

モンテカルロシミュレーションによるスギCLTパネ ルの曲げ・せん断耐力の推定に関する研究

メタデータ	言語: ja
	出版者:
	公開日: 2015-03-23
	キーワード (Ja):
	キーワード (En):
	作成者: 岡部, 実
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12099/49110

モンテカルロシミュレーションによる スギ CLT パネルの曲げ・せん断耐力の推定 に関する研究

2013年

岐阜大学大学院 連合農学研究科

生物資源科学

(静岡大学)

岡部 実

モンテカルロシミュレーションによる スギ CLT パネルの曲げ・せん断耐力の推定 に関する研究

岡部 実

目次

第 1 章 緒言	1
1.1. Cross-laminated timber とは	1
1.2. 日本における CLT 利用の可能性	6
1.3. スギ CLT パネルの強度特性把握の重要性	
第 2 章 既往の文献等調査	9
2.1. 構造用集成材の断面設計	9
2.3. 構造用合板の曲げ剛性・曲げ強度設計	
2.4. CLT パネルの曲げ剛性及び曲げ強度	
2.6. CLT パネルの面外せん断強度	11
第 3 章 CLT パネルの曲げ剛性および最大曲げモーメントの推定	
3.1. CLT パネルの曲げ剛性推定手法	
3.1.1. 曲げ剛性計算方法	
3.1.2. モンテカルロシミュレーションによる CLT パネル曲げ剛性の	D計算方
法	
3.1.3. 曲げ剛性計算に用いるひき板の材料特性値	
3.1.4. 曲げ剛性計算を行う CLT 断面構成	
3.1.5. CLT パネルの曲げ剛性 シミュレーション結果	
3.2. CLT パネルの最大曲げモーメント推定手法	
3.2.1. 最大曲げモーメントの計算方法	
3.2.2. モンテカルロシミュレーションによる CLT パネル最大曲げ モ	ミーメン
トの計算方法	
3.2.3. 最大曲げモーメントの計算に用いるひき板の材料特性	
3.2.4. 最大曲げモーメントの計算を行う CLT 断面	
3.2.5. CLT パネルの最大曲げモーメント シミュレーション結果	
3.3. CLT パネルの曲げ剛性及び最大曲げモーメント検証実験	
3.3.1. 試験体	
3.3.2. 試験方法	
3.3.3. 試験結果	
3.4. 計算値と実験値の比較	

3.4.1. CLT パネルの曲げ剛性 <i>EI</i>	54
3.4.2. CLT パネルの最大曲げモーメント	55
3.5. スギ以外のひき板を CLT パネルに用いた場合の曲げ剛性、最大曲げモー	
メントの計算	60
3.5.1. ひき板の曲げ試験に基づく CLT パネル設計のための特性値	60
第 4 章 CLT パネルの層内面外せん断耐力の推定	69
4.1. CLT パネルの層内せん断耐力の推定手法	69
4.1.1. 層内面外せん断耐力の計算方法	69
4.1.2. モンテカルロシミュレーションを用いた CLT パネルの面外せん断耐	寸
力の計算	73
4.1.3. 計算に用いる材料特性値	76
4.1.4. シミュレーション結果	81
4.2. CLT パネルの面外せん断耐力 検証実験	82
4.2.1. 試験体	82
4.2.2. 試験方法	83
4.2.3. 試験結果	85
4.3. 計算値と実験値の比較	88
第 5 章 結論	90
第 6 章 参考文献	94

Fig. 1.1.1 ひき板を直交積層接着した 5 層 CLT パネルの構成	2
Fig. 1.1.2 CLT timber building 1	
Fig. 1.1.3 CLT timber building 2	4
Fig. 1.1.4 CLT timber building 3	4
Fig. 1.1.5 CLT timber building 4	4
Fig. 1.1.6 CLT timber building 5	5
Fig. 1.2.1 スギを用いた CLT パネル	6
Fig. 1.2.2 SOFIE project 3 階建振動実験(筆者撮影)	7
Fig. 1.2.3 SOFIE project 7 階建振動実験(筆者撮影)	7
Fig. 3.1.1 CLT 同一層ひき板配置	
Fig. 3.1.2 CLT パネル断面のひき板配置 模式図	
Fig. 3.1.3 モンテカルロシミュレーションのフローチャート	17
Fig. 3.1.4 CLT パネルの曲げ剛性 シミュレーションのエクセルシー	- ト 18
Fig. 3.1.5 ひき板曲げヤング率分布	19
Fig. 3.1.6 ひき板ヤング率及び正規分布を仮定した場合の累積度数分	*布20
Fig. 3.1.7 CLT パネル断面のひき板配置	22
Fig. 3.1.8 5層 E7 タイプ 層毎のヤング率 シミュレーション結果.	
Fig. 3.1.9 5 層構成 CLT パネルの曲げヤング率累積度数分布	
Fig. 3.2.1 ひき板曲げ試験 MOE と MOR の関係を用いた曲げ強度分	↑布の推
定方法	
Fig. 3.2.2 最大曲げモーメント計算フローチャート	30
Fig. 3.2.3 CLT パネルの最大曲げモーメント シミュレーションの)エクセ
ルシート	
Fig. 3.2.4 ひき板の曲げ試験図	
Fig. 3.2.5 曲げ試験状況	
Fig. 3.2.6 フィンガージョイント(FJ)部	
Fig. 3.2.7 ひき板曲げ試験 荷重-変位曲線	
Fig. 3.2.8 ひき板曲げ試験 MOE と MOR の関係	
Fig. 3.2.9 ひき板曲げ試験 代表的な破壊状況	
Fig. 3.2.10 CLT パネル断面のひき板配置	
Fig. 3.2.11 CLT パネルの最大曲げモーメントのシミュレーション結果	果(5 層
構成)	

Fig.	3.3.1	JAS 構造用集成材におけるラミナの強度性能(機械等級区分).	. 40
Fig.	3.3.2	CLT パネル断面構成(厚さ 120mm 及び 150mm)	. 42
Fig.	3.3.3	CLT パネル断面構成(厚さ 90mm)	. 43
Fig.	3.3.4	質量·含水率測定状況	. 44
Fig.	3.3.5	曲げ試験装置への試験体設置	. 45
Fig.	3.3.6	曲げ試験装置への試験体設置	. 45
Fig.	3.3.7	CLT パネルへのひずみゲージ貼り付け位置	. 46
Fig.	3.3.8	曲げ試験での繰り返し加力スケジュール(変位制御)	. 46
Fig.	3.3.9	CLT パネルの曲げ試験 モーメント – 変形曲線	. 49
Fig.	3.3.10	全スパン変形及びモーメントー定区間変形から算出した曲げ	剛
	性比較	;	. 50
Fig.	3.3.11	変形ごとの CLT 表裏面のひずみ分布	. 51
Fig.	3.3.12	厚さ 150mm 5 層 最外層ラミナ L70 引張側破壊状況	. 52
Fig.	3.3.13	厚さ 150mm 5層 ラミナ混合配置 引張側破壊状況	. 52
Fig.	3.3.14	厚さ 120mm 4 層 最外層ラミナ L70 引張側破壊状況	. 52
Fig.	3.3.15	厚さ 120mm 4 層 ラミナ混合配置 引張側破壊状況	. 53
Fig.	3.3.16	厚さ 120mm 5 層 最外層ラミナ L70 引張側破壊状況	. 53
Fig.	3.3.17	厚さ 120mm 5層 ラミナ混合配置 引張側破壊状況	. 53
Fig.	3.4.1	曲げ剛性 EI 計算値と実験値の比較	. 54
Fig.	3.4.2	最大曲げモーメント M _{max} 計算値と実験値の比較	. 55
Fig.	3.4.3	ひき板曲げ強度に対する引張強度比 Ft/Fb を変化させた場合の	計
	算結果	と実験値の比較	. 57
Fig.	3.4.4	破壊クライテリア 一乗と二乗による計算値と実験値の比較	. 59
Fig.	3.4.5	破壊クライテリア 一乗と二乗での計算値比較	. 59
Fig.	3.5.1	樹種、FJ 有無によるひき板ヤング率、曲げ強度比較	. 62
Fig.	3.5.2	ひき板樹種別の曲げヤング率と曲げ強度の関係	. 62
Fig.	3.5.3	ひき板フィンガージョイント有りの曲げヤング率と曲げ強度の	関
	係		. 63
Fig.	3.5.4	ひき板フィンガージョイント無しの曲げヤング率と曲げ強度の	関
	係		. 63
Fig.	3.5.5	ひき板の曲げヤング率分布に基づく曲げ強度、引張強度分布	. 65

Fig. 3.5.6 スギ、ヒノキ、ベイマツを用いた CLT パネルの曲げ剛性 累積度数

Fig. 3.5.7 スギ、ヒノキ、ベイマツを用いた CLT パネルの最大曲げモーメント 最大曲げモーメント Fig. 3.5.8 Fig. 3.5.9 Fig. 4.1.1 Fig. 4.1.2 Fig. 4.1.3 厚さ 90mm、120mm、150mm5 層構成 CLT パネルの層内せん断応 Fig. 4.1.4 CLT パネルのせん断耐力計算シミュレーション フローチャート75 Fig. 4.1.5 Fig. 4.1.6 ローリングシアー試験におけるせん断応力度-ひずみ曲線77 Fig. 4.1.7 Fig. 4.1.8 Fig. 4.1.9 ひき板木口面の方向とローリングシアー強度 τ_{R-max}との関係 ... 79 Fig. 4.1.10 ローリングシアー強度の累積度数分布 80 Fig. 4.1.11 試験体 CLT パネルの断面82 Fig. 4.2.1 Fig. 4.2.2 逆対称せん断試験での試験体の試験体装置設置......83 逆対称せん断試験 せん断力図(Q図)及びモーメント図(M図) Fig. 4.2.3 Fig. 4.2.4 Fig. 4.2.5 Fig. 4.2.6 Fig. 4.2.7 Fig. 4.2.8 厚さ 90mm 3 層 ラミナ混合配置 厚さ 90mm 4 層 ラミナ混合配置 Fig. 4.2.9 Fig. 4.2.10 厚さ 90mm 5 層 Fig. 4.3.1

Table 3.1.1	CLT パネルの曲げ剛性 計算条件21
Table 3.2.1	フィンガージョイント(FJ)の仕様
Table 3.3.1	CLT パネル試験体仕様41
Table 3.3.2	含水率・密度測定結果44
Table 3.3.3	CLT パネル 曲げ試験結果48
Table 3.3.4	CLT パネルの曲げ剛性 EI、最大曲げモーメント M _{max}
Table 3.4.1	ひき板曲げ強度に対する引張強度比 Ft/Fb を変化させた場合の
計算結果	₹
Table 3.5.1	ひき板曲げ試験結果61
Table 3.5.2	スギ、ヒノキ、ベイマツの曲げヤング率、曲げ強度、引張強度64
Table 4.1.1	CLT パネルせん断耐力シミュレーション結果

第1章 緒言

1.1. Cross-laminated timber とは

Cross-laminated timber は、ひき板を直交させて接着積層した多層の大型面材料 として 1990 年代に欧州で開発され、一般に CLT もしくは X-Lam と呼ばれること が多い。(本論文では CLT とする。) G. Schickhofer を中心に 1995 年から 1998 年 にかけて Institute for Timber Engineering and Wood Technology, Graz University of Technology で実施したプロジェクト⁽¹⁾が CLT 開発の始まりと考えられている。欧 州では木材を水平に積み重ねる丸太組工法や、スカンジナビア地方などで見られ る垂直に並べて壁体を構成する工法を Solid Timber Construction(STC)と呼んでい るが、ひき板を直交接着しパネル化した CLT も STC のひとつに加えるため、技 術革新に取り組んできたものである。

研究開発が進むにつれ CLT 製造工場も増加し、ヨーロッパにおける CLT 生産 は、1996 年を基準とすると 2000 年で 2 倍、2008 年で 8.6 倍、2009 年に 10.8 倍、 2010 年に 13.6 倍と急激な増加が見られ、2012 年では 22.4 倍となることが予想さ れている。

2011 年現在オーストリアでは 6 社での CLT 生産量が年間 364,000m³、ドイツは 7 社で 153,000m³、スイス 2 社、イタリア 1 社、チェコ共和国 1 社の 4 社合計で 44,000m³の生産が行われ、合計するとヨーロッパでは 561,000m³の CLT が製造さ れている。

北米ではカナダが CLH Handbook⁽²⁾ を 2011 年に発行している。これはヨーロッ パで得られた CLT 関連技術をまとめるとともに、CLT パネルを用いた木造建築物 設計のため、カナダにおける研究データも公表している。アメリカもカナダ版 CLT Handbook をアメリカ版⁽³⁾ に変更し発行している。またカナダではカナダ材を用 いた CLT 製造が始まっている。

CLT パネルは集成材のようにひき板を積層接着することで、積層数により力学 的特性を変化させることができ、また合板のように直交させて積層するため寸法 安定性の優れた大型面材料の製造が可能となっている。⁽⁴⁾ この CLT パネルを建 築物に利用する場合、CLT パネル自体で床・壁を構成することができるため、CLT パネルを用いた壁式工法が可能となり、従来の柱・梁を用いた木造建築とは工法 が異なる。CLT パネル工法はコンクリート造と比べ質量が軽いため、コンクリート造と同規模の建物では、建物質量が減少し基礎にかかる負担が少ない。また CLT パネル自体が床・壁を構成するため、施工も容易となり、コンクリート造のよう な養生期間が必要なく工期が短縮する。このような理由から欧州では中層の共同 住宅や学校などの建築物で CLT パネルを利用する事例が見られる。

Fig. 1.1.1 にひき板を直交積層接着した 5 層 CLT パネルの構成を示す。一般に CLT は奇数層で構成され、表裏面ひき板の繊維方向は同一となる。積層方向を厚 さ h とし、表層ひき板の繊維方向と平行な辺長を長さ L、直交する辺長を幅 b と する。ひき板厚さを t1 から t5 とする。ひき板を直交させて積層するため、CLT パネルは強軸と弱軸の方向性がある。

Fig. 1.1.1 ひき板を直交積層接着した 5 層 CLT パネルの構成

CLT に用いるひき板を、英語では lumber、lamina、plank で表現することが多い。 本論では「ひき板」で統一することとする。木材は樹種毎に強度が異なるため、 ひき板に用いる樹種は、CLT パネルの力強度性能を決定する上で重要である。集 成材と同様、最外層のひき板が CLT パネルの曲げ剛性や曲げ強度を決定すると考 えることができる。最外層に並べたひき板を並列材⁽⁵⁾として考えると、ひき板単 体の持つばらつきが CLT とすることで小さくなるため、比較的低品質な木材も利 用可能となる可能性が高い。またひき板を用いることで、正角材などの製材に比 べ乾燥にかかるエネルギーが減少し乾燥品質も向上することが期待できる。

光合成により二酸化炭素を固定し成長する木材を用い木造建築物を建設し、か つ継続利用することで、森林では新たな木材が二酸化炭素を固定する。管理され た森林から生産された木材を有効に利用することは、持続可能な社会を形成する ことが可能となる。このような背景から木質材料の建築物への利用が世界的に注 目されている。

集成材、単板積層材などの軸材料や、合板、OSB などの面材料を用いた木質構造に加え、新たに厚物面材料として CLT が出現したことで、CLT をパネルとして用いた壁式構造物の設計が可能となってきた。欧州では Heavy Timber Constructionの発想があり、CLT を用いた木造建築物が受け入れられていることが、CLT を用いた木造建築物の建設事例^{(6),(7),(8),(9),(10),(11),(12),(13)}が増加している理由と考えられる。CLT 関連企業のホームページで公開されている代表的な木造建築物を Fig. 1.1.2~Fig. 1.1.6 に示す。

Fig. 1.1.2 CLT timber building 1 The Standthaus, Hoxton, London (KLH UK website)

Fig. 1.1.3 CLT timber building 2 Educational centre CEIP Catalunya in San Cugat(KLH website)

Fig. 1.1.4 CLT timber building 3

Wohnanlage Gemeinlebarn, Österreich (stora enso website)

Fig. 1.1.5 CLT timber building 4 Nordic engineered wood website

Fig. 1.1.6 CLT timber building 5 UBC's Earth Sciences Building (ESB), structurlam website

