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1. RNA and transcriptomics 

The “Central dogma of molecular biology”, as defined by Francis Crick, explains the 

flow of genetic information within a biological system (Crick, 1970). This concept 

states that genetic information encoded in DNA is transcribed to RNA, and RNA is 

translated to protein. The biological activities of cells, tissues, and organisms are 

based on the central dogma of molecular biology. RNA is an important factor required 

to mediate gene and protein expression. There are two types of RNA, non-coding 

RNA (ncRNA) and messenger RNA (mRNA or protein-coding RNA). ncRNAs play 

several key roles in gene regulation including transcriptional and post-transcriptional 

regulation, regulation of alternative splicing, control of transcription factor binding, 

chromatin modification, and protein-coding RNA stabilization (Louro et al., 2009; 

Pertea, 2012) (Table 1). ncRNAs include ribosomal RNA (rRNA) and transfer RNA 

(tRNA) and are classified into two broad groups by size. Long ncRNAs (lncRNA) are 

greater than 200 nucleotides and small ncRNAs (sncRNA) are 200 nucleotides or less. 

lncRNAs include large intergenic ncRNAs, long intronic ncRNAs, antisense RNAs, 

and pseudogene RNAs. lncRNAs play critical and specialized roles in numerous 

biological processes including the regulation of gene expression, and pre- and 

post-transcriptional modulation of epigenetic regulation (Rinn and Chang, 2012; Guo 
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et al., 2015). sncRNAs also have several functions: microRNAs (miRNAs) and small 

interfering RNAs (siRNAs) modulate post-transcriptional gene expression by binding 

to specific mRNAs; small nucleolar RNAs chemically modify rRNAs and other 

RNAs; and piwi-interacting RNAs inhibit transposon function through the PIWI 

protein, and maintain genomic constancy in germline cells. Other ncRNAs include 

small nuclear RNA, transcription initiation RNA, X-inactivation RNA, and 

promoter-associated RNA. Dysfunction of ncRNA is associated with complex 

diseases such as cancer, and neurological, developmental, and cardiovascular diseases 

(Taft et al., 2010; Esteller, 2011). More than 90% of the genome is transcribed into 

RNA, and it is estimated that mRNA constitutes approximately 62% of the transcripts 

(Pertea, 2012). mRNA plays a key role in transcription and reflects the information of 

almost all expressed genes. The complete set of mRNA, or primary transcripts, under 

a specific condition or in a specific cell is defined as the “transcriptome”. 

Transcriptomics is the study of the transcriptome and enables researchers to elucidate 

gene expression dynamics under different circumstances. This leads to a deeper 

understanding of the function of each gene in the genome, and the regulation of gene 

expression, and aids in the elucidation of molecular mechanisms of abnormal states 

such as diseases. 
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In this study, we describe the general application of transcriptomics and recommend 

approaches for analyzing whole genome expression profiling data. Additionally, we 

performed two microarray experiments using pig model for evaluation change and 

constancy respectively. 

 

2. Methods of transcriptomics 

The transcriptome is complex. Over the past decade, several approaches have been 

developed to elucidate its intricacy and recent dramatic advances in analytical 

technologies have allowed researchers to further appreciate the transcriptome. In the 

1990s, expressed sequence tag (EST) sequencing was employed to rapidly identify 

expressed genes and gene fragments (Schuler et al., 1996). Although EST sequencing 

is a high-throughput technique, it is expensive. Tag-based methods including serial 

analysis of gene expression, cap analysis of gene expression, and massively parallel 

signature sequencing were developed, but were unable to discriminate between 

genetic isoforms and were very expensive to apply on a large scale. Microarray was 

developed for genome-wide analysis, and has become the most widely used approach 

for transcriptomics. Recently, RNA sequencing (RNA-seq) using next generation 

sequencing technology has allowed the transcriptome to be characterized, and the 
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number of studies using RNA-seq have gradually increased (Ghosh and Qin, 2010; Yu 

and Lin, 2016). Microarray and RNA-seq have become the main tools used in 

transcriptome research. These tools allow us to simultaneously analyze the expression 

of a large number of genes and to focus on physiological equivalence. Several studies 

have compared the accuracy of microarray and RNA-seq measurements (Marioni et 

al., 2008; Fu et al., 2009; Su et al., 2011; Zhang et al., 2015). It was found that the 

biological interpretation of detected genes was mostly consistent between the data of 

the two technologies, and that RNA-seq provides better detection sensitivity than does 

microarray. To validate the accuracy of these techniques, it is necessary to 

quantitatively evaluate the expression levels of genes detected as having altered 

expression by DNA microarray or RNA-seq. Therefore, Real-Time 

Reverse-Transcriptase PCR is performed after global analysis in most studies. 

 

2.1 DNA microarray 

DNA microarray analysis was established in 1995 as a new technology to analyze 

gene expression (Schena et al., 1995). Since then, microarrays are being widely 

used across biological disciplines. The number of published papers using the 

technology continues to increase, as does the number of commercial suppliers of 
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microarrays, associated reagents, and analysis hardware and software (Kawasaki, 

2006; Yauk and Berndt, 2007).  

The microarray technique is based on the basic principle of "DNA Hybridization" 

and uses DNA chips consisting of many oligonucleotides (probes) spotted onto a 

glass slide. Probes are deposited onto glass slides via the direct (in situ) synthesis of 

oligonucleotide probes onto the chip surface using photolithographic methods (Gao 

et al., 2004) or by deposition methods, which include contact-spotting using pins 

and deposition by ink jet (Hughes et al., 2001; Sethi et al., 2008). Presently, these 

arrays comprise mostly 40- to 70-mer oligonucleotides spotted on a glass slide. This 

technique makes it possible to semi-quantitatively measure the expression levels of 

large numbers (1,000-40,000) of genes simultaneously. In conjunction with 

computational analysis tools, microarray analysis enables the identification of genes 

that vary in expression in different biological contexts (Schena et al., 1995; 

Quackenbush, 2001). 

The microarray method consists of several processes. Total RNA is extracted from 

the sample and reverse-transcribed into complementary DNA (cDNA). cDNA is 

labeled with fluorescent dyes, hybridized to the DNA chip, and scanned to produce 

microarray image data. The intensity of fluorescence, which reflects the degree of 
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hybridization and transcript copy number, is digitized by appropriate software. 

However, microarray has several limitations including requiring information about 

genome sequence to produce the oligonucleotides, and inaccuracy of data owing to 

high background from nonspecific cross-hybridization. 

 

2.2 RNA-seq 

RNA-seq is a new approach involving next-generation sequencing and allows a 

quantitative analysis of all expressed genome regions (Wang et al., 2009). The 

RNA-seq method consists of several steps: extraction of total RNA, reverse 

transcription of RNA to cDNA, construction of a cDNA fragment library, 

sequencing using a high throughput sequencing platform, generation of single-end 

or paired-end reads 30–400 base pairs in length, and sequence alignment (Wang et 

al., 2009; Griffith et al., 2015). Recently, a method allowing direct single molecule 

RNA sequencing, without prior conversion of RNA to cDNA, was reported 

(Ozsolak et al., 2009).  

RNA-seq captures RNA directly to build a sequence, allowing for the detection of 

new transcription products, fused sequences, and single nucleotide polymorphisms 

of unknown genes without gene-specific biases. Additional advantages of RNA-seq 
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include low background noise, large and dynamic signal range, and detection with 

no requirement for prior sequence information. More recently, RNA-seq has 

emerged as the preferred approach for genome-wide expression analysis (Wang et 

al., 2009; Rowley et al., 2011; Su et al., 2014) .  

 

3. Transcriptomics for physiological difference 

DNA microarray and RNA-seq technology provide a wide range of novel application 

opportunities relating to gene expression profiles, which can be applied to various 

studies. The availability of transcriptomic technology has provided new opportunities 

for researchers to characterize global gene expression profiles. Recent advances in 

transcriptomics have allowed us to identify specific genes, gene families, and 

pathways associated with biological responses. The mechanisms regulating biological 

reactions, as well as the identification of genes implicated in these responses, are of 

great interest to the research community. These techniques could serve to assign 

functions to previously unannotated genes and to allocate gene groups to functional 

pathways (DeRisi et al., 1996; Han et al., 2015). Additionally, these techniques 

contribute to our understanding of biological mechanisms and responses to 

environmental stimuli (Miller and Tang, 2009). The identification of differentially 
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expressed genes is helpful to show the biological distinction and physiological 

difference between two different sets of conditions. 

 

3.1 Evaluation for genetic background  

Organisms sustain biological activity based on information contained within the 

genome. The characteristics of the individual are distinctively determined by 

genetic information, the expression of which defines the phenotype (sex, aging, 

tissues, individuals, and species). Detection of genes differentially expressed 

between these phenotypes helps to characterize the sample and allows us to 

evaluate individual subjects.  

