACTCAAAGCTGCTTTCAGTACCTCTTGTGAACAACCTGGTTTCACTATGGTTCGAACCTIA/GIG	39.8	20 ***
SI263	8	GAAATAAATTGGAAAAAGAAAAAAAAAAAAAAAAAAAA	44.9	22*
SI264	8	GACTTCGGACATAGGTGGTCGAAACTCAGGTTCCGGCTGCACAAGCCAGTGAGTCAAT GACACACAGTTTTATCACAACTTGCACATGTTAATAGTTTCATGCATTTATGGCATTTATGGCATTTATGGCATGCAT	44.9	33 ***
SI265	8	TTACTGGAGTTCTCACCCGGGATTGATGGAGGGTCTGCTGGGGGTGGTGGGGGACAT	7.1	21 ***
SI267	8	CCTGTACAGGTTTTAAAGGCAAAC CCCAGTAATCTCACCACCATTCCACCCCCATTCCACCCCATTCCACCCCATTCCACCCCATTCCACCCCATTCCACCCCATTCCACCCCATTCCACCCCATTCCACCCCATTCCACCCCATTCCACCCCATTCCACCCCATTCCACCCCATTCCACCCCATTCCACCCCATTCCACCCCCATTCCACCCCATTCCACCCCATTCCACCCCATTCCACCCCATTCCACCCCCATTCCACCCCATTCCACCCCCATTCCACCCCCC	61.2	6 **
SI268	in silico	AGCTCTTGTGAGAACCAAGCACCGTTGCTGGATGTAGAGGAAG	49	4 **
SI269	8	AGATATTCACTTGTACTTTTATTGAACTTACAA[A/G]CAACCAATCAACACATGACATCGTGAC TTTATTCTTCGCTTGTTAGGTTTGGTGAGAAAATAATCAAAATTCCTCTTCATTACCCAAIC/GIGTA	22.4	1*
81270	8	CAGGTACAATGATTCAGTCCTCGTTTATTTATATCTCATACTGTGCTAA TTTCGTTAATTTTTACATAGCAATGTCTATGTGCAAAGTAAGGGTIT/GICTTTGTTCACAAAACTCC	65.3	29**
SI271	8	AGACCTCCAAAATAGAAGGGAACAATCTTTGTTGTCTGAGGCT CAGTGACAATGGGGCAGCAGGAAATAGTGGAGTTGGTGGCATAACTGAAAGAATCAGTGGIA/GI	32.7	61 **
SI272	8	AATGTGGTAGATGAAGTTTGGGTTGCTCAGAGAGAAGCTGCCTTGACTAAATTTCG ACATTGCAACATGTTAGCTTTAACATGCTTAAAGTATCACATATTTGCTTGGATCATGGTT/GIGAT	56.1	8 **
SI273	8	ATTCATTTATCAGCTACAAGAGTGG AATGCCTGATTGACCAGAAATATCAAATGGATGATGTCCIGCATGGATAAACATTTTAAGTAGAG	23.5	6 **
SI274	8	GATTGGTTCTGCAAAGA GATTGGTTCTGCAAAGA TGGATTACAATACAA	55.1	59 **
SI275	8	GGTGCCATATTCAACTTTACTTGCATAGAGATGCGTGATCATGAACAACCACAGAGA GGTGCCATATTCAACTTTACTTGCATAGAGATGCGTGATCATGAAACAACCACAGAGAT	55.1	51 ***
SI276	2	CAGCTETETETETETETETETETETETETETETETETETETE	12.2	8 **
SI277	8	AGTIACUATIAGICGATGTTTCICCIAATICCAAIAAGAGGCIAGGGAAAGACAACAAAI[A/G]CA CAAITTCCATCTCCAACTGCAAAACGAACTTTCACTCTCACTCTGGTAAATAAGTATT	55.1	32 ***
SI281	8	AIGICECETATAAAAGTAAGCATCCAAAAAATTGGCAAACACAAATGATTACAATATGAGTC[A/GJA ACCTGTGCATAAAAGTAAGCATCCAATCAGACTTAAA	54.1	1 **
SI282	8	AITGIGCAAAIGAIGACTTAACCGIICTTCCICGCGAAGCCGAACTIGAGCIGAGC	59.2	12 ***
SI284	2	AIGIACATAIGAAIGIGICITTIGCCIIGIAACAAIG[1/C]GICICIIGAAGGITGAGGGIGGICG ACCATAGAGTGAAGCATATTGTTTGCCTTTTGTGG	63.3	3 **
SI285	8	GGTTGGCAGAAAACAAGTCCTGTGATGCAGCTGGAGTGTCGAGTGGCTGCACATAAGTGA[T/C] ACACACCAAGAATAGTTAACAAACATTAGGGGAATGATTTTAAAAAGCATAAACAATTGCA	67.3	2 ***
SI286	2	CGCCTAGCCAACCCGTCATCCGCGTTGACCTTAAACATCTTGCCCGTATTGGATTGCACC[A/G]CG AGCAAATACCCCTTGCTCACGTAAGCTATCCCGTTTAATCCACACTCGCTAAACGGCG	52	56 ***
SI287	8	CCTCATTCATCTTTTGTTAATTATTTCCCAATGATGCCAGCAGCTAACAG[T/C]ATTGCAAGATTCA CTTTATTTAATTTGTTAGCTCAAAAATTATTTTGATAAATTTC	15.3	61 **
SI288	8	TATTAGAGGTGTCATTTTTGGGAGTATGGTTCTCATCTTGGCT[A/G]GCTTTCAAGCACCACTTTCT GTTATGCTTATTATTCTGCAAT	52	25 **
SI289	2	GAGAAAGACTATGATCTTCTCAAGAGACAATATGAAGCAGTCAAAGCCGA[T/C]CGCGAAGCAC TCCAAGCTCAAAATCAGAAGCTTCATGCAGAGGTTTGTCTTGAATTCCA	43.9	10 **
SI292	2	AATCTTGATTTTAGATCTATTAGTTATATAGGAGTAGCAGTTTCTTTTCATTCTTCTGCC[T/C]GGCC TATTCTTTGCAGAATTGTTGGTTTGGAGGTACTGAGATTGTTATGTCCTTTTTTT	56.1	2 **
SI294	8	CAGCGACGGATCGACCTTCATAGTCTGGAGACCAGCGGAATTCGCCAGAGATTTGTTGCC[T/G]A AATATTTTAAACACAACAACTTCTCTAGCTTCGTCCGCCAGCTCAA	67.3	29 **
SI296	8	GGAAGCTTCATTCTCCAAGATCAGCTCTCTGTTTATCCCTCCGC[T/C]GGTGGAAGAAACTATCTT AAATTGTCAAACTTCAGAGACAACACGACGCCGCTTACTTGG	17.3	23 **
SI297	8	AGGAGGTTAAAAAGTATTTTTACGGCGATAATAAATATGGCGGCGAGCCATTTTTCTT[T/G]CC	61.2	19 ***
SI298	2	GATATGCCATTAGTTTCAGCTTATGTAAAAGAGAGAGAGA	65.3	117 **
		AUTOTOCOUNCE CONCUCATIONAL ACTA A ACTA		