国際規格となる ISO/TC165(木質構造技術委員会)⁽¹⁴⁾ では、米国国家規格協会 (ANSI: American National Standards Institute)の規格及び Pr EN 規格等を基に CLT の規格化の検討が行われている。しかしながら現段階では CLT の構造特性の解析 や実験での検証は十分とはいえず、CLT を構成するひき板の樹種、CLT 断面構成、 接着性能など各国の状況を踏まえ検討すべき課題も多い。

1.2. 日本における CLT 利用の可能性

戦後植林されたスギを中心とする我が国の森林資源は伐採時期を迎え、次世代 へ森林資源を持続させるためにも、木材利用の推進と森林維持管理は重要な課題 となる。木材利用の観点では、木材の付加価値を高め木材工業としてのビジネス が成立することは、持続可能な社会形成においても必要である。

公共建築物等における木材利用の推進に関する法律(平成 22 年 10 月 1 日)⁽¹⁵⁾ の施行により、木材利用の推進は追い風となっている。しかしながら公共建築物 は木造住宅と比べ大規模となるため、構造設計も木造住宅とは異なる可能性が高 い。また構造設計では基準強度に基づく許容応力度⁽¹⁶⁾以下となることを確認する 必要があるが、現段階では CLT には基準強度は与えられていない。ひき板となる 材料の強度特性の把握、CLT のひき板配置構成に対応した CLT パネルの構造性能 の把握を行うことができれば、CLT パネルの性能を特定することができる。以上 のような整備が進めば、スギなどの国産材を利用した CLT パネルを用いた建築物 も建設も増加する可能性が高い。Fig. 1.2.1 にスギを用いた CLT パネル製造例を 示す。

Fig. 1.2.1 スギを用いた CLT パネル

(日本 CLT 協会ホームページより引用 <u>http://clta.jp/</u>)

海外からは、CLTパネルを用いた中層・大規模木造建築物の建設事例の情報が 伝わってくる。木材業界にとっては木材利用の可能性が広がることから、海外と 同様に中層・大規模木造建築物が建設できることが期待されている。しかし我が 国では地震力を考慮した設計が必須となるため、欧州や北米における事例をその まま受け入れることはできない。しかし欧州でもすべての地域で地震力が建物設 計に影響を与えない訳ではなく、たとえばイタリアの地震地域での建物建設では、 耐震設計が必要となるため、様々な研究が行われている。特に CNR-IVALSA が立 ち上げ SOFIE project において 3 層及び 7 層の CLT 木造建築物の振動実験を日本 で実施した。^{(17),(18),(19),(20),(21),(22),(23)} (Fig. 1.2.2、Fig. 1.2.3)

3 層の振動実験では兵庫県南部地震での神戸海洋気象台で記録された NS 波の地 震波で加震し、1 層部分の層間変位は 60mm 程度であった。また試験体は倒壊せ ずかつ大きな残留変形も生じない結果が得られている。

7層の振動実験では兵庫県南部地震での神戸海洋気象台で記録された3軸方向の 地震波で加震し、建物の短手方向で2層、3層部分の層間変位が45mm程度で最 も大きい変形を示す結果となったが、試験体は倒壊せずかつ大きな残留変形も生 じない結果が得られている。

このように日本のような地震地域でも CLT パネルによる木造建築物の可能性が示された。

Fig. 1.2.2 SOFIE project 3 階建振動実験(筆者撮影)

Fig. 1.2.3 SOFIE project 7 階建振動実験(筆者撮影)

1.3. スギ CLT パネルの強度特性把握の重要性

スギを用いた CLT パネルの強度特性把握は、CLT パネルを建築構造物に利用する上で重要であり、かつ建築物に CLT が利用可能となれば、木材工業としての新たな可能性が広がる。CLT パネルの強度特性には、材料強度特性と同様、圧縮、 引張、曲げ、せん断が存在する。

CLT パネルの圧縮特性は、パネルの壁として利用する場合重要な要因となり、 短柱から中間中柱、長柱のように壁高さが変化していく中でパネルの座屈が生じ るようになる。長柱の座屈現象は、オイラー式の適用を検討しなければならず、 この中でパネルの曲げ剛性 EI が長柱の座屈耐力を決める要因となる。

木材の引張強度特性は、接合部の強度が十分に高い場合は検討しなければなら ないが、一般には接合部の強度が木材の引張強度を下回るため大きく問題となる ことは少ない。CLTパネルの場合は、直交層が存在するため引張耐力の検討は必 要となるが、木材と同様接合部の耐力が支配的になることは予想できる。

海外では、CLTパネルを大型面材料として水平構面に利用する事例が多く見られる。床水平構面に CLTパネルを利用した場合、曲げ強度のみならず、曲げ剛性の把握が、床版の振動性状を検討する上でも重要である。

木材のせん断強度は、木材の繊維方向に平行な LT 面(板目面)及び LR 面(柾目面) に作用したせん断力に対する強度とされている。CLT パネルを壁パネルとして利 用した場合、水平力が作用すると CLT パネルには面内せん断力が作用する。また 床パネルとして利用した場合は、CLT パネルに曲げが作用する場合、同時に面外 せん断力も作用する。CLT パネルはひき板を直交積層接着しているため、CLT パ ネルにおいて異方性材料である木材に作用するせん断力は複雑な力の流れとなる。 本論は、日本の代表的な樹種であるスギを用いた CLT パネルについて、曲げ剛

性、最大曲げモーメント及び面外せん断特性を把握することを目的とする。

8

第2章 既往の文献等調査

2.1. 構造用集成材の断面設計

CLT パネルは、ひき板を積層した集成材と単板を直交積層した合板の強度特性の両 方を把握することが重要であると考えられる。集成材の日本農林規格⁽²⁴⁾ で規定する 構造用集成材は、ラミナの強度等級を機械等級区分もしくは目視等級区分で区分し、 区分されたラミナの曲げヤング率と曲げ強度及び引張強度から集成材のヤング率と強 度を規定している。

大断面木造建築物設計施工マニュアル⁽²⁵⁾では、集成材を構成するラミナのヤング 率に応じて各層等価幅を定め、中立軸に対する等価断面から曲げ剛性 EI を求める方法 が示されている。

平嶋ら⁽²⁶⁾ や小松⁽²⁷⁾ は、任意の層に存在するラミナの応力・ひずみ分布は、積層接 着面にずれが生じないと仮定した場合、ラミナの曲げひずみと引張ひずみの和とし、 集成材の曲率とラミナの曲率が一致するという仮定から曲げ応力と引張応力を求めて いる。そして曲げと引張の複合応力でラミナの曲げ強度と引張強度に達した場合に集 成材が破壊するというクライテリアを設け、最大曲げモーメントの推定を試みている。 平嶋らは2次のクライテリアで、小松は1次のクライテリアで最大曲げモーメントの 推定を試み、いずれも集成材の最大曲げモーメントの推定が可能としている。

森ら⁽²⁸⁾ は上述の計算モデルに節などの欠点分布を考慮した強度推定モデルを提案 し、モンテカルロシミュレーションによる計算値と実験値の比較を行っている。林ら ⁽²⁹⁾ は、スギ中断面集成材についてフィンガージョイントを含むラミナの曲げ及び引 張試験に基づく集成材の強度推定を、モンテカルロシミュレーションを用いて行いラ ミナの品質管理が重要であることを指摘している。

橋爪ら⁽³⁰⁾ はスギラミナの曲げ及び引張試験を行い、フィンガージョイント有りの ラミナでは曲げ強度と引張強度の平均値での比率は 0.66、5%下限値での比率は 0.48 としている。またフィンガージョイント無しでは曲げ強度と引張強度の平均値での比 率は 0.59、5%下限値での比率は 0.37 という報告をしている。

これらの集成材の断面設計理論は日本建築学会発行の木質構造基礎理論⁽³¹⁾ にまと められている。

9

2.3. 構造用合板の曲げ剛性・曲げ強度設計

合板の日本農林規格⁽³²⁾で規定する構造用合板では、2級構造用合板において有効断 面係数比として、0度方向においては表層繊維方向と平行な単板を有効として全体断 面に対する断面係数比を算出し強度を確認している。

杉山⁽³³⁾ は、合板の曲げ性能を接着層の存在を無視する場合をまとめ、また大熊⁽³⁴⁾ の論文を引用し接着層の存在を考える場合に分けて説明している。渋沢ら⁽³⁵⁾ は厚物 合板を構成する単板 3 樹種について平行層理論を用いた曲げヤング率と曲げ強度の推 定を試み、曲げ剛性は計算値と実験値には高い相関を確認している。また曲げ強度に ついても計算値と実験値で正の相関が認められたとしている。

日本合板工業組合連合会は構造用合板の手引き⁽³⁶⁾の中で、平行層理論としてまとめ ており、CLTパネルに適用できる可能性があると考えられる。

2.4. CLT パネルの曲げ剛性及び曲げ強度

Eurocode5 では Annex B⁽³⁷⁾ で Mechanically jointed beams として複合材料を接合具で 接合した梁材の曲げ剛性 EI、曲げ応力及びせん断応力を、剛性の低減係数 γ を用いて 算出する方法が提案されている。CLT Handbook⁽³⁸⁾では Mechanically jointed beams theory における γ の値は、理論的には 1.0 としているが一般には 0.85~0.99 の範囲で 変化するとしている。なお γ =1.0 は前述の集成材最大曲げモーメント推定においてラ ミナの曲げ応力と引張応力の和として計算する方法と同一である。

Blass ら⁽³⁹⁾ は、CLT を構成する層のヤング率と線対称に配置されているひき板の断面寸法から係数 *k* を求め、CLT パネルの面外曲げ及び面内曲げヤング率や曲げ強度の計算方法を提案している。しかし実験的な検証は行われていない。また 0 度方向のヤング率が層により異なる場合は適用できない。

CLT Handbook では、CLT パネルの曲げ剛性、曲げ強度の計算において、平行層ヤン グ率 E_0 、平行層せん断剛性 G_0 、直交層ヤング率 E_{90} 、直交性せん断剛性 G_{90} を

 $E_{90} = \frac{E_0}{30}$ $G_0 = \frac{E_0}{16}$ $G_{90} = \frac{G_0}{10}$ $G_{90} = \frac{E_0}{160}$

で表している。一般に CLT の直交層は幅はぎ接着を行わないため、直交層にヤング 率を与えることについては検討が必要であると思われる。

2.6. CLT パネルの面外せん断強度

Mechanically jointed beams における係数 γ は、接合部のすべり剛性 k とせん断剛性 G_{90} を用いるため、直交層のせん断剛性が必要となり、ひき板ヤング率の 1/160 で数値 を与えている。ところが直交層のせん断強度に関する記述が非常に少ない。

CLT パネルを床などの水平部材として利用する場合、パネルには一般に曲げとせん 断が作用する。CLT 層内のせん断応力度分布は、CLT を構成する平行層ひき板のヤン グ率の影響を受け、また直交層ひき板には木材繊維を回転させる方向にローリングシ アーが作用する。一般にひき板平行層のせん断強度よりも直交層ローリングシアー強 度が低いことから、CLT パネルの層内せん断耐力推定には、ひき板の繊維直交方向ロ ーリングシアー強度のデータが必要となる。無欠点小試片での木材のローリングシア ー強度に関する報告^{(40),(41)}では、繊維平行方向のせん断強度に比べ約 1/3 程度の強度に なるとしている。しかし CLT に用いるひき板を用いたローリングシアーに関する実験 データは蓄積されていない。海外ではスプルース材を用いた CLT パネルのローリング シアー強度の報告⁽⁴²⁾ があるが、スギひき板を用いた CLT パネルに適用可能となるか 検討する必要がある。

第3章 CLT パネルの曲げ剛性および最大曲げモーメントの推定

3.1. CLT パネルの曲げ剛性推定手法

3.1.1. 曲げ剛性計算方法

ひき板を直交させて積層接着した CLT パネルの曲げ剛性は、合板の平行層理論を用 いると、曲げのスパン方向に対しひき板繊維方向が平行となる平行層のみが有効で、 直交層は曲げ剛性に寄与しないと考えることができる。

Fig. 3.1.1 のように同一層の幅方向に並べたひき板の曲げ剛性 *EI* は、曲率ρが同一 であれば eq. 3.1-1 で表すことができ、同一厚さ *h* のひき板で構成されているため、展 開すると eq. 3.1-4 のようにヤング率 *E* と CLT パネルの幅 *b* で表すことができる。

$$\frac{1}{\rho} = \frac{M}{EI} = \frac{M}{\sum_{i=1}^{n} E_i \times I_i}$$
eq. 3.1-1

$$E \cdot I = E \frac{bh^3}{12} = \sum_{i=1}^n E_i \times I_i = E_1 \frac{b_1 \cdot h^3}{12} + E_2 \frac{b_2 \cdot h^3}{12} + \dots + E_n \frac{b_n \cdot h^3}{12} \qquad \text{eq. 3.1-2}$$

$$E \cdot b = E_1 \cdot b_1 + E_2 \cdot b_2 + \dots + E_n \cdot b_n$$

eq. 3.1-3

$$b = \frac{E_1 b_1 + E_2 b_2 + \dots + E_n b_n}{E} = b_1 \frac{E_1}{E} + b_2 \frac{E_2}{E} + \dots + b_n \frac{E_n}{E}$$
eq. 3.1-4
$$b = b_1 + b_2 + \dots + b_n$$
ここに
$$\rho: 曲率 \quad (1/\rho: 曲率半径) \qquad M: モーメント$$

EI:曲げ剛性

*E*_{*i*}: *n* 枚並んだひき板の i 番目の曲げヤング率

I_i:n 枚並んだひき板の i 番目の断面二次モーメント

同一ひき板幅 *n* 枚で CLT パネルの同一層が構成されていると仮定すると、 $b_1=b_2=b_n=b/n$ となり、層のヤング率は、eq. 3.1-5 のように幅方向に配置した各ひき板 ヤング率 *E* の平均となる。

$$E = \frac{1}{n} \times \sum_{i=1}^{n} E_i$$
 eq. 3.1-5

Fig. 3.1.1 CLT 同一層ひき板配置

同一層においてはひき板を平行配置し、それぞれの層を直交積層させた CLT パネル 断面のひき板配置模式図を Fig. 3.1.2 に示すように定義した。CLT 幅方向 Wを X 軸、 厚さ方向 Tを Y 方向、長さ方向 L を Z 方向とし、厚さ方向の層数を n、幅方向のひき 板枚数を mx、長さ方向のひき板枚数を my とした。i 層のヤング率 E_iは、i 層に配置し たひき板ヤング率の平均とし、CLT パネルの最外層は繊維方向が Z 方向となるように ひき板を配置し、曲げに対して有効となる層は最外層と平行となる層とした。

Fig. 3.1.2 CLT パネル断面のひき板配置 模式図

最外層ひき板と平行となる *k* 層の有効幅 *W_{eq-k}* を、基準層のヤング率に対する比率 として、**eq. 3.1-6** に示す。

$$W_{\text{eq}-k} = W_k \times \frac{E_k}{E_{\text{ref.}}}$$
 eq. 3.1-6

X 軸から CLT 断面の中立軸までの距離 N を、eq. 3.1-7 で算出する。

$$N = \frac{\sum_{k=1}^{n_{\text{eff}}} (W_{\text{eq}-k} \cdot t_k) \times Y_k}{\sum_{k=1}^{n_{\text{eff}}} (W_{\text{eq}-k} \cdot t_k)}$$
eq. 3.1-7

ここに

N: X 軸から中立軸までの距離(mm)

Y_k: X 軸から *k* 層図心までの距離(mm)

n_{eff}:有効層(平行層)の数

CLT パネル *k* 層の断面二次モーメント *I_{k-NN}* は、*k* 層の断面二次モーメントと断面積及 び中立軸から *k* 層の図心までの距離を用い eq. 3.1-8 で表すことができる。

$$I_{k-NN} = I_k + A_k \cdot N_k^2$$
 eq. 3.1-8

ここに

*I_{k-NN}: k*層の中立軸回りの断面二次モーメント(mm⁴)

 I_k : k層の断面二次モーメント(mm⁴)

 N_k : k 層図心から中立までの距離(mm) ($N_k=N-Y_k$ となる。)