Differences in gene expression resulting from changes in intrinsic conditions such 

as sex (Balakrishnan et al., 2012; Blekhman et al., 2010; Conforto and Waxman, 

2012; Jansen et al., 2014; Caetano-Anolles et al., 2015; Sakashita et al., 2015) and 

aging (Brink et al., 2009; Wilson et al., 2010; Takahashi et al., 2011; Naumova et 

al., 2012; Steegenga et al., 2014; Roux et al., 2015; Wei et al., 2015) can be 

identified using microarray and RNA-seq techniques. Liu et al. (2013) reported that 

aging results in sexually dimorphic changes in the skeletal muscle transcriptome, 

and they detected differential expression of genes related to oxidative 
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phosphorylation, immune function, and muscle protein catabolism. Data show that 

gene expression dynamics related to aging vary according to sex, and suggest that 

older women tend to be more predisposed to loss of muscle function with aging. 

Many studies show that normal tissues have their own gene expression profiles and 

have identified organ specific gene sets that are highly expressed in a tissue 

selective manner in the mouse (Su et al., 2002), rat (Walker et al., 2004), dog 

(Briggs et al., 2011), pig (Hornshøj et al., 2007), and human (Hsiao et al., 2001; 

Shmueli et al., 2003; Son et al., 2005; Kilpinen et al., 2008). Transcriptomics can 

also be used to compare gene expression data across species (Chan et al., 2009; 

Merkin et al., 2012; Sudmant et al., 2015). These studies provide new insights into 

the molecular basis of tissue and organismal diversity. Transcriptomics can be used 

to identify genes that contribute to this diversity, and can be utilized to build a 

biological gene database. 

 

3.2 Evaluation for environmental effects  

Recent progress in transcriptomics enables us to identify genes and pathways 

associated with responses to exogenous abiotic stresses (Ma et al., 2012; Jogaiah et 

al., 2013; Deshmukh et al., 2014; Evans, 2015). Many studies have used DNA 
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microarrays to infer how organisms respond to different environments (Gracey and 

Cossins, 2003; Cossins et al., 2006; Gracey, 2007; Evans and Hofmann, 2012), 

such as temperature (Murata et al., 2006; Yang et al., 2010; Long et al., 2012; 

Aguado-Urda et al., 2013; Logan and Buckley, 2015), osmolality (Posas et al., 

2000; Evans and Somero, 2008; Melamed et al., 2008; Halbeisen and Gerber, 2009), 

oxygen (Ton et al., 2003; Garnczarska, 2006; Swiderek et al., 2008; Otsuka et al., 

2010; Gracey et al., 2011; Shinde et al., 2015) and pH (Leaphart et al., 2006; 

Serrano et al., 2006; Worden et al., 2009; Evans et al., 2013). Detection of genes 

with expression changes in response to environmental change helps to predict the 

fragility, resistance, and adaptability of an organism, tissue, or cell in the 

environment. Additionally, genes with constant expression in the presence of 

environmental change can be identified and are potentially important for overall 

survival. Transcriptomics using RNA-seq in fishes have reported many new genes 

that participate in metabolic functions, protein folding and degradation, 

developmental processes, oxygen transport, and protein synthesis (Liu et al., 2013). 

These studies have also identified heat shock protein genes that are differentially 

expressed following alterations in temperature (Liu et al., 2013; Smith et al., 2013). 

Coble et al. (2014) identified differential expression of genes related to decrease 
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internal temperatures, reduced hyperthermia-induced apoptosis, and promotion of 

tissue repair occurring in the liver of heat-exposed broiler chickens. In addition, 

they also found that the expression of genes involved in the regulation of perturbed 

cellular calcium changes following heat exposure. 

Moreover, an adaptive response to various exogenous environmental stresses, 

including osmotic pressure and starvation, was validated at a genome level using 

RNA-seq (Xia et al., 2013; Johnson et al., 2015). RNA-seq is being applied to 

study the stress response similar to how microarray is being used assess the 

physiological state. 

Transcriptomics has been especially useful in the field of experimental embryology, 

where it has been used to evaluate the in vitro and in vivo environments. 

Transcriptomic data of embryonic cells produced in vitro and those developed in 

vivo have been compared in the mouse (Ren et al., 2015), pig (Østrup et al., 2013; 

Whitworth et al., 2015), bovine (Driver et al., 2012; Degrelle, 2015), and sheep 

(Wei et al., 2016). These studies have identified crucial discordances between the in 

vitro and in vivo expression of several genes and gene pathways. Individual genes, 

and pathways, function in complex biological processes. Minor changes in the 

expression of several genes may perturb a pathway and possibly have drastic 
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biological effects (Han et al., 2015). Transcriptomics helps researchers to identify 

differences in embryo gene expression in vivo and in vitro. These analyses may 

assist in improving culture conditions so that in vitro analyses can more accurately 

represent in vivo physiological conditions. 

 

3.3 Evaluation for toxicological damage 

Evaluation of chemical stress or toxicogenomics is critically important for 

transcriptome analysis. Afshari et al. (1999) and Nuwaysir et al. (1999) 

demonstrated the efficacy of microarray as a tool for assessing chemical and 

environmental toxicity in a bioassay. Our group has applied microarrays to examine 

the molecular response of a yeast model using various toxic materials. We have 

detected differentially expressed genes and determined the mechanism against the 

toxic matter for each of terpinene (Parveen et al., 2004), dimethyl sulfoxide 

(Murata et al., 2003), mycotoxin citrinin (Iwahashi et al., 2007), thorium 

(Mizukami-Murata et al., 2006), cadmium (Momose and Iwahashi, 2001), and 

thiuram (Kitagawa et al., 2002) (Table 2).  

The application of microarray to toxicogenomics is not limited to yeast cells. 

Various different models are being used to assess cadmium stress, including fungus 
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(Zhao et al., 2015), plants (Oono et al., 2014; He et al., 2015; Xu et al., 2015; Oono 

et al., 2016), fish (Bougas et al., 2013), mollusk (Meng et al., 2013), mouse (Hu et 

al., 2014), and human cells (Cartularo et al., 2016). Huang et al. (2012) reported 

that perfluorooctane sulfonate affects the expression of genes related to 

neurobehavioral defects, mitochondrial dysfunction, and the metabolism of proteins 

and fats. Identification of differentially expressed genes helps to reveal statistical 

significance (e.g. fold change and significance test) and/or biological significance 

(Tseng et al., 2012) and to clarify the mechanisms regulating adaptive responses. 

RNA-seq can also be applied to study toxicogenomics and has been used to 

evaluate changes in miRNA expression in response to multiple environmental 

factors including arsenic (Zhang et al., 2016), cigarette smoke (Beane et al., 2011; 

Hackett et al., 2012), the carcinogen benzo[a]pyrene (Van Delft et al., 2012) and 

gamma-irradiation (Moskalev et al., 2014).  

We are exposed to many substances that can have a direct or indirect influence on 

us including drugs, additives, and toxic chemicals. Risk assessment for these 

materials using transcriptomics is a means to evaluate the degree of toxicity, or risk, 

that such substances pose to an organism. 
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3.4 Evaluation for diseases 

Comparison of genome-wide expression patterns among patient samples presents 

us with measurable information and helps to identify genes that would be 

reasonable targets for therapeutic intervention (Afshari et al., 1999; Chin and Kong, 

2002; Dudda-Subramanya et al., 2003; Saei and Omidi, 2011). The invention of 

technologies for transcriptomics, using genome-wide analysis and computational 

approaches, has made it possible to identify the prognostic significance of 

individual gene expression changes from thousands of markers. For example, in 

cancer studies, this technology is employed to obtain comprehensive gene 

expression profiles in both normal tissues (Saito-Hisaminato et al., 2002) and 

cancer tissues including those from hepatocellular carcinomas, pancreatic cancers, 

and esophageal squamous cell carcinomas (Okabe et al., 2001; Han et al., 2002; 

Macgregor, 2003; Nakamura et al., 2004; Yamabuki et al., 2006; D’Angelo et al., 

2014; Zhu and Tsao, 2014; Nishimura et al., 2015). Using microarrays, biomarkers 

for Parkinson’s disease (Alonso-Navarro et al., 2014; Sun et al., 2014) and 

myocardial infarction (Devaux et al., 2010; Głogowska-Ligus and Dąbek, 2012) 

have been identified. Additionally, DNA microarrays are used to study complex 

diseases, in which hundreds of genes are often implicated, such as allergies, 
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diabetes, and obesity (Rome et al., 2009; S. Wang et al., 2009; Rodríguez-Acebes 

et al., 2010; Liu et al., 2013; Lu and Liao, 2015). Some reports indicate that these 

diseases rely on multiple gene interactions, rather than changes in a single causal 

gene, and that many different mechanisms and pathways are linked together 

(Benson and Breitling, 2006). While more illness biomarkers have been identified 

using microarray, RNA-seq is emerging as a very powerful tool to identify 

biomarkers of cancer (Wood et al., 2007; Berger et al., 2010; Pflueger et al., 2011; 

Cancer Genome Atlas Research Network., 2013; Fumagalli et al., 2014; Kosti et al., 

2016), Alzheimer’s disease (Satoh et al., 2014), tuberculosis (Zhang et al., 2014), 

and cirrhosis (Tan et al., 2014). RNA-seq may be a more suitable platform for the 

search of precise biomarkers than traditional omics approaches, including 

microarray or proteomics because of its ability to detect novel genes/exons, RNA 

editing, fusion transcripts, and allele-specific expression. Still, RNA-seq does have 

limitations and issues resulting from several biases including 

experimental/technical procedures, downstream computational analyses, and 

informatics infrastructures (Costa et al., 2013). 

