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Summary 
 

In most of the middle and high latitude regions, snow accumulation and subsequent 

snowmelt are considered as the most important hydrological processes, because the 

stream hydrograph is dominated by spring snowmelt. In addition, nutrient transport 

from land to sea is significantly influenced by spring flood processes. Hence, 

knowledge of the spring snowmelt process is essential not only for water resource 

management, but also for further study of nutrient dynamics and transports. Distributed 

hydrological models have been proven useful and applicable to investigate stream flow 

and nutrient transport in snowmelt-dominated basins.  

The temperature index method has been widely used despite its simplicity, for the 

following reasons: (1) wide availability of air temperature data, (2) relative ease of air 

temperature interpolation and forecasting, and (3) computational simplicity. Because 

temperature index method is based on an assumption that the relationship between 

ablation and air temperature is usually expressed in the form of positive temperature 

sums, thus, the air temperatures are obviously one of the most variables for this method. 

One widely used hydrologic model is the Soil Water Assessment Tool (SWAT), which 

was developed to predict the impact of land management practices on water quantity, 

sediments, and non-point source pollution in large complex watersheds. A simple but 

improved temperature index model was incorporated into SWAT to simulate snowmelt 

processes. Although the snowmelt component of SWAT has been successfully applied to 

different study areas, model applicability is always limited by lower data availability, 

especially in data-sparse regions. 

Spatial interpolation is a common method for increasing data density and creating 
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accurate air temperature data in data-sparse regions. Furthermore, with development of 

earth observations, Moderate Resolution Imaging Spectroradiometer (MODIS) remotely 

sensed land surface temperature (LST) data have proven powerful for creating air 

temperature data. One advantage of remote sensing data is high spatial and temporal 

resolution, which provides continuous monitoring and coverage for large spatial scales. 

With the improvement of sensors and analysis methods, various remote sensing data 

have been successfully used for air temperature estimation. The linear relationship 

between LST data and air temperature data has been demonstrated in different study 

regions.  

There are only 87 air temperature stations available in the Amur River basin, the 

area of Amur River basin is approximate 2,000,000 km2. Moreover, one critical 

disadvantage of using LST data is that the period of newly created air temperature data 

is limited by the operational period of the satellite. However, we frequently need 

historical data, especially for long-term hydrological simulations. Thus, it is necessary 

to find an easy and effective method to create spatially dense and temporally long-term 

air temperature data.  

Motivated by these unsolved problems, this study set the objectives as follows: 1) 

to estimate the datasets using different methods and verified them at observation 

stations. 2) to evaluate the estimated datasets in the test basins for driving the SWAT 

model to simulate the snowmelt processes. 3) to analyze the factors that influence the 

accuracy of snowmelt simulation. 

Three test basins (Apkoroshi basin, Malinovka basin, Gari basin) were selected for 

model testing, which are located in the lower, middle and up stream of the Amur River 

Basin. SWAT model is employed as the test model. In order to generate input data for 
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SWAT model, digital elevation model (DEM), soil data, land cover (LULC) data, and 

weather data are prepared. In addition, discharge data are also prepared for calibration 

of hydrological simulations. In this study, three air temperature datasets are estimated 

based on different methods for the test basin. These datasets are: 1) one estimated by an 

inverse distance weighting (IDW) method; 2) one estimated by an improved IDW 

method considering the elevation influence on temperature (IDWEle); and 3) one 

estimated by combined use of linear regression and the MODIS LST data. The datasets 

are verified at observation stations and applied to driving a snowmelt hydrologic model 

using the SWAT model. The simulation results are compared with observed discharge 

data and the effects of estimated datasets on the snowmelt simulation results are also 

discussed. 

The different methods were tested at observation stations. The results indicate that 

the IDW method can obtain better results compared with other two methods according 

to the low elevation of interpolation stations and estimation stations. Though the linear 

regression method based on LST data might extend errors for air temperature estimation, 

this simple linear regression approach can create air temperature data with limited errors 

range over long periods. 

The snowmelt simulation results indicate that the newly estimated air temperature 

data based on the MODIS LST data can obtain better simulation results than other 

datasets in all test basins. The performances of IDW and IDWEle method are unstable 

in different basins with different topographic characters. Analysis of estimated error and 

simulation errors indicate that the missing consideration of topographic effects in air 

temperature estimation finally can include errors in the snowmelt simulation. 
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Totally, the simple linear regression using MODIS LST was generally successful 

and applicable in our study area. The research showed that using the newly estimated air 

temperature data based on MODIS LST data to improve the temperature index-based 

hydrological model (SWAT) is feasible, and the results of this new approach suggest 

that it could be a powerful means for extending the applicability of the temperature 

index method to areas with sparse air temperature data. 
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1 Introduction 

Snowmelt is one the most important hydrologic processes in mid- and high-latitude 

regions (Adam et al., 2009; Edwards et al., 2007). Snowmelt is recognized as one of the 

main sources for water supply river channels during spring (Brooks et al., 1998). In the 

Asia, the snowmelt water is extremely important in the Indus basin and important for 

the Brahmaputra basin, but plays only a modest role for the Ganges River, Yangtze 

River, and Yellow River (Bai et al., 2011; Immerzeel et al., 2010; Xu et al., 2009). In 

addition, snowmelt was also proved to have significant influence on nutrient transport 

(Stewart et al., 2004). For example, Pierson et al. (2013) indicated that the annual total 

dissolved phosphorus load occurs during winter, and nutrient loads during the snowmelt 

period may account for an average of 46% (18%–73%) of the annual load the New York 

City water supply region. Corriveau et al. (2011) showed that snowmelt plays a key role 

in nutrient export to prairie aquatic ecosystems and this may have serious impacts on 

downstream ecosystems in the watersheds of Canadian Prairies. 

The Amur River is ranked the 10th by the length area among the world biggest 

rivers. The total area of this basin is 2,040,700 km2 and its hydrological regime is 

greatly influence on the water supply of different countries such as Russia, China and 

Mongolia (Makhinov, 2004). In addition, the Amur River is also considered as an 

important source for the nutrients (N, P, Fe) to the Okhotsk sea and finally have great 

influence on the oceanic ecology and fish productivity of the North West Pacific Ocean 

(Nishioka et al., 2007). During March to May, ice breaking and higher discharge due to 

snowmelt are distinctive hydrological events in this region (Shibata et al., 2007; Nagao 
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et al., 2005). The different hydrological regimes of snowmelt period could create 

different pattern of iron and chloride export to the river compared to that observed 

during other periods (Shibata et al., 2007).  

In order to investigate the water resources, nutrient transport, water pollutions and 

human effects on the water cycles, the hydrological models were developed and applied 

in different regions (Anord et al., 1998; Bracmort et al., 2006; Liang et al., 1994).The 

hydrological models were already proved to be useful tools for conducting hydrological 

and nutrient transport research in this study area (Danilov-Danilyan et al., 2014; Onishi 

et al., 2012). Recently, though the physically-based energy balance method has been 

demonstrated to be accurate and powerful for calculating snowmelt processes (Liston et 

al., 2006; Marks et al., 1999; Stieglitz et al., 2001), the requirements for accurate and 

variable input data and complex parameterization still limits the applicability of the 

physically-based energy balance method (Boone and Etchevers, 2001; Essery et al., 

2012). Conversely, the temperature index (henceforth, T−I) method has been widely 

used despite its simplicity, for the following reasons (Hock, 2003): (1) wide availability 

of air temperature data, (2) relative ease of air temperature interpolation and forecasting, 

and (3) computational simplicity. Thus, hydrological models such as the Soil Water 

Assessment Tool (SWAT, Arnold et al., 1998), Hydrological Simulation Program 

Fortran (HSPF, Al-Abed et al., 2002), MIKE (Bøggild et al., 1999), and Snowmelt 

Runoff Model (SRM, Martinec and Rango, 1986) have adopted the T−I method to 

simulate snow accumulation and the snowmelt process. Because T−I method is based 

on an assumption that the relationship between ablation and air temperature is usually 

expressed in the form of positive temperature sums (Hock, 2003), thus, the air 

temperatures are obviously one of the most variables for this method.  



3 
 

Moreover, meteorological data are the most indispensable data sources for 

extending the applicability of hydrological model, water quality model and ecological 

models, especially in the data sparse regions (Jasper and Kaufmann 2003; Piper and 

Stewart 1996). Air temperature is a commonly observed element at meteorological 

stations. However, according to the data collection of world meteorological organization 

(WMO, Global Historical Climate Data-Daily data), there are only 87 observation 

stations available in the Amur River basin. In such data-sparse basins, the density of air 

temperature observed data cannot meet the requirements of accurate applications of the 

T-I model. Thus, to create high-density and accurate air temperature data, many data 

resources and methods have been developed. For example, Saha et al (2010) 

successfully used the global observation weather stations to create large cover 

NCEP-CFSR data for global applications. Uppla et al (2005) also supplied a global 

cover and long period from 1957 to 2002: the ERA-Interim reanalysis datasets of the 

European Centre for Medium Range Weather Forecasting. Another way to create 

gridded climate data covering large area is statistical interpolation of observed data; 

Yatagai et al (2012) successfully used the intense monitoring stations in the Asia to 

create a continental precipitation datasets for the water resources management 

application in Asia. These datasets are extending the applicability of hydrological model 

in the data sparse areas (Vu et al., 2012, Yang et al., 2014). Seneviratne et al. (2005) 

once successfully applied the ERA-40 reanalysis data of the European Centre for 

Medium-Range Weather Forecasts to estimate monthly terrestrial water-storage 

variations from water-balance computations. Lauri et al. (2014) applied TRMM remote 

sensing data, APHRODITE, NCEP-CFSR and ERA-interim datasets as precipitation 

sources to drive hydrological model in large basins of Monsoon Asia (Mekong River), 
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which only has sparse surface observation networks of hydrometeorological parameters. 

Spatial interpolation is a common method for increasing data density and creating 

accurate air temperature data in data-sparse regions (Monestiez et al., 2001; DeGaetano 

and Belcher 2007). A popular spatial interpolation method is inverse distance weighted 

(IDW) method (Dodson and Marks 1997; Gemmer et al., 2004; Hubbard and You 2005).  

Perry and Hollis (2005) used the geographical information system capabilities to 

combine multiple regressions with inverse distance weighted interpolation for analyzing 

the monthly 5 km x 5 km gridded datasets covering the UK for 36 climatic parameters, 

including precipitation and air temperature.  Shen et al. (2001) used the inverse 

distance weighted method to generate input data for Soil quality models developed for 

ecodistrict polygons and the polygons of the soil landscapes of Canada to monitor the 

concentration of soil organic matter. Ninyerola et al. (2000) used an interpolation 

method that combines statistical global analysis with a local interpolation (splines 

and inverse distance weighting) to generate the monthly mean air temperature map over 

the Iberian Peninsula. For the spatial interpolations method, the data density can greatly 

influence the interpolation results (Stahl et al., 2006). In fact, most previous accurate 

temperature interpolation results were achieved based on high-density, input air 

temperature data (Gemmer et al., 2004; Hong et al., 2005). For example, Courault & 

Monestiez (1999) used high-density, air temperature monitoring data (station density is 

1/1,250 km2) and a spatial interpolation method in southern France. Dodson & Marks 

(1997) used an improved interpolation method and 907 monitoring stations across an 

820,000 km2 area (station density is 1/1,000 km2) in the USA to estimate air 

temperature in a mountain area. For the Amur River basin, based on the relatively 

sparse observed data, the applicability of spatial interpolation methods is still need 
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further validation. 

In addition, with development of earth observations, the Moderate Resolution 

Imaging Spectroradiometer (MODIS) remotely sensed land surface temperature (LST) 

data have proven powerful for creating air temperature data. For example, Kloog et al. 

(2012) successfully applied the spatial smoothing method to evaluate daily air 

temperature data using MODIS LST data in Massachusetts, United States. Zhu et al. 

(2013) also used MODIS LST to evaluate daily and sub-daily maximum and minimum 

air temperature on the northern Tibetan Plateau. Zakšek and Schroedter-Homscheidt 

(2009) reviewed that there are three different methods commonly applied for estimating 

the air temperature based on the LST data: 1) the statistical methods 2) the temperature–

vegetation index methods (TVX) 3) energy-balance methods. They reported that the 

statistical methods generally perform well, within the spatial and time frame they were 

derived, but require large amounts of data to train the algorithms (Benali et al., 2012). 

The TVX method is based on the assumption that for an infinitely thick canopy, the 

top-of-canopy temperature is the same as within the canopy (Zhu et al., 2013) and uses 

the Normalized Difference Vegetation Index (NDVI) as a key input variable. However, 

the assumption of linear and negative slope between LST and NDVI is not always 

applicable and is influenced by seasonality, ecosystem type and soil moisture variability 

(Benali et al., 2012; Vancutsemet et al., 2010), and the period of created data is limited 

by the periods of both LST and NDVI data. Although the energy-balance methods are 

physically based, the major disadvantage of this method is the requirement of 

information that cannot provided by remote sensing (Benali et al., 2012). The linear 

relationship between MODIS LST and air temperature data has been demonstrated in 

different study regions (Cresswell et al., 1999, Jones et al., 2004; Mostovoy et al., 2006; 
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Sun et al., 2005).Thus, the linear regression method is a common choice for air 

temperature data estimation using MODIS LST data. Colombi et al. (2007) used the 

linear regression method and MODIS LST data to generate average daily temperature in 

Italian alpine areas, and they proved that the result of the linear regression method was 

superior to that of the spatial interpolation method. Shen and Leptoukh (2011) also used 

the linear regression relationship between air temperature and MODIS LST data to 

estimate new daily air temperature data in northern China and central Russia. However, 

for the air temperature estimation which is based on the remote sensing LST data, one 

critical problem is the estimated air temperature data are frequently limited by the 

operation period of the satellite, we frequently need a long-term historical data for 

driving the snowmelt model. 