 A_k : k層有効幅 W_{eq-k} と厚さ t_k の積で計算されるk層等価面積(mm²) CLT パネルの曲げ剛性 EI_{CLT} は、eq. 3.1-9 で表すことができる。

$$EI_{\text{CLT}} = \sum_{k=1}^{n_{\text{eff}}} E_{\text{ref.}} \cdot I_{k-\text{NN}} \qquad \text{eq. 3.1-9}$$

ここに

*EI*_{CLT}: CLT パネルの曲げ剛性 (kNmm²)

3.1.2. モンテカルロシミュレーションによる CLT パネル曲げ剛性の計算方法

ひき板のヤング率分布を正規分布と仮定し、モンテカルロシミュレーションを用い 0~1の範囲で乱数を発生させることで、正規分布の逆関数(エクセル関数 NORM.INV) を用いて、ひき板ヤング率をランダムに発生させることができる。そこでひき板のヤ ング率分布は、後述する試作 CLT パネルを用いた検証実験時に確認したひき板ヤング 率分布を正規分布と仮定して用いる。

CLT パネルの曲げ剛性を計算するために用いるひき板は、ヤング率の異なるひき板 をランダムに CLT 断面に配置した RD タイプと、最外層にヤング率の高いひき板を配 置する E7 タイプの 2 種類とした。

ヤング率の異なるひき板をランダムに CLT 断面に配置する RD タイプは、ひき板ヤ ング率が 3.5GPa から 8.0GPa の範囲のものを、順番に平行層のヤング率を対象セルに 入力するシミュレーションを行った。

CLT パネルの最外層にヤング率の高いひき板を配する E7 タイプでは、ヤング率が G3(6.5GPa~8.0GPa)の範囲となったひき板を最外層に順に配置し、G1(3.5GPa~ 5.0GPa)又は G2(5.0GPa~6.5GPa)となった場合は最外層以外に配置したひき板のヤン グ率を対象とするセルに入力するシミュレーションを行った。

CLT パネルの曲げ剛性算出 *EI* のためのモンテカルロシミュレーションのフローチ ャートを Fig. 3.1.3 に示す。

Fig. 3.1.3 モンテカルロシミュレーションのフローチャート

Fig. 3.1.4 に、同一層幅方向にひき板 10 枚配置した場合で、厚さ 150mmE7 タイプ及 び厚さ 90mmRD タイプの曲げ剛性計算結果の一例を示す。E7 タイプは最外層ひき板 ヤング率が G3 となっているのに対し、RD タイプは G1、G2、G3 がランダムに配置さ れている。モンテカルロシミュレーションによる CLT パネルの曲げ剛性計算は、同一 条件 300 体とした。

	766,894,082		11,551,592		778,097,604		1,556,543,278 (kNmm ²)	1,557 (kNm ²)			155,561,705		176,572,071		332,133,776 (kNmm ²)	332 (kNm ²)
Nk(mm)	-59.3		0.7		60.7		El _{ol T} =			Nk(mm)	-27.8		32.2		El oLT=	
A(mm ²)	30,000		30,000		30,000					A(mm ²)	30,000		30,000			
I(mm ⁴)	2,250,000		2,250,000		2,250,000					I(mm ⁴)	2,250,000		2,250,000			
Ak·Ny	4187		1664		450		(mm)			Ak·Ny	2614		450		(mm)	
Ak	31.0		22.2		30.0		75.7 (Ak	34.9		30.0		47.2 (
W(m)	1.03		0.74		1.00		の距離			W(m)	1.16		1.00		の距離	
平 芯	7.12		5.10		6.89		ら中立軸まで			平芯	6.13		5.28		い中立軸まで	
							小層か								ト層か	
	7.54		6.22		6.53	10	最多				6.51		6.96	10	最	
	7.10		87		90	6					_					
			3.		9						5.88		5.74	6		
	7.06		4.65 3.		6.87 6.	8					6.56 5.88		4.72 5.74	8		
	6.59 7.06		4.60 4.65 3.		6.74 6.87 6.	7 8 9					6.28 6.56 5.88		4.46 4.72 5.74	7 8 9		
≅(GPa)	7.27 6.59 7.06		4.52 4.60 4.65 3.		7.55 6.74 6.87 6.	6 7 8				ق(GPa)	7.86 6.28 6.56 5.88		4.26 4.46 4.72 5.74	6 7 8 9		
ヤング率(GPa)	6.83 7.27 6.59 7.06		3.98 4.52 4.60 4.65 3 .		6.92 7.55 6.74 6.87 6.	5 6 7 8				ヤング率(GPa)	4.94 7.86 6.28 6.56 5.88		6.43 4.26 4.46 4.72 5.74	5 6 7 8 9		G3
ナング 率(GPa)	6.98 6.83 7.27 6.59 7.06		6.21 3.98 4.52 4.60 4.65 3.		6.84 6.92 7.55 6.74 6.87 6.	4 5 6 7 8				ヤング 率(GPa)	6.56 4.94 7.86 6.28 6.56 5.88		4.86 6.43 4.26 4.46 4.72 5.74	4 5 6 7 8 9		G2 G3
ヤング 舉(GPa)	7.81 6.98 6.83 7.27 6.59 7.06		5.62 6.21 3.98 4.52 4.60 4.65 3.		6.76 6.84 6.92 7.55 6.74 6.87 6	3 4 5 6 7 8				ヤング 率(GPa)	4.91 6.56 4.94 7.86 6.28 6.56 5.88		5.83 4.86 6.43 4.26 4.46 4.72 5.74	3 4 5 6 7 8 9		G1 G2 G3
ナング 櫓(GPa)	6.60 7.81 6.98 6.83 7.27 6.59 7.06		5.57 5.62 6.21 3.98 4.52 4.60 4.65 3.		6.52 6.76 6.84 6.92 7.55 6.74 6.87 6	2 3 4 5 6 7 8				ヤング 率(GPa)	5.17 4.91 6.56 4.94 7.86 6.28 6.56 5.86		4.84 5.83 4.86 6.43 4.26 4.46 4.72 5.74	2 3 4 5 6 7 8 9		G1 G2 G3
ナング率(GPa)	7.47 6.60 7.81 6.98 6.83 7.27 6.59 7.06		5.72 5.57 5.62 6.21 3.98 4.52 4.60 4.65 3.		7.29 6.52 6.76 6.84 6.92 7.55 6.74 6.87 6	1 2 3 4 5 6 7 8				ヤング率(GPa)	6.69 5.17 4.91 6.56 4.94 7.86 6.28 6.56 5.86		4.71 4.84 5.83 4.86 6.43 4.26 4.46 4.72 5.74	1 2 3 4 5 6 7 8 9		G1 G2 G3
厚さ (mm)	30 7.47 6.60 7.81 6.98 6.83 7.27 6.59 7.06	30 30 30 30 30 30 30 30 30 30 30 30 30 3	30 5.72 5.57 5.62 6.21 3.98 4.52 4.60 4.65 3 .	30 30 30 30 30 30 30 30 30 30 30 30 30 3	30 7.29 6.52 6.76 6.84 6.92 7.55 6.74 6.87 6.	150 1 2 3 4 5 6 7 8				厚さ (mm)	30 6.69 5.17 4.91 6.56 4.94 7.86 6.28 6.56 5.86	30 30 30	30 4.71 4.84 5.83 4.86 6.43 4.26 4.46 4.72 5.74	90 1 2 3 4 5 6 7 8 9		G1 G2 G3

Fig. 3.1.4 CLT パネルの曲げ剛性 シミュレーションのエクセルシート (上段:5層 E7 タイプ 下段:3層 RD タイプ)

18

3.1.3. 曲げ剛性計算に用いるひき板の材料特性値

eq. 3.1-9 で算出される CLT パネルの曲げ剛性は、CLT 断面形状、構成するひき板形 状及びひき板ヤング率から計算することができる。ひき板ヤング率は、集成材の日本 農林規格に規定する構造用集成材のラミナの品質、等級区分機によるもので規定され た方法で求めることができる。ひき板のヤング率はバラツキがあるため、ヤング率分 布を統計的に表現することにより、シミュレーションを用いて CLT パネルの曲げ剛性 を推定することが可能となる。

CLTパネルの曲げ剛性及び最大曲げモーメント検証実験で製作した CLTパネルのひ き板は、機械等級区分機によりヤング率分布を事前に測定している。ひき板ヤング率 分布は、CLT 製作前に事前に測定することができるため、パネルの曲げ剛性を推定す るための有効な手法となる。

製作した CLT パネルに用いたひき板樹種はスギ(*Cryptomeria japonica*)で熊本県産材 である。連続式機械等級区分機(飯田工業製 MGFE-251)でひき板曲げヤング率を測 定した。Fig. 3.1.5 にひき板曲げヤング率分布を示す。

Fig. 3.1.5 ひき板曲げヤング率分布

スギのひき板 5973 枚のヤング率は、2.5GPa から 11GPa の範囲となり平均値は 5.84GPa、標準偏差が 1.52GPa、変動係数 0.26 であった。CLT パネル製作に用いたひき 板は、測定したひき板の中からヤング率が 3.5GPa 以上、8.0GPa 以下とし、以下に示 す G1~G3 の三つにグループ分けした。G1 は 3.5GPa 以上 5.0GPa 未満、G2 は 5.0GPa 以上 6.5GPa 未満、G3 は 6.5GPa 以上 8.0Gpa 以下とした。

得られたひき板ヤング率の平均値と標準偏差を用い、正規分布と対数正規分布の二 種類を求め、ヤング率実測値と比較した。その結果今回のひき板ヤング率分布は、正 規分布に近い形状となっていることが確認できた。そのためモンテカルロシミュレー ションによるひき板ヤング率の抽出では、機械等級区分を行った全体のひき板ヤング 率分布を正規分布と仮定した。Fig. 3.1.6 にひき板ヤング率及び正規分布を仮定した場 合の累積度数分布を示す。

Fig. 3.1.6 ひき板ヤング率及び正規分布を仮定した場合の累積度数分布 (○:ひき板ヤング率測定値、 -:正規分布を仮定した場合の累積度数分布)

3.1.4. 曲げ剛性計算を行う CLT 断面構成

曲げ剛性の計算を行う CLT 断面形状は、幅 1000mm 厚さは 90mm、120mm、150mm の三種類とする。厚さ 90mm は積層数 3、4、5 層の 3 条件とし、3 層はひき板厚さ 30mm、 4 層は 22.5mm、5 層は 18mm の等厚とした。厚さ 120mm は積層数 4、5 層の 2 条件と し、4 層はひき板厚さ 30mm、5 層は 24mm の等厚である。厚さ 150mm は積層数 5 層 の 1 条件で、ひき板厚さ 30mm、の等厚である。

積層数3層と5層は平行層と直交層が交互に配置されているのに対し4層は最外層 を平行層とし、中間2層を直交層とした。

CLT 断面へのひき板配置は、機械等級区分機で選別した G1~G3 をランダムに配置 する RD タイプと、最外層ひき板を G3 (ヤング率 6.5GPa 以上 8.0GPa 以下)とし、そ れ以外の層は G1、G2 をランダムで配置する E7 タイプの 2 種類とした。CLT 曲げ剛 性を計算する条件を Table 3.1.1 に、CLT 断面のひき板配置を Fig. 3.1.7 に示す。なお 同一層における幅方向のひき板枚数は、製作した幅 1000mm の CLT パネルに合わせ、 10 枚とした。

条件 No.	1	2	3	4	5	6	7	8	9	10	11	12
タイプ	RD	E7	RD	E7	RD	E7	RD	E7	RD	E7	RD	E7
厚さ (mm)	90		90		120		90)	12	0	1	50
積層数	3 ,	層		4	層				5 厚			

Table 3.1.1 CLT パネルの曲げ剛性 計算条件

Rd Type

E7 Type

Z#\\YZZA\\Y\\YZZA\\K\\YZZA\\K\\YZZA\\ ZI\\YZZA\\K\YZZA\\K\YZZA\\K\YZZA\	
	ALE HE KNOWNENN AAR MERINE HELMEENE E KNOWN YN ERMEERDAL KAAMERI'N RUWN NWE HELHERHE HEMDE Helbe known waar aan in false achterher known tydeberdal faafer ak waarwan teelerherhe byder
ZZ#\\\ZZZK\\\#ZZ#\\\ZZZ	
ZZZZKNN WZZZŻ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1000	
CZZZZ G1, G2, and G3 Lumber	G3 Lumber

Fig. 3.1.7 CLT パネル断面のひき板配置

### 3.1.5. CLT パネルの曲げ剛性 シミュレーション結果

Fig. 3.1.8 に 5 層 E7 タイプの層毎の平均ヤング率 300 体のシミュレーション結果の 例を示す。CLT パネルを構成する幅方向の 1 層には 10 枚のひき板が配置されている。 E7 タイプは、最外層に G3 のひき板のみ配置されているためヤング率のばらつきが少 ない。3 層目は G1 もしくは G2 のひき板が配置されているため、10 枚の平均といえ ヤング率のばらつきが大きい。2 層目、4 層目の直交層は長さ方向に 28 枚のひき板が 配置されているため、3 層目と同じ G1 と G2 のひき板が用いられているがヤング率変 動は小さい。



Fig. 3.1.8 5層 E7 タイプ 層毎のヤング率 シミュレーション結果

**Fig. 3.1.9** に 5 層構成で厚さ 90mm、120mm、150mm の曲げヤング率の累積度数分布 を示す。なおヤング率 E は、シミュレーションで算出した曲げ剛性 EI を見かけの断 面二次モーメント I で除して算出した。また図中の点線は、機械等級区分を行ったひ き板のヤング率分布を示す。

最外層ひき板をG3としたE7タイプのCLTパネルは、ひき板ランダム配置したRD タイプに比べヤング率が高く、また変動も小さいシミュレーション結果となった。CLT パネルを製造したひき板のヤング率分布に比べ、CLTパネルの曲げヤング率分布は変 動が小さくなっている。幅方向に配置したひき板のヤング率が平均化されることが、 変動が小さくなる理由であると考えられる。



Fig. 3.1.9 5 層構成 CLT パネルの曲げヤング率累積度数分布
(O: E7 type △: RD type 点線:ひき板ヤング率)

24

### 3.2. CLT パネルの最大曲げモーメント推定手法

### 3.2.1. 最大曲げモーメントの計算方法

集成材は、最外層ひき板のヤング率や曲げ・引張強度特性を用いることで、最大曲 げモーメントを推定することができる。CLTパネルも幅方向のひき板ヤング率を平均 値とすることで、集成材と同様に最大曲げモーメント予測が可能となるか検討する。

CLT パネルに曲げ変形が作用した場合、CLT パネル全体の曲率半径 ρ と平行層である *k* 層の曲率半径が等しいと考えると、eq. 3.2-1 となる。したがって *k* 層のモーメントは eq. 3.2-2 で表すことができる。

$$\frac{1}{\rho} = \frac{M}{EI_{\text{CLT}}} = \frac{M_k}{E_k I_k}$$
 eq. 3.2-1

ここに

ρ : 曲率 (1/ρ:曲率半径)
M : CLT パネルに作用するモーメント
M_k: k層に作用するモーメント
EI_{CLT}: CLT パネルの曲げ剛性
E_k.I_k: k層の曲げ剛性

$$M_k = \frac{E_k I_k}{E I_{\text{CLT}}} M \qquad \text{eq. 3.2-2}$$

曲げに有効なひき板平行層間に作用するせん断応力が、直交層を含め接着により伝 達されると考えると、*k*層の曲げ応力度 *σ_{bk}*は eq. 3.2-2 を使うと eq. 3.2-3 で表すこと ができる。

$$\sigma_{bk} = \frac{M_k}{Z_k} = \frac{I_k}{Z_k} \cdot \frac{E_k}{EI_{CLT}} \cdot M = \frac{t_k}{2} \cdot \frac{E_k}{EI_{CLT}} \cdot M$$
eq. 3.2-3

ここに σ_{bk}: k 層ひき板に作用する曲げ応力度 Z_k: k 層の断面係数 k層に作用する引張応力度は、eq. 3.2-4 で表すことができる。

$$\sigma_{tk} = \varepsilon_k \cdot E_k = \frac{N_k}{\rho} \cdot E_k = \frac{N_k E_k}{EI_{CLT}} \cdot M$$
eq. 3.2-4  
ここに  
 $\sigma_{tk} : k 層の引張応力度$   
 $\varepsilon_k : k 層軸方向のひずみ$   
 $N_k : 中立軸から k 層図心までの距離$ 