Genome-wide analysis has boosted the biomarker diagnostics industry and 

contributes to disease subtype classification, disease diagnosis and prognosis, 
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selection of therapeutic treatments, and disease prevention (He et al., 2006; Sun et 

al., 2013; Su et al., 2014; Aibar et al., 2015).  

 

4. Transcriptomics for physiological equality 

Most transcriptome analyses have been aimed at detecting genes with altered 

expression levels. Many researchers analyze expression patterns to identify a 

characteristic expression pattern following exposure to change, as detailed in the 

previous section. Although transcriptome analysis has been a powerful tool for 

biological and biomedical studies, it remains to be determined whether these 

technologies can be applied with high accuracy and precision. Proof of invariability 

or/and constancy of gene expression profiles provides internal evidence of biological 

stability. Transcriptome analysis enables us to check the technical/biological 

uniformity using genome-wide screening for gene expression. 

 

4.1 Capacity 

Gene expression profiles reflect biological capacity and vary according to the 

situation at the time. For example, expression profiles change during the process of 

differentiation and generation (Mansergh et al., 2009; Goggolidou et al., 2013; 
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Iruretagoyena et al., 2014; Shiraki et al., 2014; Alonso-Martin et al., 2016). DNA 

microarray is tool used to evaluate cell properties by comparing the expression 

profiles of all genes. In some stem cell research reports, the degree of 

differentiation and development is evaluated by examining the similarity of gene 

expression patterns. Global gene-expression patterns were compared between 

human induced pluripotent stem (iPS) cells and human embryonic stem (ES) cells 

using oligonucleotide DNA microarrays (Takahashi et al., 2007). A high 

correlation of global gene-expression patterns was found between iPS cells and ES 

cells, suggesting that established iPS cells are similar to ES cells. Hrvatin et al. 

(2014) reported that differentiated human stem cells are analogous to fetal β cells 

rather than adult β cells. Mishra et al. (2008) demonstrated that human bone 

marrow-derived mesenchymal stem cells exposed to tumor-conditioned medium 

over a prolonged period assumed a carcinoma associated fibroblast-like 

myofibroblastic phenotype. Handel et al. (2016) generated transcriptome data to 

compare iPS cell derived neurons to human fetal and adult brain and indicated that 

iPS cell-derived cortical neurons closely resembled primary fetal brain cells. 

Tanaka et al. (2013) confirmed that the human iPS cell derived myogenic 

differentiation cells were similar to those of perfectly differentiated human 
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myoblast cells and quite divergent from those of undifferentiated iPS cells. 

Therefore, transcriptomics provides evidence for the establishment of cell-specific 

identities. 

Moreover, Datson et al. (2007) reported the comparison of gene expression profiles 

between tissues in the same individual. This study reported that a high correlation 

coefficient was obtained when comparing gene expression in marmoset neuronal 

tissues (hippocampus and cortex) indicating a high degree of similarity in 

expression profiles. Additionally, comparison of hippocampal gene expression with 

that of all peripheral tissues resulted in a severe drop in the correlation coefficient. 

Thus, transcriptome analysis is useful to demonstrate biological similarity between 

cells or tissues, and for the determination of genetic characteristics. 

 

4.2 Reproducibility 

Biological experiments need to be reproduced multiple times under the same 

experimental conditions. To demonstrate evidence of reproducibility is important 

for data to be comparable (Chen et al., 2007; Darbani and Stewart, 2014). The 

Micro Array Quality Control (MAQC) project was established to construct quality 

control and standardization tools using four titration samples which are measured 
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on seven microarray platforms and three alternative gene expression technologies. 

The MAQC project had already proven the reproducibility of microarray data by 

the quantitative signal values and the qualitative detection calls (MAQC 

Consortium et al., 2006). To validate and extend these observations, numerous 

researchers have independently validated microarray data (Yang et al., 2002; 

Burgoon et al., 2005; Guo et al., 2006; ’t Hoen et al., 2008).  

In addition to the technical reproducibility of microarray results, biological and 

physiological reproducibility are also important. Iwahashi et al. (2009) and 

Takahashi et al. (2012) demonstrated the importance of reproducibility of 

expression profiles among individuals under the same experimental conditions. 

This reproducibility proved the stability of an experimental protocol that affected 

the biology and physiology. Therefore, the reproducibility of gene expression 

patterns observed under the same experimental conditions suggests that the 

experimental and analysis methods used are stable and robust. However, MAQC 

does not provide conclusions related to inter-platform compatibility. There are 

differences in the fluorescent intensities measured by different platforms, and even 

within each platform site-by-site variability exists (Chen et al., 2007). 
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Reproducibility of RNA-seq has been demonstrated by multi-group reports (Tang et 

al., 2015), across laboratories (’t Hoen et al., 2013), and among technical replicates 

(Marioni et al., 2008; Mortazavi et al., 2008; Anders and Huber, 2010; Bullard et al., 

2010; Ozsolak et al., 2010; Roberts et al., 2011). Danielsson et al. (2015) compared 

RNA-seq data sets of human brain, heart, and kidney samples from different 

laboratories and studies and concluded that RNA-seq expression measurements 

show global consistency after log transformation and elimination of batch effects. 

To establish the reproducibility and comparability of RNA-seq, the RNA 

Sequencing Quality Control (SEQC) project was constituted and coordinated by the 

Food and Drug Administration. The role of the SEQC is to assess the performance 

of RNA-seq across laboratories and to dissect different sequencing platforms and 

data analysis pipelines (SEQC/MAQC-III Consortium, 2014). 

 

4.3 Stability 

It is essential that there is a high correlation and reproducibility within and between 

replicated experiments (within established standards) for data to be considered 

reliable and robust (Yauk and Berndt, 2007). In 2001, the Functional Genomics 

Data Society (http://fged.org/) described the Minimum Information About a 
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Microarray Experiment (http://fged.org/projects/miame/) to establish a standard for 

recording and reporting microarray-based gene expression data (Brazma et al., 

2001). They provide six factors for standardization: experimental design, array 

design, sample, hybridization, measurements, and normalization. However, this 

report does not indicate the most suitable standardized analytical methods, which 

may result in the variance of data.  

To overcome the dispersion of microarray data, standardization is carried out in 

various experimental models such as yeasts (Mizukami et al., 2004; 

Taymaz-Nikerel et al., 2016), mice (Williams et al., 2004), rats (L. Guo et al., 

2006), and non-human primates (Ebeling et al., 2011). Microarray is employed to 

prove the stability of both experimental conditions and experimental subjects. 

Iwahashi et al. (2009) used genomics to report on the physiology of medaka, which 

are used as a model animal for toxicity testing. Medaka mRNA expression was 

measured in individuals maintained within, as well as beyond, the Organization for 

Economic Cooperation and Development (OECD) guidelines for the fish acute 

toxicity test. They found that the toxic environment specified within the OECD 

guidelines did not affect the expression profiles of medaka and indicated that 

extraordinary conditions, beyond the guidelines, decreased reproducibility of data. 
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Takahashi et al. (2011) conducted microarray analysis to evaluate variations in 

whole blood gene expression patterns in different individual miniature pigs at 

different ages. The number of expressed genes and variation in gene expression 

intensity within miniature pigs of the same age were observed to converge with 

aging, and gene expression became uniform after 20 weeks of age. This report 

reveals the age at which genetic uniformity of the large animal model was reached. 