SNP name	Method of SNP discovery ^a	STS Sequence including the SNP ^b	Heterozygous loci (%)	Scaffold number mapped STS	
SI300	8	TCTGGGATGCTCTGGTGAATTTGAGC[T/C]CTGGGTTTCAAAGTAAAATCAAGAAACATCGTCGG	58.2	87 **	
SI301	8	TTACTGTGGAGGAGGATCAATTGGGGGGTTTTGGATCTCATGTTGTTCAGTTCCTCGCTC[A/T]CG ATGGTCTTCTTGATGGCAC	26.5	7 **	
SI302	2	CTTGGCTTTCTTAGCAGCAGAGGACTTGATGGATTTGGGCTGCTTTGGTTTGGCAGCAGC[T/C]G ATTTCTTTGCCTTCTTAGCCGCAGGAGGAGGAGGAGGGCGCGGCGC	29.6	25 **	
SI304	8	ATTATTATTGCTTGGAATTAAGATTGTATTCCTCACGGGAAGACCAGAAGATCAGAGAAA[T/C]GT TACAGAAGCTAATTTAAAGCATGCTGGATTCNACACNTGGGAGAAGCTCATCCTCAAG	37	33 **	
SI305	8	CAACAGGGTTGATTATGCTTCTATAAGTGATGAAGAGTGGAAA[A/G]GAAGGCTCACAGGGGAG CAATATTACATAACTTGACAAAAAGGGACTGAGAGGGCTTTA	54.1	17 **	
SI306	2	ATTATCCTGTCCAAAGCACTCAAATCTTTCAGCTGATAGCCTTAATAAAGCTCGAAAATA[T/C]TTT GGCGGCATCCTACTCACTCACCCCACATAATCTTTGAATGATCCAAATCCCAAATT	52	53 ***	
SI307	8	ACTCCGACGAGAGCTTCATAAGCGTGTGGGATTGCAATTGTTGTAGCAATCATCGCAAGC[T/C]G GGTGATGCGTGTGAGTGCCAGTGCGTTGGCAAAGTTTGTATGGTTGATGTGATTGGTTA	52	69 ***	
SI309	8	CCCCTTTTTCCTTTTGTAATCATTTTTGTGTGTTTAGTTCCAC[T/C]TCTGGCTTCTAGGCTTGCCG AACTTTGAATTTTTTGATGATGTTTTATTTATCTGTTTAT	51	47 **	
SI311	8	TTATGTTTGAGAGATGGGCTACATAGGAAAAGCAAATGAAATTGTGCTGATGC[A/G]ATGTATGAT TTGCAGAGATTTACACCCAGCTGCAGAGTATCATGGTGCGGCCCGTGCAGTA	55.1	6 **	
SI312	8	ATTCCTTCTTCAATTGATCCTTGTTGATCACTTTGATCGCCACGCTCTCCCCTGTCATCA[C/G]CTG CTTCCCGTAATACACTTTCGCGAACGTGCCCTTGCCTAATAACCTCCCCATCTCGTA	45.9	63 ***	
SI313	8	TGATTTATAACCTGTTATTGGTTTTTGCGGC[T/C]TTTTGCTTTTCTCAATAGTTCGAAACAAAAAGC GGACAGTTGCTGCTGCTCCCTCCTTAA	55.1	4 **	
SI314	in silico	CGTGAGGCCACCGGCAGCTTGAACGAACACAGAAAACACACAC	59.2	20 **	
SI315	2	AGAGAGGAAGCGGGAGGAGGAGAAAGATGGGGCCAAGTATGTGAGAATGGAGAGGAGGAGGAT[T/ CIGGCAAGTTTATGAGGAAATTTGTGCTGCCTGAGAATGCTAACGTTGAAGCCATTTCGGCT	51	4 **	
SI316	8	AACGCTTGAGGCTCACACTATTCCAATCCGTCTTCAAAATACAGTTCAAAAGCAGTACTA[A/C]A GGCTCCTTCCTTCTGCATA A AATA AATCATTTA ACTTTA AA AA ACA AATGTTGTCA AATA	27.6	6 ***	
SI317	2	TTTCTTCACGACGGGCTTAAAAGGTTGTTGCCCTCTTTGCCGTCTATGTAACTTGGCC[A/T]GT GCTTCCACGACGGCCTTAGGTGCACGCCTCCATTTCTGGTGGTGGGCGGCTCAA	46.9	32 ***	
SI318	in silico	ATAAACAATTGAAACAAACGCTAGGTCCACTAAGCCAATATTGTCTCCATTGAAAAATTT[T/C]TT CTCTCCCAAGCCATGCTCTCCAACGGTTTGTAGCATTTCCAAGGCTTCCTTC	2	51 ***	
SI322	2	NTTTTTTTGGGTTTGAGGATATGTTTGGTGCGTACTTACTCTGTGATGATAATGA[A/T]TTTT CAGCCCAATTATGATGAGTGCCGGAGAATTGGAAAAGTGGCAATGCTGGAGAACCCG	28.6	16 **	
SI323	2	AATCAATCCCCCCACCCCAATTTCATGATAAATATTCAATGAATTAGATGCATGTAGTTG[A/G]CTT CCATAGTCTGGACAAGGTCAATTTCAGTGCCAAAAGAGAGTT	59.2	8 **	
SI324	8	GCTTACTGTGTGTGTCTTATATGATGTTCAGGAAAAAGGCAGCTTTCATTTTCTGTGT[T/G]GAAGACA GACCACTCTTCTTCTAAGGACTGTGATGAACCACTCATCCACTGGTATGTCTT	58.2	46 **	
SI325	2	CGTCGATCGGGAAGGTCACCTGTTTGCTACAACATTTATGGGGTGTTTGAGAGTGATGA[A/G]C TTTATCAGAAGACTTTTGGTACTGAGAGCGTGCCACTTCTTGGAGATGGAGGCTG	53.1	15 ***	
SI326	8	TATGACATTGTTGTGTGTGTGTGTC[T/G]CTACTCTGATCCTACATTTGTATACAAGGCAGGGCATCA	46.9	25 **	
SI327	in silico	CAGTGACAATGGGGCAGGAAATAGTGGAGTTGGTGGCATAACTGAAAGAATCAGTGG[A/G]	56.1	8 **	
SI328	8	TCTGATCTTTTCTGGCTACTCTCGAAGCATCTCACAAGTCTTTGGTGACAA[A/G]TTCAAGTTT GTGATCTTTTCTGGCTACTCTCGAAGCATTTCACAAGTCTTTTGGTGACAA[A/G]TTCAAGTTT GTGACTTTTGCTTTTCTCTTTTCCCCCCCCGTAAGTCTTTGT	54.1	4 **	
SI329	8	TATTGATAATTTTCATTTCATGTTGATGTTGATGATAATGTTGATGATAAGGTCTAGCA[A/G]CATG	40.8	2 ***	
SI330	8	TTTTTATCCACTTATATTGGTATTCCATCTGAATTTACTTCC[A/C]ATATTTGATCCTTTTGCGAGTAG	58.2	19 **	
SI333	2	ACATTGTAAAAGAATTGCCTACGACTTTGGGTGATAATGACTCGTCTGGTACTCTTTTTCAT[T/C]TGT	2	56 ***	
SI334	in silico	CATCAGATGGGCATTCAGATAAAGTTAAAGCATCTTCTGATGGTTCAGGATCTA[T/C]TCATGAGC CATCAGATGGGCATTCAGATAAAGTTAAAGCATCTTCTGATGGTTCAGGATCTA[T/C]TCATGAGC	37.8	8 **	
SI335	8	AAAATTTATCTAAGTCTGCAGTTGGCTGCTGCAGTTAAGAATTTGAGCTCAAATTTT[C/G]TTT	53.1	67 **	
SI337	8	CTGGTAGATGCAGCTATCCTGCAATTCAACTGTGCCAAAATATCAAGCGACACA[A/C]AT ACATATTCATACGTTGTTTTCATATTTATAT	38.8	21 **	
SI338	8	TGTGTGCAAGGGTATCTTCAGGAATGAGCAATGTGGCCTGATGACGACATTGTCAAGCTTGT[T/C]G	29.6	16 ***	
SI340	8	TAAGTGGGATGATCACTGTGCCCATAGCCCTCTTAAGATCCCTGTACCCTGCTTGGAGGAGTA[T/C]GGG GAATGGCGAATAATCACTGGCCGCTGACCC AAGAAAAGTCACGTCAC	35.7	7 ***	
SI341	8	TTTTCCTTTTTTGAAGGACATCTAAC[T/C]GCGAAAAGCGATGTGTACAGTTTTGGGGTTGTTCTC CTCGAAATGTTAAG	11.2	16 **	
SI342	8	ATGAACGTAGATCATGAAGCGTCGAGCTTCCTGAGCTCTAAGATAGTCTGAATCATCCTC[T/C]GG CCTTCTCGCGGGTTCATATTCACCACTCCTCTCCACTCCCGATCCCCAAGGCAGAAG	54.1	88 ***	
SI344	2	TGCTCCGCAAAAGCCGCTATGGAGAAATCTCTCAATTTGAAGTCACCGAAGCAAAT[A/C]CATC AGACGCCAGAATTGGAGACTGCCAAGGTGGCTGCTGAGCCCTTTGTGGGTTCCTCG	29.6	2 **	
SI345	8	GGCCGAGCAATAATATTCCGGGTTGTGTTTGTGTTTGAACCCGGGTAGTCCATCTGGATCCGATT[T/C]GA GGACTCAAGCTTACCCGGTGTGGCTCAGTA	46.9	32 **	
SI346	8	GGCCACCTGTTGTGACAAAATTGGTATCAAGAAAGG[A/G]CCATGGACTCCAGAAGAAGATATCA TTTTAGTTTCTTATATTCAAGAGCATGGCCCTGGA	53.1	53 **	
SI347	8	CCCGTTAATTTTGGATTTACCGCACTAACTTACTTACTTA	48	22 ***	
SI348	8	TAAGAAGCAGAAGTTGGCACTTCAGAATCAAAGAGTCAGCATTCAGGCTCAAGCTTTTGA[A/G] CTTGAGAAACAACAACATTAAAGTGGCTAAGAGTATTGCAGCAAGAAGACCGGGAACTGGAG	30.6	20 ***	
SI349	8	CCCTATAATCCCAGGTTACCAAGTGGCATATGGCATCAGCAGGAGGAGCGGGAGCTGGGGTGCGAGCCCCGTTT CATTTAGACAAGGGTTACCAAGTGGCATTGGGAGCGATGGCATCGCAACCA	2	13 **	
SI351	2	TGTTTTTGGAGGCTTCCTTAGATAGCTTATGGTGATGCAATTAGCTAGC	14.3	129 ***	
SI352	8	TGCCCCTCTGGAGCCAAAGATGAATCAAGAAC[T/C]GTTGGAATGCTAAAAAATATACTTCCATAA GGCTCCTCCAGTCIGTTCCAGTCATCCTAA	61.2	2 **	
SI353	8	AGGAGCCAAGCTCTGGGTTCTAATGAAGTCTCAGTTTATTGCAACTCAGTTTCGTGTTCT[T/C]AT CCGAGCCAATCGCTACGGCTCTCGACGTTTTTCCATTGGATACAGTGGAXATTGTGGT	61.2	12 **	
SI356	8	ATTTACTAGTGAGAAGACTCAGGATCAGAAGGATGGCACACATACAT	40.8	4 **	