CLT パネルの曲げ破壊条件は、平行層である k 層の曲げ応力度  $\sigma_{bk}$  と引張曲げ応力 度  $\sigma_{tk}$ の複合応力度が、eq. 3.2-4 で示される k 層の曲げ強度  $f_{bk}$  および引張強度  $f_{tk}$  で式 が成立する場合と考えることができる。

$$\frac{\sigma_{bk}}{f_{bk}} + \frac{\sigma_{tk}}{f_{tk}} = 1$$
 eq. 3.2-5

ここに *f_{bk}: k 層の曲げ強度 f_{tk}: k 層の引張強度* 

eq. 3.2-5 に eq. 3.2-3 と eq. 3.2-4 を代入し整理すると、最大曲げモーメント *M_{max}*は eq. 3.2-6 で表すことができる。

$$M_{\text{max}} = \frac{EI_{\text{CLT}}}{E_k} \times \frac{2f_{\text{bk}} \cdot f_{\text{tk}}}{(t_k \cdot f_{\text{tk}} + 2N_k \cdot f_{\text{bk}})} \quad \text{eq. 3.2-6}$$

CLT パネルの曲げ剛性 *EI*_{CLT} や中立軸から *k* 層までの距離 *N_k*、は **3.1** で推定することが可能であり、また *k* 層ヤング率は幅方向に並べたひき板の平均値とすることができる。CLT パネルの曲げ破壊は、引張側最外層のひき板で発生すると考えると、*k* 層は引張側最外層で特定することも可能と考えられる。

以上より、*k*層ひき板の曲げおよび引張強度が推定できれば CLT パネルの最大曲げ モーメントが推定可能となる。 eq. 3.2-6 において k 層を最外層とした場合の CLT パネルの最大曲げモーメントは、 幅方向に並んだひき板の曲げ強度 fbk と引張強度 ftk の値で決定する。シミュレーショ ンではひき板の曲げヤング率と曲げ強度の相関関係から「平均強度モデル」と「最小 強度モデル」の二つのモデルで最大曲げモーメントの推定を行う。

「平均強度モデル」は、最外層で幅方向に並べたひき板の曲げ強度と引張強度の平 均値で CLT パネルの最大曲げモーメントを計算するモデルとする。

「最小強度モデル」は、最外層で幅方向に並んだひき板1枚毎の曲げ強度と引張強 度から計算される最大曲げモーメントの最小値で最大曲げモーメントを計算するモデ ルとする。
# 3.2.2. モンテカルロシミュレーションによる CLT パネル最大曲げモーメントの計算 方法

CLT パネルの最大曲げモーメントは、eq. 3.2-6 で計算することができる。このうち  $EI_{CLT_k}$  層の曲げヤング率  $E_k$ 及び中立軸から k 層図心までの距離  $N_k$ は、「3.1 CLT パネルの曲げ剛性推定手法」に算出方法を記載した。

 $k 層ひき板の曲げ強度 f_{bk} 及び引張強度 f_{tk} を、ひき板曲げヤング率 E から推定する$ ことができれば、CLT パネルの最大曲げモーメントを求めることができる。

$$M_{\text{max}} = \frac{EI_{\text{CLT}}}{E_k} \times \frac{2f_{\text{bk}} \cdot f_{\text{tk}}}{(t_k \cdot f_{\text{tk}} + 2N_k \cdot f_{\text{bk}})} \quad \text{eq. 3.2-6 (再揭)}$$

ひき板のヤング率が決まれば、ひき板曲げ試験の MOE と MOR の回帰直線から曲げ 強度 f_bの平均値を求めることができる。またひき板の曲げ試験結果に基づき変動係数 18%と仮定し、曲げ強度分布を正規分布と仮定すると、Fig. 3.2.1 に示すようにひき板 曲げ強度の分布を決めることができる。



Fig. 3.2.1 ひき板曲げ試験 MOE と MOR の関係を用いた曲げ強度分布の推定方法

ひき板の曲げ強度と引張強度の関係は、既往の文献調査によると、平均曲げ強度に 対する平均引張強度の比率は、フィンガージョイント有りの場合 0.66、フィンガージ ョイントなしの場合 0.59 という報告がある。

また平成 12 年建設省告示第 1452 号 木材の基準強度 *Fc、Ft、Fb* 及び *Fs* を定める 件ででは曲げと引張の基準強度の比率を 0.6 としている。

そこで本計算では、ひき板曲げヤング係数から求めた曲げ強度の平均値の 60%がひ き板の引張強度の平均値と仮定する。また変動成分は、曲げ強度と同様、変動係数 18% と仮定する。

最大曲げモーメント計算シミュレーションのフローチャートを Fig. 3.2.2 に示す。 Fig. 3.2.3 に、同一層幅方向にひき板 10 枚配置した場合で、厚さ 150mm・E7 タイプの 最大曲げモーメント計算結果の一例を示す。E7 タイプは最外層ひき板ヤング率が G3 となっていることから、ひき板ヤング率に応じてひき板の曲げ強度、引張強度を変動 成分を考慮して算出している。モンテカルロシミュレーションによる CLT パネルの最 大曲げモーメントの計算は、同一条件 300 体とした。



							kNmm ²	kNm ²		kN/mm ²		mm ⁴		mm											
	766 804 082	100,001,000	11,551,592		778,097,604		1,556,543,278	1,557		6.89		225,843,495		60.7				4		$(\cdot f_{ m bk})$					
Nk(mm)	-50.2	2.00	0.7		60.7		EI _{CLT} =			$E_{r} =$		$C_{LT}/E_{1} =$		$N_{I,\underline{m}} =$			0	$2f_{ m hk}\cdot f_{ m u}$		$_{tk} + 2N_{k}$	:				
A(mm ² )	30,000	00000	30,000		30,000							E							X	$(t_k \cdot f$					
1(mm ⁴ )	2 250 000	2,200,000	2,250,000		2,250,000												ļ	$EI_{CLT}$		$E_k$	:				
Ak · Nv	A187	2	1664		450		(mm)												$M_{\rm max} =$						
Ak	210	2	22.2		30.0		75.7																		
W(m)	1 02	2	0.74		1.00		での距離																		
片 石	719	1.12	5.10		6.89		ら中立軸ま-		平均	32.97		32.78		36.14		平 芯	21.57		19.08		24.53			78,111	0
	7 5.4	+0.1	6.22		6.53	10	最外層か			30.9		28.7		37.7	10		21.5		22.0		26.6	10		84,319	
	7 10	01.7	3.87		6.90	6				34.2		33.9		23.0	6		22.3		20.7		18.2	6		56,709	0
	7 NG	00.1	4.65		6.87	8				41.7		29.3		31.1	œ		18.2		15.6		28.4	œ		86,246	
(e	6 50	66.0	4.60		6.74	7		G3		32.0		35.9		42.9	7		23.4		11.9		22.2	7		73,073	
E (GP.	T 0 T	1 7.1	4.52		7.55	9		G2	[,] (МРа)	26.1		22.7		42.6	9	<i>f</i> , (MPa)	25.4		17.5		28.5	9		90,865	
「セング車	6 83	0.0	3.98		6.92	5		G1	げ強度 /	31.9		31.8		41.3	5	張強度)	23.9		20.0		22.5	Q		73,850	
 #	د ۲ مع	0.00	6.21		6.84	4			#	25.4		36.2		31.9	4	ц.	18.5		21.4		17.4	4		57,154	
	7 81	- D: /	5.62		6.76	з				36.2		42.9		28.4	e		22.0		23.7		28.6	ო		85,273	
	R RO	0.0	5.57		6.52	2				40.6		39.6		40.1	2		19.5		22.6		23.7	2		76,817	
	L		5.72		7.29	-				30.8		26.8		42.5	-		21.1		15.3		29.0	-		92,375	
さり 10	(mm)	30	30	30	30	150			厚さ (mm)	30	30	30	30	30	150	厚よ (mm)	30	30	30	30	30	150		Mmax=	Nm)
B	Į u	04	ę	2					匷	5	4	e	2	-		圈	2	4	ი	2	-		+		J

Lig. 3.2.3 CLT パネルの最大曲げモーメント シミュレーションのエクセルシート

### 3.2.3. 最大曲げモーメントの計算に用いるひき板の材料特性

3.1.3 において、ひき板の曲げヤング率は、機械等級区分機で測定し、ヤング率の分 布形を正規分布と仮定することができたが、最大曲げモーメントの計算ではひき板の 曲げ強度及び引張強度と曲げヤング率の関係を明確にし、特定ヤング率における曲げ 強度及び引張強度の分布を推定しなければならない。

そこで、CLT パネル製造に用いたひき板の曲げ試験を行い、曲げヤング率と曲げ強度の関係を求めた。試験体は幅 110mm、長さ 600mm、厚さ 27mmm とし、樹種はスギである。試験体中央付近の縦継ぎフィンガージョイント (FJ)有りと無しの 2 種類とし、各 46 体ずつ合計 92 体の曲げ試験を実施した。

曲げ試験は、曲げスパン 540mm の三等分点二線荷重とし、中央部付近に FJ がある ものは、モーメントー定区間に FJ を配置した。曲げ試験図を Fig. 3.2.4 に、試験実施 状況を Fig. 3.2.5 に示す。



Fig. 3.2.4 ひき板の曲げ試験図



**Fig. 3.2.5 曲げ試験状況** 32

フィンガージョント(FJ)の仕様を Table 3.2.1 に、試験体のフィンガージョイント(FJ) 部詳細写真を Fig. 3.2.6 に示す。なおフィンガージョイント(FJ)は、製作した CLT パネ ルと同仕様である。

項目	数值
フィンガー長(mm)	15
ピッチ(mm)	3.8
スカーフ傾斜比	1/12
フィンガー先端厚さ(mm)	0.7
フィンガー底部幅(mm)	0.6
かん合度	0.1

Table 3.2.1 フィンガージョイント(FJ)の仕様

接着剤	水性高分子-イソシアネート系接着剤					
フィンガー如	接着剤メーカー	オーシカ				
ノイン <i>ハー</i>	塗布量(g/m ² )	目視*				

* 接着剤を片面塗布し、圧締した際にはみ出す程度



Fig. 3.2.6 フィンガージョイント(FJ)部

ひき板曲げ試験の荷重-変位曲線を Fig. 3.2.7 に示す。左側黒実線のグラフは FJ 無しの結果、右側赤実線のグラフは FJ 有りの結果である。



Fig. 3.2.7 ひき板曲げ試験 荷重-変位曲線

試験結果から曲げヤング率 *E* を弾性部分の直線の傾きから eq. 3.2-7 で、曲げ強度 σ を最大荷重から eq. 3.2-8 で求めた。

 $E = \frac{23L^{3}}{1296 \times I} \times \frac{\Delta P}{\Delta \delta}$ eq. 3.2-7 ここに E:ヤング率(GPa)(MOR) L:曲げスパン(=540mm) I:断面二次モーメント(mm⁴)(=bh/12)  $\Delta P/\Delta \delta$ :弾性範囲内の荷重一変位傾き(kN/mm)  $\sigma = \frac{M}{Z} = \frac{P_{\text{max}} \times L}{bh^{2}}$ eq. 3.2-8 ここに  $\sigma$ :曲げ強度(N/mm²)(MOE) M:モーメント(Nmm)

Z:断面係数(mm³)

Fig. 3.2.8 に、ひき板曲げ試験における曲げヤング率 (MOE) と曲げ強度 (MOR) の 関係を示す。左図は FJ 無しの結果、右図は試験体中央に FJ 有りの結果を示す。FJ 無 しに比べ FJ 有りは同一ヤング率でも強度は低い傾向が見られた。図中階段状の実線及 び点線は、集成材の日本農林規格 (JAS) に規定する構造用集成材におけるラミナの 等級区分機による区分で示される曲げ強度性能のうち、曲げヤング係数と曲げ強さの 関係を示している。JAS 集成材ではラミナの曲げ強度の平均値と下限値を規定してい るが、今回実験を行ったひき板の曲げ試験結果は、すべて下限値を上回る結果となっ た。

フィンガージョイントを有していないひき板および有するひき板について、曲げ強 度 fb とヤング率の関係を求めると、それぞれ fb=0.00186E+39.58 (R2=0.042)および fb=0.001529E+29.41 (R2=0.080)となり、フィンガージョイントを有していないひき板 の曲げ強度は、フィンガージョイントを有するものの約 75%となった。フィンガージ ョイントを有していないひき板では、破壊は節、目切れなど木材の欠点で生じたが、 フィンガージョイントを有するものではすべての試験体でフィンガージョイント部が 破壊した。

また MOE と MOR には、正の相関が認められた。ヤング率に対する曲げ強度の範囲 は回帰直線に対し、試験データが範囲内となるよう、信頼区間で試験範囲を推定する 方法(エクセル分析ツール、回帰分析 図中黒一点鎖線)と、変動係数 18%を仮定し て試験範囲を推定する方法(図中赤点線 Y=X±1.64の)の二つの方法を比較した。FJ 無しでは、変動係数 18%仮定での範囲は高ヤング率側で範囲が狭まる傾向が見られた が、FJ 有りではいずれの方法も同様の範囲を示すことが確認できた。ヤング率が定ま れば、回帰直線から曲げ強度の平均値を求めることができ、変動係数 18%とすると、 本試験で用いたひき板で曲げ強度の信頼区間を求めることができると考えた。

35





**Fig. 3.2.9** にひき板曲げ試験の代表的な破壊状況を示す。フィンガージョイント無しでは、試験体引張側に存在する節、目切れなどの欠点から破壊が生じるのに対し、フィンガージョイント有りではすべてフィンガージョイント部での破壊となった。



フィンガージョイント無し



フィンガージョイント有り



## 3.2.4. 最大曲げモーメントの計算を行う CLT 断面

最大曲げモーメントの計算を行う CLT 断面は、3.1.4 で示す CLT 断面構成と同一と する。Fig. 3.2.10 に CLT パネル断面のひき板配置を示す。

Rd Type	Е7 Туре
Z#\\YZZA\\\\YZZA\\K\\YZZA\ ZI\\YZZA\\K\YZZA\\K\YZZI\Y	
¥ZZANNNNZZANNANVZZANNAN	
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
ZZ#\\\\ZZZK\\\¥ZZ#\\\\ZZZ	
1000	1000
G1, G2, and G3 Lumber	G3 Lumber

Fig. 3.2.10 CLT パネル断面のひき板配置

### 3.2.5. CLT パネルの最大曲げモーメント シミュレーション結果

Fig. 3.2.11 に 300 体の計算を行った CLT パネル最大曲げモーメント累積度数分布を 示す。シミュレーションは、厚さ 90mm、120mm、150mm ですべて 5 層の結果である。 また最外層引張側で破壊するとし、最外層ひき板のフィンガージョイントは、有りと 無しの二条件の計算を行った。また最外層ひき板の平均強度で CLT パネルの最大曲げ モーメントを計算する平均モデルを図中○で、最小モデルでの結果を図中△で示す。

CLT パネルの厚さが増加するにつれて最大曲げモーメントも大きくなる。また最小 強度モデルの計算結果に比べ、平均強度モデルでの計算結果は高めとなっている。

フィンガージョイント無しでは、ひき板の曲げ試験と同様 CLT パネルの最大曲げモ ーメントの平均値は高くなるが、最大曲げモーメントの変動も大きくなる。逆にフィ ンガージョイント有りは最大曲げモーメントは低くなるが、変動成分は小さくなると いう計算結果となった。



Fig. 3.2.11 CLT パネルの最大曲げモーメントのシミュレーション結果(5 層構成) (○:ひき板平均強度モデル △;ひき板最小強度モデル) (上図:フィンガージョイント有 下図:フィンガージョイント無)

### 3.3. CLT パネルの曲げ剛性及び最大曲げモーメント検証実験

### 3.3.1. 試験体

試験に用いた CLT パネルは、幅 1000mm、長さ 3000mm とし、厚さ 90mm、120mm、 150mm の 3 種類とし、厚さ 90mm については破壊せず弾性範囲内(L/100=9mm)で曲 げヤング率測定のみとした。