It is a basic concept of biological experiments that all conditions, except the 

variable being measured, must be the same. Demonstration of biological 

standardization and uniformity of genetic background using transcriptomics 

provides great value for laboratory animals in biological experiments. Such 

analyses allow for efficient and accurate experimental results and contribute to the 

standardization of breeding and rearing methods. 

 

4.4 Margin of safety 

Few studies have applied transcriptomics to the issue of food safety. We have 

introduced this new application of transcriptomics (Miura et al., 2016). We have 

used transcriptomics to demonstrate the safety of a diet consisting of a by-product 

of Japanese liquor production (shochu distilled water: SDW) for use as pig feed. 
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We evaluated the expression profiles of pigs fed with SDW, hyperlipid diet, and 

feed containing toxicant. We observed a high correlation between the gene 

expression profiles of the control and SDW feeding groups. Furthermore, the 

expression profiles of these two groups were different from those of the 

hyperlipidemia and toxicant model groups. These data indicated that feeding with 

SDW did not have a physiological effect on the pigs and assessed such feeding as 

safe. Therefore, microarray can be used to test foods and demonstrate proof of 

similarity with the normal state, making it a valuable approach for evaluating 

safety. 

In the medical field, preclinical and clinical drug safety studies are a key 

prerequisite of the drug approval process. Non-human primates and pigs are 

important models for such studies. Ebeling et al. (2011) reported the genetic 

similarity of the non-human primate Macaca fascicularis to human. However, from 

the viewpoint of animal welfare, usage of these species in animal experiments has 

declined, and the opportunity of animal experimentation is limited. Active 

utilization of transcriptomics, which can obtain a large volume of information 

simultaneously, improves our understanding of the in vivo pharmacokinetics of 

model organisms and provides a significant contribution to the global “3R” animal 
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welfare initiative: reduce, refine, and replace animal experiments. 

 

5. Conclusion 

Transcriptomics has allowed us to simultaneously identify gene expression dynamics 

and differential gene expression. Transcriptomics is useful to identify illness 

biomarkers as well as biological responses to various stimulations and stresses, and 

plays a key role in advancing genomic and molecular biology research. 

However, using this approach, we may overlook potentially important functions of 

genes that are not induced by the particular condition being examined. Not only 

should we concentrate on detecting specific differentially expressed genes, but we 

should also examine the entire expression profile. In addition, standardization of 

experimental conditions is essential and an absolute requirement for the legitimacy of 

the experiment. Uniformity of experimental conditions is brought about by 

adjustment of the technical, platform, and biological biases. 

In conclusion, transcriptome analysis can be used to validate the standardization of an 

experiment by eliminating biological biases. As well as using transcriptomics to 

identify change or variability, we should take advantage of these approaches as 
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evidence of the invariance, constancy, and reproducibility of our system of interest 

(Figure 1). 
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CHAPTER II  

 

Oligonucleotide microarray analysis of dietary-induced 

hyperlipidemia gene expression profiles in miniature pigs 
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1 Introduction 

Hyperlipidemia is well recognized as a risk factor for cardiovascular disease (CVD). As 

diet represents the most important determinant of hyperlipidemia, dietary animal models 

can be useful for the study of CVD progression (Lissner and Heitmann, 1995). High-fat, 

high- cholesterol, and high-sugar diets have been shown to induce hyperlipidemia, 

obesity, and insulin resistance in humans and rodents (Russell and Proctor, 2006; 

Oron-Herman et al., 2008; Radonjic et al., 2009). Dietary-induced hyperlipidemia pig 

models have also been established (Kobari et al., 1991; de Smet et al., 1997; Orbe et al., 

2001; Bowles et al., 2004; Yin et al., 2004; C. Zhang et al., 2006; De Keyzer et al., 

2009). 

Compared to rodents, pigs are a useful animal model for elucidating the molecular 

mechanisms underlying the transition from a healthy state to the progression of diseases 

caused by hyperlipidemia because they are able to breed stably over a long period, and 

have a similar anatomy and digestive physiology to humans (Simon and Maibach, 2000; 

Lunney, 2007). In addition, miniature pigs are easier to breed and to handle than other 

non-primates are, making them a convenient species for preclinical tests (Vodicka et al., 

2005). In September 2003, the Swine Genome Sequencing Consortium (SGSC) was 

formed to promote pig genome sequencing under international coordination (Schook et 
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al., 2005). The swine research environment has been enhanced since members of the 

SGSC announced a completed swine genome map in November 2009 (Archibald et al., 

2010). To evaluate temporal changes in gene expression profiles with the progression of 

dietary-induced alterations, minimally invasive blood sampling, which allows for the 

direct measurement of immune-responsive blood cells, excels over other invasive 

biopsy techniques for disease diagnostics and assessment of drug responses, as well as 

health monitoring. If biomarker candidate genes can be identified from blood analyses, 

these may be useful for diagnosis in humans. Use of whole blood is preferable to other 

specimens on two accounts. Firstly, RNA expression and degradation are susceptible to 

artificial manipulations such as cell separation and extraction. Whole blood 

manipulation can reduce these risks via the use of RNA blood collection tubes. Secondly, 

whole blood is an attractive prime tissue due to its critical role in immune responses, 

metabolism, and communication with cells and the extracellular matrix in almost all 

body tissues and organs. Whole blood will depart from the normal state when a 

considerable alteration occurs in some blood cell subpopulations, tissues, or organs. 

Moreover, blood samples can be obtained repeatedly from miniature pigs, and blood 

RNA contains an enormous amount of information on the expression of messenger 

RNA and non-coding functional RNA molecules that are not translated into proteins. 
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Thus, analysis of blood RNA provides an opportunity to detect subtle changes in 

physiological state. We consider it particularly important to identify gene expression 

characteristics in whole blood. Microarray techniques allow the detection of 

genome-wide perturbations in response to different treatments and the measurement of 

various responses using a multitude of gene probes. Toxicogenomics, in which 

microarray techniques are specifically used in toxicology tests, has been widely 

recognized as one of the standard safety procedures for chemicals (Tong et al., 2003; 

Pennie et al., 2004; Williams-Devane et al., 2009). Gene expression microarrays have 

been used particularly for the screening of genes involved in specific biological 

processes of interest. Microarrays also allow the clustering of genes according to similar 

patterns of expression or functions. In this study, we conducted a series of whole blood 

microarray experiments to evaluate long-term alterations during 27-week feeding 

periods using specific pathogen-free (SPF) miniature pigs. There are two main types of 

dietary protocols for hyperlipidemia pig models, one with cholesterol and animal lipids 

(Kobari et al., 1991; de Smet et al., 1997; Orbe et al., 2001; Bowles et al., 2004; De 

Keyzer et al., 2009), and the other with cholesterol, animal lipids, and sucrose (Yin et 

al., 2004; Zhang et al., 2006). Some studies have focused primarily on a subset of genes, 

but this approach cannot elucidate whole blood RNA profiles during the process of 
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change. We selected two typical dietary protocols. One was a high-fat and 

high-cholesterol diet (HFCD) containing 15% lard and 2% cholesterol; the other was a 

high-fat, high-cholesterol, and high-sucrose diet (HFCSD) containing 15% lard, 2% 

cholesterol, and 37% sucrose. The present microarray analyses of whole blood were 

conducted according to the following aspects. The first analysis dealt with similarity 

among individuals based on the correlation coefficient. Variation among individuals of 

the same dietary group and between the different dietary periods was examined. The 

second analysis addressed the function of genes. Up- or down-regulated genes for each 

dietary protocol were examined by functional categorization. While whole blood RNA 

derives from white blood cell RNA, whole blood gene expression profiles may not 

entirely correspond to those of white blood cells (Takahashi et al., 2011). White blood 

cell microarray analyses conducted at the end of each dietary period are greatly 

influenced by diet, and the variations between the expression profiles of white blood 

cells and whole blood were assessed for each dietary group 

 

2 Materials and Methods 

Animals  

Fifteen 12-week-old, male Clawn miniature pigs were housed individually in cages of 
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1.5 m2 at the breeder’s specific pathogen free (SPF) facility (Japan Farm Co., Ltd, 

Kagoshima, Japan) for 27 weeks. Body weights at the beginning of the experiment were 

5.1 (2.6) kg (mean (standard deviation; SD)). During this period, 5 pigs were fed with 

450 g/day standard dry feed (Kodakara73, Marubeni Nisshin Feed Co., Ltd., Tokyo 

Japan), and had unlimited access to water (control group). Five pigs were fed a high-fat, 

high-cholesterol diet containing 15% lard and 2% cholesterol (HFCD group). The 5 

remaining pigs were fed a high-fat, high-cholesterol and high-sucrose diet containing 

15% lard, 2% cholesterol, and 37% sucrose (HFCSD group). During dissections, the 

heart, liver, kidney, stomach, and spleen were excised and weighed immediately. 