SNP name	Method of SNP discovery ^a	STS Sequence including the SNP ^b	Heterozygous loci (%)	Citrus clementine Scaffold number mapped STS
				sequence
SI359	8	TCCTCAATTGGATTGCCTTTGCCAATCGTTTGTTCTAACTCTAATCG[T/G]ACTTTTGATAAAATAT CTGGGTTGCGAAGTAGTTCTGTCATTGCCCATTCCAATGTACTC	29.6	2 **
SI360	2	GCCAAGCTCGACTTCGCATGCAAAGAATGGGGTTTTTTCCAGGTATAATGCTTTAGCAAA[A/G]TT AGAAAATTGTTTCGCCAGAACATGCTTGTTTGTGAACAAGAATCGAGAAATATGCAAA	1	17 ***
SI361	8	TTAAATTGTTTTCTTTGAATACCGAAGTCTTATGCATTTTGGTATCTCAGGTCCAACAA[A/G]AA GAAAAAGCTTGACTGGGGCACTCGACTGAAAATAGCACTAGGAGCTGCACAAGGGCTA	46.9	4 ***
SI363	8	ACTTCATTCTCAACGACTAACCTCTGACACAAAGAAGGCATGAAATCCGTATGGAACCCT[A/T]T	41.8	39 ***
SI366	2	GAGGAGGTTAAAAGTGAAGATTATACCCTCATAAACCTCTCATAGAAAATAAAATGTA[A/G]G	49	53 ***
SI369	8	AAGCGTCCGTGGAGGACAGTGAGAGGAAGGAAGCAACGTACCAAATCTTGGCTCAAAAC AAGCGTCCGTGGAGGACAGTGAGAGGAAGGAAACGGTACCATAATTGTAAGTAA	55.1	1 **
SI371	2	GGTAGTACGGTCTCCAGGACTGCACTGGACTCAGGGCTCGGGCTCAGTGACCAGGGAGTCAACA[C/G]T	14.3	129 ***
SI372	8	GAAATGAATGAAAAACAGGTATATGTGACCATTCTGAAAAAAAA	18.4	84 *
SI373	8	GCCCAACTTCAGCATTGCCTTGCGCTTCTTCTCACTTCTGCTCTGCTTTGAACTCCC[A/T]CC TGCAACTCAGCATCGCCTTGCCGCTCTTTTTCTCACTTCTGCACTCCGCTTGGAACTCCC[A/T]CC	58.2	18 ***
SI374	8	CCGGTACGCGAGAGGTGTACGAAAACGGC[C/G]AAATTTACGACATCACCCACCGTATTACGAG CCGGTACGGCGAGAGGTGTACGAAACGGC[C/G]AAATTTACGACATCACCCACCGTATTACGAG	65.3	26 **
SI375	8	TAGTTATTGGTTATGATTTTCTGCATCACACTCTTACTGCATTGCGAATTTACATTTTG[T/C]CCAG	5.1	22 **
SI376	8	ALTIGGAT FIGURACIO FOLDIALACCACAGAO FITTE ETTE TELETTALI AGCGAAGAAGAGGAGGAAAAGCCAAGGTGGTGAAACCGAGGTCTGCGGGATAC[A/G]GTTAAT GAATTTCCTTTGACCCCCCCCCCCCCCCCTTCCCCCCCCC	64.3	2 **
SI379	8	TCAGGAAAGGTTTGCTCTGAAGGAAGCTGGAACAGAACTGGGACCCTCTCTATTATTTT[T/C]G	39.8	4 **
SI380	8	AGTGATTCGGTGGGCTTTTTTTTAACTAAAGCAATTCTTGCTCTTGAAGAAGAAAAAGA[A/C]G	60.2	17 **
SI381	8	GAGACTAGAAGAACTAGAATCTTTACAAGAGCCCAAGTCTAIGAGGAAGAAGAGAGAGAGAGAGAGGCGCGCGCCATGTTCCTCCG GAGTCTTGAAATGATAACAAGACCCTAT[T/C]CTTAATACTTGAAGCGCACGTCATGTTCTTCCG TCCCTAATTATTCTCTCTATCAATTATC	53.1	27 **
SI383	2	COATCAAATATTATOTOTATOAATIATO CAATCAAATCAAACAACAAACAAATACATTCT[A/T]CTGAACGTAGGTAGTAAAGCCCAAAAAG	55.1	72 **
SI384	8	AAICCCCGACAAAAIAAAAAGCAIAGIAA AITGATCATATGTTGGGATTTTCTAGTTGTGATC[T/C]GTTATGCAAGGGGCAATGCTGTACTTCAT	56.1	32 **

^a '8', '2' and 'in silico' indicate 'The SNP is detected from comparison of eight eitrus genotypes', 'The SNP is detected from comparison of two eitrus genotypes' and 'The SNP is detected in silico', respectively.

^bSNP is indicated by '[/]' in the sequence.

°Number of asterisk shows expect of blastn: ***=2.00E-58 (minimam value), ** <1.00E-30, *<1.00E-10, ->1.00E-10.

	Number of STS	Number of STS		
Number of	from which	from which		
SNDs per STS	SNPs derived	relaiable SNPs		
SINTS per STS	on CitSGA-1	derived on		
	(%)	CitSGA-1 (%)		
1	199 (70.3%)	156 (73.6%)		
2	71 (25.1%)	48 (22.6%)		
3	10 (3.5%)	7 (3.3%)		
4	2 (0.7%)	1 (0.4%)		
5	1 (0.4%)	0 (0.0%)		
Total	283 (100%)	212 (100%)		
Number of SNP	384	277		

Table 4-5 Number of STS from which genotyping SNPs were derived for the array *CitSGA-1*.

Sample	Heterozygous	Sample	Heterozygous	Sample	Heterozygous	Sample	Heterozygous
name	loci (%)						
TY001	44.7	TY028	29.3	TY054	56.5	TY081	35.4
TY002	41.5	TY029	49.6	TY055	42.7	TY082	51.2
TY003	35.4	TY030	50	TY056	35	TY083	50
TY004	50.8	TY031	50	TY058	27.6	TY084	58.9
TY005	54.5	TY032	45.1	TY059	70.7	TY085	30.1
TY006	45.9	TY033	50.8	TY060	44.7	TY086	58.1
TY007	43.9	TY034	45.5	TY061	57.7	TY087	43.9
TY008	55.7	TY035	44.7	TY063	42.7	TY088	57.7
TY009	43.9	TY036	63.4	TY064	39	TY089	66.7
TY011	52.4	TY037	41.9	TY065	42.7	TY090	49.6
TY013	39.4	TY038	41.9	TY066	61	TY091	37.4
TY014	49.2	TY039	45.1	TY067	30.9	TY092	29.7
TY015	45.1	TY040	35.8	TY068	54.5	TY093	43.1
TY016	38.6	TY041	44.7	TY069	8.9	TY094	50.8
TY017	41.9	TY042	54.9	TY070	49.6	TY095	47.2
TY018	50.8	TY043	56.5	TY071	42.7	TY096	21.1
TY019	44.7	TY044	39.4	TY072	55.3	TY097	28
TY020	39	TY045	54.1	TY073	37.8	TY098	33.3
TY021	36.2	TY046	57.3	TY074	38.2	TY100	30.1
TY022	40.7	TY047	26	TY075	37.4	TY101	59.8
TY023	53.7	TY048	39.8	TY076	37.4	TY102	51.2
TY024	50.4	TY049	55.7	TY077	42.7	TY103	32.5
TY025	34.1	TY051	48.4	TY078	48.4	TY104	58.5
TY026	32.1	TY052	66.3	TY079	43.5		
TY027	41.5	TY053	48	TY080	37.4		

Table 4-6 Ratio of heterozygous loci in citrus germplasm samples.

Chapter 5. General Discussion

This thesis describes the development and application of high-throughput genomics tools, the oligoarray and the SNP genotyping array, based on recent technologies and the software for efficient use of genotyping result. It was shown that a large amount of gene expression analysis and the genome structure analysis have been available in citrus.

The results in Chapter 2 show that the citrus custom oligoarray is an important tool for profiling gene transcription. An example of its use was the gene transcript profiling of mature mandarin fruit subjected to plant hormone treatments. Consequently, a gene encoding a transcription factor of a carotenoid metabolic enzyme gene was screened. In the further study its function confirmed in recombinant tomato (Endo et al. 2013). Chapter 3 detailed that the software MinimalMarker was effective for producing a minimal set of DNA markers to identify cultivars when a large amount of genotyping data are available. Afterward the software has been applied to identify cultivars of various crops (Takashina et al., 2008; Yamane et al., 2012) and haplotype of allele among several cultivars. Chapter 4 describes the development of a 384 SNP genotyping array, and its use for high-throughput genotyping of 98 citrus accessions and one citrus population. Using this method, a linkage map can be constructed rapidly and SNP markers can be used to identify cultivars. Consequently, this study has provided genomic tools and higher-level genomic analyses for citrus. Their applications to citrus to establish a foundation for advanced genomic analyses. The high-throughput genome analysis tools will be indispensable for the essential resolution of important traits of citrus to the gene level.

However, it remains difficult to achieve important breakthroughs, even when powerful genomic tools are used. For instance, the microarray analyses in Chapter 3 identified 24 genes that showed 3-fold changes in transcript levels in response to ethylene as ethylene-responsive transcription factors. Based only on the results of microarray analyses, it is difficult to identify which transcription factors might play important roles in regulating expressions of genes involved in fruit ripening, such as those associated with chlorophyll degradation and carotenoid accumulation.

Two previous studies serve as references for the limitation of genomic tools. Sugiyama et al. (2010a) performed an eQTL analysis to quantify expression levels of genes involved in carotenoid metabolism in citrus fruit. Their aim was to identify possible *cis*- and *trans*-regulating regions to refine selection markers for carotenoid accumulation. In other eQTL analyses (Jansen and Nap, 2001; Doerge 2002), transcript levels were analyzed as quantitative traits and their variations were used to map eOTL. Once eQTL are identified in a population, they provide the necessary information to identify genes or loci that control quantitative traits. In plants, global eQTL analysis of gene expression has been used to detect *cis*-polymorphisms controlling individual genes, as well as to search for *trans*-eQTL that regulate individual genes from remote loci (DeCook et al., 2006; Keurentjes et al., 2007; Potokina et al., 2008; West et al., 2007; Sugiyama et al., 2014). The eQTL methodology combines two types of genomic data; the expression levels of genes, and a linkage map composed of DNA markers. Together, these data provide sufficient information to search for genes related to particular functions. Nagano et al. (2012) collected transcriptome data using a 461 microarray from the leaves of rice plants grown in a paddy field, and obtained the corresponding meteorological data, and used both data sets to develop statistical models to explain the endogenous and external effects on gene expression. Their models will help to translate the knowledge amassed in laboratories to solve agricultural problems. Thus, genomic analyses that combine various data, including genomic data, are required to further

research on citrus.