Generally, the accuracy and reliability of the interpolation data always are need 

verifications. The direct way for verifying the data is comparing the data with the data 

from the observation station. For example, Chen et al. (2014) evaluated four recent 

gridded weather data: 55-year Japanese Reanalysis (JRA-55), ERA-Interim data, 

NCEP-CFSR data, and NASA Modern-Era Retrospective analysis for Research and 

Applications (MERRA) to clarify their quality in representing the diurnal cycle over 

East Asia. Bosilovich (2013) also evaluated the performances of gridded precipitation 

data from MERRA dataset and ERA-Interim dataset in the United States based on the 

gauged precipitation data. However, considering the spatial distribution of the weather 

data and its areal effects, the applicability of created weather data for driving the 

hydrological model is also another way to verify their qualities (Duethmann et al., 2013; 

Fuka et al., 2013; Vu et al., 2012). For example, Elsner et al. (2014) once evaluated 

differences of four commonly used historical meteorological datasets and their impacts 
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on stream flow simulations by using the Variable Infiltration Capacity (VIC) model in 

the Rocky mountain regions of United States.  Eum et al. (2014) also used the VIC 

model to evaluate the spatial and temporal differences in precipitation and temperature 

fields among three high-resolution climate data sets available in Canada, namely, the 

North American Regional Reanalysis, the Canadian Precipitation Analysis and the 

thin-plate smoothing splines (ANUSPLIN). 

One widely used hydrological model is the Soil Water Assessment Tool (SWAT), 

which was developed to predict the impact of land management practices on water, 

sediments, and non-point source pollution in large complex watersheds (Arnold & 

Fohrer, 2005). A simple but improved temperature index model was incorporated into 

SWAT to simulate snowmelt processes (Fontaine et al., 2002). Although the snowmelt 

component of SWAT has been successfully applied to different study areas (Zhang et 

al., 2009; Pradhanang et al., 2011), in Amur River, the applicability of the hydrological 

model is still limited by the input data. Moreover, the applicability of different air 

temperature estimated data for driving the temperature index model in data-sparse 

regions are still not frequently addressed.  

Motivated by these unsolved problems, this study set the objectives as follows:  

1) to estimate the datasets using the spatial interpolation methods and linear 

regression method combined with MODIS LST data. 

2) to verify the estimated data at observation stations.  

3) to evaluate the estimated datasets in the test basins for driving the SWAT model 

to simulate the snowmelt processes.  

4) to analyze the effects of the various air temperature datasets on the air 

temperature estimation and snowmelt simulations. 
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2 Study area and data 

2.1. Test Basins 

In this study, three basins were selected for model testing. These basins are located 

in the upper (Gari), middle (Malinovka) and lower (Apkoroshi) stream of the Amur 

River Basin. Basic geographic characteristics of the basins are shown in Figure 2.1 and 

Table 2.1. The Amur River is the tenth longest in the world, and is recognized as an 

important dissolved iron source for the Sea of Okhotsk (Nishioka et al., 2007). There 

are four distinct phases in the Amur water regime: spring floods, summer low water, 

summer and autumn floods, and winter low water. The main water source is rainfall, 

supplying 70–80% of total water and snowmelt during spring floods adds 10–20% 

(Makhinov, 2004).  

In the upper stream (Gari), the annual temperature is -2.4 ºC and the annual 

precipitation is 494mm, and in the lower stream (Apkoroshi), the annual temperature is 

-0.1 ºC and the annual precipitation is 641mm. In the middle stream (Malinovka), the 

mean annual temperature is 1.1 ºC and the annual precipitation is 593mm (Yu et al., 

2013). 
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Table 2.1 Basic geographic information of test basins 

Name Apkoroshi  Malinovka Gari  

Area (km2) 4,105 5,006 3,315 

Highest elevation (m) 2,242 1,417 776 

Lowest elevation (m) 72 82 229 

Slope (degree) 18.3 12.1 2.8 

Land-cover type 

composition (%) 

Forest 65 90 30 

Wetland 7 0 25 

Shrub 7 6 45 

Farmland 0 4 0 

Pasture 21 0 0 

 

2.2. Data for air temperature estimation 

2.2.1. Observed air temperature data 

Daily maximum and minimum air temperature data were obtained from the Global 

Historical Climatic Network-Daily (GHCN–Daily, Menne et al., 2012) of the National 

Climate Data Center (NCDC). This data was developed to meet the needs of climate 

analysis and monitoring studies that require data at a daily time resolution. The dataset 

contains records from over 75000 stations in 179 countries and territories (Menne et al., 

2012). Numerous daily variables are provided, including maximum and minimum 

temperature, total daily precipitation, snowfall, and snow depth. However, there are 

only two third of stations applied only the rainfall data (Menne et al., 2012). 

There are totally 87 observed air temperature stations available in Amur River 

basin. The available data period was from early 1950s to 31 December 2010. According 

to the location of test basins, this study used the searching radius at 200km to found 

suitable stations for each subbasin, the locations of all selected air temperature stations 

are shown in Figure 2.1 and Table 2.2. These stations are used for validation of 
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estimated air temperature, and also used for the spatial interpolation to create high 

intense air temperature data in different test basins. In addition, part of these stations 

will be directly used as the input data for SWAT model as “sparse-data” input scenario 

to simulate the snowmelt processes. 
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2.2.2. MODIS land surface temperature data 

In this study, the AQUA/MODIS daily LST data at 1-km spatial resolution of both 

daytime and nighttime are acquired from mid-2002 to 2010. 

(https://lpdaac.usgs.gov/products/modis_products_table/myd11a1). MODIS LST data 

are derived from thermal infrared bands 31 (10.78–11.28 μm) and 32 (11.77–12.27 μm). 

Atmospheric effects are corrected by a generalized split-window algorithm (Wan and 

Dozier, 1996). The latest LST data are version 005 (MYD11A1, V5); The V5 products 

are projected in a Sinusoidal grid by mapping the level-2 LST product (MYD11_L2) on 

1-kilometer (precisely 1km) grids.  

These datasets have error less than 1°C within the range −10 to 50°C, assuming 

that surface emissivity is known (Wan et al., 2008; Benali et al., 2012). In addition, 

ground-based validation has shown that errors were less than 1°C at homogeneous 

surfaces such as water, crop, and grassland (Wan et al., 2008).  

This study used the ArcGIS Geo-Processing Tool to extract the LST value for the 

estimated point. The latitude and the longitude of the point are converted into 

ArcGIS .shp file, and the python script language was used to operate the data extraction 

processing automatically. The LST data was converted from Kelvin degree to Celsius 

degree, to match the unit of observed air temperature. 
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2.3. Input data of SWAT model 

2.3.1. Spatial input data 

2.3.1.1. DEM data 

The SRTM 90m DEM’s have a resolution of 90m at the equator, and are provided 

in mosaiced 5 degree x 5 degree tiles for easy download and use (Jarvis et al., 2008). 

All are produced from a seamless dataset to allow easy mosaicing. These are available 

in both ArcGIS ASCII and GeoTiff format to facilitate their ease of use in a variety of 

image processing and GIS applications (Jarvis et al., 2008). Digital elevation models 

(DEM) for the entire globe, covering all of the countries of the world, are available from 

the website (http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1).  

In our study, we downloaded the DEM for the test subbasin and keep the spatial 

resolution as 90m, the DEM data can cover all the test basins. The elevation of different 

test basins are shown in Tabel 2.1 and Figure 2.2.The lowest elevation is 72m and 

highest is 2242m in Apkorshi basin, these values are 82m, 1417m in Malinovka basin, 

and 242m, 776m in Gari Basin. The slope of Gari basin is 2.8 degree, and in Apkoroshi 

is 18.3 degree and in Malinovka is 12.1 degree (Table 2.1).  According to the same 

stretch symbology, it is clear that the Apkoroshi basin has the most significant 

topographic variations, followed by the Malinovka basin and Gari basin. 
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Figure 2.2 The elevations information of all test basins 

 

2.3.1.2. Land cover types 

The land use/land cover map was constructed by combined use of vegetation maps 

of China, Mongolia, Russia, and satellite images (Yermoshin et al., 2007), and supplied 

by the Amu-Okhotsuk Project (http://www.chikyu.ac.jp/AMORE/). This data also 

supplied 19 classified land cover types. In order to match the application of SWAT 

model, we combined these data to forest, pasture, range-brush, wetland, and agricultural 

(a)Apkoroshi

(c)Gari

(b)Malinvoka
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land for model constructions. The spatial resolution of the land cover data is 1km, the 

land cover types of different test basins are shown in Table 2.1 and Figure 2.3. The 

major land uses in the Gari basin are range brush (45%), forests (30%) and wetlands 

(25%) in the Apkoroshi basin are forests (65%), pasture (21%), shrub (7%) and 

wetlands (7%). In the Malinovka basin are forests (90%), shrub (6%) and farmlands 

(4%). 

 

2.3.1.3. Soil data 

The soil input data is an essential input data for SWAT model, which will greatly 

influence its calculations of erosion, ET, water storage (Anorld et al., 1998). To define 

the hydrologic soil water effects requires estimating soil water characteristics for water 

potential and hydraulic conductivity using soil variables such as texture, organic matter 

(OM), and structure (Saxton and Rawls, 2006). 

The Food and Agriculture Organization of the United Nations (FAO) and the 

International Institute for Applied Systems Analysis (IIASA) took the initiative of 

combining the recently collected vast volumes of regional and national updates of soil 

information with the information already contained within the 1:5,000,000 scale 

FAO-UNESCO Digital Soil Map of the World, into a new comprehensive Harmonized 

World Soil Database (HWSD, Nachtergaele et al., 2012). The soil data in our study are 

obtained from the International Institute for Applied Systems Analysis (IIASA, 

http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/). The 

spatial resolution of the soil data is 1km. 
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Figure 2.3 The land cover types of the test basins. 

Field or laboratory measurements are difficult, costly, and often impractical for 

many hydrologic analyses (Saxton and Rawls, 2006). Saxton and Rawls (2006) proved 

that statistical correlations between soil texture, soil water potential, and hydraulic 

conductivity can provide estimates sufficiently accurate for many analyses and 

decisions. They developed new soil water characteristic equations from the currently 

available USDA soil database using (Soil-Plant-Agriculture-Water, SPAW) only the 

readily available variables of soil texture and OM (Saxton and Rawls, 2006). This 

(a)Apkoroshi

(c)Gari(b)Malinvoka
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software formed a comprehensive predictive system of soil water characteristics for 

agricultural water management and hydrologic analyses (Saxton and Rawls, 2006). It is 

available at the website of Agricultural Research Service, United States Department of 

Agriculture (http://hydrolab.arsusda.gov/soilwater/Index.htm). 

    In this study, the physical characters of different soil data are calculated by using 

the SPAW software and changed it into the database for SWAT model. 

 

2.3.2. Weather input data 

2.3.2.1. Precipitation data 

Precipitation is one of the most basic meteorological elements and it directly and 

indirectly affects human life (Yatagai et al., 2012). Asian Precipitation Highly Resolved 

Observational Data Integration Towards Evaluation of Water Resources (APHRODITE; 

Yatagai et al., 2012) was used for daily precipitation data in this research. 

APHRODITE project created continuous daily gridded precipitation data for 1951–

2007. These data cover monsoon Asia, the Middle East, and Russia (Yatagai et al., 

2012). The calculation framework of APHRODITE data is similar to that of Xie et al. 

(2007), the fields of daily climatology are then adjusted by the Parameter-Elevation 

Regressions on Independent Slopes Model (PRISM) monthly precipitation climatology 

to correct the bias caused by orographic effects (Yatagai et al., 2012). In addition, the 

most important driving data of distributed hydrological models are of accurate 

precipitation. It has been shown that APHRODITE can give good performance in the 

Amur River Basin (Gillies et al., 2012; Onishi et al., 2012). 

The Version V1101R1 data of monsoon Asia of APHRODITE data 

(http://www.chikyu.ac.jp/precip/) was used in this research, with spatial resolution of 
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0.25 degrees (Yatagai et al., 2012). The available period was 1 January 1979 to 31 

December 1989.  

 

2.3.2.2. Wind speed data 

The wind speed data are also obtained from the GHCN–Daily (Menne et al., 2012, 

https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/) of the National Climate Data Center 

(NCDC). The available period was 1 January 1979 to 31 December 1989. 

 

2.3.2.3. Relative humidity data and solar radiation data 

National Centers for Environmental Prediction–National Center for Atmospheric 

Research (NCEP–NCAR) reanalysis (R1) was created by a complex system of 

programs, libraries, scripts, and datasets involving many steps including decoding, 

reformatting, quality control, analysis, prediction, post processing, and archiving. 

NCEP-DOE Reanalysis II (R2) is an improved version of the NCEP-NCAR-R1 

(Kanamitsu et al., 2002). The improvements include an updated model with better 

physical parameterizations, assorted data assimilation errors were fixed and additional 

data were included (Kanamitsu et al., 2002). The goal of the NCEP-DOE R2 data is to 

generate new atmospheric analyses historical data.  

In our study, relative humidity and solar radiation data were from the NCEP–DOE 

Reanalysis 2 dataset (Kanamitsu et al., 2002, 

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html) on the website of 

the NOAA Earth System Research Laboratory. The period was 1 January 1979 to 31 

December 1989. 
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2.3.2.4. Observed snowmelt runoff data 

Runoff data were from the Russian Federal Service for Hydrometeorology and 

Environmental Monitoring (Roshydromet). The locations of the observed runoff 

stations are shown in Figure 2.3 for all three test basins. For each basin, there is one 

observed station located in the outlet of the test basin. The observed data from 1983 to 

1987 were selected for basins Apkorohsi and Malinovka, and because lack of the 

observed data, the data of 1983, 1984, 1986 were used for Gari basin.  