CLT パネルを構成するひき板厚さは、150mm 厚 CLT パネルでは、5 層(ひき板 30mm 厚)の1 種類、120mm 厚 CLT パネルでは、4 層(ひき板厚 30mm)と5 層(ひき板厚 24mm) の2 種類とした。90mm 厚さ CLT パネルでは、3 層(ひき板厚 30mm)、4 層(ひき板厚 22.5mm)、5 層(ひき板厚 18mm)の3 種類とした。

ひき板に用いた樹種はスギとし、JAS 構造用集成材用ラミナ(九州熊本県産 ラミ ナ幅 110mm)を用いた。

ひき板は、機械等級区分機(連続測定曲げ式グレーディングマシン 飯田工業 MGFE-251)を用いてヤング率を測定し、集成材の日本農林規格 第5条 構造用集成材 におけるラミナの品質基準(機械等級区分によるもの)に従い L35~L80 までの範囲 で区分を行った。集成材の日本農林規格に規定するラミナの強度性能基準を Fig. 3.3.1 に示す。

機械等級区分 による等級	曲げヤング係数 (GPa 又は 10 ³ N/ ^{mm²)}	曲げ強さ N/m	(MPa 又は nm ² )	引張り強さ(MPa 又 は N∕mm ² )		
		平均值	下限值	平均值	下限值	
L200	20.0	81.0	61.0	48.0	36.0	
L180	18.0	72.0	54.0	42.5	32.0	
L160	16.0	63.0	47.5	37.5	28.0	
L140	14.0	54.0	40.0	32.0	24.0	
L125	12.5	48.5	36.5	28.5	21.5	
L110	11.0	45.0	34.0	26.5	20.0	
L100	10.0	42.0	31.5	24.5	18.5	
L90	9.0	39.0	29.5	23.5	17.5	
L80	8.0	36.0	27.0	21.5	16.0	
L70	7.0	33.0	25.0	20.0	15.0	
L60	6.0	30.0	22.5	18.0	13.5	
L50	5.0	27.0	20.5	16.5	12.0	
L40	4.0	24.0	18.0	14.5	10.5	
L30	3.0	21.0	16.0	12.5	9.5	

Fig. 3.3.1 JAS 構造用集成材におけるラミナの強度性能(機械等級区分)

グレーディングマシンでの等級区分により、ひき板ヤング率が 3.5kN/mm²以上

5.0kN/mm² 未満の範囲となる G1、5.0kN/mm² 以上 6.5kN/mm² 未満の範囲となる G2、 6.5kN/mm² 以上 8.0kN/mm² 以下の範囲となる G3 の 3 グループに分類した。測定の結 果平均 5.75kN/mm² で正規分布形に近い形となっている。なおひき板のヤング率分布 は、Fig. 3.1.5 で示すものと同一で、前述のひき板ヤング率分布を用いたシミュレーシ ョンにも用いている。

CLT 断面へのひき板配置は、機械等級区分機で選別した G1~G3 のひき板をランダ ムに配置する RD タイプと、最外層ひき板を G3 (ヤング率 6.5GPa 以上 8.0Gpa 以下) とし、それ以外の層は G1、G2 のひき板をランダムで配置する E7 タイプの 2 種類と した。CLT パネルの試験体仕様を Table 3.3.1 に、断面構成を Fig. 3.3.2、Fig. 3.3.3 に 示す。なおフィンガージョイントの詳細仕様は Table 3.2.1 で前掲した仕様と同一であ る。

樹種	すぎ							
ラミナ	機械等級区分 L35 以上 L80 以下							
ラミナ幅	110mm							
	CLT 厚さ 90mm 3 層=30mm 4 層=22.5mm 5 層=18mm							
ラミナ厚さ	CLT 厚さ 120mm 4 層=30mm 5 層=24mm							
	CLT 厚さ 150mm 5 層=30mm							
	水性高分子-イソシアネート系接着剤(縦継ぎ、積層とも)							
	主剤 株式会社オーシカ 型番:ピーアイボンド MH-8							
	JAIA ノンホルムアルデヒド登録番号 001114							
接着剤	架橋剤:株式会社オーシカ 型番:ピーアイボンド用架橋剤							
	H-3MSH							
	JAIA ノンホルムアルデヒド登録番号 001119							
	主剤/架橋剤配合比 100:15 塗布量(g/m ² ):250							
	縦継ぎ:フィンガージョイント							
接着形式	横はぎ:接着なし							
	積層 :ラミナ直交積層							

Table 3.3.1 CLT パネル試験体仕様







# Fig. 3.3.3 CLT パネル断面構成(厚さ 90mm)

CLT パネル試験体は、試験前に質量及び含水率測定を実施し、質量を体積で除して 密度を算出した。なお質量測定は天井クレーンに取り付けた電気式秤を用い、つり上 げ形での測定とした。含水率は高周波容量式木材水分計(株式会社ケット科学研究所 HM-520)を用い、6 点測定の平均値を求めた。質量・含水率測定状況を Fig. 3.3.4 に、 密度・含水率測定結果を Table 3.3.2 に示す。



含水率測定状況



質量測定状況

				I	虚虚
厚さ(mm)	積層数	ひき板配置	試験体数	含水率(%)	省度 (1-a/m ³ )
					(Kg/III)
		RD	2	9.1	436
150	5	KD	2	12.2	431
130	3	E7	2	12.4	442
		E /	2	15.0	431
		ЪD	2	11.3	442
	Λ	KD	2	13.3	439
	4	E <b>7</b>	2	10.7	433
120		E /	2	12.8	436
120	5	D D	2	11.4	444
		KD	2	10.8	439
	3	E <b>7</b>	2	12.4	436
		E/	2	10.8	442
	2	RD	1	12.7	441
	3	E7	1	13.0	433
0.0	4	RD	1	15.3	441
90	4	E7	1	8.1	448
	5	RD	1	12.6	448
	5	E7	1	12.8	441
			平均	12.0	439
			標準偏差	1.8	5

Fig. 3.3.4 質量·含水率測定状況

Table 3.3.2 含水率・密度測定結果

44

### 3.3.2. 試験方法

曲げ試験は、JIS A 1414-2:2010 建築用パネルの性能試験方法 第二部:力学特性に 関する試験に規定する 5.3 曲げ試験に準拠する。曲げ試験は、広島県立総合技術研究 所林業技術センター木材実験棟内の 500kN 曲げ試験装置(株式会社前川試験機製作所 IPU-20/100B-B1)を用い、曲げスパン 2700mm の三等分点二点荷重とした。曲げ試験 装置への試験体設置を Fig. 3.3.5、Fig. 3.3.6 に示す。



Fig. 3.3.5 曲げ試験装置への試験体設置



Fig. 3.3.6 曲げ試験装置への試験体設置

CLT パネル最外層両面にひずみゲージ(東京測器研究所 PFL-20-11-5L))を貼り、 最外層ラミナの曲げによるひずみを測定する。測定位置を Fig. 3.3.7 に示す。(ゲージ 位置 G1 と G6 が上・下面で同位置となる。)



Fig. 3.3.7 CLT パネルへのひずみゲージ貼り付け位置

CLT パネル全体の曲げ変形は、パネル中央鉛直方向の変位計 2 点の平均から、支点 上鉛直方向の変位計 4 点の平均値の差とした。モーメント一定区間の変位は、試験体 両側に設置した矢高計(スパン 900mm)の平均値とした。なお矢高計での測定は弾性 範囲内とし、CLT パネル破壊時は取り外している。

加力は、一方向繰り返し漸増加力とし、変位制御で 9mm(曲げスパン 2700mm で 1/300)の倍数で 54mm(1/50)まで1回の繰り返し加力を行う。スパンに対する変形 比率 1/50 以降は単調加力とし、破壊に至るまで加力を行う。制御を行う変位は中央鉛 直変位(2点の平均)とする。加力繰り返しスケジュールを Fig. 3.3.8 に示す。なお厚 さ 90mmの試験体は 1/100(27mm)までの加力で終了した。



Fig. 3.3.8 曲げ試験での繰り返し加力スケジュール(変位制御)

データ整理は、JIS A 1414-2:2010 建築用パネルの性能試験方法-第2部:力学特性 に関する試験 附属書 A (規定) 試験データの処理方法 A3 曲げ試験に従い、曲げ剛 性 *EI* 及び最大曲げモーメント *M_{max}*を算出した。

・曲げ剛性 EI

三等分点二線荷重より弾性範囲内での荷重差 ΔP と変位差 Δ δ より、曲げ剛性 EI を eq. 3.3-1 により算出する。(I:断面二次モーメント(mm⁴)、L:全スパン (2700mm))

$$EI = \frac{23L^3}{1296} \times \frac{\Delta P}{\Delta \delta} \qquad \text{eq. 3.3-1}$$

・モーメント一定区間での曲げ剛性 *E*_b*I*を eq. 3.3-2 により算出する。

$$E_b I = \frac{L_1 L_2^2}{16} \times \frac{\Delta P}{\Delta \delta} \qquad \text{eq. 3.3-2}$$

ここに L₁:外側荷重点(支点)から内側荷重点(加力点)までの距離 (mm)(=900mm)

L₂:矢高計長さ(mm)(=900mm) I:断面二次モーメント(mm⁴)

・最大荷重 P_{max}及び最大曲げモーメント M_{max}
 最大荷重 P_{max}は、荷重計で計測された最大値とする。最大曲げモーメント M_{max}
 は、最大荷重 P_{max}、曲げスパン L(L=2700mm)より eq. 3.3-3 で算出する。

$$M_{\rm max} = \frac{P_{\rm max} \times L}{6} \qquad \text{eq. 3.3-3}$$

### 3.3.3. 試験結果

CLT パネルの曲げ試験結果を Table 3.3.3 に、曲げ剛性 EI、最大曲げモーメント M_{max} 算出結果を Table 3.3.4 に示す。また破壊させた厚さ 150mm 及び 120mmCLT パネルの モーメントー変位曲線を Fig. 3.3.9 に示す。

	毛主			特定	変形時間	讨力		2/2	最大	最大
厚さ	目目	2 2°	I KOO	T /400	T /200	T /200	1.1.50	2/3	荷重	荷重時
(mm)	僧	81)	L/600	L/400	L/300	L/200	L/150	Pmax	Pmax	変位
	釵		(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(mm)
		Γ7	18.8	28.4	38.4	58.5	78.5	110.4	165.5	44.22
150	5	E/	18.4	27.8	37.3	57.5	77.0	121.7	182.5	46.67
150	2	RD	16.3	24.4	32.5	49.0	65.3	118.8	178.2	52.45
			15.9	24.0	32.2	49.0	65.6	104.5	156.8	46.65
		E7	11.2	16.8	22.4	33.6	44.7	96.1	144.2	60.20
	4		11.2	16.7	22.3	33.6	45.1	90.2	135.3	57.68
	4	<b>RD</b>	9.3	14.0	18.8	28.6	38.2	73.5	110.3	54.18
120		KD	8.8	13.1	17.4	25.8	34.6	75.2	112.8	61.00
120		E7	9.8	14.8	19.8	30.0	40.1	68.5	102.7	52.58
	5		9.8	15.0	20.3	30.8	41.0	78.2	117.4	66.26
	5	מת	8.8	13.2	17.7	26.7	35.4	68.1	102.2	53.73
		KD	8.7	13.1	17.6	26.5	35.4	71.2	106.9	57.87
	2	E7	4.8	7.3	10.0	15.1	20.3			
	3	RD	4.1	6.1	8.2	12.1	16.4			
0.0	4	E7	4.5	6.8	9.5	14.3	19.2			
90	4	RD	4.0	6.0	8.3	12.8	16.9			
	5	E7	4.2	6.5	8.5	12.8	17.3			
	3	RD	3.7	5.4	7.3	10.8	14.6			

Table 3.3.3 CLT パネル 曲げ試験結果

備考:特定変形時耐力のLは全スパン(=2700mm)を表す。

厚さ 90mm の試験体は、1/50 変形までとした。

厚さ(mm)	積層数	タイプ	EI span	EI yoke	M max
			$kN \cdot m^2$	$kN \cdot m^2$	kN•m
		E <b>7</b>	1,455	1,507	74.5
150	5	E/	1,426	1,587	82.1
150	5	רות	1,268	1,328	80.2
		KD	1,235	anEI yoke $n^2$ $kN \cdot m^2$ 51,50761,58781,32851,345599465991921787307295884658906347397272459468731346423133272533934325	70.6
		E7	869	946	64.9
	4	E7	869	919	60.9
	4	רות	721	787	49.6
120		KD	680	729	50.7
120		E <b>7</b>	758	846	46.2
	F	E/	758	906	52.8
	5	רות	684	739	46.0
		KD	672	724	48.1
	2	E7	369	468	
	3	RD	317	313	
00	4	E7	346	423	
90	4	RD	313	327	
	5	E7	325	339	
	3	RD	284	325	

Table 3.3.4 CLT パネルの曲げ剛性 EI、最大曲げモーメント M_{max}



Fig. 3.3.9 CLT パネルの曲げ試験 モーメントー変形曲線

モーメント-変形曲線から、L/100(L=2700mm δ=27mm までの繰り返し範囲では弾 性変形を示し、繰り返しによる耐力低下は確認できなかった。破壊は脆性的な破壊と なり、引張側に配置されているひき板フィンガージョイント部からの破壊となってい る。

曲げスパン全体変形から計算した曲げ剛性 *EI_{span}* とモーメントー定区間の変形から 計算した曲げ剛性 *EI_{yoke}*の関係を **Fig. 3.3.10** に示す。スパン/梁せい比は、厚さ 90mm の CLT パネルで 30 倍、厚さ 120mm で 22.5 倍、厚さ 150mm で 18 倍となっているが、 全スパンから求めた曲げ剛性 *EI* はせん断変形の影響を含むため、モーメントー定区間 の *EI* よりも小さい値となった。回帰直線の傾きは 1.08 となり 8%せん断変形の影響を 受けていると思われる。



Fig. 3.3.10 全スパン変形及びモーメントー定区間変形から算出した曲げ剛性比較

Fig. 3.3.11 に厚さ 120mm5 層 E7 タイプ及び厚さ 150mm5 層 RD タイプ CLT パネルの 特定変形時の表裏面ひずみ分布を示す。なおひずみは極性を反転して引張ひずみを負 で表示した。

スパン*L*に対する変形の比率が*L/60*付近まではほぼ平坦なひずみ分布となっている。 *L/60* 変形時(変位 45mm)のひずみはおおむね 4000×10⁻⁶となっている。ひき板ヤン グ率を 6000N/mm²とすると  $\sigma = \epsilon E$  より最外層で 24N/mm²の応力が作用していること になる。

CLT パネルの曲げ試験において、特定変形角での一方向繰り返し加力を行ったが、 繰り返しによる剛性の低下は見られず、曲げスパンの 1/100 変形までは弾性範囲であ った。



Fig. 3.3.11 変形ごとの CLT 表裏面のひずみ分布

代表的な破壊を Fig. 3.3.12~Fig. 3.3.17 に示す。引張側最外層に配置されたフィンガ ージョイントから破壊が始まる傾向が強いことが目視により確認された。



Fig. 3.3.12 厚さ 150mm 5層 最外層ラミナ L70 引張側破壊状況



Fig. 3.3.13 厚さ 150mm 5層 ラミナ混合配置 引張側破壊状況





Fig. 3.3.14 厚さ 120mm 4層 最外層ラミナ L70 引張側破壊状況



Fig. 3.3.15 厚さ 120mm 4層 ラミナ混合配置 引張側破壊状況



Fig. 3.3.16 厚さ 120mm 5 層 最外層ラミナ L70 引張側破壊状況



Fig. 3.3.17 厚さ 120mm 5層 ラミナ混合配置 引張側破壊状況

### 3.4. 計算値と実験値の比較

### 3.4.1. CLT パネルの曲げ剛性 EI

Fig. 3.4.1 に CLT パネルの曲げ剛性 EI の計算値と実験値の比較を示す。図中の○は モーメントー定区間の変形による曲げ剛性の実験値、□は全スパン変形による曲げ剛 性の実験値を用い計算値と比較している。計算は 300 体のシミュレーションによる平 均値を示し、図中プロットから伸びる横線は、計算した 300 体の最大値と最小値の範 囲を示している。

計算値と実験値は高い相関が見られ、傾きも 1.0 に近いことからひき板ヤング率の 分布と CLT パネルの断面構成から、高い精度で曲げ剛性を予測できることが示された。 なお全スパン変形から求めた曲げ剛性の実験値と計算値の関係では、実験値の方が 6%ほど小さい結果となっている。これはせん断変形による影響が考えられる。