New opportunities have arisen in citrus genome analysis research in recent years. Three full-length annotated genome assemblies have been produced and made available to the global research community (Gmitter et al., 2012; Citrus Genome Database. http://www.citrusgenomedb.org; Xu et al., 2013; Citrus sinensis Annotation project. http://citrus.hzau.edu.cn/orange/). The first genome assembly, which serves as the reference genome for citrus, is from a haploid plant derived from 'Clementine' mandarin. The sequencing project was the work of the International Citrus Genome Consortium (ICGC http://www.citrusgenome.ucr.edu/). This version of the assembly (v1.0) is 301.4 Mb spread over 1,398 scaffolds with 2.1% gaps at 7.0x coverage. Over 96% of the assembly is accounted for by the 9 chromosome pseudo-molecules ~21-51 Mbp in length. The current gene set (clementine1.0) integrates 1.560 M ESTs with homology and *ab initio*-based gene predictions (by GenomeScan, Fgenesh, exonerate). 24,533 protein-coding loci have been predicted. Each encodes a primary transcript. There are an additional 9,396 alternative transcripts encoded on the genome generating a total of 33,929 transcripts. 16,963 primary transcripts have EST support over at least 50% of their length. A third of the primary transcripts (8,684) have EST support over 100% of their length (http://www.citrusgenomedb.org/species/clementina/genome1.0). A second genome assembly was produced from the sweet orange clone 'Ridge Pineapple' (Gmitter et al., 2012). This version (v,1) of the assembly is 319 Mb spread over 12,574 scaffolds. Half the genome is accounted for by 236 scaffolds 251 kb or longer. The current gene set (orange1.1) integrates 3.8 million ESTs with homology and ab initio-based gene predictions. 25,376 protein-coding loci have been predicted, each with a primary transcript. An additional 20,771 alternative transcripts have been predicted, generating a total of 46,147 transcripts. 16,318 primary transcripts have EST support over at least 50% of their length. Two-fifths of the primary transcripts (10,813) have EST support over 100% of their length (Citrus Genome Database. http://www.citrusgenomedb.org/species/sinensis/genome1.0). The third was produced from a doubled-haploid callus line of sweet orange (Xu et al., 2013). The version was assembled using SOAP denovo, resulting in 4,811 scaffolds. The total contig length (320.5 Mb) covers about 87.3% of the sweet orange genome. The scaffolds were aligned and oriented to the *Citrus* linkage map and about 80% of the assembled genome was anchored and organized as nine pseudo-chromosomes (*Citrus sinensis* Annotation project. http://citrus.hzau.edu.cn/orange/).

The production of these genome assemblies enabled advanced genome analysis. For example, it became possible to identify repression after meiotic recombination by comparing the physical map with the genetic map, and to analyze expression of individual members of multi-gene families. Moreover, recent rapid developments in DNA sequencing technologies have dramatically cut both the cost and the time required for sequencing.

To make the most of these opportunities, it is necessary to advance genomic analyses of citrus, especially analysis of individual alleles. For example, the carotenoid metabolism enzyme ZEP is a key regulator of carotenoid accumulation in citrus fruit. The expression level of alleles of the gene encoding this enzyme, *ZEP*, accounts for differences among varieties in their ability to convert zeaxanthin to Vio during fruit development. The expression levels of *ZEP* alleles in the fruit of three heterozygous citrus cultivars were compared using allele-specific RT-PCR. Sugiyama et al. (2012b) showed that there was a stronger allele and a weaker allele for expression, and suggested that the difference between the expression levels of the two alleles was at least partly due to differences in *cis*-structures located in the 5' - UTR of the *ZEP* genes. Since eight genes are related to the carotenoid biosynthesis pathway in citrus, it was proposed that the combination of gene alleles expressed at each step was related to differences in accumulation of various carotenoid components among cultivars. Most citrus cultivars and strains cultivated in Japan are derived from only 14 ancestral cultivars (Imai, personal communication). Hence, each cultivar and strain has two of only 28 alleles derived from the 14 ancestral cultivars. Sequencing of all these gene regions in 14 ancestor cultivars and analysis of the data using a SNP genotyping array would confirm the haplotypes of this gene. This would clarify the allele type in most citrus cultivars and strains in Japan. Such analyses might be able to explain the differences in various traits among cultivars based on their combination of alleles.
SUMMARY

Citrus is one of the most economically important fruit species in the world. The fruit is rich in the second metabolites for beneficial for human health, with diverse colors, fragrances and tastes. In addition, citrus is among the most difficult plants to improve through cross breeding approaches and to analyze physiologically varietal characteristics because of its the polyembryony, male sterility or self-incompatibility. Genome science technologies have advanced rapidly over the last decade, and have been adapted to address the challenges of the citrus breeding and physiological analysis. Expressed sequence tag (EST) analysis, DNA markers, linkage mapping and quantitative trait locus (QTL) analysis have promoted the efficient selection systems and analysis of gene expression. Remarkably, three genome assemblies have been released to the public since 2011. Despite the challenges of working with citrus to understand the important characters of citrus, the result is insufficient. Expression analysis of many genes related to important characters and analysis of genome-wide genotyping among many varieties or the combination of these two analyses is necessary to understand important characters of citrus. This study was performed to provide the basis for comprehensive use of citrus genome information, which has been accumulated quickly.

1. 22K citrus oligoarray analysis of gene expression in mature mandarin fruit

1) Profiling ethylene-responsive genes in mature mandarin fruit using a citrus 22K oligoarray

A comprehensive transcriptome analysis using a citrus 22K oligo-microarray was performed to identify ethylene-responsive genes and gain an understanding of the transcriptional regulation by ethylene in Satsuma mandarin fruit (*Citrus unshiu* Marc.). Seventy-two hours after ethylene treatment of mature fruit, 1,493 genes were identified as ethylene-responsive, with more than 3-fold expression change. Interestingly, more than half of the ethylene-responsive genes were repressed after ethylene treatment. This might suggest that ethylene inhibits various biological processes and plays an important role in fruit ripening and senescence. Ethylene repressed the transcription of many genes involved in photosynthesis, chloroplast biogenesis, and sugar metabolism, while it induced the transcription of several genes related to resistance, defense, stress, amino acid synthesis, protein degradation, and secondary metabolism.

2) Profiling gibberellin (GA₃)-responsive genes in mature fruit using a citrus 22K oligoarray

Gibberellin3 (GA₃)-responsive genes were investigated with a citrus 22K oligo-miciroarray to gain further the understanding of the transcriptional regulation by GA₃ treatment in Satsuma mandarin fruit. 213 GA₃-responsive genes were identified that showed a 3-fold or greater expression change after 72h of GA₃ treatment of mature fruit, compared with expression after 72 h of air treatment. GA₃ treatment induced the expression of pathogenesis-related (PR) proteins and genes that function in photosynthesis, chloroplast biogenesis, resistance, defense and stress. Also, GA₃ treatment reduced the transcription of several ethylene-inducible genes, such as carotenoid metabolic genes, which are associated with fruit ripening. Contrasting effects between GA₃ and ethylene were observed. The endogenous GA₃ level might be important for the endogenous regulation of maturation and senescence in mature citrus fruit.

2. An algorithm and computer program for the identification of minimal sets of discriminating DNA markers for efficient cultivar identification

107

DNA markers are frequently used to analyze crop varieties, with the coded marker data summarized in a computer-generated table. Such summary tables often provide extraneous data about individual crop genotypes, needlessly complicating and prolonging DNA-based differentiation between crop varieties. At present, it is difficult to identify minimal marker sets—the smallest sets that can distinguish between all crop varieties listed in a large marker-summary table—because of the absence of algorithms capable of such characterization. Here, we describe the development of just such an algorithm based on combinatorial optimization and the computer program, named MinimalMarker. MinimalMarker is available for use with both dominant and co-dominant markers regardless of the number of alleles, including simple sequence repeat (SSR) markers with numeric notation.

3. High-throughput genotyping in citrus accessions using an SNP genotyping array

A 384 multiplexed single nucleotide polymorphism (SNP) genotyping array, named *CitSGA-1*, for the genotyping of citrus cultivars, was developed, and the performance and reliability of the genotyping were evaluated. SNPs were detected in cultivars representing the genetic diversity of citrus currently bred in Japan. The assay using *CitSGA-1* was applied to a hybrid population of 88 progeny and 103 citrus accessions for breeding in Japan. A total of 351 SNPs could call different genotypes among the DNA samples. To confirm the reliability of SNP genotype calls, parentage analysis was used, which indicated that the numbers of reliable SNPs were 276. Using 7 SNPs that were identified by MininalMarker, all germplasm accession could be discriminated from each other. The SNP genotyping array reported here will be useful for the efficiently constructing linkage maps, for the detection of markers for marker-assisted breeding and for the identifying of cultivars.

By developing two genomic tools in this study, comprehensive and

108

high-throughput gene expression analysis and genotyping have become accessible. In addition, the bioinformatics tool has developed to use the genomic tools thoughtfully. These tools are available as the research base for detection of regulatory genes which control trait, linkage mapping and maker aided selection.

摘 要

カンキツは世界的に経済上,最も重要な果樹の1つであり,果実の色や香 り,味,健康機能性を持つ二次代謝成分などの多様性に基づいた新品種の育成 が進められている.しかし,カンキツには多胚性や雄性不稔性,開花までの年 数が長いといった性質があり,交雑育種や品種特性の生理学的な解析を困難に している.近年,急速に進展しているゲノム科学の成果を利用して,カンキツ の育種や生理学的な解明が進められている.例えば,発現遺伝子配列断片(EST) 解析や DNA マーカー,連鎖地図,量的形質遺伝子座(QTL)解析等が育種の 効率化や果実における遺伝子発現の解明に利用されてきている.また,2011年 以降に3つのカンキツゲノムの全塩基配列解析結果が公開された.こうした研 究にもかかわらず,カンキツの重要形質に関する遺伝子レベルの解明は十分で はない.重要形質の解明のためには,形質に関わる多数の遺伝子の発現解析や 多数の品種についてのゲノムワイドな遺伝子型情報解析及び,それらを組み合 わせた解析が不可欠である.本研究は,急速に蓄積が進んでいるカンキツゲノ ム情報を総合的に利用するための基盤を構築するために、一連の研究を行った もので,以下の課題により構成される.