 

2.4. Subbasin delineation of the test basins 

All the spatial data are converted into the same projected coordinate system 

(Albers-Fareast, Yermoshin et al., 2007). Based on the input spatial data and attribute 

data, this study conducted the subbasin delineation for each test basin, based on the 

ArcSWAT (Douglas-Mankin et al., 2010). The results are shown in Figure 2.3. In the 

Apkoroshi basin, there are 13 subbasins. In Malrinvok basin, there are 13 subbasins, and 

in the Gari basin there are 11 subbasins. According to the automatic selection processes 

of SWAT model, the nearest observation stations of the each subbasin is selected as the 

only input station for weather data.  
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Figure 2.4 The subbasin delineation results of the test basins, (a) Apkoroshi basin, (b) Malinovka 

basin, (c) Gari basin. 

 

2.5. Snowmelt period of the test basin 

For discussion the snowmelt simulation, the snowmelt period is need to be 

confirmed firstly. According to the previous study of, the Amur River the peak flow 

during the spring always occurred in the May which is induced by the snowmelt, and 

the mixed rainfall and we snow storms (Makhinov, 2004). For a specific basin the 

period of snowmelt is influenced by various factors and it also can be changed year by 

year (Hock, 2003). 

In this study we using both the hydrograph of the observation runoff stations and 

(a) Apkoroshi

(b) Malinovka (c) Gari
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the observed air temperature data that to identify the snowmelt period.  

This study used the river runoff data from 1983 to 1987 (March, April, May and 

June) to find the lowest value of the runoff as the starting point for snowmelt. In 

addition we also employed the daily maximum air temperature data as another 

evaluation index to confirm the selection of the starting point, usually the snowmelt 

occurred when the daily maximum air temperature is over 0.0°C.  And then we used 

the daily average temperature data to confirm the event of precipitation is rainfall or 

snow fall during the spring flood period, the threshold is 5.0°C (Fontaine et al., 2002).If 

the daily air temperature of basin is always larger than 5.0°C from a specific date, then 

this data will be selected as the end date of the simulation. 

 
Figure 2.5 The hydrograph and air temperature data from March to June of year 1983 in the 

Apkoroshi basin. 

Here, this study takes the runoff and air temperature data in 1983 of Apkoroshi 
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basin as an example, the daily air temperature data and the hydrograph of year 1983 

from 1983.03.01 to 1983.06.30 is shown in Figure 2.5. The lowest runoff value is 

observed in 1983.04.07 (1.8 m3/s). The runoff data and daily maximum air temperature 

data of sub-period from 1983.04.01 to 1983.04.20 are shown in Figure 2.6. It is clear 

that start from the melt point the daily maximum air temperature data is over 0.0°C. 

 

Figure 2.6 The observed runoff and daily maximum air temperature in the Apkoroshi basin of year 

1983 during the starting period of snowmelt. 

The end point of the snowmelt is confirmed by using the daily average temperature, 

the data 1987.06.15 (daily average air temperature is 9.9°C) is confirmed as the end 
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point, because from this date the air temperature will always over 5.0°C until the 

starting of autumn.  

 

Figure 2.7 The observed runoff and daily average air temperature in the Apkoroshi basin of year 

1983 at the end of snow melting period. 

By using the same method, this study confirmed the calibration period for 

snowmelt in all test basins, and the results are listed in the Table 2.3. Moreover, based 

on the calculation of the slope of each observed point, we selected the point that divide 

the hydrograph into two periods, the early melting periods and the main melting 

periods. 
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Figure 2.8 The separation of hydrograph for early melting period and main melting period in 

Apkoroshi basin of year 1983. 

During 1983 to 1987, there are 253 observed data for Apkoroshi basin, 185 

observed data for Malinovka basin, and 85 observed data for Gari basin. 

Table 2.3 The snowmelt simulation period of each test basin. 

 Apkoroshi  Malinovka  Gari 

 Start End Separation*  Start End Separation  Start End Separation 

1983 04.07 06.15 05.07  03.23 04.21 04.04  04.10 05.09 04.23 

1984 04.10 05.11 04.21  03.30 04.24 04.13  04.10 05.16 04.21 

1985 04.05 05.29 05.27  03.21 04.13 04.07  No data No data No data 

1986 04.10 05.30 04.27  04.01 04.30 04.10  04.17 05.04 0.4.27 

1987 04.24 06.07 05.02  03.23 05.14 04.16  No data No data No data 

*Separation is the date that split the hydrograph into the early melting period and the main melting 

period. 
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3 Methodology 

3.1. Long-term Air temperature data estimation methods 

3.1.1. Spatial interpolation methods 

The topographic effects were frequently considered when apply the spatial 

interpolations methods to estimate the air temperature data (Stahl et al., 2006).One of 

the ways to correct the topographic influence on IDW method is to calculate correction 

term based on the regression between elevation and air temperature (Thornton et al., 

1997). Hereafter, we call the improved IDW method as IDWEle. We used both IDW 

and the improved IDW methods to create air temperature data. In the original IDW, the 

weight is calculated as 

 

                      (1) 

 

Where,  is the weight (m−1),  and  represent the location of monitoring points 

(m), and  and  locate the estimation location (m). To use the IDW method, a 

search radius is fixed to select stations used for estimation, in this study, the searching 

radius is 200km, using the weight, the estimated value  is calculated as  

 

                       (2) 

 

Where  symbolizes daily observed air temperature data and d is a given day.  

In the IDWEle method, to consider elevation effects on the original weight, an 
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additional regression analysis is performed using air temperature and elevation values of 

interpolated stations (Thornton et al., 1997). The equation is 

 

             (3) 

 

Where, subscripts 1 and 2 refer to the two stations in a unique pair,  ( ) is air 

temperature data measured in a given day of a given station on day (d), and  and 

 are coefficients of the linear regression equation on the same day. Using the daily 

observation data and Eq. (3), the final temperature is calculated as 

 

             (4) 

 

Where, subscript p refers to the prediction points and i to the interpolated stations. 

 

3.1.2. Linear regression method combined using the MODIS LST data 

The simplest method for estimate the air temperature is to create a linear regression 

equation between air temperature at points A and B (Figure 3.1) using observed air 

temperature data. In this case, the linear regression equation can be written as follow: 

 

         (5) 

 

Here, a1 and b1 are coefficients of the linear regression equation, and subscripts A 

and B indicate the points. 
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   We call this the Ta−Ta method (Yang et al., 2014; Yang et al., 2015). If monitoring 

data at both point A and B are available, we can use the method. However, if we have no 

data at a point we need to know, the method is not applicable. Here, we use the observed 

air temperature stations (Table 2.2) and their nearest stations to evaluate the linear 

relationships between two different places (Figure 3.1, process ). 

 

Figure 3.1 Diagram of air temperature estimation methods based on observed air temperature and 

LST data at observed station 

processes  stand for the linear regression between air temperature at two points, process stand 

for the linear regression between LST at each point, process stand for the linear regression between LST 

at two points, process stand for the estimation of linear regression for point B based on the regression 

equation of LST at two points. 

 

Place A:TA

Place A:LSTA

Place B:TB

Place B:LSTB

Linear regression of TA−TB

Linear regression of LSTA−LSTB 

Linear regression 

for LSTB-TB 
Linear regression 

for LSTA−TA

2 
1

3

2
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Figure 3.2 Diagram of air temperature estimation methods based on observed air temperature and 

LST data at subbasins 

processes , , ,  have the same meaning as in Figure 3.1. 

Further, the study of Sun et al. (2005) presented a theoretical derivation of linear 

regression relationships between air temperature and LST and proved that the air 

temperature can be mainly explained by the LST in the linear regression equation; and 

they also showed the errors of created air temperature based on the linear regression 

method is limited in a reasonable range, in the North China Plain. In addition, Mostovoy 

et al. (2006) also proposed the similar method to estimate air temperature at any point 

from LST at that point. By constructing linear regression equations between observed 

air temperature and LST at 161 observed station points in the state of Mississippi, they 

also found a common relationship between LST and air temperature, irrespective of 

location. Furthermore, both of these researches indicate that the first order coefficient of 

linear equation between air temperature and LST is equal to 1. Here, we use the 

observed air temperature data and LST data to estimate the air temperature between 

them; we call this the LST−Ta method (Figure 3.1, process ). In this case, the linear 

regression equation can be written as: 

station:Tstation

Station:LST

subbasin:Tsubbasin

Subbasin:LST

Linear regression of 

LSTstation−LSTsubbasin

3

2

4
4

1
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                     (6) 

 

More, a disadvantage of this method is that because LST data are necessary for this 

method, it can only be applied to periods after MODIS was launched. As already 

addressed, we frequently need historical air temperature data to execute hydrological 

models that include snow accumulation and snowmelt processes. Many watersheds have 

very sparse observed air temperature data. Because both the Ta−Ta and LST−Ta methods 

are unsuitable for such common cases, we developed a new method as follows.  

In the first step, a linear regression equation of LST between two points is created 

as follows: 

                        (7) 

 

Here a2 and b2 are coefficients of the linear regression equation, and subscripts A and B 

indicate the points  (Figure 3.1, process ).  is the result of the predicted LST 

value of point B from the Eq. (7). 

In addition, based on the linear analysis results of Ta-LST of station pairs, using the 

Ta–LST method, we can estimate Ta,A and Ta,B at the same time: 

 

         (8) 

 

         (9) 
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Here we neglect the error between the LSTB
’  and  and by substituting  

in Eq. (9) by ,  can be expressed by LSTA as 

 

               (10) 

 

Then, combining with Eq. (8), we can attain 

 

      (11) 

 

If we can ignore the item  of Eq. (11), and then the new 

equation is: 

     (12) 

 

This means that once we acquire coefficients a2 and b2 from linear regression 

analysis of LST, we can estimate Ta,B using a known Ta,A (Figure 3.1, process ). We 

call this the LST−LST method. We performed a linear regression analysis for creation 

of Ta based on both daily maximum and minimum LST data.  

However, according to the limited observed period of MODIS LST data, the linear 

regression equations are formulated only in the entire period.  

Because in the study basins, there is no observed data in the subbaisn Ta-Ta 

relationship cannot be acquired (Figure 3.2, process ). Moreover, according to lack of 

observed data,  the Ta-LST relationship also can only be acquired in the point which 

monitors both LST and air temperature data (Figure 3.2, process ), thus, it means we 

can’t obtain  because missing of observed air temperature in the Place B. The 
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only feasible way is to use the LST-LST method (Figure 3.2, process ) and the data 

of the observed station to estimate the air temperature in the subbasin (Figure 3.2, 

process ) 

It is noteworthy that the linear regression relationship should be firstly valid in the 

observed stations and it is also that the item  in Eq(11) will 

greatly influence the accurate of estimate method. Thus, this study used the 28 stations 

listed in Table 2.1 as the validation stations, and used their nearest stations to conduct 

the linear relationships analysis based on Ta-Ta , Ta-LST, and LST-LST methods. In 

addition, this study also took the  as an entirety, by using the 

regression coefficients of the different method to valid whether this item can be ignored. 

The results of the linear regression analysis between air temperature and LST are shown 

in section 4.1.  

 

3.1.3. Evaluation of estimated data at observation stations 

In order to compare the accurate of different air temperature estimated method, this 

research used 28 stations (Table 2.1) for validations to test the performances of IDW, 

IDWEle and LST-LST methods for estimating air temperature data at these stations. 

The daily maximum and minimum air temperature are estimated and compared with 

those values of the validation stations. Two indices, coefficient of determination (R2) 

and root mean square error (RMSE) were used to evaluate the estimation results. 

Equations for these indices are 

 

                    (13) 
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                        (14) 

 

Where yi is observed air temperature on day i,  is the estimated air temperature 

on that day from each method,  is the average observed air temperature,  is the 

average of estimated air temperature, and n is the total number of data.  

 

3.2. Estimating dense air temperature data for SWAT model 

The SWAT model selects one air temperature station one subbasin based on the 

distance between the geometrical center of subbasin and all candidate stations. The data 

from the nearest station are chosen for input. 

Based on the observed data, and the IDW, IDWEle, LST-Linear methods, we 

created four different input data for SWAT model. The estimated location of all methods 

is in the geometrical center of each subbasin, the basic geo-information of each 

estimated location (geometrical center of subbasin) is listed in Table 3.1 and Figure 3.3. 

Totally, there are 11 estimated points for Apkoroshi basin, 13 estimated points for 

Malinovka basin and 13 estimated points for Gari basin. The number of estimated points 

is as same as that of subbasins in each test basin. The four datasets are described as 

follows: 

(1) T-Observed scenario, the data based on the observed air temperature data. In 

view of SWAT model automatically assigns the value of nearest station to the subbasin, 

this study use this data as a default input. 

(2) T-IDW scenario, the data estimated from the IDW method, and the 

interpolation data is based on the candidate stations listed in Table 2.1.  
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(3) T-IDWEle scenario, the data estimated from the IDWEle method, the candidate 

stations are as same as the IDW method. 

(4) T-LST scenario, the data based on the LST-LST method using MODIS AQUA 

LST data. The daily maximum and minimum LST data were extracted for both 

estimated point and their nearest observed stations; the period is from year 2002 to 

2010. 
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Figure 3.3 The locations of different created air temperature for SWAT model, (a) Apkoroshi basin, 

(b) Malinovka Basin, (c) Gari Basin. 