 

Hematology and clinical chemistries  

Blood samples were collected from the superior vena cava after 5, 10, 14, 19, 23, and 27 

weeks of the feeding period. Blood (EDTA), plasma (EDTA), and serum samples for 

hematology and biochemical tests were collected 24 hours after fasting. Hematology 

and biochemical tests were conducted by Clinical Pathology Laboratory, Inc. 

(http://www.patho.co.jp/index.html) (Kagoshima, Japan) using standard clinical 

methods. 
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MIAME compliance and data availability 

The microarray experiments described in this manuscript were MIAME compliant and 

the raw data have been deposited in the Gene Expression Omnibus (GEO) database 

(Accession number GSE 32616, 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32616.) 

 

Preparation of samples and microarray assays  

Whole blood samples for microarray analyses were collected from each subject in 

PAXgeneTM tubes (Qiagen/BD GmbH, UK), incubated at room temperature for 4 hours 

for RNA stabilization, and then stored at -80°C. RNA was extracted from whole blood 

using the PAXgeneTM Blood RNA System Kit (Qiagen GmbH, Germany) according to 

the manufacturer’s guidelines. RNA from white blood cells was extracted from whole 

blood samples using a LeukoLOCK Total RNA Isolation kit (Ambion, Austin, TX). 

Isolations were performed according to the manufacturer’s protocol. The quality of the 

purified RNA was verified using an Agilent® 2100 Bioanalyzer (Agilent Technolo- gies, 

Santa Clara, CA). RNA concentrations were determined using a NanoDrop® ND-1000 

spectrophotometer (NanoDrop Technologies, Wilmington, DE). Fluorescent cyanine 

3-CTP– labeled cRNA was used for hybridization onto porcine oligo microarray slides 
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(#G2519F#20109, Agilent Technologies) containing 43,603 oligonucleotide probes at 

65℃ for 17 h. The hybridized microarray slides were washed according to the 

manufacturer’s instructions and were scanned with an Agilent DNA Microarray Scanner 

(#G2565BA, Agilent Technologies) at 5-μm resolution. The scanned images were 

analyzed numerically using Agilent Feature Extraction Software version 9.5.3.1. 

(Agilent Technologies). 

 

Microarray data analysis  

Normalized data using quantile normalization were analyzed using GeneSpring GX 

software version 10.0.1 (Agilent Technologies). The Gene Ontology (GO) Database 

(http://www.geneontology.org/) was used to categorize gene expression profiles 

functionally. GO terms were obtained from the TIGR pig gene indices, Porcine version 

14.0 3-11-10 (http://compbio.dfci.harvard.edu/cgi-bin/tgi/gimain.pl?gudb=pig). The TC 

Annotator List includes the gene number and the GO terms. Out of the 43,603 probes 

used in the Agilent porcine microarray (#G2519F#20109), GO annotations were 

available for 6,019 genes. Microarray cDNA probes were classified according to GO 

terms for different biological processes. For the microarray data analyses, we focused 

particularly on the variation of dietary-related gene expression profiles. Initially, 
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microarray spots of interest were divided into 2 groups: ‘‘absent’’ and ‘‘present,’’ using 

the flag values provided by the scanner. Background levels were determined from the 

spots outside of the gene probing area. ‘‘Absent’’ was assigned to spots with a signal 

intensity that was less than that of the background level, while the rest were marked 

“present”. Only data for ‘‘present’’ spots were used for the analyses. The intensity ratio 

of white blood cell gene expression to that of whole blood is a contribution indicator for 

white blood cell RNA to whole blood RNA. The relation of tissues or organs ESTs to 

the white blood cell contribution indicator was examined. To focus on obesity-related 

organs, i.e., the liver, adipose tissue, and muscle, the relative EST numbers of these 

organs to blood ESTs for each gene were calculated using EST profiles from the 

Unigene NCBI database of the transcriptome. An EST profile breakdown of 22,000 

porcine genes by body site is available, comprising 40 organ types, such as the lung, 

ovary, liver, adipose tissue, muscle, and blood. The profiles show gene expression 

patterns inferred from EST counts and cDNA library sources 

(http://www.ncbi.nlm.nih.gov/UniGene/). 

 

Statistical analysis  

Continuous variables were analyzed using a one-way factorial ANOVA followed by a 
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Tukey-Kramer multiple comparisons test for multiple groups. After excluding the 

unexpressed genes from each set of array data, Pearson correlation coefficients were 

calculated to identify similarities in gene expression among individuals. Pearson 

correlation coefficients were analyzed by a one-way factorial ANOVA using Fisher’s 

Z-transform to normalize the correlation distribution. Correlations were considered 

statistically significant for ANOVA tests among all groups and t-tests between 2 groups 

when p < 0.05. All values were expressed as non-transformed mean (standard deviation 

(SD)). Genes with a fold change greater than 2.0 (p < 0.05) and less than 0.5 (p < 0.05) 

after 10, 19, and 27 weeks were identified. These genes were mapped to the Gene 

Ontology and KEGG pathway in the Database for Annotation, Visualization and 

Integrated Discovery (DAVID Bioinformatics Resources 6.7, National Institute of 

Allergy and Infectious Diseases, http://david.abcc.ncifcrf.gov/) (Dennis et al., 2003; D. 

W. Huang et al., 2009). Chi-square tests were performed for feature extractions of GO 

terms. The expected values were the number of up- and down-regulated genes bearing 

all GO annotations, and the observed values were specific to each GO term. Simple 

linear regressions were performed for the scatter plots to obtain the slopes and intercepts, 

and the significance of each regression slope was verified. 
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Ethical considerations  

All experimental protocols were approved by the Committee for the Care and Use of 

Experimental Animals at AIST (Permit Number: 2009-055A). 

 

3 Results 

Characteristics of study subjects  

Temporal changes in mean body weights for the 3 dietary groups are shown in Figure 2. 

One-way ANOVA analysis for dietary-related variation revealed no significant 

difference at any feeding period except at week 12. In this study, the term ‘‘week’’ refers 

to the dietary period and not to the period since birth, unless otherwise stated. Table 3 

lists the fasting plasma triglyceride concentrations for the group fed the high-fat, 

high-cholesterol diet (HFCD) and the group fed the high-fat, high-cholesterol, and 

high-sucrose diet (HFCSD). Almost no changes were observed in fasting plasma 

triglyceride levels. Fasting plasma total cholesterol concentrations had increased in the 

HFCD group and the HFCSD group by week 5 of the feeding period (p < 0.001) and 

were maintained between 350 and 1150 mg/dL from weeks 10–27 (Table 4). Fasting 

plasma high-density lipoprotein cholesterol (HDL-C) concentrations increased and 

showed significant differences (p < 0.001) from weeks 10–27 between two dietary 
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treatment groups and control (Table 5). Fasting plasma low-density lipoprotein 

cholesterol (LDL-C) concentrations also increased and showed significant differences 

from weeks 5–27 between two dietary treatment groups and control (Table 6). Fasting 

plasma glucose concentrations remained unchanged (Table 7). The number of white 

blood cells and the ratios of granulocytes (basophiles, eosinophils, neutrophils, 

lymphocytes, and monocytes) to white blood cells were not statistically significant 

among the three test groups (Table 8–13). The liver (p < 0.001) and spleen (p < 0.01) 

weights were increased significantly compared to the controls in both the HFCD and 

HFCSD groups. In contrast, the heart, kidney, and stomach weights remained 

unchanged (Table 14). 

 

Microarray gene expression profiles – Correlation of gene expression  

RNA analyses were conducted on blood samples obtained at weeks 10, 19, and 27 of the 

feeding periods to characterize the dietary effects on gene expression profiles in whole 

blood and white blood cells of miniature pigs. Each RNA sample was analyzed by 

porcine gene expression microarray consisting of 43,603 oligonucleotide probes. We 

evaluated variation in correlation coefficients among individuals on the same diet and 

between different diet groups. 
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Pearson correlation coefficients were used for the correlation analysis. Correlation 

coefficients for 45 microarrays in total were obtained for a normalized signals log-scale 

after excluding ‘‘absent’’ spots, definition of ‘‘absent’’ were described in Materials and 

Methods. A color-coded pairwise correlation matrix is displayed in Figure 3. Figure 4 

illustrates the mean correlation coefficients for gene expression profiles among 

individuals within the same dietary group, showed the individual difference of the gene 

expression profiles within the dietary groups during dietary period. Figure 5 presents the 

mean correlation coefficients for gene expression profiles among different diet groups. 