1. オリゴアレイによるカンキツ成熟果実における遺伝子発現解析

1)オリゴアレイによるカンキツ成熟果実におけるエチレン応答遺伝子のプロフ ァイリング

ウンシュウミカン(Citrus unshiu Marc.)の成熟果実におけるエチレン応答 遺伝子の特定とその転写制御の解明のために,カンキツの22Kオリゴマイクロ アレイ(オリゴアレイ)を作成し,遺伝子発現解析を行った.エチレン処理72 時間後に3倍以上の発現変化があった1493個の遺伝子をエチレン応答遺伝子と 特定した.エチレン応答遺伝子の半分以上はエチレン処理により発現が抑制さ れていた.このことは、エチレンが多くの生物学的なプロセスを低下させ、果 実の成熟と老化に関して重要な役割を果たしていることを示していた.エチレ ンは光合成や葉緑体生合成、糖代謝等の遺伝子の転写を抑制した一方、病害抵 抗性や防御、ストレス、アミノ酸合成、タンパク質分解、2次代謝に関連する遺 伝子の転写を誘導した.

2)オリゴアレイによるカンキツ成熟果実におけるジベレリン応答遺伝子のプロ ファイリング

ウンシュウミカンの成熟果実でのジベレリン3(GA₃)による転写制御を知る ために、オリゴアレイを用いて GA₃応答遺伝子を調査した.GA₃処理 72 時間 後のウンシュウミカン成熟果実と対照区との遺伝子発現を比較したところ、3 倍 以上の発現変化を示す 213 個の GA₃応答遺伝子が特定された.GA₃処理は、生 体防御タンパク質や光合成、葉緑体生合成、病害抵抗性、防御、ストレスに関 連する遺伝子の発現を誘導した.また、果実の成熟に関連するカロテノイド代 謝遺伝子等のエチレンに誘導される遺伝子の転写を低下させた.その効果はエ チレンと対照的で、内性の GA₃のレベルが果実の成熟と老化の制御に重要であ ると推測された.

2. DNA マーカーによる効率的な品種識別のためのソフトウエアの開発

DNA マーカーを様々な品種に適用した結果は,DNA マーカー型を記号に置 き換えた表に整理され,品種識別に利用される.膨大な2次元表から最も少な い数で全ての品種を識別することができる最少マーカーセットを求めることは 簡単ではない.そこで,最少マーカーセットを求めるための組み合わせ最適化 理論に基づくアルゴリズムとその計算を実現するソフトウエア MinimalMarkerを開発した. MinimalMarker は共優性マーカーにも優性マー カーにも適用可能であり,アリルの数を問わない.また,単純反復配列(SSR) マーカーのような数値表記のマーカーにも適用できる.

111

3. SNP アレイを用いたカンキツ品種のハイスループットなジェノタイピング

カンキツのハイスループットなジェノタイピングを実現するために, CitSGA-1と名付けた 384 個の一塩基多型 (SNP)を搭載する SNP ジェノタイ ピングアレイ (SNP アレイ)を開発し,その性能と信頼性を評価した.搭載し た SNP はわが国のカンキツ育種の遺伝的な多様性を代表する品種から収集した. CitSGA-1を 88 個体の交雑集団とわが国のカンキツ育種に関連する 103 種類の 品種・系統に適用した結果,351 個の SNP で遺伝子型を識別できた.SNP アレ イ解析による遺伝子型の信頼性を確認するために親子分析を行った結果,276 個の SNP が信頼できると判定された.これらの SNP に MinimalMarker を適 用したところ,7 つの SNP を用いることにより,すべての品種・系統を識別で きることがわかった.

これらの研究を通じて開発したオリゴアレイとSNPアレイの2つのゲノム解析 ツールにより,網羅的かつハイスループットな遺伝子発現解析と品種ジェノタ イピングを可能になり,これらの情報を使いこなすバイオインフォマティクス ツールの開発とあわせて,形質制御遺伝子の探索,連鎖地図の効率的な作成や, マーカー支援育種などの研究基盤としての利用されるものと期待される.

112

ACKNOWLEDGEMENTS

The author expresses his sincere thanks to Prof. M. Omura (Shizuoka University) for his great assistance and encouragement in the preparation of this doctoral thesis. I thank to Prof. T. Suzuki (Gifu University) and Prof. R. Motohashi (Shizuoka University) for their advices in the preparation of this thesis. I also thank to Mr. H. Nesumi (the NARO Western Region Agricultural Research Center: WARC), Dr. T. Kuniga (WARC), Dr. M. Kita (Ministry of Agriculture, Forestry and Fisheries), Dr. S. Ohta (NIFTS), Dr. K. Nonaka (NIFTS) and Mr. A. Imai (NIFTS) for providing plant materials. I would like to express my deepest thanks to Dr. T. Shimada (NIFTS), Dr. T. Endo (NIFTS), Dr. T. Shimizu (NIFTS), Dr. T. Shimizu (NIFTS), Dr. T. Yamamoto (NIFTS), Dr. H. Iketani (NIFTS), Dr. F. Nishikawa (NIFTS) and Dr. A. Sugiyama (Kyoto University) for their technical assistance and for many valuable suggestions. Thanks are also due to Ms. Y. Makita (NIFTS), Ms. C. Ohishi (NIFTS), Ms. A. Aoki (NIFTS) and Ms. Y. Uchida (NIFTS) for their technical assistance. This work was funded by NARO.

REFERENCE

- Aanensen, D. M. and B. G. Spratt. (2005). The multilocus sequence typing network: mlst.net. Nucleic Acids Res. 33: doi:10.1093/nar/gki41.
- Abeles, F. B., P. W. Morgan and M. E. Saltveit. Ethylene in plant biology. (1992). Academic Press, New York.
- Achilea, O., Y. Fuchs, E. Chalutz and I. Rot. (1985). The contribution of host and pathogen to ethylene biosynthesis in *Penicillium digitatum*-infected citrus fruit. Physiol. Plant Pathol. 27, 55-63.
- Alba, R., P. Payton, Z. Fei, R. McQuinn, P. Debbie, G. B. Martin, S. D. Tanksley and J.
 J. Giovannoni. (2005). Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell. 17, 2954-2965.
- Aranzana, M. J., J. Carbo and P. Arus. (2003). Microsatellite variability in peach [*Prunus percics* (L.)] inferences and population structure. Theor. Appl. Genet. 106, 1341-1352.
- Ashraf, M., F. Karim and E. Rasul. (2002). Interactive effects of gibberellic acid (GA₃) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (*Triticum aestivum* L.) cultivars differing in salt tolerance. Plant Growth Regul. 36, 49-59.

- Atta-Aly, M. A., J. K. Brecht and D. J. Huber. (2000). Ethylne feedback mechanisms in tomato and strawberry fruit tissue in relation to fruit ripening and climacteric patterns. Postharvest Biol. Tech. 20, 151-162.
- Bausher, M., R. Shatters, J. Chaparro, P. Dang, W. Hunter and R. Niedz. (2003). An expressed sequence tag (EST) set from *Citrus sinensis* L. Osbeck whole seedlings and the implications of further perennial source investigations. Plant Sci. 165, 415-422.
- Bleecker, A. B. and G. E. Schaller. (1996). The Mechanism of Ethylene Perception. Plant Physiol. 111, 653-660.
- Bolwell, G. P. and P. Wojtaszek. (1997). Mechanisms for the generation of reactive oxygen species in plant defense - a broad perspective. Physiol. Mol. Plant Pathol. 51, 347-366.
- Brady, C. J. and J. Speirs. (1991). Ethylene in fruit ontogeny and abscission. In: Mattoo A. K., and J. C. Suttle (eds.) The plant hormone ethylene. pp.235-258. CRC Press, Boca Raton.
- Brandle, J. E., A. Richman, A. K. Swanson and B. P. Chapman. (2002). Leaf ESTs from *Stevia redaudiana*: a resource for gene discovery in diterpene synthesis. Plant Mol. Biol. 50, 613-622.

- Brummell, D. A. and M. H. Harpster. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 47, 311-340.
- Cancel, J. D. and P.B. Larsen. (2001). Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in *Arabidopsis*. Plant Physiol. 129, 1557-1567.
- Castillejo, C., J. I. Fuente, P. Iannetta, M. Á. Botella and V. Valpuesta. (2004). Pectin esterase gene family in strawberry fruit: study of *FaPE1*, a ripening-specifc isoform. J. Exp. Bot. 55, 909-918.
- Causier, B., M. Kieffer and B. Davies. (2002). MADS-Box genes reach maturity. Science. 296, 275-276.
- Cercós, M., G. Soler, D. J. Iglesias, J. Gadea, J. Forment and M. Talón. (2006). Global Analysis of Gene Expression During Development and Ripening of *Citrus* Fruit Flesh. A Proposed Mechanism for Citric Acid Utilization. Plant Mol. Biol. 62, 513-527.
- Chang, C. and R. Stadler. (2001). Ethylene hormone receptor action in *Arabidopsis*. Bioessays. 23, 619-627.
- Clark, K. L., P. B. Larsen, X. Wang and C. Chang. (1998). Association of the *Arabidopsis CTR1 Raf*-like kinase with the *ETR1* and *ERS* ethylene receptors.

Proc. Natl. Acad. Sci. U.S.A. 95, 5401-5406.