 

3.3. Introductions of SWAT model 

3.3.1. Basic theories of SWAT model 

SWAT is, a river basin, or watershed, scale model developed by Dr. Jeff Arnold 

for the USDA Agricultural Research Service (ARS) (Neitsh et al., 2009). SWAT was 

developed to predict the impact of land management practices on water, sediment and 

agricultural chemical yields in large complex watersheds with varying soils, land use 

and management conditions over long periods of time (Neitsh et al., 2009; Zhang et al., 

(b) Malinovka (c) Gari

(a) Apkoroshi
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2009). The SWAT model is a semi-distributed model, and the construction of SWAT 

model is based on relatively available input datasets (Anorld et al., 1998). Previous 

studies already proved that the computationally spent of SWAT model is relative 

efficient (Anorld et al., 1998; Yang et al., 2008). 

For modeling purposes, the SWAT model delineated the test basin into a number 

of subbasins. The use of subbasins in a simulation is particularly beneficial when 

different areas of the watershed are dominated by land uses or soils dissimilar enough in 

properties to impact hydrology (Neitsh et al., 2009). Hydrologic response units (HRUs) 

are further divided based on the unique land cover, soil, and management combinations 

in one subbasin (Anord et al., 1998; Neitsh et al., 2009). The HRU is the smallest and 

basic simulation unit of the SWAT model. 

Simulation of the hydrology in SWAT model includes two major components. The 

first component is the land phase of the hydrologic cycle, and the second is routing 

phase of the hydrologic cycle (Anorld et al., 1998; Neitsh et al., 2009). 

The hydrologic cycle as simulated by SWAT is based on the water balance 

equation (Neitsh et al., 2009): 

 

                   (20) 

 

Where  is the final soil water content (mm),  is the initial soil water 

content on day  i(mm), t is the time (days),  is the amount of precipitation on day 

i [mm],  is the amount of surface runoff on day i (mm),  is the amount of 

evapotranspiration on day I (mm), is the amount of water entering the vadose 

zone from the soil profile on day i (mm), and is the amount of return flow on day i 
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(mm). 

The modified SCS curve number method is used to simulate the river runoff in the 

SWAT model (Anorld and Fohrer, 2005), the Evapotranspiration (ET) is calculated by 

using the Penman-Monteith method (Douglas-Mankin et al., 2010). In addition, the 

river channel routing of SWAT model is calculated by using a variable storage method 

(Anorld and Fohrer, 2005).  

 

3.3.2. Snowmelt simulation in the SWAT Model 

In the SWAT model, the snow coverage is allowed to decline non-linearly based 

on an aerial depletion curve (Fontaine et al., 2002). The depletion curve function is: 

 

               (21) 

 

Where is the fraction of the hydrological response unit (HRU) area 

covered by snow,  is the water content of the snow pack on a given day (mm), 

is the threshold depth of snow at 100% coverage (mm), and  are 

coefficients that define the shape of the curve.  

The snow pack temperature is a function of the mean daily temperature during the 

preceding days and varies as a dampened function of air temperature.  

 

    (22) 

 

Where snow  is the snow pack temperature on a given day ( ), snow 
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 is the snow pack temperature on the previous day ( ),  is the snow 

temperature lag, and is the maximum air temperature on a given day ( ), 

is the minimum air temperature on a given day ( ). 

The snow melt simulation of the SWAT model can be described as: 

 

                  (23) 

 

Where  is the amount of snow melt on a given day (mm), is the melt 

factor for the day (mm day-1 -1), is the fraction of the HRU area covered by 

snow,  is the snow pack temperature on a given day ( ) is a function of the mean 

daily temperature during the preceding days and varies as a dampened function of air 

temperature (Anderson, 1976), and is the base temperature above which snow melt 

is allowed ( .The melt factor is calculated as: 

 

        (24) 

 

Where  is the melt factor for the day (mm day-1 -1),  is the melt 

factor for June 21th (mm day-1 -1),  is the melt factor for December 21th 

(mm day-1 -1), and  is the day number of the year. 

 

3.3.3. Evaluation of snowmelt simulation 

All scenarios were during the period 1979–1987. The period 1979–1982 was used 

as the warming period. Table 3.2 lists explanations of 16 parameters needed for model 
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operation. To test the effects of the various air temperature datasets on snowmelt, all 

other factors that could influence the simulation results should be fixed. This means 

subbasin delineation and HRU creation for all scenarios were identical. Furthermore, all 

the air temperature scenarios shared the same parameter sets, generated by the Latin 

hypercube method of SWAT-CUP, with sample number 2,000. The workflow of the 

model testing for all different estimated data is shown in Figure 3.4. 

This research uses SWAT Calibration and Uncertainty Program (SWAT-CUP) 

4.3.7 (Abbaspour et al., 2007), which integrates Sequential Uncertainty Fitting version 

2 (SUFI-2) for model calibration, parameter sensitivity, and uncertainty analysis.  

Nash-Sutcliffe Efficiency (NSE) and R2 were used for evaluating the snowmelt 

simulations. NSE is calculated by 

 

                                   (25) 

 

Where  is observed runoff on day i,  is the average observed runoff,  is 

simulated runoff on day i, and  is the average simulated runoff. Daily absolute error 

and mean absolute error (MAE) were used for evaluating the snowmelt simulations. In 

addition, the analysis of variance (ANOVA, p<0.05) and the Steel–Dwass test (p<0.05) 

were used for the nonparametric multiple comparisons of different input data. 

Moreover, simulation outputs of hydrologic models depend on their structures, 

quality of input data, and parameterizations (Muleta and Nicklow, 2005). If we leave 

model structure and parameter sets unchanged, based on hydrologic model uncertainties 

we can evaluate uncertainties caused by the various input data. It is clear that air 

temperature is one of the most important inputs to temperature index-based snowmelt 
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models. Thus, it is instructive to evaluate uncertainties caused by the various input 

temperature data via the evaluation of simulation results. 

The p-factor and r-factor indices are used for evaluation of uncertainties. 

Uncertainty is quantified by the 95% prediction uncertainty band (95PPU) calculated by 

the 2.5% and 97.5% percentiles of the cumulative distribution function of every 

simulated discharge point (Abbaspour et al., 2007, Yang et al., 2008). The p-factor is 

the percentage of observed data bracketed by the 95PPU band. The r-factor is calculated 

as 

 

                                 (26) 

 

Where  and  represent the upper and lower boundaries of 95PPU 

for a given observation point ti, and  symbolizes the standard deviation of the 

measured data (Yang et al., 2008). The r-factor is an index of the relative degree of the 

uncertainty band against observations.  

In the SUFI-2 method, a threshold is needed to distinguish the behavioral and 

non-behavioral simulations. If behavioral simulations exist, then the p-factor and 

r-factor for these solutions are also calculated (Abbaspour et al., 2007). The threshold 

for distinguishing the behavioral and non-behavioral simulation was 0.5 (NSE) in this 

study. The optimum calibration and parameter uncertainty for both methods is measured 

on the basis of proximity of the p-factor to 100% and r-factor to 1 (Yang et al., 2008). 

According to the guidelines of Moriasi et al (2007), runoff simulation can be judged as 

“satisfactory” if NSE > 0.50 for long-term runoff simulation under a monthly time step. 
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In addition, Engel et al (2007) pointed out that model simulation results will become 

poorer with a decrease in the simulation time step. Since this study adopted a daily time 

step for model operations, we used 0.5 as threshold to identify behavioral and non- 

behavioral simulations.  

Table 3.2 Calibration parameters of SWAT model for snowmelt in the test basins 

Parameters Definition Method Range/Percent 

ALPHA_BF Base-flow alpha factor (days) V* 0-1 

CN2 Initial SCS CN II value R** ±50% 

ESCO Soil evaporation compensation factor V 0.25–0.75 

GW_DELAY Groundwater delay (days) V 0–30 

LAT_TTIME Lateral flow travel time (days) V 0–180 

OV_N Manning’s “n” value for overland flow V 0–0.8 

SFTMP Snowfall temperature (°C) V −5 to 5 

SMTMP Snowmelt base temperature (°C) V −5 to 5 

SMFMN Melt factor for snow on December 21 (mm°Cday) V 0–3 

SMFMX Melt factor for snow on June 21 (mm H2O°Cday) V 3–9 

SNO50COV 
Fraction of snow volume represented by SNOCOVMX corresponding to 

50% snow cover 

V 0.01–0.99 

SNOCOVMX Minimum snow water content corresponding to 100% snow cover (mm) V 0–500 

SOL_AWC Average available water R ±50% 

SOL_K Saturated conductivity R ±50% 

SURLAG Surface runoff lag time (days) V 1–24 

TIMP Snowpack temperature lag factor (°C) V 0.01–1 

* V stands for actual value of variation of each parameter. 

** R stands for relative range of variation of each parameter. 
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4 Results and discussions 

4.1. Validation of LST-LST method at observation stations 

4.1.1. Results of Ta-Ta regression analysis 

According to the introduction of section 3.1.2, the Ta-Ta linear regression 

relationship between the estimated station and its nearest station should be proved 

firstly, thus, this study used the observation stations listed in Table 2.2 to conduct the 

linear regression analyses. 

The results are showed in Figure 4.1 and Table 4.1. One example of station 313000 

in Gari basin is shown in the Figure 4.2. The results indicated that the R2 of both daily 

maximum and minimum air temperature data are larger than 0.95 in all test basins 

(Figure 4.1 (a)), and the standard deviations indicate that the linear regression are 

relatively stable for the observation stations. For daily maximum air temperature, the 

results of all test basins shows the same R2 values (R2=0.98). For daily minimum air 

temperature data, the validation stations of Malinvoka basin show the highest values 

(R2=0.97) compared with the stations of other two basins. The results of daily maximum 

data are slightly higher than those of daily minimum data.  

In addition, the results of the first order coefficient (Figure 4.1, (b)) of all stations 

are close to 1. The results of R2 and the first order coefficients clearly demonstrate that 

that based on the long monitoring period and abundant monitoring data; there are strong 

linear relationships in all station pairs, and the Eq.(5) of section 3.1.2 are applicable in 

these test basins for further linear analysis with LST data. 
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Figure 4.1 The linear regression analysis results of Ta-Ta method at observed stations in all test 

basins. 

.   

 

Figure 4.2 The scatter plot of daily maximum and minimum air temperature regression analysis based on 

the Ta−Ta method, taking station 313000 as an example. 

 

0.98 0.96 0.98 0.97 0.98 0.97 

0.50

0.60

0.70

0.80

0.90

1.00

Maximum Minimum

(a)R2 of Ta-Ta linear regression at validation stations

Aprkorshi Malinovka Gari

1.00 
1.00 0.99 0.99 1.00 1.00 

0.50

0.70

0.90

1.10

Maximum Minimum

(b)first order coefficient of Ta-Ta linear regression at 
validation stations

Aprkorshi Malinovka Gari

R² = 0.98 

-60

-20

20

60

-60 -20 20 60

Daily Maximum Ta-Ta

Maximum linear

( )

( )

R² = 0.97 

-60

-20

20

60

-60 -20 20 60

Daily Minimum Ta-Ta

Minimum linear

( )

( )



46 
 

Table 4.1 the linear regression analysis results of observed air temperature between the validation station 

and its nearest stations (Ta-Ta), (a) daily maximum air temperature, and (b) daily minimum air 

temperature. 

(a) daily maximum air temperature data 

Apkoroshi Malinovka Gari 

WMOID R2 a1* b1* WMOID R2 a1 b1 WMOID R2 a1 b1 

313290 0.98 1.07 0.98 318320 0.98 0.99 -0.03 312530 0.98 1.02 -0.46 

313480 0.98 0.97 -0.31 318450 0.98 0.99 0.21 312950 0.98 0.97 -0.48 

314160 0.98 1.02 -0.15 318730 0.99 1.02 -0.33 313000 0.98 1.01 0.16 

314180 0.98 0.96 0.22 318780 0.99 0.98 1.03 313710 0.98 1.01 0.57 

314210 0.98 0.98 1.17 319130 0.97 0.99 0.01 313880 0.98 1.02 -1.09 

314740 0.98 1.05 3.40 319210 0.97 0.98 0.26 314420 0.98 0.97 -0.14 

314780 0.98 0.93 -3.16 319390 0.99 1.02 -0.86 314450 0.98 1.02 0.23 

314840 0.96 0.93 2.02 319810 0.99 0.96 0.98 314590 0.98 0.98 0.71 

314890 0.97 1.08 -1.55 508880 0.98 1.00 0.77 503530 0.98 1.02 0.66 

509830 0.99 0.97 0.43   

(b) daily minimum air temperature data 

Apkoroshi Malinovka Gari 

WMOID R2 a1 b1 WMOID R2 a1 b1 WMOID R2 a1 b1 

313290 0.97 0.99 2.40 318320 0.96 0.92 2.65 312530 0.97 0.98 2.66 

313480 0.96 0.99 -4.07 318450 0.96 1.04 -3.06 312950 0.97 0.89 0.15 

314160 0.97 1.17 -1.77 318730 0.98 1.00 -0.99 313000 0.97 1.02 0.33 

314180 0.97 0.83 1.28 318780 0.98 1.04 -0.06 313710 0.97 1.09 -0.45 

314210 0.96 0.98 -1.97 319130 0.97 0.98 -0.66 313880 0.97 1.01 1.61 

314740 0.97 1.02 2.77 319210 0.97 0.99 0.60 314420 0.98 0.98 -0.83 

314780 0.97 0.95 -3.10 319390 0.98 1.02 -1.44 314450 0.98 1.00 0.68 

314840 0.95 1.03 -1.23 319810 0.98 0.96 1.29 314590 0.96 1.03 -3.86 

314890 0.94 1.07 -0.46 508880 0.98 0.98 0.10 503530 0.98 1.00 1.03 

509830 0.98 0.98 0.93   

a1 and b1 stand for the first order coefficient and constant item of Eq.(5) 
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4.1.2. Results of LST-Ta regression analysis 

The results of linear regression analysis between air temperature data and LST data 

at observed stations are showed in Figure 4.3, Figure 4.4 and the detail results are 

shown in Table 4.2. One example of station 313000 and its nearest station 312950 are 

shown in the Figure 4.5. The results indicate that the linear regression between air 

temperature and LST data can be detected for both validation stations and their nearest 

stations. 