The correlation coefficients of whole blood expression profiles within the same diet 

groups were 0.97 (0.01) (mean (standard deviation; SD)), 0.94 (0.05), and 0.97 (0.01) 

for the control, HFCD, and HFCSD whole blood at 10 weeks, 0.94 (0.03), 0.93 (0.06), 

and 0.95 (0.01) at 19 weeks, and 0.95 (0.02), 0.95 (0.03), and 0.98 (0.01) at 27 weeks, 

respectively. The correlation coefficients of white blood cell expression profiles within 

the same dietary groups were 0.94 (0.05), 0.95 (0.03), and 0.96 (0.02) for the control, 

HFCD, and HFCSD groups at 27 weeks, respectively. Using Fisher’s Z-transformation 

to normalize the correlation distributions, no significant differences in correlation 

coefficients among dietary groups were observed at any period during the treatments. 

This indicates uniformity of dietary- induced hyperlipidemia for our protocols. Next, we 
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analyzed expression profile correlations among the different diet groups. In Figure 5, 

‘‘control vs. HFCD’’ represents the mean correlation coefficient between control and 

HFCD group individuals. The whole blood correlation coefficients among the different 

diet groups were 0.95 (0.04), 0.97 (0.01), and 0.96 (0.04) for control vs. HFCD, control 

vs. HFCSD, and HFCD vs. HFCSD at 10 weeks, 0.93 (0.03), 0.94 (0.02), and 0.95 

(0.03) at 19 weeks, and 0.95 (0.03), 0.91 (0.03), and 0.95 (0.03) at 27 weeks, 

respectively. The white blood cell correlation coefficients among the different diet 

groups were 0.94 (0.04), 0.94 (0.03), and 0.96 (0.02) for control vs. HFCD, control vs. 

HFCSD, and HFCD vs. HFCSD at 27 weeks, respectively. Correlations of whole blood 

expression profiles were statistically significant according to an ANOVA test among all 

groups at 27 weeks, as a low correlation coefficient was obtained for the control vs. 

HFCSD groups. This indicates HFCSD differs much from control group and slightly 

from HFCD 27 weeks in whole blood gene expression profiles. 

Figure 6 displays the average correlation coefficients between whole blood and white 

blood cell expression profiles within the same dietary group. The correlation 

coefficients were 0.83 (0.04), 0.79 (0.07), and 0.74 (0.05) for control, HFCD, and 

HFCSD at 27 weeks, respectively. Significant differences were observed between the 

control and HFCSD groups according to an ANOVA analysis using Fisher’s Z-transform 
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(p < 0.01). 

 

Assigning known functions to gene expression – Gene ontology annotation  

We identified up- and down-regulated genes and classified these according to function 

using information from the Gene Ontology (GO) Database to understand the observed 

differences in whole blood gene expression profiles for the different dietary groups. 

Top-ranked genes with fold changes in expression greater than 2.0 (p < 0.05; HFCD, 

Table 15; HFSCD, Table 16) and less than 0.5 (p < 0.05; HFCD, Table 17; HFSCD, 

Table 18) were selected at 10, 19, and 27 weeks. Genes TC440907, TC448587 

(ABCA1), and TC438339 were ranked highest in HFCD and HFCSD during the dietary 

period. These genes were analyzed using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID; Table 19, HFCD; Table 20, HFCSD). As a result, the GO 

categories of many genes up-regulated at the end of the 19- week dietary period in both 

HFCD and HFCSD groups were related to nucleotide binding (GO: 0000166, GO: GO: 

0005524, 0005525, GO: 0017076, GO: 0019001, GO: 00032553, GO: 00032555, GO: 

0032561). The GO categories of gene up- regulated after 19 weeks in the HFCD group 

only were related to catabolic processes (GO: 0009057, GO: 0019941, GO: 0030163, 

GO: 0043632, GO: 0044257, GO: 0044265,). Many genes down-regulated after 27 
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weeks in both HFCD and HFCSD groups were in the GO categories related to 

biological adhesion (GO: 0007155, GO: 0022610). In addition, many genes down- 

regulated at the end of the 27-week dietary period in the HFCSD group only were 

related to steroid metabolism and lipid biosynthesis (GO: 0006694, GO: 0008202, GO: 

0008203, GO: 0008610, GO: 0016125, GO: 0016126). To investigate potential reasons 

for the differences in gene expression among the diet groups during the dietary period, 

Chi- square tests were performed to identify whole blood GO categories for each 

treatment group vs. the control group. The expected values represented the number of 

up- and down-regulated genes bearing all GO annotations at each period of the diet, and 

the observed values represented the number of up- and down- regulated genes bearing 

each specific GO term. A difference of p < 0.05 between groups was considered 

significant. To identify up- and down-regulated genes, we compared levels of 

expression for each gene between the control vs. HFCD groups and between the control 

vs. HFCSD groups at each period using Student’s t-tests. As the lowest number of genes 

for which the expectation frequency reached 1 or higher was 140 according to the 

conditions of observed value, the GO terms, which involve more than 140 genes, were 

used for the Chi-square tests. The results of the Chi- square tests for up- and 

down-regulated genes are listed in Tables 21–24. The correlation coefficients of 
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constituent gene between whole blood and white blood cells at 27 weeks were 

calculated for each GO term. Table 21 lists the GO terms for which significant 

differences were observed in the HFCD and HFCSD groups relative to the expected 

values. Inflammatory response elements (GO:0006954) were repressed in the HFCD 

group, and were both induced and repressed in the HFCSD group. The correlation 

coefficients between whole blood and white blood cells for expression levels of 

inflammatory response genes were 0.92 (0.03), 0.97 (0.02), and 0.95 (0.02) for the 

control, HFCD, and HFCSD groups, respectively. Genes involved in reproduction 

(GO:0000003) were induced in the HFCD group, and were both induced and repressed 

in the HFCSD group. The correlation coefficients for expression levels of genes 

involved in reproduction between whole blood and white blood cells were 0.91 (0.02), 

0.93 (0.03), and 0.88 (0.03) for the control, HFCD, and HFCSD groups, respectively. 

Table 22 lists the GO terms for which significant differences were observed in the 

HFCD group compared to the expected values. Muscle contraction (GO:0006936) and 

locomotor behavior (GO:0007626) elements were both induced and repressed. Muscle 

organ development (GO:0007517) and metabolic processes (GO:0008152) were 

repressed.  

Table 23 lists the GO terms for which significant differences were observed in the 
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HFCSD group compared to the expected values. Translation (GO:0006412), embryonic 

development ending in birth or egg hatching (GO:0009792), electron transport 

(GO:0006118), and transcription from the RNA polymerase II promoter (GO:0006366) 

elements were both induced and repressed. Positive regulation of growth rates 

(GO:0040010), nematode larval development (GO:0002119), intracellular protein 

transport (GO:0006886) and growth (GO:0040007) elements were induced. A cell 

surface receptor-linked signaling pathway (GO:0007166) and responses to hypoxia 

(GO:0001666) were repressed. 

Table 24 lists the GO terms for which ratios to the expected values were unchanged in 

the HFCD and HFCSD groups. In addition, the ratios of up- and down-regulated genes 

to the each observed values were unchanged at 27 weeks. 

Figure 7 depicts a scatter plot of correlation coefficients between whole blood and white 

blood cells for each GO term, selected for the Chi-square tests, at 27 weeks of each 

dietary treatment group relative to the control group. The slope of the HFCD to the 

controls regression line was 1.007 (p < 0.001). The slope of the HFCSD to the controls 

regression line was 1.097 (p < 0.001), indicating that the correlation coefficients 

between whole blood and white blood cell expression levels for many GO terms were 

low. The predominant GO terms with low correlation coefficients in the HFCSD group 
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were nervous system development (GO:0007399), biological processes (GO:0008150), 

signal transduction (GO:0007165), regulation of transcription, DNA-dependent 

(GO:0006355), and cell proliferation (GO:0008283). In contrast, the predominant GO 

terms with high correlation coefficients in the HFCSD group were skeletal system 

development (GO:0001501), small GTPase mediated signal transduction (GO:0007264), 

synaptic transmission (GO:0007268), cell surface receptor linked signaling pathway 

(GO:0007166), and transcription from the RNA polymerase II promoter (GO:0006366). 

The intensity ratio of white blood cells to whole blood is a contribution indicator of the 

white blood cell RNA to whole blood gene expression. To focus on obesity-related 

organs, i.e., the liver, adipose tissue, and muscle, the relative numbers of ESTs for these 

organs to blood ESTs for each gene were calculated using EST profiles from the 

Unigene NCBI database of the transcriptome. The normalized EST values increase 

when the contribution indicator is small, as shown in Figure 8. 