- Close, T. J., S. Wanamaker, M. Lyon, G. Mei, C. Davies and M. L. Roose. (2006). A GeneChip® For *Citrus*. In: Plant & Animal Genome XIV Conference, San Diego, CA. W82.
- Close, T. J., P. R. Bhat and S. Lonardi. (2009). Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. 10, 582.
- Cooper, W.C. and W. H. Henry. (1968). Effect of growth regulators on the coloring and abscission in citrus fruit. Isr. J. Agr. Res. 18, 161-174.
- Dangle, G. S., J. Yang, D. A. Golino, and T. Gradziel. (2009). A practical for almond cultivar identification and parental analysis using simple sequence repeat markers, Euphytica. 168, 41–48, 2009.
- Dijkstra, P., H. Ter Reegen, and P. J. C. Kuiper. (1990). Relation between relative growth rate, endogenous gibberellins and the response to applied gibberellic acid for Plantago major. Physiol. Plant. 79, 629-634.
- Distefano, G., A. L. Malfa, A. Gentile and W. Shu-Biao. (2013). EST-SNP genotyping of citrus species using high-resolution melting curve analysis. Tree Genet. Genomes. DOI 10.1007/s11295-013-0636-6.

Eckert, A. J., B. Pande and E. S. Ersoz. (2009). High-throughput genotyping and

mapping of single nucleotide polymorphisms in loblolly paine (*Pinus taeda* L.). Tree Genet. Genomes. 5, 225-234.

- Endo, T., T. Shimada, K. Kobayashi, T. Araki, H. Fujii and M. Omura. (2005). Ectopic Expression of an FT Homolog from *Citrus* Confers an Early Flowering Phenotype on Trifoliate Orange (*Poncirus trifoliata* L. Raf.). Transgenic Res. 4, 703-712.
- Endo, T., T. Shimada, H. Fujii and M. Omura. (2006). Cloning and characterization of 5 MADS-box cDNAs isolated from citrus fruit tissue. Sci. Hortic. 109, 315-321.
- Endo, T., T. Shimada, H. Fujii, A. Sugiyama, M. Nakano, Y. Ikoma and M. Omura.
 (2013). Functional analysis of a citrus transcription factor involved in carotenoid metabolisms in fruit using transgenic tomato. Hort. Res. (Japan). 12 (Suppl. 2), 266 (in Japanese).
- Ercisli, S., A. Ipek and E. Barut. (2011). SSR Marker-Based DNA fingerprinting and cultivar identification of olive (*Olea europaea*). Biochem. Genet. 49, 555-561.
- Eulgem, T., P. J. Rushton, S. Robatzek and I. E. Somssich. (2000). The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5, 199-206.
- Fan, J.B., A. Oliphant and R. Shen. (2003). Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol. 68, 69–78.
- Favery, B., E. Ryan, J. Foreman, P. Linstead, K. Boudonck, M. Steer, P. Shaw and L.

Dolan. (2001). KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in *Arabidopsis*. Genes Dev. 15, 79-89.

- Federici, C.T., D. Q. Fang, R. W. Scora and M. L. Roose. (1998). Phylogenetic relationships within the genus *Citrus* (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Thor. Appl. Genet. 96, 812–822.
- Feltus, F. A., J. Wan, S. R. Schulze, J. C. Estill, N. Jiang and A. H. Paterson. (2004). An SNP resource of rice genetics and breeding based on subspecies indica and japonica genome alignment. Genome Res. 14, 1812–1819.
- Forment, J., J. Gadea, L. Huerta, L. Abizanda, J. Agusti, S. Alamar, E. Alos, F. Andres, R. Arribas, J. P. Beltran, A. Berbel, M. A. Blazquez, J. Brumos, L. A. Canas, M. Cercos, J. M. Colmenero-Flores, A. Conesa, B. Estables, M. Gandia, J. L. Garcia-Martinez, J. Gimeno, A. Gisbert, G. Gomez, L. Gonzalez-Candelas, A. Granell, J. Guerri, M. T. Lafuente, F. Madueno, J. F. Marcos, M. C. Marques, F. Martinez, M. A. Martinez-Godoy, S. Miralles, P, Moreno, L. Navarro, V. Pallas, M. A. Perez-Amador, J. Perez-Valle, C. Pons, I. Rodrigo, P. L. Rodriguez, C. Royo, R. Serrano, G. Soler, F. Tadeo, M. Talon, J. Terol, M. Trenor, L. Vaello, O. Vicente, C. H. Vidal, L. Zacarias and V. Conejero. (2005). Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Mol. Biol. 57, 375-391.

- Fujii, H., T. Shimada, T. Endo, T. Simizu. M. Kita, T. Moriguchi, H. Hisada and M. Omura. (2003a). Expressed SequenceTags from *Citrus* Albedo at the Initiation Stage of Rind Peeling. Bull. Natl. Inst. Fruit Tree Sci. 2, 127-143.
- Fujii, H., T. Shimada, T. Endo and M. Omura. (2003b). Development of relational database system for citrus ESTs. Bull. Natl. Inst. Fruit Tree Sci. 2, 91-99 (in Japanese).
- Fujii, H., T. Shimada, T. Endo, T. Shimizu and M. Omura. (2006a). 29,228 CitrusESTs- Collection And Analysis Toward The Functional Genomics Phase. In:Plant & Animal Genomes XIV Conference, San Diego, CA, P20.
- Fujii, H., T. Shimizu, T. Shimada, T. Endo and M. Omura. (2006b). Development of citrus 22K oligo-microarray. Research accomplishment report of NARO. 2006, 29-30 (in Japanese).
- Fujii, H., T. Ogata, A. Sugiyama, T. Shimada, T. Endo, T. Shimizu and M. Omura. (2010a). Development of software to improve the design efficiency of the intron-spanning PCR primer from EST utilizing genomic information of *Arabidopsis thaliana*. In: Plant & Animal Genomes XVIII Conference, San Diego, CA, P860: Software.
- Fujii, H., H. Yamashita, F. Hosaka, S. Terakami and T. Yamamoto. (2010b). Development of a software to presume the parent-child relationship using the result of DNA maker typing. Hort. Res. (Japan) 9 (Suppl.1), 34 (in Japanese).

- Gale, K., H. Jiang and M. Westcott. (2005). An optimization method for the identification of minimal sets of discriminating gene markers: application to cultivar identification in wheat. J. Bioinform. Comput. Biol. 3, 269–279.
- Galli, Z., G. Halasz, E. Kiss and L. Heszky. (2005). Molecular identification of commercial apple cultivars with microsatellite markers. HortScience. 40, 1974– 1977.
- Gerber, S., P. Chabrier and A. Kremare. (2003). FAMOZ: a software for parentage analysis using dominant, codominant and uniparentally inherited markers, Mol. Ecol. Notes 3, 479–481.
- Giovannoni, J. (2004). Genetic regulation of fruit development and ripening. Plant Cell. 16, 170-180.
- Given, N. K., M. A. Venis and D. Grierson. (1988). Hormonal regulation of ripening in the strawberry, a non-climacteric fruit. Planta. 174, 402-406.
- Gmitter Jr., F. G., C. Chen, M. A. Machado, A. A. de Souza, P. Ollitrault, Y. Froehlicher and T. Shimizu. (2012). Citrus genomics. Tree Genet. Genomes. 8, 611-626.
- Goff, S.A., D. Ricke and T. H. Lan. (2002). A draft sequence of the rice genome (Oryza

sativa L. ssp. japonica). Science. 296, 92–100.

- Goldschmidt, E. E., M. Huberman and R. Goren. (1993). Probing the role of endogenous ethylene in the degreening of citrus fruit with ethylene antagonists. Plant Growth Reg. 12, 325-329.
- Goldschmidt, E. E. (1998). Ripening of citrus and other non-climacteric fruits: a role for ethylene ? Acta Hort. 463, 335-340.
- Guterman, I., M. Shalit, N. Menda, D. Piestun, M. Dafny-Yelin, G. Shalev, E. Bar, O. Davydov, M. Ovadis, M. Emanuel, J. Wang, Z. Adam, E. Pichersky, E. Lewinsohn, D. Zamir, A. Vainstein, and D. Weiss. (2002). Rose scent: Genomics approach to discovering novel floral fragrance-related genes. Plant Cell. 14, 2325-2338.
- Hasegawa, Y., and Y. IBA. (1983). The effect of storage temperature on the quality of citrus fruit. I. Color change of the citrus peel during storage. Bull. Fruit Tree Res. Stn. B. 10, 119-128.
- Hennig, L. W., Gruissem, U. Grossniklaus and C. Köhler. (2004). Transcriptional programs of early reproductive stages in *Arabidopsis*. Plant Physiol. 135, 1765-1775.
- Hisada, S., T. Moriguchi, T. Hidaka, A. M. Koltunow, T. Akihama and M. Omura. (1996). Random sequencing of sweet orange (*Citrus sinensis* Osbeck) cDNA

library derived form young seeds. J. Japan. Soc. Hort. Sci. 65, 487-495.

- Hisada, S. T. Akihama, T. Endo, T. Moriguchi and M. Omura. (1997). Expressed sequence tags of citrus fruit during rapid cell development phase. J. Amer. Soc. Hort. Sci. 122, 808-812.
- Holland, N., Sala, J.M., Menezes, H.C., and Lafuente, M.T. (1999). Carbohydrate content and metabolism as related to maturity and chilling sensitivity of Cv. Fortune mandarin. J. Agr. food Chem. 47, 2513-2518.
- Hyodo, H., and T. Nishino. (1981). Wounding-induced ethylene formation in albedo tissue of citrus fruit. Plant Physiol. 67, 421-423.
- Hyten, D.L., Q. Song, I. Y. Choi et al, (2008). High-throughput genotyping with the GoldenGate® Assay in the complex genome of soybean. Theor. Appl. Genet. 116, 945–952.
- Iglesias, D. J., R. R. Tadeo, F. Legaz, E, Primo-Millo and M. Talon. (2001). In vivo sucrose stimulation of color change in citrus fruit epicarps: interactions between nutritional and hormonal signals. Physiol. Plant. 112, 244-250.
- Ikoma, Y., M. Yano, K. Ogawa, T. Yoshioka, Z. C. Xu, S. Hisada, M. Omura and T. Moriguchi. (1996). Isolation and evaluation of RNA from polysaccharide-rich tissues in fruit for quality by cDNA library construction and RT-PCR. J. Japan. Soc. Hort. Sci. 64, 809-814.