Fig. 3.4.1 曲げ剛性 EI 計算値と実験値の比較

### 3.4.2. CLT パネルの最大曲げモーメント

Fig. 3.4.2 に CLT パネルの最大曲げモーメント *M_{max}*の計算値と実験値の関係を示す。 図中の○は、計算値を引張側最外層ひき板の「平均強度モデル」とした場合、□は「最 小強度モデル」とした場合を示す。計算値と実験値は「平均強度モデル」、「最小強度 モデル」とも高い相関が認められた。「平均強度モデル」の計算値は、実験値の 0.89 倍、「最小強度モデル」の計算値は実験値の 0.69 倍となり、シミュレーションの値が 実験値を下回った。最外層引張側ひき板のフィンガージョイント部の破壊において、 直交層に補強効果があり、最小モデルよりも平均モデルに近い可能性が考えられる。

また計算値は、ひき板の曲げに対する引張強度比を 0.6 と仮定している。建築基準 法で規定する木材の基準強度は曲げに対する引張の強度比を 0.6 としていることで仮 定を設けたが、十分な検証はなされていない。



Fig. 3.4.2 最大曲げモーメント M_{max} 計算値と実験値の比較

Table 3.4.1 にひき板曲げ強度に対する引張強度比 *Ft/Fb* を変化させた場合の計算結 果を示す。また Fig. 3.4.3 にひき板曲げ強度に対する引張強度比 *Ft/Fb* を変化させた場 合の計算結果と実験値の比較を示す。強度比を 0.6、0.7、0.8 と変化させた場合のシミ ュレーションを行った。実験値と比較した結果、強度比 0.7 では平均強度モデルでは 実験値の 0.74 倍、最小強度モデルでは 1.01 倍、強度比 0.8 では平均強度モデルでは実 験値の 0.83 倍、最小強度モデルでは 1.13 倍になった。

		M (kN m)								
		計算値	(モンテカ	ルロシミュ	レーション	/300体の平	5均)			
		Ft/Fb=	=0.6	Ft/Fb	=0.7	Ft/Ft	中卧店			
		平均強度	最小強度	平均強度	最小強度	平均強度	最小強度	夫駛怛		
		モデル	モデル	モデル	モデル	モデル	モデル			
1体目	150-5-E7	70.3	52.1	80.4	59.7	90.1	67.9	74.5		
	150-5-RD	66.2	46.8	75.5	54.1	84.8	60.2	80.2		
	120-4-E7	50.8	37.8	57.4	43.1	64.1	48.5	64.9		
	120-4-RD	47.9	34.1	54.6	38.7	61.1	43.8	49.6		
	120-5-E7	45.3	34.1	51.3	38.1	57.6	43.1	46.2		
	120-5-RD	42.5	30.1	48.6	35.1	54.3	38.7	46.0		
	150-5-E7	70.3	52.1	80.4	59.7	90.1	67.9	82.1		
	150-5-RD	66.2	46.8	75.5	54.1	84.8	60.2	70.6		
	120-4-E7	50.8	37.8	57.4	43.1	64.1	48.5	60.9		
214日	120-4-RD	47.9	34.1	54.6	38.7	61.1	43.8	50.7		
	120-5-E7	45.3	34.1	51.3	38.1	57.6	43.1	52.8		
	120-5-RD	42.5	30.1	48.6	35.1	54.3	38.7	48.1		

Table 3.4.1 ひき板曲げ強度に対する引張強度比 Ft/Fb を変化させた場合の計算結果

注:試験体記号は、厚さ-積層数-ひき板配置タイプを表す。



Fig. 3.4.3 ひき板曲げ強度に対する引張強度比 Ft/Fb を変化させた場合の計算結果と実験値の比較

ここまでの計算における破壊クライテリアは、eq. 3.2-5 で示す通り、ひき板の 曲げ強度と引張強度の複合応力を一乗で検討している。木質構造設計規準・同解 説(日本建築学会 2006 年)においても曲げと引張の複合応力については一乗で の計算式が提案されている。しかし破壊クライテリアを二乗で提案されている文 献もあるため、破壊のクライテリアを eq. 3.4-1 を用い二乗として eq. 3.4-2 で最大 曲げモーメントを計算した。この場合のひき板曲げ強度に対する引張強度比は 0.6 としている。

Fig. 3.4.4に破壊クライテリアを1乗と2乗とした場合の最大曲げモーメントの 計算値と実験値の比較を示す。1乗に比べ2乗での計算では、計算値が高くなり、 計算値と実験値の回帰直線の傾きが1.0に近づいた。破壊クライテリアを2乗と した場合の計算値と実験値を比較したところ、平均強度モデルによるシミュレー ション値は実験値の0.77倍、最小強度モデルでは1.02倍となった。実験結果を 本モデルで推定する場合、最外層ひき板の曲げと引張の複合応力での破壊クライ テリアを2乗としての計算し、かつ「平均強度モデル」を用いると本研究の範囲 内では計算値と実験結果がほぼ一致する結果となった。

Fig. 3.4.5に破壊クライテリアを1乗と2乗とした場合の最大曲げモーメントの 計算値比較を示す。二乗で計算を行うと平均強度モデル、最小強度モデルはいず れも概ね 15%程度計算値が大きくなる結果となった。

 $\frac{\sigma_{bk}}{f_{bk}} + \frac{\sigma_{tk}}{f_{tk}} = 1$  eq. 3.2-5 (**既揭**)

$$\left(\frac{\sigma_{bk}}{f_{bk}}\right)^2 + \left(\frac{\sigma_{tk}}{f_{tk}}\right)^2 = 1$$
 eq. 3.4-1

$$M = \frac{EI_{CLT}}{E_{k}} \times \frac{2f_{bk} \cdot f_{tk}}{\sqrt{t_{k}^{2} \cdot f_{tk}^{2} + 4N_{k}^{2} \cdot f_{bk}^{2}}}$$
 eq. (

eq. 3.4-2



Fig. 3.4.4 破壊クライテリア 一乗と二乗による計算値と実験値の比較



Maximum moment calculated by eq. 1.2-6 (kN m)

Fig. 3.4.5 破壊クライテリア 一乗と二乗での計算値比較

# 3.5. スギ以外のひき板を CLT パネルに用いた場合の曲げ剛性、最大曲げモーメントの計算

### 3.5.1. ひき板の曲げ試験に基づく CLT パネル設計のための特性値

スギひき板を用いた CLT パネルでは、曲げ剛性の計算値が実験値と概ね一致す る結果を得た。また最大曲げモーメントは計算値に比べ実験値が高い結果となっ たが、設計においては安全側と考えることができる。

日本ではスギの利用は最も重要な課題ではあるが、CLT パネルの曲げ性能を高 めるためスギ以外の樹種を用いた CLT パネルも検討しなければならない。そこで ヤング率や曲げ強度がスギとは異なるヒノキとベイマツについて、ひき板の曲げ 試験を行い、ヤング率・強度分布を求め、CLT パネル製造の可能性の検討を行っ た。

ひき板の樹種はスギ、ヒノキとベイマツの 3 種類とした。試験体は幅 105mm、 長さ 700mm、厚さ 27mm で中央付近にフィンガージョイント(FJ)が有するものと 有さないものの 2 条件とした。試験体数は各樹種ともフィンガージョイント有が 40 体、無が 40 体の計 80 体である。

曲げ試験は **3.2.2** の曲げ試験と同様、曲げスパン 540mm の三等分点二点荷重とした。なおフィンガージョイントの形状は同様である。

試験結果を Table 3.5.1 に、ヤング率、曲げ強さの樹種・フィンガージョイント 有無での曲げヤング率と曲げ強さの比較を Fig. 3.5.1 に、曲げヤング率と曲げ強 度の関係を Fig. 3.5.2~Fig. 3.5.4 に示す。

			平均	標準偏差	変動係数(%)
	ベイフリ	FJ 無	534	39	7.36
	• • • • • •	FJ 有	545	37	6.88
密	レノナ	FJ 無	477	42	8.84
峾皮(kg/m)	L/+	FJ 有	471	31	6.49
	フゼ	FJ 無	400	30	7.63
	ハイ	FJ 有	396	30	7.61
	ベイマッ	FJ 無	14.18	2.02	14.23
		FJ 有	15.08	1.77	11.73
カン/万亥( $l_{\rm N}/mm^2$ )	ヒノキ	FJ 無	8.44	1.01	11.93
↑ ン ク 平(KN/IIIII )		FJ 有	8.41	1.11	13.26
	フゼ	FJ 無	5.13	0.84	16.36
	ハイ	FJ 有	5.29	4     1.01       1     1.11       3     0.84       9     0.85	16.12
	ベイマッ	FJ 無	77.36	19.26	24.90
		FJ 有	56.73	8.63	15.22
曲(半辞 ナ (N/mm ² )	レノモ	FJ 無	68.16	9.40	13.79
囲り 強 C (N/IIIII)	レノイ	FJ 有	45.26	6.10	13.49
	フザ	FJ 無	49.18	7.54	15.33
	ヘイ	FJ 有	32.99	5.24	15.87

Table 3.5.1 ひき板曲げ試験結果



Fig. 3.5.1 樹種、FJ 有無によるひき板ヤング率、曲げ強度比較



 Fig. 3.5.2
 ひき板樹種別の曲げヤング率と曲げ強度の関係

 (緑:スギ
 青:ヒノキ
 赤:ベイマツ
 ○:FJ 有
 □FJ 無)



Fig. 3.5.3 ひき板フィンガージョイント有りの曲げヤング率と曲げ強度の関係



Fig. 3.5.4 ひき板フィンガージョイント無しの曲げヤング率と曲げ強度の関係
スギ、ヒノキ、ベイマツのひき板曲げ試験からヤング率と強度の関係を求めた。 実験で得られたヤング率の範囲において、集成材の日本農林規格に規定する構造 用集成材ラミナの品質の下限値以上の曲げ強度の結果が得られた。曲げヤング率 と強度の関係をフィンガージョイント有無で分けると、フィンンガージョイント 有りが低い値となっている。

CLT パネルの最外層は、フィンガージョイントが任意の位置に配置されると考 えると、フィンガージョイントを有するひき板の強度を推定しなければならない。 そこでひき板のヤング率に、フィンガージョイント有りのヤング率と曲げ強度の 回帰直線を用いて曲げ強度の平均値を求めることができる。また変動係数を 18% と仮定すると、平均値に変動係数を乗じて標準偏差を求めることができる。同様 に曲げ強度に曲げ強度に対する引張強度比 0.6 を乗じることで、平均引張強度を 求めることができ、かつ変動係数を仮定すれば引張強度の標準偏差を求めること ができる。

この方法で求めたスギ、ヒノキ、ベイマツの曲げヤング率、曲げ強度、引張強度を Table 3.5.2 に示す。またヤング率、曲げ・引張強度分布を正規分布と仮定することで累積度数分布を求めることもできる。Fig. 3.5.5 に各樹種毎のひき板の曲 げヤング率、曲げ強度、引張強度の累積度数分布を示す。曲げ試験に基づくヤン グ率と曲げ強度の関係から変動係数をと曲げ引張強度比を仮定することで、変動 を考慮した CLT パネル設計の基礎データを得ることができる。

		スギ		ヒノキ		ベイマツ	
		FJ 有	FJ 無	FJ 有	FJ 無	FJ 有	FJ 無
ヤング率	平均	5.29	5.13	8.41	8.44	15.08	14.18
$(kN/mm^2)$	標準偏差	0.85	0.84	1.11	1.01	1.77	2.02
曲げ強度	平均	34.8	34.4	42.1	42.2	57.8	55.7
$(N/mm^2)$	標準偏差	6.3	6.2	7.6	7.6	10.4	10.0
引張強度	平均	20.9	20.7	25.3	25.3	34.7	33.4
$(N/mm^2)$	標準偏差	3.8	3.7	4.5	4.6	6.2	6.0

Table 3.5.2 スギ、ヒノキ、ベイマツの曲げヤング率、曲げ強度、引張強度



**Fig. 3.5.5 ひき板の曲げヤング率分布に基づく曲げ強度、引張強度分布** (緑:スギ 青:ヒノキ 赤:ベイマツ 点線:FJ有 実線:FJ無)

スギ、ヒノキ、ベイマツひき板の曲げヤング率、曲げ強度、引張強度の正規分 布累積度数分布より、90mm 厚さ 3 層、90mm 厚さ 5 層及び 150mm 厚さ 5 層 CLT パネルの曲げ剛性 *EI* と最大曲げモーメント *M_{max}*の推定を行った。Fig. 3.5.6 に曲 げ剛性の累積度数分布を、Fig. 3.5.7 に最大曲げモーメントの累積度数分布を示す。



Fig. 3.5.6 スギ、ヒノキ、ベイマツを用いた CLT パネルの曲げ剛性 累積度数分布



Fig. 3.5.7 スギ、ヒノキ、ベイマツを用いた CLT パネルの最大曲げモーメント累積 度数分布

ル)

⁽上から 90mm3 層、90mm5 層、150mm5 層 左側:平均強度モデル 右側:最小強度モデ

Fig. 3.5.8 にスギ、ヒノキ、ベイマツのひき板を用いた CLT パネルのシミュレ ーションで得られた最大曲げモーメントの 5%下限値比較を、Fig. 3.5.9 に平均値 の比較を示す。なお最大曲げモーメントは「平均強度モデル」と「最小強度モデ ル」でのシミュレーション結果を示した。ひき板ヤング率の比率と同様、スギ、 ヒノキ、ベイマツの順で最大曲げモーメントが大きくなっているが、スギに対す る比率で表すと、平均強度モデル、最小強度モデルとも概ね 1.0:1.3:1.6 の比率 となった。



Fig. 3.5.8 最大曲げモーメント 5%下限値比較



Fig. 3.5.9 最大曲げモーメント 平均値比較

## 第4章 CLT パネルの層内面外せん断耐力の推定

## 4.1. CLT パネルの層内せん断耐力の推定手法

## 4.1.1. 層内面外せん断耐力の計算方法

曲げを受ける CLT パネルはせん断力も作用するため、層内せん断耐力の推定は 重要である。そこで層内面外せん断耐力を推定するため、CLT 断面を Fig. 4.1.1 のように仮定する。中立軸から距離 y の水平面に作用するせん断応力度 τ_yは、CLT パネル断面を構成するひき板の幅方向平均ヤング率 Eにより eq. 4.1-1 で示される。

$$\tau_{y} = \frac{Q \cdot S_{y}}{I \cdot b} = \frac{Q \cdot (ES)_{y}}{(EI)_{eff} \cdot b} \qquad \text{eq. 4.1-1}$$

ここに

 $\tau_y$ :中立軸から距離yの水平面に作用するせん断応力度

(MPa)

- *Q*: せん断力 (N)
- *y*:中立軸からの距離(mm)

S:中立軸からの距離 yの水平面より外側の中立軸に対す

る断面一次モーメント(mm³)

- *I*: CLT の断面二次モーメント(mm⁴)
- b:CLTの幅(mm) (1000mmとする)
- E:中立軸からの距離 yの水平面より外側に配置された

幅方向ひき板の平均ヤング率(MPa)

(EI)_{eff}: CLT パネルの曲げ剛性 (Nmm²)



Fig. 4.1.1 想定した CLT 断面

CLT パネルの曲げ剛性 *EI*_{eff}は、同一層ひき板ヤング率が、層に配置された複数 枚ひき板の平均ヤング率に等しいとすると eq. 4.1-2 で示される。

$$EI_{eff} = \sum_{i=1}^{n} (E_i I_i + E_i A_i N_i^2)$$
 eq. 4.1-2

ここに

*n* :積層数

 $E_i I_i$ : *i*層の曲げ剛性 *EI* (Nmm²)

 $A_i$ : *i* 層の面積(mm²) (= $t_i \times b$ )

*N_i*:中立軸から*i*層中心までの距離(mm)

中立軸からの距離 y の水平面より外側の断面一次モーメント Sとひき板ヤング 率 Eの積 ESは、Fig. 4.1.1 に示す 5層 CLT 断面では、eq. 4.1-3 で示すことができ る。

$$(ES)_{y=0} = E_1 \cdot A_1 \cdot N_1 + E_2 \cdot A_2 \cdot N_2 + E_3 \cdot \frac{A_3}{2} \cdot N_3$$
eq. 4.1-3