The R2 of the estimated stations (Figure 4.3 (a)) are larger than 0.90, this indicate 

that the linear relationship between air temperature and LST data are strong at all 

validation stations. For the results of linear regression between daily maximum LST and 

air temperature, the validation stations of Apkoroshi basin and Gari basin show the 

same R2 values (R2=0.95), the R2 value of Malinovka basin is slightly decreased 

(R2=0.94). For linear results of daily minimum LST and air temperature, the trend is as 

same as the daily maximum analysis, the validation stations of Apkoroshi basin and 

Gari basin (R2=0.97) are higher than the result of Malinovka basin (R2=0.96).  

The results of the nearest stations (Figure 4.3 (b)) also present the same trend; the 

values are similar as those of estimated stations, except the R2 values of daily minimum 

LST-Ta regression are slightly higher than those of daily maximum regression analysis 

in all test basins. 

In addition, this study also analyzed the first order coefficients of linear regression 

equation (Eq.(7)) to validate whether these values are close to 1. The results of first 

order coefficient for both validation stations and their nearest stations are shown in 

Figure 4.4. It is clear that the first order coefficients of the validation stations are close 

to 1.  
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For the daily maximum regression analysis, the results of the validation stations are 

shown in Figure 4.4 (a) and Table 4.2. The largest value is obtained in the Gari basin 

(1.09), the smallest values is in results of Apkoroshi basin (1.03), the results of the 

Malinovka basin is 1.05. For the daily minimum LST-Ta regression analysis, the Gari 

basin obtained the smallest value (1.02) and the values of other two basins (1.03 for 

both Apkoroshi and Malinovka) are slightly increased.  

The results of the nearest stations are shown in Figure 4.4 (b) and Table 4.3, the 

results show the same trend as the validation stations. The values of daily maximum 

LST-Ta regression analysis are 1.05, 1.04, 1.11 for Apkoroshi basin, Malinovka basin 

and Gari basin, respectively. The values of daily minimum LST-Ta regression analysis 

are 1.04, 1.04, 1.11 for Apkoroshi basin, Malinovka basin and Gari basin, respectively. 

The values of the nearest stations were increased compared those values of validation 

stations, especially for the daily maximum data of Gari basin, the values are larger than 

1.1 for most of the stations. 

Generally, the results clearly demonstrate that there are high linear relationships in 

all station pairs for the LST data and observed air temperature data, and the first order 

coefficients of the linear regression equation is close to 1. Thus, these results can give 

valid support of the assumptions in the Eq.(8) and Eq.(9), which used the linear 

regression relationships between the air temperature and LST temperature to derive the 

relationship between Ta-Ta and LST-LST. 
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Figure 4.5 The scatter plot of daily maximum and minimum air temperature regression analysis based on 

the LST−Ta method, taking station 313000 and its nearest station 312950 as an example. 
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Table 4.2 The linear regression analysis results of air temperature data and LST data (Ta-LST) at the all 

validation stations, (a) daily maximum air temperature data and LST data, and (b) daily minimum air 

temperature and LST data. 

(a) daily maximum air temperature and LST data 

Apkoroshi  Malinovka  Gari 

WMOID R2 a*  WMOID R2 a  WMOID R2 a 

313290 0.96  1.12   318320 0.94  1.03   312530 0.95  1.10  

313480 0.94  0.94   318450 0.93  0.99   312950 0.95  1.13  

314160 0.97  1.08   318730 0.97  1.07   313000 0.95  1.08  

314180 0.95  0.99   318780 0.95  1.06   313710 0.97  1.10  

314210    319130 0.93  0.94   313880 0.95  1.02  

314740 0.93  0.98   319210 0.92  0.98   314420 0.95  1.08  

314780 0.94  1.14   319390 0.93  1.08   314450 0.95  1.09  

314840 0.92  0.99   319810 0.94  1.11   314590   

314890 0.96  1.03   508880 0.95  1.15   503530 0.93  1.11  

 509830 0.93  1.11    

(b) daily minimum air temperature and LST data 

Apkoroshi  Malinovka  Gari 

WMOID R2 a  WMOID R2 a  WMOID R2 a 

313290 0.98  1.01   318320 0.96  1.01   312530 0.97  1.03  

313480 0.97  0.98   318450 0.97  0.97   312950 0.97  1.05  

314160 0.98  1.05   318730 0.96  1.09   313000 0.97  1.05  

314180 0.97  1.10   318780 0.97  1.11   313710 0.97  0.99  

314210    319130 0.95  1.02   313880 0.98  1.00  

314740 0.98  1.01   319210 0.94  1.03   314420 0.97  1.01  

314780 0.97  1.02   319390 0.96  1.00   314450 0.97  1.01  

314840 0.96  1.00   319810 0.96  0.99   314590   

314890 0.96  1.04   508880 0.96  1.02   503530 0.98  1.02  

 509830 0.97  1.02    

*a stand for the first order coefficient of Eq.(6) 
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Table 4.3 The linear regression analysis results of air temperature data and LST data (Ta-LST) at the 

nearest stations of all validation station , (a) daily maximum air temperature data and LST data, and (b) 

daily minimum air temperature data and LST data 

(a) daily maximum air temperature and LST data 

Apkoroshi  Malinovka  Gari 

WMOID R2 a*  WMOID R2 a  WMOID R2 a 

313290 0.94  1.14   318320 0.93  0.99   312530 0.98  1.18  

313480 0.97  1.08   318450 0.94  1.03   312950 0.97  1.10  

314160 0.95  0.99   318730 0.93  1.11   313000 0.95  1.13  

314180 0.97  1.08   318780 0.97  1.07   313710 0.95  1.13  

314210 0.97  1.08   319130 0.92  0.98   313880   

314740 0.94  1.14   319210 0.93  0.94   314420 0.95  1.09  

314780 0.93  0.98   319390 0.95  1.06   314450 0.95  1.08  

314840 0.95  0.99   319810 0.93  1.08   314590 0.96  1.10  

314890 0.92  0.99   508880 0.93  1.11   503530 0.95  1.08  

    509830 0.97  1.07      

(b) daily minimum air temperature and LST data 

Apkoroshi  Malinovka  Gari 

WMOID R2 a  WMOID R2 a  WMOID R2 a 

313290 0.97  1.02   318320 0.97  0.97   312530 0.98  0.98  

313480 0.98  1.05   318450 0.96  1.01   312950 0.97  0.99  

314160 0.97  1.10   318730 0.97  1.02   313000 0.97  1.05  

314180 0.98  1.05   318780 0.96  1.09   313710 0.97  1.05  

314210 0.98  1.05   319130 0.94  1.03   313880   

314740 0.97  1.02   319210 0.95  1.02   314420 0.97  1.01  

314780 0.98  1.01   319390 0.95  1.06   314450 0.97  1.01  

314840 0.97  1.10   319810 0.96  0.99   314590 0.96  1.10  

314890 0.96  1.00   508880 0.97  1.02   503530 0.97  1.01  

    509830 0.96  1.09      

*a stand for the first order coefficient of Eq.(6) 

4.1.3. Results of LST-LST regression analysis 

The results of linear correlation analysis for air temperature at observed stations are 

showed in Figure 4.6, and the detail information are shown in the Table 4.4. One 

example of station 313000 is shown in the Figure 4.7. 
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The results indicate that the R2 of daily maximum and minimum air for LST-LST 

method are larger than 0.90 in all test basins, and the standard deviations indicate that 

the results are relatively stable amongst the validation stations. For daily maximum 

LST-LST regression analysis, the validation stations in Apkoroshi basin shows the 

smallest value of R2 (R2=0.92), and this value is largest in the Gari basin (R2=0.97), and 

it is 0.95 in the Malinovka basin. For daily minimum LST, all the test basins shows the 

similar results, the R2 is 0.98 in the Apkoroshi basin, this value is 0.97 in the Malinvoka 

basin, and 0.98 in the Gari basin. The values of daily minimum regression analysis are 

higher than those of daily maximum regression analysis. The results indicate that that 

based on the LST data; there are high linear correlations in all validation station.  

 

 
Figure 4.6 The results of LST-LST regression analysis at validation stations. 
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Figure 4.7 The scatter plot of daily maximum and minimum air temperature regression analysis based on 

the LST−LST method, taking station 313000 as an example. 

In addition, the results of first order coefficient for LST-LST are presented in the 

Figure 4.6 (b). The values of first order coefficients for LST-LST linear regression 

equation of all test basins are close to 1. The values of first order coefficients for daily 

maximum LST-LST regression analysis are 0.96, 0.98 and 0.99 for Apkoroshi basin, 

Malinovka basin, Gari basin, respectively. And, the results for daily minimum LST-LST 

regression analysis for all three basins are 0.98, 1.00 and 1.01, respectively.  

The absolute differences between the first order coefficients of Ta-Ta and LST-LST 

regression analysis are shown in Figure 4.8 (a). The maximum value is 0.04 and 0.02 
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results indicate that the first order coefficient of LST is an approximation of that of T-

a-Ta method. Moreover, we also listed the results of the differences between the constant 

item of the linear regression equations of LST-LST and Ta-Ta analysis, the results are 

shown in Figure 4.8 (b), it is clear that the differences between the constant items are 

around 2 . 
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Figure 4.8 The scatter plot of daily maximum and minimum air temperature regression analysis based on 

the LST−LST method, taking station 313000 as an example. 

Totally, these results demonstrate that the LST data of the estimated stations and 

its nearest station exits strong linear relationships in all test basins, and it also proved 
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Table 4.4 The linear regression analysis results of LST data (Ta-LST) at the validation stations and their 

nearest stations, (a) daily maximum LST data, and (b) daily minimum LST data 

(a) daily maximum LST data 

     

WMOID R2 a2* b2*  WMOID R2 a2 b2  WMOID R2 a2 b2 

313290 0.96  1.02  0.64   318320 0.95  0.99  1.82   312530 0.97  0.93  0.23  

313480 0.92  0.90  -0.75   318450 0.95  0.95  -0.83   312950 0.98  1.01  1.64  

314160 0.94  1.01  -0.49   318730 0.93  0.93  -2.85   313000 0.96  0.95  -0.86  

314180 0.94  0.93  1.41   318780 0.98  0.98  0.34   313710 0.98  0.97  -1.34  

314210 0.93  0.93  0.47   319130 0.96  0.94  -0.47   313880 0.97  1.01  -0.94  

314740 0.90  0.83  4.04   319210 0.96  1.02  1.09   314420 0.97  0.94  0.22  

314780 0.90  1.09  -2.80   319390 0.97  0.97  -0.77   314450 0.97  1.03  0.17  

314840 0.92  0.94  2.11   319810 0.97  0.99  1.40   314590 0.98  0.93  -1.00  

314890 0.92  0.99  -0.91   508880 0.95  1.01  0.71   503530 0.97  1.12  0.55  

     509830 0.93  1.00  4.18       

(b) daily minimum LST data 

     

WMOID R2 a2 b2  WMOID R2 a2 b2  WMOID R2 a2 b2 

313290 0.98  1.01  1.94   318320 0.97  0.99  1.41   312530 0.97  1.04  3.89  

313480 0.98  0.91  -1.99   318450 0.97  0.98  -1.70   312950 0.98  0.92  -2.96  

314160 0.98  1.11  0.43   318730 0.97  1.03  -1.69   313000 0.98  1.00  -0.51  

314180 0.98  0.88  -0.69   318780 0.97  1.08  -0.81   313710 0.98  1.06  2.93  

314210 0.98  0.92  -1.60   319130 0.97  0.96  -0.34   313880 0.98  1.03  1.96  

314740 0.97  1.00  4.81   319210 0.97  1.01  0.15   314420 0.99  0.98  -1.36  

314780 0.97  0.97  -5.25   319390 0.99  1.08  -2.00   314450 0.99  1.01  1.25  

314840 0.97  0.93  0.47   319810 0.99  0.91  1.72   314590 0.98  1.00  -2.85  

314890 0.96  1.10  -1.17   508880 0.97  0.97  -0.53   503530 0.98  1.02  0.35  

     509830 0.97  0.95  1.42       

*a2, b2 stand for the first order coefficient and the constant item of Eq.(7) 

4.1.4. Calculation results of the ignorance item in LST-LST method 

As presented in section 3.1.2, the constant item  of Eq.(11) 

may influence the accuracy of LST-LST method. Thus, based on the analysis results of 

LST-Ta method and LST-LST method, this study calculated the average values this 
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constant item at validation stations of different test basins, the results are presented in 

Figure 4.9 and Table 4.5. The values of Apkoroshi basin are -0.44°C and 0.46°C for 

daily maximum and daily minim LST-LST regression analysis, respectively. These 

values are -0.54°C and 0.2°C in Malinovka basin, and 0.55°C, -0.01°C in Gari basin.  

The results indicate that the values of constant item is relatively higher for daily 

maximum calculation compared those values in the daily minimum calculation. The 

results are positive in Gari basin, negative in Apkoroshi basinand Malinovka basin 

(-0.13) for daily maximum data. Compared with the daily maximum results; the results 

of daily minimum data present a contrary trend. The values are positive in Apkoroshi 

basin (0.46) and Malinovka basin (0.20), while the result is negative in Gari.  