- Jacob-wilk, D., D. Holland, E. E. Goldschmidt, J. Riov and Y. Eyal. (1999). Chlorophyll breakdown by chlorophyyase: isolation and functional expression of the chlase 1 gene from ethylene treated *Citrus* fruit and its regulation during development. The Plant J. 20, 653-661.
- Jiang, D., Q. Ye, F. Wang and L. Cao. (2010). The mining of citrus EST-SNP and its application in cultivar discrimination. Agr. Sci. China. 9, 179-190.
- Jeffery, D., C. Smith, P. Goodenough, I. Prosser and D. Grierson. (1984). Ethylene-independent and ethylene-dependent biochemical changes in ripening tomatoes. Plant Physiol. 74, 32-38.
- Kader, A. A. (1992). Postharvest biology and technology: an overview. In Kader,A.A.(Ed.), Postharvest Technology of Horticultural Crops. pp. 15-20. Regents ofthe University of Carifornia, Division of Agricultural and Natural Resources,Oakland, CA.
- Kato, M., Y. Ikoma, H. Matsumoto, M. Sugiura, H. Hyodo and M. Yano. (2004).Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol. 134, 824-837.
- Kato, M., H. Matsumoto, Y. Ikoma, H. Okuda and M. Yano. (2006). The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation in citrus fruit. J. Exp. Bot.57, 2153-2164.

- Katz, E., P. M. Lagunes, J. R. D. Weiss and E. E. Goldschmidt. (2004). Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric *Citrus* fruit. Planta. 219, 243-252
- Katz, E., J. Riov, D. Weiss and E. E. Goldschmidt. (2005). The climacteric-like behaviour of young, mature and wounded citrus leaves. J. Exp. Bot. 56, 1359-1367.
- Kita, M. T. Endo, T. Moriguchi, and M. Omura. (2000). cDNA catalogs expressed in albedo of *Citrus* fruit, a comparative analysis of cDNA libraries from pulp and albedo of satsuma mandarin (*Citrus unshiu* Marc.). Acta Hort. 521, 179-183.
- Kubo, T., I. Hohjo and S. Hiratsuka. (2001). Sucrose accumulation and its related enzyme activities in the juice sacs of Satsuma mandarin fruit from trees with different crop loads. Scientia Hort. 91, 215-225.
- Kuhara N., Y. Nagamura, K. Yamamoto, Y. Harushima, N. Sue, J. Wu, B.A. Antonio, Shormura, A., T. Shimizu, S-Y. Lin, T. Inoue, A. Fukuda, T. Shimano, Y. Kuboki, T. Toyama, Y. Miyamoto, T. Kirihara, K. Hayasaka, A. Miyano, L. Monna, H.S. Zhong, Y. Tamura, Z-X. Wang, T. Monna, Y. Umehara, M. Yano, T. Sasaki and Y. Minobe. (1994). A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet. 8, 365-372.
- Kunkel, B. N., and D. M. Brooks. (2002). Cross talk between signaling pathway in

pathogen defense. Curr. Opin. Plant Biol. 5, 325-331.

- Kuraoka, T. and T. Kikuchi. (1961). Morphological studies on the development of citrus fruits. I. Satsuma orange. J. Japan. Soc. Hort. Sci. 30, 189-196.
- Kwok, P. Y. (2001). Methods for genotyping single nucleotide polymorphisms. Ann. Rev. Hum. Genet. 2, 235–258.
- Lam, L. K. T. and S. Hasegawa. (1989). Inhibition of benzo[α] pyrene-induced fore-stomach neoplasia in mice by citrus limonoids. Nutrition and Cancer. 12, 4347.
- Lam, L. K. T., Y. Li and S. Hasegawa. (1989). Effects of citrus limonoids on glutathione S-transferase activity in mice. J. Agric. Food Chem. 37, 878–880.
- Langenheim, J. H. (1994). Higher plant terpenoids: a phytocentric overview of their ecological roles. J. Chem. Ecol. 20, 1223–1280
- Laucou, V., T. Lacombe, F. Dechesne, R. Siret, J. P. Bruno, M. Dessup, T. Dessup, P. Ortigosa, P. Parra, C. Roux, S. Santoni, D. Vare's, J. P. Pe'ros, J. M. Boursiquot and P. This. (2011). High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor. Appl. Genet. 122, 1233–1245.
- Maleck, K., A. Levine, T. Eulgem, A. Morgan, J. Schmid, K. A. Lawton, J. L. Dangl and R. A. Dietrich. (2000). The transcriptome of *Arabidopsis* thaliana during

systematic acquired resistance. Nature Genet. 26, 403-410.

- Martin, F. (2011). An application of kernel methods to variety identification based on SSR markers genetic fingerprinting. BMC Bioinf. 12, 177–183.
- Masouleh, A. K., D. L. Waters, R. F. Reinke and R. J. Henry. (2009). A high-throughput assay for rapid and simultaneous analysis of perfect markers for important quality and agronomic traits in rice using multiplexed MALDI-TOF mass spectrometry. Plant Biotechnol. J. 7, 355–363.
- McCollum, T.G. and R.E. McDonald. (1991). Electrolyte leakage, respiration, and ethylene production as indices of chilling injury in grape fruits. HortSci. 26, 1191-1192.
- Mitcham, E. J. and R. E. McDonald. (1993). Changes in grapefruit flavedo cell wall noncellulosic neutral sugar composition. Phytochem. 34, 1235-1239.
- Moriguchi, T., M. Kita, S. Hisada, T. Endo and M. Omura. (1998). Characterization of gene repertories at mature stage of citrus fruits through random sequencing and analysis of redundant metallothionein-like genes expressed during fruit development. Gene. 211, 221-227.
- Moriya, S., H. Iwanami, K. Okada, T. Yamamoto and K. Abe. (2011). A practical method for apple cultivar identification and parent-offspring analysis using simple sequence repeat markers. Euphytica. 177, 135–150.

- Mozoruk, J., L. E. Hunnicutt, R. D. Cave, W. B. Hunter and M. G. Bausher. (2006). Profiling transcriptional changes in *Citrus sinensis* (L.) Osbeck challenged by herbivory from xylem-feeding leafhopper *Homalodisca coagulata* (Say) by cDNA macroarray analysis. Plant Sci. 170, 1068-1080.
- Murakami, A., Y. Nakamura, K. Torikai et al. (2000). Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor-promotion in mice. Cancer Res. 60, 5059–5066.
- Nagano, A. J., Y. Sato, M. Mihara, A. A. Antonio, R. Motoyama, H. Itoh, Y. Nagamura and T. Izawa. (2012). Deciphering and prediction of transcriptome dynamics under fluctuating field conditions. Cell. 151, 1358-1369.
- Ogawa, M., A. Hanada, Y. Yamauchi, A. Kuwahara, Y. Kamiya and S. Yamaguchi. (2003). Gibberellin biosynthesis and response during *Arabidopsis* seed germination. The Plant Cell. 15, 1591-1604.
- Oiyama, I. and S. Kobayashi. (1993). Haploids obtained from diploid X triploid crosses of citrus. J. Japan Soc. Hort. Sci. 62, 89–93.
- Ollitrault, P., J. Terol, A. Garcia-Lor., A. Berard, A. Chauveau, Y. Froelicher, C. Belzile, R. Morillon, L. Navarro, D. Brunel and M. Talon. (2012). SNP mining in *C. clementine* BAC end sequences; transferability in *Citrus* genus (Rutaseae), phylogenetic inferances and perspectives for genetic mapping. BMC Genomics.

- Omura, M. (2005). Genome analysis and breeding in *Citrus*. Gamma Field Symposia. 44, 25-31.
- Pavy, N., B. Pelgas, S. Beauseigle, S. Blais, F. Gagnon, I. Gosselin, M. Lamothe, N. Isabel and J. Bousquet. (2008). Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics. 9, 21.
- Porat, R., B. Weiss, L. Cohen, A. Daus, R. Goren and S. Drobya. (1999). Effects of ethylene and 1-methylcyclopropene on the postharvest qualities of 'Shamouti' oranges. Postharvest Biol. Tech. 15, 155-163.
- Porat, R., V. D. Hollandb, T. G. McCollumc and S. Drobya. (2001). Isolation of a citrus chitinase cDNA and characterization of its expression in response to elicitation of fruit pathogen resistance. J. Plant Physiol. 158, 1585-1590.
- Rickert, A.M., J. H. Kim, S. Meyer, A. Nagel, A. Ballvora, P. J. Oefner and C. Gebhardt. (2003). First-generation SNP/InDel markers tagging loci for pathogen resistance in the potato genome. Plant Biotechnol. J. 1, 399–410.
- Robertson, G.A., V. Thiruvenkataswamy, H. Shilling, E. P. Price, F. Huygens, F. A. Henskens and P. M. Giffard. (2004). Identification and interrogation of highly informative single nucleotide polymorphism sets defined by bacterial multilocus

sequence typing databases, J. Med. Microbiol. 53 (Pt 1), 35-45.