 

4 Discussion 

This study aimed to evaluate the transition of gene expression profiles caused by 

dietary-induced hyperlipidemia through blood microarray analyses of miniature pigs 

during a 27-week dietary period. 
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Dietary-induced hyperlipidemia miniature pig models have previously been established. 

There are 2 main types of dietary protocol, one containing cholesterol and animal lipids  

(Kobari et al., 1991; de Smet et al., 1997; Orbe et al., 2001; Bowles et al., 2004; Keyzer 

et al., 2009), and the other containing cholesterol, animal lipids, and sucrose (Yin et al., 

2004; Zhang et al., 2006). Some studies have focused their attention on certain kinds of 

candidate genes with specific functions, but this has not clarified a complete projection 

of whole blood RNA profiles of the transitions caused by diet-induced hyperlipidemia. 

Excessive exposure to dietary fats and/or sugars is an essential factor in the initiation of 

obesity and metabolic syndrome-associated pathologies, two typical conditions 

associated with diet-induced hyperlipidemia. The fasting plasma total cholesterol level 

in- creased within a month, and then, either remained high or decreased in the high-fat 

and high-cholesterol diet (HFCD) models (Kobari et al., 1991; Bowles et al., 2004; 

Keyzer et al., 2009). In contrast, fasting plasma total cholesterol levels increased 

throughout the dietary period in the high-fat, high-cholesterol, and high-sucrose diet 

(HFCSD) models (Zhang et al., 2006). Therefore, in the present study, hyperlipidemia 

was induced by the administration of a high- fat and high-cholesterol diet or a high-fat, 

high-cholesterol, and high sucrose diet to Clawn miniature swine. 

Fasting plasma lipid values increased rapidly and were maintained at a high level during 
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the 27-week feeding period under both feeding treatments. However, fasting plasma 

glucose concentrations remained unchanged. The liver and spleen weights increased 

significantly after the 27 weeks, and fatty livers were reported based on autopsies of 

individuals from both treatment groups. There was no significant difference in body 

weight, hematology, or other biochemical aspects of blood between individuals from the 

2 dietary treatments. 

 

Gene expression profiles of dietary-induced hyperlipidemia for whole blood RNA  

We used whole blood to evaluate the transition of gene expression profiles. Whole 

blood RNA is easy to handle compared to isolated white blood cell RNA. In addition, 

whole blood contains a heterogeneous mixture of subpopulations of blood cells. 

Associated changes will be reflected on whole blood RNA once a great change has 

occurred in the composition and expressing condition of subpopulations, tissues, or 

organs. We previously evaluated the ‘‘healthy state’’ gene expression profile by whole 

blood microarray analyses of miniature pigs of different age groups, and identified 

characteristics of age-related gene expression by taking into account the change in the 

number of expressed genes by age and the similarities of gene expression intensity 

between individuals (Takahashi et al., 2011). The report on the healthy state of 
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miniature pigs found that the correlation coefficients within the same age groups were 

0.87 (0.04), 0.93 (0.03), 0.98 (0.01), and 0.96 (0.02), for the fetal stage, and for 12-, 20-, 

and 30-week-old male pigs, respectively. Variation in gene expression was greatest for 

younger subjects and diminished with age. These results indicate that uniformity of 

laboratory animals can be expected in miniature pigs after 20 weeks of age. In this study, 

feeding treatments commenced when the pigs were 12 weeks old, RNA analysis was 

conducted on whole blood sampled after 10, 19, and 27 weeks of the feeding period, 

and on white blood cell RNA after 27 weeks. Variation in whole blood gene expression 

intensity among individuals within either the HFCD or the HFCSD group was in the 

same range as that of the controls at any period, indicating uniformity of 

dietary-induced hyperlipidemia expression profiles in miniature pigs. 

 

Effects of white blood cells on whole blood gene expression profiles in dietary-induced 

hyperlipidemia  

Most of the nucleated cells in blood are white blood cells such as neutrophils, T cells, B 

cells, and monocytes. Min et al. (2010) reported highly correlated results (r2=0.85) for 

8,273 genes expressed in both whole blood RNA and peripheral blood mononuclear cell 

(PBMCs) RNA samples from healthy volunteers. Other researchers have conducted a 



52 
 

large-scale genome-wide expression analysis of white blood cell subpopulations (Cobb 

et al., 2005). That study indicated that correlation coefficients for T cells and monocytes 

among different healthy subjects were 0.98 (0.01) and 0.97 (0.01), respectively. 

However, the correlation coefficient between T cells and monocytes for the same 

subjects (n=5) was 0.88 (0.01), indicating varied correlations between white blood cell 

subpopulations (Cobb et al., 2005). We believe that no effects of composition ratio of 

white blood cell subpopulations were observed in our study, because the ratios of 

granulocytes (neutrophils, eosinophils, and basophils), lymphocytes, and monocytes to 

white blood cells were statistically insignificant among the three test groups. 

In previous studies, tumor-derived RNA was detected in the circulation of cancer 

patients (Kopreski et al., 1999; Lo et al., 1999). It has also been demonstrated that fetal 

RNA can be detected in maternal plasma (Poon et al., 2000). These results indicate that 

whole blood RNA may contain RNA originating from the tissues and/or organs. 

Hyperlipidemia is one of the risk factors associated with atherosclerosis. 

Atherosclerosis was induced by the administration of a high-fat and high-diet to 

Göttingen miniature swine for a 6-month period (Kobari et al., 1991). The liver and 

spleen weights were increased significantly compared to the controls in both the HFCD 

and HFCSD groups in our experiment at the end of each dietary period. Thus white 
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blood cell microarray analyses were conducted at the end of each dietary period, as the 

tissues and/or organs, such as the liver, spleen, and blood vessels, were presumed to be 

influenced by dietary treatment. 

The average white blood cell correlation coefficients within the HFCD and HFCSD 

groups were in the same range as that of the controls after the 27-week feeding period. 

However, variation in whole blood gene expression intensity between the HFCSD group 

and the control group was statistically significant, whilst variation in white blood cell 

gene expression intensity between the HFCSD group and the control group was not 

significant after the 27-week feeding treatments. In addition, the HFCSD correlation 

coefficient between whole blood and white blood cells after 27 weeks was significantly 

lower than that of the control and HFCD groups. 

The intensity ratio of white blood cell gene expression to that of whole blood shows the 

contribution of white blood cell RNA to whole blood RNA samples. The intensity ratio 

of white blood cells to whole blood is, therefore, considered as the contribution 

indicator. We assume that the low intensity ratio of white blood cell to whole blood gene 

expression indicates a greater contribution of tissues and/or organs RNA to whole blood 

RNA. We then compared the EST numbers of the tissue or organ with the contribution 

indicator, focusing on obesity-related organs such as the liver, adipose tissue, and 
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muscle. The number of gene ESTs for each tissue or organ normalized to blood ESTs 

becomes greater when the contribution indicator is small. As a result, we suggest that 

RNAs originating from tissues and/or organs are present in whole blood. 

 

Characteristics of gene expression profiles in dietary- induced hyperlipidemia 

It is generally acknowledged that excessive exposure to dietary lipids disrupts the 

homeostasis of cellular metabolism and triggers an inflammatory response in adipose 

tissue (Hotamisligil, 2006). An enhanced inflammatory response has been observed in 

the livers of mice fed on high-fat diets and in skeletal muscles of Otsuka Long-Evans 

Tokushima Fatty (OLETF) rats using microarrays (Hayashi et al., 2010). We examined 

dietary-induced transitions of gene expression profiles for genes bearing GO terms. 

Major changes included an induction of proteins involved in catabolic processes and 

protein metabolism after a 19-week dietary period, especially in the HFCD group, and a 

reduced expression of proteins involved in steroid metabolism and lipid biosynthesis 

after a 27-week dietary period, especially in the HFCSD group. 

In whole blood samples, some genes involved in inflammatory responses (GO: 

0006954) were down-regulated in the HFCD group, whilst some genes involved in 

inflammatory responses were up-regulated and others were down-regulated in the 
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HFCSD group. It has been established that skeletal muscle is an obesity-related organ, 

such as the liver and adipose tissue, in association with insulin resistance (Krotkiewski, 

1994; Roberts et al., 2002; Hotamisligil, 2006). Indeed, 2 out of 4 GO terms (muscle 

contraction, GO: 0006936, muscle organ development, GO: 0007517) that were 

statistically significant in the HFCD group were related to muscle function. Genes 

involved in reproduction (GO: 000003) were induced in the HFCD group, and were 

either induced or repressed in the HFCSD group. Asexual reproduction is the process by 

which an organism creates a genetically similar or identical copy of itself without the 

contribution of genetic material from another individual, and some genes involved in 

asexual reproduction are linked to the repair of damaged organs. Genes involved in 

translation (GO: 0006412), positive regulation of growth rate (GO: 0040010), and 

growth (GO: 004007) were induced in the HFCSD group, and these processes are also 

linked to organ repair. Meanwhile, GO terms that were statistically significant in the 

HFCSD group were mainly associated with cellular volatility, such as cellular activity, 

cell growth, or cellular responses. 