Considering the relatively low values of the item  in the 

test basin, the constant item of Eq.(11) were ignored in this study and the Eq.(12) is 

used to estimate air temperature data in the location of each subbasin. 

 

Figure 4.9  Calculation results of constant item ( ) for LST-LST method at 

validation stations. 
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both estimated station and its nearest station, the assumptions and approximation of the 

section 3.1.2 are valid and acceptable. 

Table 4.5 The calculation results of ignorance constant item at the validation stations in all test 

basins, (a) daily maximum data, and (b) daily minimum data 

(a) daily maximum data 

Apkoroshi  Malinovka  Gari 

WMOID CItem*( ) WMOID CItem( ) WMOID CItem( ) 

313290 -1.58 318320 1.49 312530 0.67 

313480 -0.16 318450 -1.57 312950 1.96 

314160 -1.93 318730 -3.37 313000 -1.10 

314180 1.71 318780 -0.88 313710 -1.98 

314210 319130 -0.61 313880 

314740 -0.48 319210 0.62 314420 0.09 

314780 0.25 319390 0.50 314450 -0.12 

314840 0.17 319810 0.06 314590 1.75 

314890 -1.47 508880 -1.11 503530 3.18 

509830 3.53 

(b) daily minimum data 

Apkoroshi  Malinovka  Gari 

WMOID CItem( ) WMOID CItem( ) WMOID CItem( ) 

313290 -1.12 318320 -2.33 312530 0.31 

313480 3.26 318450 2.37 312950 -2.98 

314160 2.57 318730 -0.84 313000 -0.94 

314180 -2.32 318780 0.30 313710 3.19 

314210 319130 0.61 313880 1.54 

314740 2.04 319210 -0.67 314420 -0.44 

314780 -1.99 319390 2.58 314450 0.45 

314840 2.48 319810 0.06 314590 

314890 -1.26 508880 -0.88 503530 -1.13 

509830 0.77 

*CItem is the constant item of Eq.(11) 
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4.2. Validation of estimated air temperature at observation stations 

As presented, the spatial interpolation methods are also frequently used for 

estimating the spatial dense air temperature data. Thus, this study also used the IDW 

and IDWEle method to estimate the air temperature data at the observed stations (Table 

2.1). The results of the IDW, IDWEle and LST-LST methods are presented and 

compared. The elevation information of IDW and IDWEle method are listed in Table 

4.6. In addition, the number of available training data for linear regression analysis of 

LST-LST method is also listed in Table 4.6. According to the Eq.(3) , the station amount 

for linear regression between air temperature and elevation should be larger than three, 

however, for the station 312530 and station 313290 (Table 2.2), there are less than three 

stations for IDW and IDWEle method, thus they are excluded from the validations. 

Table 4.6 The basic information of validations stations used for different data created methods 

 Apkoroshi   Malinovka   Gari 

Station Ele_Sta(m) Ele_Inter(m) Station Ele_Sta(m) Ele_Inter(m)  Station Ele_Sta Ele_Inter 

313480 153 238 318320 68 111  312950 370 263 

314160 73 220 318450 130 101  313000 229 312 

314180 201 233 318730 101 107  313710 210 291 

314210 60 117 318780 98 132  313880 208 243 

314740 384 444 319130 88 171  314420 281 216 

314780 902 294 319210 78 190  314450 197 216 

314840 269 312 319390 259 131  314590 261 253 

314890 92 128 319810 188 176  503530 179 218 

508880 83 114  

509830 103 119  

Ele_Sta: the elevation of validation station. 

Ele_Inter: the average elevation of the interpolation stations. 
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4.2.1. Performances of different methods at all stations 

The validation results of estimated air temperature data at observation stations are 

shown in Figures 4.10. The scatter plot of different estimated data versus the observed 

air temperature data is shown Figure 4.10, taking the station 313000 as an example. 

According to the results of R2 and the RMSE, The results indicate that the IDW method 

can always obtain best results compared with other the IDWEle method and LST-LST 

method.  

The values of R2 are over 0.80 at all validation stations for the daily maximum air 

temperature estimations. This indicates that all the estimated data has a strong linear 

relationship with the observed data. For the IDW method, the values of R2 for daily 

maximum data is 0.91. These values are 0.86 and 0.88 for IDWEle method and 

LST-LST method. The results of R2 indicate that the strong linear relationship can be 

detected for all the data creation methods. However, for the daily minimum data 

estimation, the results are decreased in all the methods compared with the results of 

daily maximum data. The R2 are 0.77, 0.68, 0.69 respectively for IDW method, IDWEle 

method and LST-LST method. 

For the IDW method, the values of RMSE for daily maximum and minimum air 

temperature estimation are 2.02°C and 2.50°C, respectively. These values are 2.60°C 

and 3.11°C for IDWEle method, and 2.74°C, 3.04°C of the LST-LST method. As same 

as the results of R2, the IDW method obtained the best results. However, the differences 

of the different methods are less than 1°C. And the results also indicate that the 

estimated errors are larger for the daily minimum air temperature than the daily 

maximum air temperature.  
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Figure 4.10 The R2 and RMSE of all validation stations. 

 

Figure 4.11 The scatter plot of created air temperature during snowmelt period (1983-1987), taking 
station 313000 station of Gari basin as an example. 
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4.2.2. Validation results in different test basins 

There are nine validation stations in Apkoroshi basin, the results of average values 

of R2 and RMSE are shown in Figure 4.11 (a) and Figure 4.12 (a), and the detail results 

are listed in Table 4.7 and Table 4.8. All the threes methods obtained relative good 

results in the Malinovka basin. Judged by the values of RMSE, the results of Apkoroshi 

basin are worse than those results of Gari basin, while according to the results of R2, the 

performances of Apkoroshi basin is better for daily minimum data and the Gari basin is 

better for daily maximum data.  

The values of R2 show the same trend as the results that are shown in Figure 4.12 

(a). The IDW method always obtains the best results following with LST-LST method 

and IDWEle method. The average values of R2 in Apkoroshi basin are lower than those 

of all stations. For the RMSE index (Figure 4.12 (a)), the results show that for the daily 

minimum air temperature estimation, the results of Apkoroshi basins are larger than that 

of all stations. However, the values of RMSE for daily maximum estimation are 

improved nay the IDW method and LST-LST method. 

The average values of R2 and RMSE are shown of the validation stations in 

Malinovka basin are shown in Figure 4.12 (b) and Figure 4.13 (b). The R2 and the 

RMSE values presented the same trends, the best values are obtained in IDW method, 

follow with IDWEle method and LST method. The R2 and RMSE values are better 

compared with those values of all stations (Figure 4.10).  

The results of Gari basin are shown in Figure 4.12 (c) and Figure 4.13 (c). The R2 

and the RMSE values presented the same trends as those of all stations (Figure 4.8); the 

best values are obtained in IDW method, following with LST-LST method and IDWEle 

method. Especially, for the IDWEle method, its R2 values of daily minimum air 

temperature are decreased compared with the results in the Apkoroshi basin and 

Malinovka Basin. The values of RMSE (Figure 4.13 (c)) in Gari basin are similar with 

the results of Apkoroshi basin (Figure 4.13 (a)) while larger than the results of 

Malinovka basin.  

Generally, according to the results of R2, all the estimation data can present strong 

linear relationships with the observed data. However, judged by the values of RMSE, it 

is clear that the estimated methods have different performances in different basins. The 
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methods can perform well in Malinovka basin with error controlled less than 3°C, 

followed by Gari basin and Apkoroshi basin. And for the daily maximum air 

temperature estimation, its results are always better than those of daily minimum air 

temperature. 

 

Figure 4.12 The results of R2 at validation stations in different test basins during snowmelt period 
(1983-1987), (a) Apkoroshi basin, (b) Malinovka basin, (c) Gari basin. 
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Figure 4.13 The results of RMSE at validation stations in different test basins during snowmelt 

period (1983-1987), (a) Apkoroshi basin, (b) Malinovka basin, (c) Gari basin. 
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Table 4.7 The R2 and RMSE of daily maximum air temperature in all validation stations. 

Apkoroshi IDW  IDWEle  LST-LST 
WMOID R2 RMSE ( ) R2 RMSE ( ) R2 RMSE ( ) 
313480 0.88 2.36 0.86 2.45 0.93 2.04 
314160 0.94 1.67 0.91 2.04 0.85 2.76 
314180 0.95 1.40 0.89 2.33 0.85 3.34 
314210 0.87 2.55 0.79 3.39 0.85 4.19 
314740 0.91 2.61 0.87 3.04 0.85 2.48 
314780 0.86 4.57 0.56 5.37 0.83 2.98 
314840 0.88 2.59 0.80 3.74 0.83 2.98 
314890 0.92 1.97 0.81 3.22 0.93 2.04 

Malinovka IDW IDWEle LST-LST 
WMOID R2 RMSE ( ) R2 RMSE ( ) R2 RMSE ( ) 
318320 0.96 1.23 0.92 1.89 0.87 2.84 
318450 0.89 2.22 0.87 2.69 0.87 2.60 
318730 0.94 1.55 0.93 1.65 0.92 4.14 
318780 0.96 1.40 0.94 1.89 0.93 1.81 
319130 0.73 3.17 0.73 3.29 0.71 3.14 
319210 0.83 2.56 0.85 2.44 0.71 3.36 
319390 0.93 2.12 0.90 3.00 0.93 1.80 
319810 0.93 2.31 0.93 1.80 0.93 1.87 
508880 0.95 1.69 0.93 1.95 0.91 1.88 
509830 0.96 1.32 0.94 1.50 0.92 4.73 

Gari IDW IDWEle LST-LST 
WMOID R2 RMSE ( ) R2 RMSE ( ) R2 RMSE ( ) 
312950 0.94 1.74 0.90 2.20 0.92 3.21 
313000 0.94 1.83 0.85 3.07 0.88 3.14 
313710 0.96 1.31 0.92 2.04 0.92 3.15 
313880 0.91 1.90 0.81 2.82 0.89 2.07 
314420 0.92 1.81 0.79 3.54 0.90 2.05 
314450 0.95 1.44 0.93 1.74 0.90 2.12 
314590 0.92 1.40 0.88 2.33 0.91 2.75 
503530 0.93 1.82 0.91 2.19 0.89 2.61 

 

 

 

 

 

 

 

 

 



66 
 

 

Table 4.8 The R2 and RMSE of daily minimum air temperature in all validation stations. 

Apkoroshi IDW  IDWEle  LST-LST 
WMOID R2 RMSE ( ) R2 RMSE ( ) R2 RMSE ( ) 
313480 0.67 4.16 0.54 4.58 0.57 3.56 
314160 0.76 1.79 0.65 2.76 0.65 2.88 
314180 0.66 3.07 0.57 4.65 0.65 2.73 
314210 0.75 2.32 0.60 3.00 0.67 2.43 
314740 0.85 1.83 0.74 2.43 0.76 3.42 
314780 0.77 4.61 0.73 3.85 0.76 3.62 
314840 0.70 2.30 0.63 3.20 0.51 3.14 
314890 0.73 1.96 0.63 2.95 0.53 3.79 

Malinovka IDW IDWEle LST-LST 
WMOID R2 RMSE ( ) R2 RMSE ( ) R2 RMSE ( ) 
318320 0.80 2.86 0.72 3.05 0.60 4.40 
318450 0.71 4.23 0.67 4.24 0.60 4.35 
318730 0.87 1.81 0.84 2.26 0.82 2.47 
318780 0.90 1.75 0.87 1.96 0.81 2.74 
319130 0.85 1.72 0.85 1.78 0.80 2.03 
319210 0.88 1.57 0.85 1.85 0.80 2.10 
319390 0.84 3.45 0.80 3.46 0.83 2.65 
319810 0.85 2.04 0.87 1.92 0.83 2.41 
508880 0.86 2.06 0.84 2.31 0.83 2.29 
509830 0.93 1.32 0.88 1.74 0.82 2.30 

Gari IDW IDWEle LST-LST 
WMOID R2 RMSE ( ) R2 RMSE ( ) R2 RMSE ( ) 
312950 0.70 2.56 0.54 4.19 0.64 4.03 
313000 0.81 2.06 0.61 3.82 0.65 2.90 
313710 0.78 2.29 0.53 3.50 0.64 4.18 
313880 0.68 2.49 0.52 4.13 0.51 3.46 
314420 0.82 2.16 0.53 3.53 0.70 2.64 
314450 0.80 2.46 0.68 2.99 0.70 2.71 
314590 0.20 4.65 0.51 3.56 0.36 3.82 
503530 0.86 1.56 0.57 3.25 0.79 2.03 
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4.2.3. Influence factors for air temperature estimation at the observation station 

4.2.3.1. Influence factors for IDW and IDWEle method 
 

For IDW and IDWEle methods, the elevation information of the validation stations 

and their interpolation stations are shown in Figure 4.14. 

The average elevations of interpolation stations and the validation stations are 

lower than 300m for all test basins (Figure 4.14 (a)). It is clear that both the 

interpolation stations and estimated stations have low elevation in all test basins. 

Moreover, the differences between the validation stations and their interpolation stations 

relatively small, the values are 19 m, 15 m and 9 m for Apkoroshi basin, Malinovka 

basin and Gari basin, respectively.  

And the average number of interpolation stations was also calculated for each test 

basin, there are six interpolation stations in the Apkoroshi basin and the Gari basin for 

each validation station, and for the Malinovka there are nine interpolation stations for 

each validation station. According to the Eq.(3), the regression analysis between the 

elevation and the air temperature data requires a certain amount of interpolation stations, 

thus, this is another reason that the IDWEle method can obtain relatively good results in 

Malinovka basin compared with other basins. 