- Rodrigo, M. J., J. F. Marcos and L. Zacarias. (2004). Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (*Citrus sinensis* L.) during fruit development and maturation. J. Agr. Food Chem. 52, 6724-6731.
- Rodrigo, M. J., B. Alquezar and L. Zacarias. (2006). Cloning and characterization of two 9-*cis*-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (*Citrus sinensis* L. Osbeck). J. Exp. Bot. 57, 633-643.
- Rodrigo, M. J. and L. Zacarias. (2007). Effect of postharvest ethylene treatment on carotenoid accumulation and the expression of carotenoid biosynthetic genes in the flavedo of orange (*Citrus sinensis* L. Osbeck) fruit. Posthavest Biol. Tech. 43, 14-22.
- Rostoks, N., L. Ramsay, K. Mackenzie et al. (2006). Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc. Natl. Acad. Sci. USA. 103, 18656–18661.
- Russell, J., A. Booth, J. Fuller, B. Horrower, P. Hedley, G. Machery and W. Powell.(2004). A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome. 47, 389–398.
- Shimada, S. and K. Shimokawa. (1978). Ethylene-activated chlorophyllase in Satsuma

mandarin (*Citrus unshiu* Marc.) fruit. (In Japanese). J. Agr. Chem. Soc. Jpn. 52, 489-491.

- Shimada, T., M. Kita, T. Endo, H. Fujii, T. Ueda, T. Moriguchi and M. Omura. (2003). Expressed Sequence Tags of ovary tissue cDNA library in *Citrus unshiu* Marc. Plant Sci. 165, 167-168.
- Shimada, T., T. Endo, H. Fujii, T. Ueda and M. Omura. (2005a). Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CitSERK1) from *Citrus unshiu* Marc. Sci. Hortic. 103, 233-238.
- Shimada, T., T. Endo, H. Fujii, M. Hara, T. Ueda, T. Kubo and M. Omura. (2005b).
 Isolation and characterization of a new d-limonene synthase gene with a different expression pattern in *Citrus unshiu* Marc. Sci. Hortic. 105, 507-512.
- Shimada, T., T. Endo, H. Fujii, M. Hara and M. Omura. (2005c). Isolation and characterization of (E)-beta-ocimene and 1,8 cineole synthases in *Citrus unshiu* Marc. Plant Sci. 168, 987-995.
- Shimada, T., H. Fuiii, T. Endo, J. Yazaki, N. Kishimoto, K. Shimbo, S. Kikuchi and M. Omura. (2005d). Toward comprehensive expression profiling by microarray analysis in citrus: monitoring the expression profiles of 2213 genes during fruit development. Plant Sci. 168, 1383-1385.

Spiegel-Roy, P. and E. E. Goldshomidt. (1996). Biology of Citrus. Cambridge Univerity

Press. NewYork.

- Steemers, F. J., W. Chang, G. Lee, D. L. Barker, R. Shen and K. L. Gunderson. (2006). Whole-genome genotyping with the single-base extension assay. Nat. Methods. 3, 31–33.
- Sugiyama, A. (2010). Studies on analysis of genome structure of carotenoid synthesis genes in *Citrus*. Ph.D. thesis. University of Gifu. Gifu, Japan.
- Sugiyama, A., M. Omura, H. Matsumoto, T. Shimada, H. Fujii, T. Endo, T. Shimizu, H. Nesumi and Y. Ikoma. (2011). Quantitative trait loci (QTL) analysis of carotenoid content in *Citrus* fruit. J. Japan Soc. Hort. Sci. 80, 136–144.
- Sugiyama, A., M. Omura, T. Shimada, H. Fujii, T. Endo, T. Shimizu, H. Nesumi, K. Nonaka, Y. Ikoma. (2014). Expression quantitative trait loci analysis of carotenoid metabolism-related genes in *Citrus*. J. Japan Soc. Hort. Sci. 83, 32–43.
- Syvänen, A. C. (2005). Toward genome-wide SNP genotyping. Nat. Genet. 37 (Suppl): S5–10.
- Symons, G. M., C. Davies, Y. Shavrukov, I. B. Dry and J. B. Reid. (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol. 140, 150-158.
- Tahira, M. (2008). Infringement cases and support enforcement in the field of

Agriculture, Patent. 61, 19–22 (in Japanese).

- Talon, M. and F. G. Gmitter Jr. (2008). Citrus Genomics. International Journal of Plant Genomics. doi:10.1155/2008/528361.
- Takashina, T., Y. Tkakahasi, K. Niino, T. Sugisawa and T. Yamamoto. (2009). Sequence analysis of SSR markers using identification of sweet cherry cultivars and SSR genotype database of sweet cherry, DNA Polymorphism. 17, 114–117 (in Japanese).
- Takashina, T., M. Ishiguro, K. Nishimura and T. Yamamoto. (2007). Generic identification of imported and domestic sweet cherry varieties using SSR markers, DNA Polymorphism. 15, 101–104 (in Japanese).
- Terol, A., A. Conesa, J. M. Colmenero et al. (2007). Analysis of 13000 unique *Citrus* clusters associated with fruit quality, production and salinity tolerance. BMC Genomics. 8, 1-22.
- Terakami, S., Y. Sawamura, T. Saito, C. Nishitani and T. Yamamoto. (2010). Development of SNP markers and genotyping database in Japanese pear. DNA Polymorphism. 18, 70–73 (in Japanese).
- Tessier, C., J. David, P. This, J. M. Boursiquot and A. Charrier. 1999. Optimization of the choice of molecular markers for varietal identification in *Vitis vinifera* L.,

Theor. Appl. Genet. 98, 171–177.

- This, P., A. Jung, P. Boccacci, J. Borrego, R. Botta, L. Costantini, M. Crespan, G. S. Dangl, C. Eisenheld, F. Ferreira-Monteiro, S. Grando, J. Ibanez, T. Lacombe, V. Laucou, R. Magalhaes, C. P. Meredith, N. Milani, E. Peterlunger, F. Regner, L. Zulini and E. Maul. (2004). Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 109, 1448–1458.
- Trainotti, L., D. Zanin and G. Casadoro. (2003). A cell wall-oriented genomic approach reveals a new and unexpected complexity for the softening in peaches. J. Exp. Bot. 54, 1821-1832.
- Trainotti, L., A. Pavanello and G. Casadoro. (2005). Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruit?J. Exp. Bot. 56, 2037-2046.
- Trebitsh, T., E. E. Goldschmidt and J. Riov. (1993). Ethylene induces de novo synthesis of chlorophyllase, chlorophyll degrading enzyme, in citrus fruit peel. Proc. Natl. Acad. Sci. USA. 90, 9441-9445.
- Tsukuda, S., K. Gomi, H. Yamamoto and K. Akimitsu (2006). Characterization of cDNAs encoding two distinct miraculin-like proteins and stress-related modulation of the corresponding mRNAs in *Citrus jambhiri* lush. Plant Mol. Biol.

- Tsushima, M., T. Maoka, M. Katsuyama, M. Kozuka, T. Matsuno, H. Tokuda, H. Nishino and A. Iwashima (1995) Inhibitory effect of natural carotenoids on Epstein-Barr virus activation activity of a tumor promoter in Raji cells. A screening study for anti-tumor promoters. Biol. Pharm. Bull. 18, 227–233.
- Tung, C.W., K. Zhao, M. H. Wright et al. (2010). Development of a research platform for dissecting phenotype-genotype associations in rice (*Oryza* spp.). Rice. 3, 205– 217.
- Uchiyama, K., T. Ujino-Ihara, S. Ueno et al. (2012). Single nucleotide polumorphism in *Cryptomeria japonica*: their discovery and validation for genome mapping and diversity studies. Tree Genet. Genomes. 8, 1213-1222.
- Vrebalov, J., D. Ruezinsky, V. Padmanabhan, R. White, D. Medrano, R. Drake, W. Schuch and J. Giovannoni. (2002). A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (*rin*) locus. Science. 296, 343-346.
- Wang, K. L. C. and J. R. Ecker. (2002). Ethylene biosynthesis and signaling networks. Plant Cell. 14, 131-151.
- Wheaton, T. A. and I. Stewart. (1973). Optimum temperature and ethylene concentration for postharvest development of carotenoid pigment in *Citrus*. J. Amer. Soc. Hort. Sci. 98, 337-340.

- Wolfsberg, T. G. and D. Landsman. (2001). Expressed sequence tags (ESTs) In: Baxevanis, A. D. and B. F. F. Quellette (eds.) Bioinformatics 2nd ed. pp.283-302.Wiley-Interscience. NewYork.
- Wu, C. T. and K. J. Bradford. (2003). Class I chitinase and beta-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. Plant Physiol. 133, 263-273.
- Wunsch, A. and J. I. Hormaza. (2002). Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers. Euphytica. 125, 59–67.
- Yamamoto, T., K. Mochida, T. Imai, T. Haji, H. Yaegaki, M. Yamaguchi, N. Matsuta, I. Ogiwara and T. Hayashi. (2003). Parentage analysis in Japanese peaches using SSR marker. Breeding Sci. 53, 35-40.
- Yamamoto, T., T. Kimura, M. Shoda, Y. Ban, T. Hayashi and N. Matsuta. (2002).
 Development of microsatellite markers in Japanese pear (*Pyrus pyrifolia* Nakai),
 Mol. Ecol. Notes. 2, 14–16.
- Yamamoto, T., F. Hosaka, S. Terakami, A. Sato, T. Sawamura, N. Takada, E. Ueda, C. Nishitani, T. Imai and T. Hirabayashi. (2008). DNA fingerprinting of Japanese chestnut cultivars identified by SSR markers. DNA Polymorphism. 16, 88–90 (in Japanese).

- Yuan, L. and Xu, D.Q. (2001). Stimulation effect of gibberellic acid short-term treatment on leaf photosynthesis related to the increase in Rubisco content in broad bean and soybean. Photosynth. Res. 68, 39-47.
- Xu, Q., L. L. Chen, X. Ruan, D. Chen, A. Zhu, C. Chen et al. (2013). The draft genome of sweet orange (*Citrus sinensis*). Nat. Genet. 45, 59-66.
- Zhong, G. V. and J. K. Burns. (2003). Profiling ethylene-regulated gene expression in *Arabidopsis thaliana* by microarray analysis. Plant Mol. Biol. 53, 117-131.