Fig. 4.1.2 に厚さ 90mm 幅 1000mm の CLT パネルで、3、4、5 層を想定した場合 の CLT パネル層内せん断応力度分布の計算結果を示す。計算では、平行層ひき板 ヤング率をすべて 6.0GPa とし、直交層のひき板ヤング率を 0.0 GPa と仮定してい るため、網掛けの直交層部分ではせん断応力度が一定となっている。また図中の 点線、破線、実線は、せん断力 Q が 50kN、100kN、150kN 時の層内せん断応力度 分布を示す。同一荷重時の直交層に作用するせん断応力度は、3 層構成の CLT が 最も大きい値となり、次いで 5 層、4 層の順となり、計算上のせん断応力度の比 率は 1.00:0.93:0.91 となり、CLT パネルの層内の最大せん断応力度の形状係数 は、1.38:1.27:1.29 であった。



Fig. 4.1.2 層数が異なる CLT パネルの層内せん断応力度分布

(左上:3層 CLT パネル 右上:4層 CLT パネル 中央下:5層 CLT パネル)

Fig. 4.1.3 に、5 層 CLT で厚さを 90mm、120mm、150mm とし、100kN のせん断 カ Q が作用した場合の CLT 層内せん断応力度分布を示す。CLT 厚さが増加すると 同一せん断力 Q が作用した際の直交層に作用するせん断応力度は減少する。逆に せん断応力度がひき板直交層のローリングシアー強度に達した際に CLT の層内 せん断破壊が生じると仮定すると、等厚 5 層構成 CLT では厚さが増すと破壊まで のせん断力は増加する計算結果となった。一般に均一材料で矩形断面からなる梁 のせん断力度は放物線を示し、中立軸で最大となり単位面積当たりのせん断力の 1.5 倍となる。しかし直交層を有する CLT の場合、せん断応力度の最大値は平行 層ひき板のヤング率を一定とした場合、3 層構成の中央直交層で 1.38 倍、4 層構 成の中央直交層で 1.27 倍、5 層構成の 2 層目、4 層目の直交層で 1.26 倍であった。



Fig. 4.1.3 厚さ 90mm、120mm、150mm5 層構成 CLT パネルの層内せん断応力度 分布

# 4.1.2. モンテカルロシミュレーションを用いた CLT パネルの面外せん断耐力の 計算

CLT 断面の層内せん断応力度分布は平行層ひき板ヤング率の影響を受け、直交 層のヤング率をゼロと仮定すると、直交層でのせん断応力度分布は一定となる。 CLT に作用するせん断力 *Q*が増加すると、平行層・直交層ともにせん断応力度 τ は増加するが、直交層のローリングシアー強度は、平行層のせん断強度に比べ小 さいことから、直交層のせん断応力度がローリングシアー強度 τ_{R-max} に達すると 破壊が生じると仮定することができる。

Fig. 4.1.4 に典型的な 5 層 CLT パネルの断面モデルを示す。平行層ひき板要素に は、スギひき板ヤング率の機械等級区分ヤング率実測結果に基づき正規分布を仮 定してモンテカルロシミュレーションを行い、1 枚毎にヤング率を与え、同一平 行層 10 枚の平均ヤング率を層のヤング率として CLT 断面のせん断応力度分布を 求めた。なおひき板のヤング率実測結果は、平均 5.75GPa、標準偏差 0.87 であっ た。また CLT 製造で使用したひき板は、ヤング率が 3.5GPa 以上 8.0GPa 未満の範 囲に限定したことから、シミュレーションにおいても製造と同一ヤング率範囲内 のひき板のみ使用する条件を設けた。直交層ひき板のヤング率はゼロとして層内 せん断応力度分布を計算した。



Fig. 4.1.4 5層 CLT パネルの断面モデル

Shear forceO

シミュレーションのフローチャートを Fig. 4.1.5 に示す。CLT 断面平行層に配置するひき板ヤング率を、モンテカルロシミュレーションを用いて決定するところまでは、前述の曲げ剛性のシミュレーションと同様である。平行層のヤング率から層内のせん断応力度分布を求める。そしてせん断区間内ひき板直交層のローリングシアー強度をモンテカルロシミュレーションで決定し、層内せん断応力度がローリングシアー強度となるせん断力 Q を求める。

なお破壊のクライテリアは、せん断区間内に配置したひき板ローリングシアー 強度の平均値で CLT パネルのせん断耐力が決定する「平均 R 強度モデル」と、最 小値でせん断耐力が決定する「最小 R 強度モデル」の二つで検討を行った。また せん断区間内に配置したひき板は、検証実験と一致させるため、8 枚とした。



Fig. 4.1.5 CLT パネルのせん断耐力計算シミュレーション フローチャート

#### 4.1.3. 計算に用いる材料特性値

スギひき板のローリングシアー強度に関するデータは極めて少ない。海外では スプルース材を用いた CLT パネルのローリングシアー強度の報告があるが、スギ ひき板を用いた CLT パネルに適用可能となるか検討する必要がある。そこで 90mm 厚さ3層スギ CLT パネルを用い、直交層ひき板部分をローリングシアーで 破壊させるため、合板の日本農林規格、連続煮沸試験で示される接着力試験を参 考に、Fig. 4.1.6 の試験体図に示すような溝加工を施した試験体 20 体を準備し、 圧縮型ローリングシアー試験を実施した。 CLT を構成するひき板はスギ (*Cryptomeria japonica*)を用い、CLT ひき板のヤング率は、連続式機械等級区分 機によりヤング率 3.5GPa 以上 8.0GPa 未満とした。積層接着に用いた接着剤は、 水性高分子-イソシアネート系接着剤(JIS K 6806)とした。 なお試験体 20 体の 密度の平均値は 439kg/m³、標準偏差は 16.2kg/m³、高周波容量式木材水分計 (HM-520 (株)ケット科学研究所)を用いた含水率の平均値は 13.2%、標準偏差で 3.2%であった。

実験で得られた最大荷重  $P_{max}$ からローリングシアー強度  $\tau_{max}$ を eq. 4.1-4 で算出 した。せん断ひずみは、圧縮試験装置の盤間変位を直交層ひき板厚さ(=30mm)で 除して算出した。



Test specimen

Fig. 4.1.6 ひき板のローリングシアー試験体形状

$$\tau_{R-\max} = \frac{P_{\max}}{A} = \frac{P_{\max}}{bh} \qquad \text{eq. 4.1-4}$$

ここに τ_{R-max} : ローリングシアー強度(N/mm²) P_{max} : 最大荷重(N) A : せん断面積(mm²) b : 試験体幅(mm) h : 切り込み間内法高さ(mm)

せん断応力度-ひずみ曲線を Fig. 4.1.7 に、破壊状況を Fig. 4.1.8 に示す。ほぼ 弾性変形で最大荷重に到達し、脆性破壊により急激に耐力が低下した。またひき 板直交層は、繊維が回転するように 45 度方向で亀裂破壊を生じるものが多く見ら れた。ローリングシアー強度 7 R-max の平均は 1.64 MPa、標準偏差 0.28 MPa(変動 係数 17.1%)、信頼水準 75%の 5%下側許容限界は 1.09 MPa という結果となった。 またローリングシアー強度時のせん断ひずみの平均値は 0.081 であった。



Fig. 4.1.7 ローリングシアー試験におけるせん断応力度-ひずみ曲線



Fig. 4.1.8 ローリングシアー破壊状況



Fig. 4.1.9 ローリングシアー 試験体破壊状況

本試験で直交層ひき板に作用したせん断力の方向は、ひき板木口面の年輪が概 ね接線方向(板目)、半径方向(柾目)及び±45度面となって3種類に分類する ことができ、試験体毎任意に配置されている。そこでひき板木口面を接線方向(0 度)、半径方向(90度)及び45度に分類し、ローリングシアー強度 τ_{R-max}との関係を Fig. 4.1.10に示す。0度に分類された試験体が8体、45度と90度に分類された試 験体が各6体で平均値を○で示す。せん断力とせん断面の年輪の方向は、0度が 若干小さい値を示し、45度と90度はほぼ同じローリングシアー強度という結果 を得た。



Fig. 4.1.10 ひき板木口面の方向とローリングシアー強度 r_{R-max}との関係

Fig. 4.1.7 で示すひき板直交層のせん断試験結果から、ひき板のローリングシア 一強度 τ_{R-max}の分布を Fig. 4.1.11 で示すような正規分布形と仮定した。CLT パネ ルにおいてせん断力作用区間に直交層ひき板が 8 枚配置されていると仮定し、モ ンテカルロシミュレーションによりひき板 1 枚ごとのローリングシアー強度を与 えた。そして直交層全体のローリングシアー強度は、水平せん断力作用区間内ひ き板の最小値とする最小 R 強度モデルと平均値とする平均 R 強度モデルの2つで CLT パネルの最大せん断耐力 Q の推定を行った。

CLT 断面モデルは、製造した試験体断面と同一とし、厚さ 90mm は 3 層、4 層、
5 層、厚さ 120mm は 4 層、5 層、厚さ 150mm は 5 層の合計 6 条件について各 300
体のシミュレーションを行い、最大せん断力 Q_{max}の平均値と標準偏差を算出した。
CLT 断面モデルを Fig. 4.1.4 に、シミュレーション結果を Table 4.1.1 に示す。



Fig. 4.1.11 ローリングシアー強度の累積度数分布

#### 4.1.4. シミュレーション結果

**Table 4.1.1** に CLT パネルのせん断耐力シミュレーション結果を示す。CLT パネ ルの厚さが厚いものほどせん断耐力が大きく、また同一厚さ 90mm では、5 層 CLT のせん断耐力が大きくなる結果となった。5 層 CLT パネルはせん断応力度が最大 となる中央に平行層が配置されていることが理由と考えられる。

最小 R 強度モデルと平均 R 強度モデルを比較すると、平均 R 強度モデルの方が せん断耐力が大きく、かつ標準偏差が小さくなっている。直交層ひき板のローリ ングシアー強度が平均化することが理由である。

Layers	Thickness (mm)	Maximum shear capacity $Q_{max}$ (kN)						
		Minimum R s	trength model	Average R strength model				
		Average	Std.	Average	Std.			
5	150	149.0	22.6	199.2	12.8			
	120	118.4	17.0	157.3	10.2			
	90	88.9	12.8	118.9	8.2			
4	120	116.8	15.8	151.9	9.4			
	90	58.6	8.5	78.3	4.4			
3	90	53.4	7.5	70.5	4.3			

Table 4.1.1 CLT パネルせん断耐力シミュレーション結果

## 4.2. CLT パネルの面外せん断耐力 検証実験

#### 4.2.1. 試験体

CLTパネルの試験体は、幅 1000mm、長さ 3000mm とし、厚さは 90mm、120mm、 150mm の 3 種類である。CLTパネルを構成するひき板厚さはすべて等厚で、積層 数は CLT 厚さ 90mm の場合 3 層、4 層、5 層の 3 種類、120mm の場合は 4 層、5 層の 2 種類、150mm は 5 層構成とした。3 層及び 5 層 CLTパネルは平行層と直交 層を交互に配置し 4 層 CLTパネルは最外層を平行層、内層 2 層を直交層とした。 ひき板の樹種はスギで、集成材製造用ラミナ(九州・熊本県産)を用いた。ひき 板は、機械等級区分機(連続測定曲げ式グレーディングマシン(飯田工業 (株)MGFE-251))を用いてヤング率を測定し、曲げヤング率 3.5GPa 以上 8.0Gpa 以 下の範囲のひき板をランダムに混合配置して CLTを製造した。接着剤は、水性高 分子-イソシアネート系木材接着剤(JIS K 6806:2003)を用い、幅はぎ接着は行わ ず積層のみの接着とした。試験体 CLTパネルの断面を Fig. 4.2.1 に示す。なお試 験体数は、同一断面毎に各 1 体で合計 5 体としている。試験体 5 体の密度の平均 値は 440 kg/m³、標準偏差は 5.0 kg/m³、高周波容量式木材水分計(HM-520(株)ケ ット科学研究所)を用いた含水率の平均値は 11.9%、標準偏差で 1.4%であった。



^{3.5(}GPa) ... MOE of Lumber < 8.0(GPa)

Fig. 4.2.1 試験体 CLT パネルの断面

#### 4.2.2. 試験方法

せん断試験は、JISA 1414-2:2010 建築用パネルの性能試験方法 第二部:力学 特性に関する試験に規定する 5.7 パネル接合部の面内せん断試験に準拠し、いわ ゆる逆対称せん断試験とした。せん断試験装置は、広島県立総合技術研究所林業 技術センター木材実験棟内の 500kN 曲げ試験装置((株)前川試験機製作所 IPU-20/100B-B1)を用いた。試験体中央のせん断力 Q は、荷重計測値の 1/2 となる よう中央せん断区間を 800mm、両端せん断区間 800mm とした。また変位はパネ ル両側に設置した変位計の平均値を用い、中央せん断区間内の変位差を示した。 逆対称せん断試験での試験体の試験体装置設置を Fig. 4.2.2 に、せん断力図、モ ーメント図を Fig. 4.2.3 に示す。



Fig. 4.2.2 逆対称せん断試験での試験体の試験体装置設置



Fig. 4.2.3 逆対称せん断試験 せん断力図(Q図)及びモーメント図(M図)

#### 4.2.3. 試験結果

逆対称せん断試験のせん断力 Q-変形曲線を Fig. 4.2.4 に、典型的な破壊状況を Fig. 4.2.5~Fig. 4.2.10 に示す。最大荷重までほぼ弾性変形を示し、脆性的な破壊 が見られた。試験を行ったすべての試験体でひき板直交層の層内でのせん断破壊 が確認できた。

せん断耐力 Q は、CLT 厚さ 150mm の試験体が最もが高く、ついで 120mm、90mm の順となっている。同一厚さにおける層構成によるせん断耐力 Q の違いは、5 層 構成のせん断耐力が大きい傾向が見られた。これは中立軸付近のひき板が平行層 となっているため、中立軸付近に直交層が配置されている 3 層、4 層に比べ、直 交層のせん断応力度がローリングシアー強度に達するまでに多少余裕があること が考えられる。3 層、4 層構成 CLT におけるせん断耐力 Q は、試験体数が少なく 明確な差は確認できなかった。



Fig. 4.2.4 逆対称せん断試験のせん断力 Q-変形曲線



Fig. 4.2.5 厚さ 150mm 5層 ラミナ混合配置 破壊状況



Fig. 4.2.6 厚さ 120mm 4層 ラミフ



ラミナ混合配置 破壊状況



Fig. 4.2.7 厚さ 120mm 5層 ラミナ混合配置 破壊状況





Fig. 4.2.8 厚さ 90mm 3層 ラミナ混合配置 破壊状況



Fig. 4.2.9 厚さ 90mm 4層 ラミナ混合配置 破壊状況



Fig. 4.2.10 厚さ 90mm 5層 ラミナ混合配置 破壊状況

## 4.3. 計算値と実験値の比較

計算値は、断面構成の異なる CLT パネル毎の層内せん断応力度分布を平行層ひ き板のヤング率分布を考慮して算出した。次にスギひき板のローリングシアーせ ん断試験結果よりローリングシアー強度 TR-max を正規分布と仮定し、直交層ひき 板のせん断応力度がローリングシアー強度に達した時に CLT が層内せん断破壊 するとして、最大せん断耐力 Q の計算値を求めた。なおせん断区間に配置した直 交層ひき板 8 枚の平均 R 強度モデルを用いた場合と、最小 R 強度モデルを用いた 場合の 2 種類の計算を行った。 Fig. 4.3.1 に、平均 R 強度モデルでの計算値と実 験値の比較を、Fig. 4.3.2 に最小 R 強度モデルでの計算値と実験値の比較を示す。 300 体の計算を行っているため、計算値の平均を〇で、300 体の計算結果を・で示 す。シミュレーションを行った 300 体の平均値と実験値は相関関係がみられ、平 均 R 強度モデルでは計算値は実験値の 1.14 倍となったのに対し、最小 R 強度モ デルでは計算値は実験値の 0.86 倍を示した。また平均 R 強度モデルは最小 R 強 度モデルに比べ計算値のせん断耐力の変動成分が小さくなった。平行層が積層接 着されていることで、せん断区間内に配置されている直交層に力が伝達するため、 最小 R 強度モデルでは安全側評価となることが確認できた。