 

Figure 4.14 The elevation information of validation stations and the interpolation stations. 
 Ele_Sta stand for the validation station and Ele_Inster stand for the interpolation stations. 
 
For the IDW method which has no corrections on the topographic effects, their 

relative good performances are relying on the similarity of elevations between the 
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For the IDWEle method, the elevation variation is important for constructing the 

linear regression of Eq.(3). Previous studies (Stahl et al., 2006; Thornton et al., 1997) 

also proved that for the IDWEle method, the accurate results are obtained when there 

are stations located at high elevations. Stahl et al., 2006 demonstrated that without the 

stations located in the high elevation, the performances of IDWEle method were even 

worse than directly assigned the data of nearest stations. Thus, considering the results of 

the IDW method are always better than IDWEle method in different basins, it is clear 

the interpolation station with low station density and low variations can finally lead to 

larger errors for the IDWEle method. 

In our study, we calculated the In the IDWEle method, the temperature lapse rate 

(TLAPS, b1,d of Eq. (4)) is used to estimate the effects of topography on air temperature, 

this study calculated the average value of TLAPS and the results are shown in Table 4.9 

for both daily maximum and minimum data in all test basins.  

Most of the TLAPS values are positive for daily maximum data in Apkorohsi basin 

and Malinovka basin and negative in the Gari basin. For daily minimum data, the 

negative values can be detected for all three test basins. It is common that the air 

temperature are decreased with the elevation, however, the positive TLAPS values of 

IDWEle method at the validation stations indicate that the air temperature are increasing 

with the elevation in several validation stations. In addition, judged by the values of the 

TLAPS, it is clear that these results are different from the normal value that usually 

employed for air temperature interpolations (-6.0 °C/km or -6.5 °C/km, Dodson and 

Marks, 1997). 

By using the interpolation stations (Table 4.9), this study conducted the liner 

regression analysis between elevation and the average air temperature data. The results 

are shown in Figure 4.15. Though the p values are larger than 0.05, positive TLAPS can 

be detected for daily maximum data and negative TLAPS can detected for daily 

minimum air temperature data in Malinovka basin (Figure 4.15 (b) and Figure 4.15 (d)). 

It is clearly that the results shown in Table 4.9 are consistent the results of Figure 4.15 

for Malinovka basin. However, it is interesting that the though the interpolation stations 

used for Apkoroshi basin presented a negative TLAPS for daily maximum data at 

interpolation stations, the positive TLAPS values can still be detected for IDWEle 

method in some validation stations for daily maximum data (Stations: 313480, 314160, 
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314180, 314890). Only the results of the Gari basin shows the consistent trend for 

TLAPS of interpolation stations and the IDWEle methods. 

For the IDWEle method, the accuracy of interpolation depends on the difference in 

elevation between the observation station and the location where one applies the 

IDWEle method (Thornton et al., 1997; Stahl et al., 2006). For the IDWEle method, 

elevation differences between the interpolation stations and validation stations are small 

(Figure 4.14) and this may lead to worse results for the IDWEle method compared with 

the IDW method. 
Table 4.9 The TLAPS of IDWEle method for daily temperature creation in different test basins. 

Apkoroshi  Malinovka  Gari 

WMOID Maximum 
( /km) 

Minimum 
( /km)  WMOID Maximum 

( /km) 
Minimum 
( /km)  WMOID Maximum 

( /km) 
Minimum 
( /km) 

    318320 -11.7 -4.96     
313480 2.8 -5.1  318450 -3.1 -3.82  312950 -7.7 -17.0 
314160 1.9 -4.9  318730 1.1 -14.7  313000 -11.8 -1.5 
314180 1.8 -4.5  318780 7.4 -8.9  313710 -9.9 -11.0 
314210 -7.1 -8.1  319130 -1.0 -4.2  313880 0.0 -2.61 
314740 -8.3 -8.3  319210 -0.2 -3.4  314420 -2.86 -12.6 
314780 -2.0 -2.0  319390 12.2 2.5  314450 -11.3 -11.5 
314840 -4.8 -5.4  319810 1.0 -5.0  314590 -2.5 -7.2 
314890 2.34 -4.5  508880 5.4 5.1  503530 -14.7 -16.4 

    509830 7.6 -5.5     
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4.2.3.2. Influence factors for LST-LST method 

As the values of a1 and a2 were close to 1 (Table III), the differences in 

temperature at the two stations can be approximated using the values of b1 and b2. They 

are the TLAPS of the Ta-Ta regression equation and LST-LST method. The linear 

relationships between elevation differences and b1, b2 are shown in Figures 4.16, 4.17 

and 4.18.  

The results of Apkoroshi basin indicate that b1 and b2 had a strong linear 

relationship with the elevation difference for daily minimum air temperature and LST 

data, the linear relationship is insignificant for daily maximum data. The slopes of b2 

(Figure 1 (c) and Figure1 (d)) were –4.3°C/km and –8.4°C/km for daily maximum and 

minimum LST data, respectively and these values are –4.8°C/km and –5.7°C/km. 

According to the result shown in the Figure 4.15, these values are –5.1°C/km and –

3.2°C/km for available interpolation stations respectively. The daily maximum values of 

b1 and b2 are very close to the TLAPS of the interpolation stations, while the differences 

are larger for the daily minimum data, and this might be the results that lead to the 

better results of RMSEs for the LST-LST method compared with the IDWEle method 

(Figure 4.13(b)). 
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Figure 4.16 Regression analysis between the temperature differences (b1 and b2) and the elevation 

difference in the LST- LST method of Apkoroshi basin, (a) daily maximum air temperature, (b) daily 

minimum air temperature, (c) daily maximum LST, and (d) daily minimum LST. 

The results of Malinovka basin indicate that b2 had a strong linear relationship with 

the elevation difference for both daily maximum and minimum LST data, while for the 

b1, the linear relationship was insignificant for daily maximum LST data. The slopes of 
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4.13(b), it seems the differences can explain the larger error of LST data compared with 

the IDWELE method. However, it is common that the temperature is decreasing with 

the elevation. Though in the Fareast Area, the inversion layer can be detected (Fan et al., 

2002) during the winter and spring, according to basic information of the Malinovka 

basin, the elevation variations are large and its slope are relatively large (Table 2.1). 

Thus, the areal accuracy that effected by different creation methods are still need to be 

considered in the Malinovka basin. 
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Figure 4.17 Regression analysis between the temperature differences (b1 and b2) and the elevation 

difference in the LST- LST method of Malinovka basin, (a) daily maximum air temperature, (b) daily 

minimum air temperature, (c) daily maximum LST, and (d) daily minimum LST. 
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the increasing trend of b2 for LST-LST method may lead to more errors in this basins. 

 
Figure 4.18 Regression analysis between the temperature differences (b1 and b2) and the elevation 

difference in the LST-LST method of Gari basin, (a) daily maximum air temperature, (b) daily minimum 

air temperature, (c) daily maximum LST, and (d) daily minimum LST. 
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observed station that only located in one point (Liu et al., 2006; Yang et al., 2011). The 

“pixel” of the MODIS LST data is at least 1km2, which is a comprehensive value 

compared with the observed data in the point. Thus, this is another probable reason for 

the errors of the estimated results of MODIS data. However, in this study, limited to the 

observed stations in these study regions, the influence of water content and mixed pixel 

effects cannot be detected at now. 

In addition, the statistical analysis method always need abundant training data to 

generate stable results (Zakšek and Schroedter-Homscheidt 2009), the amount of data 

are less than 2,000 for 2002-2010 of all stations (Table 4.6). The short observation 

period of the MODIS LST data is an important factor that induces the larger estimated 

errors of this method. It is also noteworthy that the cloud and hazes are treated by not all 

exclude during the generation of LST data (Wan 2008; Vancutsem et al., 2010), the 

quality of the LST data also has influence on the final estimated results.  

Though the errors are extended by the LST-LST method, the RMSEs obtained 

herein were still within a reasonable range compared with earlier research in different 

regions. For example, based on the multi-steps linear regression method, Colombi et al. 

(2007) predicted air temperature in alpine areas of Italy. Their RMSE = 1.89°C for daily 

average temperature and maximum and minimum air temperature were 2.47°C and 

3.36°C, respectively, similar to our results. Shen et al. (2011) used a single linear 

regression method to predict daily maximum and minimum air temperature based on 

LST data, with error 2–3 .  

Generally, for the IDW method it shows the best results of all the different methods, 

the IDWEle method obtained the relatively worse results. However, according to the 

different topographic characters of the test basins; this study still employed the IDWEle 
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method to test the estimated data for driving the snowmelt model. Compared with the 

IDW method, though the errors are enlarged in LST-LST method, the two indices (R2 

and RMSE) still show that errors of the LST−LST method were within a reasonable 

range, and overall performance of the method demonstrated its capability for predicting 

daily maximum and minimum temperature. And the analysis results of the temperature 

lapse rate for both IDWEle method and LST-LST method indicate that the worse results 

of the IDWEle method and LST-LST method is highly probable induced from the 

estimation of topographic effects on air temperature at the low elevation stations.  

4.2.4. The created air temperature in the test basins 

    According to the percentage of area of each subbasin and its created air temperature, 

this study calculated the value of the daily maximum and daily minimum temperature 

for each scenarios. The results are shown in Figure 4.19. 

    In the Apkoroshi basin, for the daily maximum data, the T-IDWEle scenarios 

obtained the lowest temperature (5.78°C), followed by T-LST (7.46°C), T-Observed 

(8.64°C) and T-IDW (9.46°C). The order is T-IDWEle (-6.33°C), T-Observed (-4.87°C), 

T-LST (-4.02°C) and T-IDW (-3.74°C) for the daily minimum data. 

In the Malinovka basin, for the daily maximum data, the T-LST scenarios obtained 

the lowest temperature (7.33°C), followed by T-Observed (7.87°C), T-IDW (8.79°C) 

and T-IDWEle (12.56°C). The order is T-IDWEle (-7.01°C), T-Observed (-4.05°C), 

T-IDW (-3.47°C) and T-LST (-1.68°C) for the daily minimum data. 

In the Gari basin, for the daily maximum data, the T-IDWEle scenarios obtained 

the lowest temperature (7.33°C), followed by T-LST (7.87°C), T-IDW (11.26°C) and 

T-Observed (11.26°C). The order is T-KST (-3.83°C), T-IDWEle (-2.61°C), T-IDW 

(-2.06°C) and T-Observed (-1.99°C) for the daily minimum data. 
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Figure 4.19 Daily maximum and minim air temperature of created data in different test basins, 

(a) Apkoroshi basin, (b) Malinovka basin, and (c) Gari basin. 
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the air temperature, this study also analyzed the linear relationship between air 

temperature and the elevation in each test basin 

The relationship between the created air temperature and elevation of Apkoroshi 

basin are shown in Figure 4.20 and Figure 4.21. It is clearly that for the daily maximum 

data of the T-IDWEle scenario and T-LST scenario shows a significant linear 

relationship with the elevation, and the TLAPS of these two scenarios are very similar, 

the values are -4.8°C/km and -4.6°C/km, respectively. For the T-Observed scenario and 

T-IDW scenario, the results indicate they has no significant relationship with elevations.  

For the daily minimum data only the T-IDWEle method gave a significant 

relationship with the elevation, the TLAPS is -2.7°C/km, and for the T-LST data a 

positive TLAPS is detected though the relationship is insignificant. The T-Observed and 

T-IDW method presented no significant relationship with the elevation. 

 
Figure 4.20 The regression analysis between created daily maximum air temperature and elevation 
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in Apkoroshi basin, (a) T-Observed, (b) T-IDW, (c) T-IDWEle, and (d) T-LST. 

 
Figure 4.21 The regression analysis between created daily minimum air temperature and elevation in 

Apkoroshi basin, (a) T-Observed, (b) T-IDW, (c) T-IDWEle, and (d) T-LST. 
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relationship with the elevation, the TALPS is only -0.8°C/km which indicate that with 

the elevation increasing the decrease of temperature is small. 

 
Figure 4.22 The regression analysis between created daily maximum air temperature and elevation 

in Malinovka basin, (a) T-Observed, (b) T-IDW, (c) T-IDWEle, and (d) T-LST. 
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Figure 4.23 The regression analysis between created daily minimum air temperature and elevation in 

Malinovka basin, (a) T-Observed, (b) T-IDW, (c) T-IDWEle, and (d) T-LST. 

The relationship between elevation and the created data of Gari basin are shown in 
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significant relationship with the elevation, for the T-LST data a positive TLAPS is 

detected though the relationship is insignificant the TLAPS is 4.0°C/km. 
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Figure 4.24 The regression analysis between created daily maximum air temperature and 

elevation in subbasins of Apkoroshi basin, (a) T-Observed, (b) T-IDW scenario, (c) T-IDWEle, 

and (d) T-LST. 

 
Figure 4.25 The regression analysis between created daily minimum air temperature and elevation in 

subbasins of Apkoroshi basin, (a) T-Observed, (b) T-IDW, (c) T-IDWEle, and (d) T-LST. 
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4.21~4.26, it is clear that the relationships between the elevation and air temperature of 

the subbasins are influenced by those relationships of interpolation stations. However, 

for the IDW method, because there is no topographic corrections, thus, its created 

values are only rely on the low elevation stations, and this is reason for its higher values 

of created data compared with the T-IDWEle method. Moreover, because the 

T-Observed data also used the low elevation stations for data creation, thus its value is 

also higher than T-IDWEle data, except for the daily maximum data in the Malinovka 

basin. According to the results shown in Figure 4.26 (c), it is clear that the positive 

TLAPS of the T-IDWEle data (Figure 4.22 (c)) is inducted by the interpolation stations, 

however it is well known that the TLAPS should be negative value, thus for the 

Malinovka basin, though the linear relationship between elevation and created 

maximum air temperature is high, this may include errors to the data creation. 
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Figure 4.26 The linear regression analysis between air temperature and elevations of the 

interpolation stations in all test basins. 

 

Figure 4.27 The elevation information of the interpolation stations and the subbasin in all test basins. 
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reasonable for T-LST scenario in these two basins.  

 
Figure 4.28 The linear regression analysis between air temperature and elevations of the 

interpolation stations in all test basins. 
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4.3. Evaluations of different estimated air temperature data by SWAT 

model 

4.3.1. Performances of snowmelt simulation 

Based on the settings in section 3.4, the SWAT model for different air temperature 

input data were operated in the test basins.  

The results of R2 and NSE for Apkoroshi basin is shown in Figure 4.29 and the 

hydrograph of the best simulation is shown in the Figure 4.30. The T-IDW (R2=0.66, 

NSE=0.66) and T-IDWEle (R2=0.64, NSE=0.59) scenarios obtained the relative worse 

results compared with the T-Observed scenario (R2=0.72, NSE=0.66) and the T-LST 

scenario (R2=0.75, NSE=0.73). The best results are obtained by the T-LST scenario. 

 
Figure 4.29 The results of R2 and NSE in Apkoroshi basin, (a) R2, and (b) NSE. 
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Figure 4.30 The best simulation hygdrographs for different air temperature in Apkoroshi basins from 

1983 to 1987, (a) 1983, (b) 1984, (c) 1985, (d) 1986 and (e) 1987. 
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Figure 4.31 Absolute error of simulated discharges for different air temperature data in Apkoroshi basin, 

(a) entire period, (b) early melting period, (c) main melting period. 
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scenario (R2=0.80, NSE=0.79). The best results are obtained by the T-LST method, 

while the worst results is obtained in the T-IDWEle scenario. 
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Figure 4.32 The results of R2 and NSE o in Malinovka basin, (a) R2 and (b) NSE. 

 
Figure 4.33 The best simulation hygdrograph for different air temperature in Malinvoka basin in different 

years from 1983 to 1987, (a) 1983, (b) 1984, (c) 1985, (d) 1986 and (e) 1987. 
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ANOVA analysis conducted for each period. Except the main melting period (p=0.002), 

the results were insignificant (p>0.05). The Steel-Dwass test was calculated for the 

middle period (Figure 4.34). The p values between the T-LST case and the T-IDW, 

T-IDWEle cases were less than 0.05, respectively, which indicate that the T-LST case 

can produce less simulation errors than T-IDW and T-IDWEle. Though the differences 

between the T-LST case and T-Observed case were insignificant, the results still indicate 

that the MAEs of T-LST case were smaller than T-Observed in every period. 

 
Figure 4.34 Absolute error of simulated discharges for different air temperature data in Malinovka basin, 

(a) entire period, (b) early melting period, (c) main melting period. 
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The results of R2 and NSE of Gari basin is shown in Figure 4.35 and the 

hydrograph of the best simulation is shown in the Figure 4.36. The performances of the 

NSE are similar in Gari basin compared with other two basins. The T-Observed 

(R2=0.66, NSE=0.66) and T-IDW (R2=0.68, NSE=0.66) scenarios obtained the relative 

worse results compared with the T-IDWEle scenario (R2=0.72, NSE=0.70) and the 

T-LST scenario (R2=0.70, NSE=0.66). The best results are obtained by the T-IDWEle 

method, while other method performed the similar results.  

 
Figure 4.35 The results of R2 and NSE in Gari basin, (a) R2 and (b) NSE. 

 
Figure 4.36 The best simulation hygdrograph for different air temperature in Gari basin in different years 
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from 1983 to 1987, (a) 1983, (b) 1984, (c) 1986. 

In the Gari basin, the daily absolute error and MAE were calculated and ANOVA 

analysis conducted for each period. Except the early melting period (p<0.001), the 

results were insignificant (p>0.05). The Steel-Dwass test was calculated for the early 

melting period (Figure 4.37). The p values between the T-LST case and the T-IDW, 

T-IDWEle cases were less than 0.05, respectively, which indicate that the T-LST and 

T-IDWEle cases produced more simulation errors than T-IDW and T-IDWEle. And for 

the main melting period, the same trend is also detected. 

 
Figure 4.37 Absolute error of simulated discharges for different air temperature data in Gari basin, (a) 
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entire period, (b) early melting period, (c) main melting period. 

According to the simulation hydrographs (Figures 4.30, 4.33, and 4.36), it is clear 

that the starting melt point cannot be accurately reflected by all the data. The melting 

processes occurred earlier for the temperature index data. For example, in Apkoroshi 

basin, in the year 1983, the simulated snowmelt hydrograph exist earlier peaks than the 

monitoring data. In the Gari basin, during the period of 1984 and 1986, the first peaks 

are occurred earlier in simulated hydrograph than the monitoring data. Moreover, the 

hydrographs of the estimated data in the Apkoroshi basin and Gari basin are more 

fluctuant compared with the observed runoff data.  

It is clear the snowmelt is also influenced by other hydrological processes such as 

percolation and refreezing, especially at the beginning melt period. (Senese et al., 2014). 

The results of Ahl et al. (2006) indicated that the melt water in the river channel is 

mainly contributed by the lateral flow rather than overland flow in the snow-dominated 

area of Rocky Mountain. Quinton et al. (2004) also reported the variation of the soil 

conductivity during the snowmelt period will influence the subsurface and surface flow.  

Aside from meteorological influences, land cover is another influence on snowmelt. 

Wetlands are believed to be a major factor in snowmelt simulation, because of its 

capacity for water storage (Hayashi et al., 2004). Hydrological properties of these 

wetlands are very sensitive to variations of Ta, seasonal precipitation, and other climatic 

factors (Fang and Pomeroy, 2008). To simulate snowmelt processes in wetlands, Fang 

et al. (2010) applied a physically based approach to a wetland-dominated prairie basin 

in Canada. They found that the ability of wetlands to trap blowing snow in winter and 

store runoff water is a crucial feature of the hydrology, and this poses a substantial 

challenge to hydrological modeling. Wang et al. (2008) and Yang et al. (2010) 
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demonstrated that the SWAT model’s hydrological simulation component should be 

improved for wetland-dominated areas based on detailed wetland measurement data, 

such as annual water table depth and normal and maximum water storage capacities. 

Wetland covered over 25% of the entire basin Gari. However, in a data-sparse area, it is 

difficult to acquire enough data to conduct physically based snowmelt simulation of 

wetlands, and this is the likely reason that the NSE is weak in that basin. And also for 

other snowmelt parameters, according to the different basins, the variations of these 

parameters can be greatly influence by the basin characters such as land cover types, 

aspects (Horton 2003; Tekeli et al., 2005). 

In addition, it is well-known that the simulation results of hydrological model are 

generated by both input data and model parameters. Except the temperature data, the 

precipitation data also directly decides the water amount and the significantly influence 

the simulation results. In our study, we employed the APHRODITE data as the input 

data. Though the applicability of this data in this regions was proved by other 

researchers (Gillies et al., 2012; Onishi et al., 2010), considering the areas of the test 

basins (3,000-5,000 km2) and the spatial resolution (0.25 degree) of the input rainfall 

data, the precipitation data may also lead to the errors of simulation results. In this study, 

the simulation result of Gari basin, during the year 1986, the simulated results are 

significantly higher than the observed runoff. 
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4.3.2. Uncertainty analysis 

 
Figure 4.38 The uncertainty analysis results in Apkoroshi basin, (a) Number of behavioral simulations, (b) 

p-factor and (c) r-factor. 
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simulation and uncertainties analysis in this test basin. 

 
Figure 4.39 The uncertainty analysis results in Malinovka basin, (a) Number of behavioral simulations, (b) 

p-factor and (c) r-factor. 

The uncertainty analysis results of Malinovka basin is shown in Figure 4.39. For 

the number of behavioral simulations, the T-LST data (30 simulations) obtained with the 

best results followed with T-Observed data (1 simulations), T-IDW data (1 simulations) 

and T-IDWEle data (0 simulations). The same orders can be detected for the p-factor 

and r-factor. For the p-factor, except T-LST scenario other scenarios are 0.00 and the 

values of r-factor is 0.77 for T-LST scenario. It is clear that judged by the uncertainly 

analysis results, the T-LST shows better performances compared the original observed 

and other interpolations methods. 

1 1 0

30

0

10

20

30

40

T-Observed T-IDW T-IDWEle T-LST

(a) Number of Behavioral 
Simulations

0 0 0

0.74

0

0.2

0.4

0.6

0.8

1

T-Observed T-IDW T-IDWEle T-LST

(b) p-factor

0 0 0

0.77

0

0.2

0.4

0.6

0.8

1

T-Observed T-IDW T-IDWEle T-LST

(c) r-factor



97 
 

 
Figure 4.40 The uncertainty analysis results in Gari basin, (a) Number of behavioral simulations, (b) 

p-factor and (c) r-factor. 

The uncertainty analysis results of Gari basin is shown in Figure 4.40 For the 
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0.88, 0.73, 0.77, and 0.50, respectively. It is clear that judged by the uncertainly analysis 

results, the T-LST shows better performances compared the original observed and other 

interpolations methods. 
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However, according to the setting for snowmelt simulation this study keep the 

other factors as the constant value and made the input air temperature as the only 

variation for a fixed parameter set, thus the results still indicate that the input air 

temperature data has great influence on the hydrological simulation results. The best 

simulation results in indicate that the T-LST data can drive the model to obtain better 

results compared with other data. The data estimated only based on the air temperature 

data performed rather worse results for model uncertainty analysis.  

Considering the simulation results of different basins, it is clear that the T–LST 

data showed more advantage for the snowmelt simulation in the study basin. However, 

for the T-IDW and T-IDWEle data, the results are worse compared with the T-LST data.  

It is interesting that the IDWEle and IDW methods provided better results than the 

LST-Linear method at the verification stations, while the same methods cannot provide 

better snowmelt simulations. Elevation differences between the subbasins and their 

interpolation stations were larger than elevation differences between verification 

stations and interpolation stations. 

 In addition, the snowmelt simulations indicate that based only on sparsely 

observed air temperature data, the spatial interpolation method (IDW and IDWEle) 

cannot always generate accurate temperature data. In fact, the station density of the 

region was less than 1/20,000 km2 (87 stations in 2,040,700 km2), significantly less than 

previous studies based on the IDW method (Courault and Monestiez, 1999, with station 

density 1/1,250 km2; Dodson and Marks, 1997, with station density 1/1,000 km2). 

The results indicate that the data density and elevations directly limits the 

applicability of the IDW and IDWEle methods for driving SWAT snowmelt simulation 

in a data-sparse basin. Though the performance of the LST-Linear method is relatively 
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poor at observation stations, the simulation results indicate that the data created by the 

LST-Linear method are stable and accurate approximations of the actual air temperature 

in the study basin. 

 

5 Conclusions 

Snowmelt is one the most important hydrologic processes in mid- and high-latitude 

regions, especially for the Amur River basin. Snowmelt is recognized has a significant 

influence on nutrient transport in river channels during spring snowmelt period. The 

temperature index model is a common tool for simulating basin snowmelt processes 

because of its generally good performance and fewer data requirements. However, in 

data-sparse basins, the density of air temperature monitoring data cannot meet the 

requirements of accurate applications Thus, to create high-density and accurate air 

temperature data, many data resources and methods have been developed. The main 

objective of this study was to evaluate a new air temperature data estimation method to 

generate air temperature data with high spatial density and accuracy, for improving the 

performance of snowmelt modeling using the temperature index method in Amur River 

basin.   

The research used a simple linear regression equation and MODIS land surface 

temperature data between two locations to estimate the air temperature data for 

unknown point. This method was tested at 26 pairs of air monitoring stations and 

compared with the results of spatial interpolation methods: one is original inverse 

distance method, the other one is the improved inverse distance method that considering 
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the topographic influence.  

The linear regression relationship between air temperature and land surface 

temperature of were firstly proved at the observed stations, the results indicated that the 

linear relationship of both land surface temperature and air temperature are strong. Then, 

both the linear regression method and the spatial interpolation methods were applied 

and evaluated by using the observed stations. The inverse distance method is more 

advanced according to the low elevation of the location of both validation stations and 

their interpolation stations. Contrarily, the inverse distance weighted method that 

considering the topographic influence performed relatively large errors according to the 

lack of stations locating in high elevation areas. Although the approximation of linear 

regression method might extend errors for air temperature estimation based on land 

surface temperature data, the results still demonstrate that this simple linear regression 

approach can estimated the air temperature data with limited errors range during the 

snowmelt periods, and spatial density of the created data is also very high.  

Three test basins (Apkoroshi basin, Malinovka basin, Gari basin) were selected for 

model testing, which are located in the upper, middle and lower stream of the Amur 

River Basin. Snowmelt simulations with the newly estimated air temperature data from 

spatial interpolation method, the linear regression method combined the MODIS LST 

data and original data were compared in three test basins with varying slope and land 

cover types. The results of snowmelt simulation clearly demonstrated that only based on 

the sparse observed data, which cannot represent the spatial distribution of the air 

temperature in the test basin, the spatial interpolation methods included more errors to 

air temperature estimation, and finally lead to worse results of the snowmelt simulation. 

The data generated by the LST-Linear method can obtained the best simulation results 
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in the basins with relatively high variations of elevations, for the relative flat basin the 

LST data also need further improvement. Though the LST data obtained relatively weak 

results for air temperature estimated at a fixed point, the high spatial dense and its 

accuracy make it as an attractive candidate data source for estimated air temperature 

data in the basin with topographic influence, and this may expand the applicability of 

the SWAT model in snowmelt-dominated areas. 
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