Fig. 4.3.1 平均モデルでの計算値と実験値の比較



Fig. 4.3.2 最小モデルでの計算値と実験値の比較

## 第5章結論

モンテカルロシミュレーションによるスギ CLT パネルの曲げ・せん断耐力の推定手 法を検討し、実験で検証した結果、以下の結論を得た。

- (1) CLT パネルの曲げ及びせん断試験のために準備したスギひき板 5973 枚について連続曲げ型の機械等級区分機を用いてヤング率を測定したところ、全ひき板のヤング率の平均値は 5.84GPa、標準偏差 1.52GPa、変動係数 0.26 となり、度数分布は正規分布を示した。
- (2) フィンガージョイントを有さないひき板および有するひき板について、強度とヤング率の関係を求めると、それぞれ fb=0.00186E+39.58 (R²=0.042)およびfb=0.001529E+29.41 (R²=0.080)となり、フィンガージョイントを有さないひき板の曲げ強度は、フィンガージョイントを有するものの約 75%となった。フィンガージョイントを有さないひき板では、破壊は節、目切れなど木材の欠点で生じたが、フィンガージョイントを有するものではすべての試験体でフィンガージョイント部が破壊した。
- (3) スギ、ヒノキ、ベイマツのひき板について、フィンガージョイントを有していな いもの及び有するもので曲げ試験を実施したところ、ヤング率 E および曲げ強度  $f_b$ は、スギ、ヒノキ、ベイマツの順に高くなった。これらの樹種をまとめて曲げ強度  $f_b$  とヤング率 E の関係を求めると、フィンガージョイントの無いものでは  $f_b=0.00326E+34.58$  (R²=0.556)、フィンガージョイントのあるものでは  $f_b=0.00234E+22.41$  (R²=0.717)となり、フィンガージョイントを有するひき板の曲げ 強度は、フィンガージョイントを有さないものの約 68~77%となった。
- (4) 最外層にヤング率の高いひき板を配置した E7 タイプとランダムに配置した RD タ イプの 2 種類の CLT パネルについて、スギひき板の曲げヤング率分布を正規分布と 仮定し、モンテカルロシミュレーションにより、CLT パネルの曲げ剛性を各々300 体計算したところ、ひき板の曲げ剛性の分布と比べて、CLT パネルの曲げ剛性はバ ラツキが著しく小さくなり、最外層ひき板を G3 グレードとした E7 タイプの CLT の曲げ剛性は、ひき板の配置をランダムとした RD タイプの 1.23 倍となった。これ により、最外層ひき板のヤング率を高くする構成をとることにより、曲げ剛性をよ り増加させることができることが実証された。

- (5) パネル厚さ、積層数、断面ひき板構成が異なる CLT パネルの曲げ剛性の計算値と モンテカルロシミュレーションによる結果を比較すると、シミュレーション値と実 験値は高い相関を示し、スギひき板を用いた CLT パネルの曲げ剛性を、シミュレー ションにより推定可能であることが分かった。
- (6) CLT パネルの曲げ試験において、特定変形角での一方向繰り返し加力を行ったが、 繰り返しによる剛性の低下は見られず、曲げスパンの 1/100 変形までは弾性範囲で あった。
- (7) モンテカルロシミュレーションにより CLT パネルの最外層ひき板の曲げ・引張強度の平均を基に CLT パネルの最大曲げモーメントを計算する「平均強度モデル」と最外層ひき板各々の曲げ・引張強度を基に CLT パネルの最大曲げモーメントを最小値とする「最小強度モデル」の二つのモデルを用いたシミュレーションをおのおの300 体について行った結果、最大曲げモーメントの計算値と実験値の間に相関は見られたものの、平均強度モデルによる計算値は実験値の 0.69 倍、最小強度モデルでは 0.89 倍となり、シミュレーション値が実験値を下回った。
- (8) シミュレーションに用いた最外層ひき板の破壊のクライテリアは、曲げと引張の 複合応力を1乗として計算したが、2乗とした場合の計算値と実験値を比較したと ころ、平均強度モデルによるシミュレーション値は実験値の0.77倍、最小強度モデ ルでは1.02倍となり、実験結果を本モデルで推定する場合、最外層ひき板の曲げと 引張の複合応力での破壊クライテリアを2乗としての計算し、かつ「平均強度モデ ル」を用いると本研究の範囲内では計算値と実験結果がほぼ一致する結果となった。
- (9) ひき板曲げ強度と引張強度の強度比を 0.6 の他に 0.7 および 0.8 についてもシミュレーションを行い、実験値と比較した結果、強度比 0.7 では平均強度モデルでは実験値の 0.74 倍、最小強度モデルでは 1.01 倍、強度比 0.8 では平均強度モデルでは実験値の 0.83 倍、最小強度モデルでは 1.13 倍になった。
- (10) スギ以外にヒノキ、ベイマツのひき板を用いた CLT パネルについても同様のシミ ュレーションを行い曲げ剛性、最大曲げモーメントを算出した結果、ヒノキ、ベイ マツのひき板を用いた CLT パネルの曲げ剛性はスギひき板を用いたものに対し、そ れぞれ 1.46 倍および 2.54 倍となったが、曲げ強度の平均値および 5%下限値は、平 均モデル、最小強度モデルともスギ CLT パネルの最大曲げモーメントに対し、ヒノ

キで 1.3 倍、ベイマツで 1.6 倍という結果であった。

- (11) 合板の日本農林規格に規定されている単板のローリングシアー試験方法を参考 に、ひき板のローリングシアー強度 τ_{max}を実験的に求めた結果、スギひき板のロー リングシアー強度の平均は 1.64MPa、5%下限値は 1.09MPa という結果を得た。
- (12) CLT パネルを構成するひき板のヤング率から、CLT パネル層内応力度分布を求め、 直交層のローリングシアー強度に達する場合のせん断力 Q を計算した。同一せん断 力が作用した場合の厚さ 90mm、3 層、4 層、5 層の CLT パネルの層内の最大せん断 応力度の増加係数は、1.38:1.27:1.29 であった。
- (13) ひき板のヤング率分布とローリングシアー強度分布をいずれも正規分布と仮定し、せん断区間内に配置した直交方向のひき板 8 枚のローリングシアー強度の平均値で CLT パネルのせん断耐力が決定する「平均 R 強度モデル」と最小値で CLT パネルのせん断耐力が決定する「最小 R 強度モデル」で計算を行った結果、CLT パネルせん断耐力の平均 R 強度モデルの計算値は、実験値に対し 1.13 倍、最小 R 強度モデルでは実験値に対して 0.86 倍という結果になった。
- (14) CLT パネルの曲げ剛性、最大曲げモーメントおよび面外せん断耐力をひき板の強 度特性を用いたモンテカルロシミュレーションにより推定し、スギひき板を用いた CLT パネルの曲げおよびせん断験結果と比較した結果、CLT パネルの曲げ剛性は、 計算値と実験値が一致したが、最大曲げモーメントは、平均強度モデル、最小強度 モデルいずれも実験値が計算値に対して高い値となったが、これはこの計算値が CLT パネルの曲げに対する設計に対して安全側となることを示している。また、CLT パネルのせん断耐力は、平均 R 強度モデルでは計算値が実験値に対して 14%低い値 となったのに対し、最小 R 強度モデルでは計算値が実験値に対して 13%高い値となった。

## 謝辞

本論文をとりまとめるに当たっては、静岡大学大学院環境森林科学専攻 安村基教授、 および小林研治助教に、多大なるご指導を頂きました。また、実験の実施に際しては、 日本 CLT 協会孕石剛士氏、広島県立総合技術研究所林業技術センター藤田和彦氏に多 大なる助言と援助を頂きました。ここに記して謝辞と致します。 なお本論文に用いた 実験結果の一部は、平成 22 年度木のまち、木のいえ整備促進事業(事業採択:銘建工 業(株))の一部として実施したものです。

## 第6章 参考文献

⁽¹⁾ Gerhard Schickhofer : CLT –European Experiences, Cross-Laminated Timber
(2) ED innevetions: CLT Handbook, chapter1 to chapter12
http://www.fpinpowations.co/Pagos/CltForm.aspx# UgIrPyPdYof
$\frac{\operatorname{Intp}}{2012}$ 12.07 $\pm$ $\frac{12}{2012}$
(3) Mass timber OLT Handback shorter 1 to shorter 12
Mass timber: CLI Handbook, chapter 1 to chapter 12
http://www.masstimber.com/products/cross-laminated-timber-clt/handbook/modules
(*) 宮武 敦: 甲規模木道建築物への再構成材料の利用, NPO 木の建築 Vol.31,
F22-23, 2011 (5) 亚式 12 年 建設 2 生 デ 第 1452 号 ・ 木 材 の 其進 強 度 Face Ft Ft 乃 び Face を 完 み る
一十成12 中建設省ロ小第1452 与,小将の基準强度 FC、FLFD 及びFS を定める 件
⁽⁶⁾ KIH Massivholz GmbH website
http://www.klh.at/an/company/impressum.html
2013 12 07 发昭
(7) Store and CLT website
http://www.elt.info/en/
<u>http://www.cht.hhto/eh/</u> 2012_12_07_
2013.12.07 <b></b>
Binderholz GmbH website,
http://www.binderholz.com/
2013.12.07 <b></b>
(*) Metsa Wood LENO(CLT) website,
http://www.metsawood.co.uk/buildingconstruction/engineeredtimber/Pages/Leno.asp
▲ 2013.12.07 参照
⁽¹⁰⁾ Nordic Engineered Wood website,
http://www.nordicewp.com/products/x-lam/
2013.12.07 参照
⁽¹¹⁾ Structurlam website,
http://www.structurlam.com/home/
2013.12.07 参照
⁽¹²⁾ XLam NZ Ltd website,
http://www.xlam.co.nz/
2013.12.07 参照
⁽¹³⁾ X-Lam Dolomiti S.r.l. website,
http://www.xlamdolomiti.it/a ENG 1 1.html
2013.12.07 参照
2013.12.07 参照 ⁽¹⁴⁾ ISO/WD16696 Timber Structures - Cross Laminated timber - Part1:Component
2013.12.07 参照 ⁽¹⁴⁾ ISO/WD16696 Timber Structures - Cross Laminated timber - Part1:Component performances and production requirements
2013.12.07 参照 ⁽¹⁴⁾ ISO/WD16696 Timber Structures - Cross Laminated timber - Part1:Component performances and production requirements ⁽¹⁵⁾ 公共建築物等における木材の利用の促進に関する法律、林野庁:
2013.12.07 参照 ⁽¹⁴⁾ ISO/WD16696 Timber Structures - Cross Laminated timber - Part1:Component performances and production requirements ⁽¹⁵⁾ 公共建築物等における木材の利用の促進に関する法律、林野庁: http://www.rinya.maff.go.jp/j/riyou/koukyou/

94

を定める件

- ⁽¹⁷⁾ Ario Ceccotti, Marco Pio Lauriola, Mario Pinna, Carmen Sandhaasm: SOFIE Project-Cyclic tests on Cross-Laminated Wooden Panels, 9th Would conference on Timber Engineering, Portland, OR, USA(2006)
- ⁽¹⁸⁾ Ario Ceccotti, Maurizio Follesa, Maroco Pio Laurioa, Carmen Sandhaas, Chikahiro Minowa, Naohito Kawai, Motoi Yasumura: Which Seismic Behaviour Factor for Multi-Storey Buildings made of Cross-Lamineted Wooden Panels?, CIB-W18 meeting, 39-15-2 (2006)
- ⁽¹⁹⁾ 岡部 実, Ario Crccotti, 安村 基, 箕輪親宏, 河合直人: クロスラミナパネル を用いた3階建木造建築物の振動実験, 日本建築学会大会学術講演梗概集, 22253, C-1, 構造Ⅲ, 福岡 (2007)
- (20) 須藤昌照, Ario Ceccotti, 安村 基, 岡部 実, 箕輪親宏, 河合直人, 清水秀 丸:クロスラミナパネルを用いた7階建木造建築物の震動台実験 その1 試験 体建築物の設計・施工, 日本建築学会学術講演梗概集, 22086, C-1, 構造Ⅲ, 広 島(2008)
- ⁽²¹⁾ 岡部 実, Ario Ceccotti, 安村 基, 箕輪親宏, 河合直人, 清水秀丸, 須藤昌 照: クロスラミナパネルを用いた 7 階建木造建築物の震動台実験 その 2 振動 実験結果, 日本建築学会学術講演梗概集, 22087, C-1, 構造Ⅲ, 広島(2008)
- ⁽²²⁾ Minoru Okabe, Ario Ceccotti, Motoi Yasumura, Chikahiro Minowa, Naohito Kawai, Carmen Sandhaas, Hidemaru Shimizu: Comparison with Measuring Method of Internal Story Drift on Shaking table of 7 Story X-Lam building, 11th Would conference on Timber Engineering, Trentio, Italy (2010)
- (23) Ario Ceccotti, Carmen Sandhaas, Minoru Okabe, Motoi Yasumura, Chikahiro Minowa, Naohito Kawai: SOFI project-3D shaking table test on a seven-story full-scale cross-laminated timber building, Earthquake engineering & structural dynamics, DOI:10.1002/eqe.2309(2013)
- (24) 平成 24 年農林水産省告示第 1587 号:集成材の日本農林規格、日本農林規格 協会 (2012)
- ⁽²⁵⁾ 日本建築センター: 大断面木造建築物設計施工マニュアル,pp177-184 (1988)
- (26) 平嶋義彦、山本幸雄、鈴木滋彦:集成材の強度計算モデル及び確率モデル, 木材学会誌 Vol.40, No.11, P.1172-1179 (1994)
- ⁽²⁷⁾ 小松幸平:任意断面構成集成材の最大曲げモーメントの推定と実験結果による検証,木材学会誌, Vol.43,No.11, p.934-939 (1997)
- ⁽²⁸⁾ 森拓郎、五十田博、笹川明:破壊過程を再現した集成材の曲げ強度推定モデルの提案と実験による検証,日本建築学会構造系論文集,第 541 号,51-57 (2001)
- (29) 林知行、板垣直行、小黒正次、中島靖雄、町田初男:モンテカルロシミュレ ーションによるスギ中断面集成材の曲げ性能予測,材料, Vol.51 No.4 pp373-378 (2002)
- ⁽³⁰⁾ 橋爪丈夫、吉田孝久:スギラミナの曲げ及び引張試験,長野県林業総合セン ター研究報告第15号(2001)

- (31) 日本建築学会:木質構造基礎理論,第三章,3.6 (2010)
- (32) 平成 20 年農林水産省告示第 1751 号: 合板の日本農林規格、日本農林規格協会 (2008)
- (33) 杉山英男:木構造"建築構造学大系 22", 彰国社 (1971)

⁽³⁴⁾ 大熊幹章: 合板の機械的性能に関する研究, 東京大学演習林報告, No.63 (1967)

- ⁽³⁵⁾ 渋沢龍也、名波直道、渡邉洋子、谷川伸江、神谷文夫:木質系構造用面材料 の強度性能とその評価 その7 平行層理論による床下地用厚物合板の曲げ性 能の予測、日本建築学会大会学術講演梗概集,22003 北陸 (2002)
- (36) 日本合板工業組合連合会:構造用合板の手引き

http://www.jpma.jp/data/index.html

2013年12月7日参照

⁽³⁷⁾ EN 1995-1-1: Design of timber structures Part1-1: General Common rules and rules for buildings, Eurocode5 (2004)

⁽³⁸⁾ FP innovations: Structural design of cross-laminated timber elements, chapter 3 (2011)

- ⁽³⁹⁾ Hans J. Blass, Peter Fellmoser; Design of solid wood panels with cross layers, in proceedings of the 8th Would conference on timber engineering, Lahti, Finland (2004)
- ⁽⁴⁰⁾山井良三郎:木材の圧縮異方性に関する研究,林業試験場研究報告,第113号, 1959, pp.57-112
- ⁽⁴¹⁾ 中戸莞二編著:新編 木材工業,養賢堂, 1985, pp.211-212
- ⁽⁴²⁾ P Mestek, H Kreuzinger, S Winter: Design concept for CLT Reinforced with self-tapping screws, CIB-W18/44/7-6 (2011)