We examined correlations between whole blood and white blood cells for genes bearing 

GO terms. The correlation coefficients for each GO term were calculated for the control, 

HFCD, and HFCSD groups after the 27-week feeding treatments. As a result, GO terms 
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related to white blood cell function, including inflammatory responses (GO: 0006954), 

and cell surface receptor-linked signaling pathways (GO: 0007166) show high 

correlation coefficients in the control and dietary groups. In contrast, GO terms related 

to the repair of damaged organs, including translation (GO: 0006412), positive 

regulation of growth rate (GO: 0040010), and growth (GO: 004007), show low 

correlation coefficients in the HFCSD group. 

The differences in the scatter plot regression slopes between the HFCD and control 

treatments and between the HFCSD and control treatments did not indicate a decrease 

in the extraction efficiency of RNA due to inhibitory substances in blood. In a previous 

study of microarray cDNA expression profiles using 23 healthy porcine tissue 

specimens, a large portion of the genes exhibited tissue-specific expression in 

agreement with mappings to gene descriptions (Hornshøj et al., 2007). In our study, the 

minimum correlation coefficient for each GO term was 0.737 (0.038), while the 

maximum was 0.989 (0.004), indicating different values related to functions. The reason 

for the lower correlation may be due to the differences in gene expression between 

blood cells and organs, and because a stronger tendency for a decrease in correlation 

strength was observed in the HFCSD group as compared to the HFCD group. Our EST 

profile analysis also supported this assumption. 



57 
 

Statistically significant differences in fasting plasma lipids and glucose levels between 

the HFCD and HFCSD groups were not observed. However, blood RNA analyses 

demonstrated differences in the characteristics of dietary components between these 

groups. By considering variation in the dietary-induced hyperlipidemia gene expression 

profiles of miniature pigs, we have established that whole blood RNA analyses can be 

used in practical applications. The blood RNA diagnostics under development may 

eventually be useful for monitoring human health. 

 

5 Conclusion 

In this study, no statistically significant differences in fasting plasma lipids and glucose 

levels between the HFCD and HFCSD groups were observed. However, blood RNA 

analyses revealed different characteristics corresponding to the dietary protocols. In 

conclusion, whole blood RNA analyses proved to be a useful tool to evaluate transitions 

in dietary-induced hyperlipidemia gene expression profiles in miniature pigs. 
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Table 3. Fasting plasma triglyceride levels (mg/dL). 

 

 

Table 4. Fasting plasma total cholesterol levels (mg/dL). 
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Table 5. Fasting plasma HDL cholesterol levels (mg/dL). 

 

 

 

Table 6. Fasting plasma LDL cholesterol levels (mg/dL). 
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Table 7. Fasting plasma glucose levels (mg/dL). 

 

 

Table 8. White blood cell count (102/μL). 
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Table 9. The ratio of basophils to white blood cells (%). 

 

 

Table 10. The ratio of eosinophils to white blood cells (%). 
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Table 11. The ratio of neutrophils to white blood cells (%). 

 

 

Table 12. The ratio of lymphocytes to white blood cells (%). 
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Table 13. The ratio of monocytes to white blood cells (%). 

 

 

Table 14. Effect of diet on organ weight of miniature pigs (g). 
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Table 15. Top 10 significantly up-regulated genes in HFCD. 

 

 

Table 16. Top 10 significantly up-regulated genes in HFCSD. 

 

 

Table 17. Top 10 significantly down-regulated genes in HFCD. 
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Table 18. Top 10 significantly down-regulated genes in HFCSD. 

 

 

Table 19. Functional classes of up- or down-regulated genes between HFCD and 

control. 
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Table 20. Functional classes of up- or down-regulated genes between HFCSD and 

control. 

 

 

Table 21. Predominant GO terms for which the ratio changed in HFCD and HFCSD. 
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Table 22. Predominant GO terms for which the ratio changed in HFCD. 

 

 

 

 

Table 23. Predominant GO terms for which the ratio changed in HFCSD. 
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Table 24. Predominant GO terms for which the ratio unchanged in HFCD or HFCSD. 
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CHAPTER III  

 
Evaluation of the physiology of miniature pig fed Shochu 

distillery waste using mRNA expression profiling 
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1 Introduction 

Shochu is a traditional Japanese distilled spirit made from sweet potato, rice, barley, 

buckwheat, and sugar cane. The consumption of imo-Shochu, which is made from sweet 

potato, has rapidly increased in recent years. In the production process, large amounts of 

distillery waste remain after fermentation. In 1996, sea dumping of Shochu distillery 

waste (SDW) was prohibited by the London treaty. Therefore, development of a 

procedure for the disposal of this industrial waste has become a serious issue. One 

potential method that many researchers are addressing is to use SDW as a feed for 

livestock because of the abundance of useful nutrients and functional ingredients 

(Kawaida et al., 1989, 1990, 1991; Mahfudz et al., 1996; Kamizono et al., 2010; 

Hayashi, 2012).  

The miniature pig is a useful animal model for documentation of vital reactions and 

molecular mechanisms because 1) it can be used in long-term experiments owing to its 

long life-span and 2) its size and short reproduction cycle allow for easier breeding and 

handling (Vodicka et al., 2005; Gutierrez et al., 2015). Furthermore, the Swine Genome 

Sequencing Consortium (SGSC) was organized in 2003 to sequence the pig genome 

(Schook et al., 2005), and pig genomics research was further enhanced because of the 
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completion of the pig genome map by members of the SGSC in 2009 (Archibald et al., 

2010). One miniature pig strain, the Clawn miniature pig, was established in 1978 by 

Nakanishi (Nakanishi et al., 1991). It was bred and maintained in a specific closed 

group as an inbred laboratory animal; therefore, it has limited inter-individual 

differences in its physiology (Nakanishi et al., 1991). In addition, our study revealed 

that gene expression patterns of miniature pigs become uniform after 20 weeks of age; 

therefore, after this age, they are physiological stable (Takahashi et al., 2011). Variation 

in gene expression among individuals is lost after 20 weeks of age, and high 

reproducibility of experimental results is obtained with the Clawn miniature pig model. 

Microarray analysis is a useful tool for rapidly obtaining a large amount of gene 

expression information. This technique allows for the identification of genes that vary in 

expression in response to various stresses. In toxicogenomic studies, it is one of the 

standard procedures for the evaluation of biological responses to stimuli, and the 

elucidation of the mechanisms behind these responses (Tong et al., 2003; Pennie et al., 

2004; Williams-Devane et al., 2009). Especially for animal models in long-term studies, 

microarray analysis of whole blood is an important tool for the evaluation of 

physiological state because of its availability and the non-invasive nature of sample 

collection. Whole blood is an important tissue, because it plays key roles in immune 
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responses, metabolism, and communication between cells and the extracellular matrix in 

almost all tissues and organs. Moreover, because blood samples can be collected 

repeatedly from the same individual, it can be used for temporal assessments. Blood 

RNA contains substantial amounts of information regarding the expression of 

messenger RNA and non-coding functional RNA molecules. Numerous studies have 

revealed the function of blood as a biomarker of pathological changes occurring in other 

tissues, and for characterizing these pathological changes (Liew et al., 2006; Bushel et 

al., 2007; Staratschek-Jox et al., 2009; Umbright et al., 2010; Fricano et al., 2011). 

In this study, we performed a feeding experiment using the SDW diet and a pig model, 

and evaluated the effects of the diet on pig physiology. 

 

2 Materials and methods 

Animals and diet. 

Eight female Clawn miniature pigs, aged 8–9 months, were housed individually in 1.5 

m2-cages at the conventional facility of the breeder (Japan Farm Co., Ltd., Kagoshima, 

Japan). During this period, all animals were fed 450 g/day standard dry feed 

(Kodakara73, Marubeni Nisshin Feed Co., Ltd., Tokyo, Japan), with free access to 
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water. The pigs were divided into two experimental groups: the control group (n = 4) 

was fed standard dry feed and the experimental group (n = 4) was fed the SDW feed. 

All pigs were provided with 450 g/day of either standard dry feed or SDW feed 

(composed of standard dry feed:water:SDW in a 1:1:1 ratio). The diet was administered 

to the pigs during an experimental period of three months. Fresh SDW was obtained 

from Okuchi Liquor Co., Ltd., (Kagoshima). 

 

Body measurement.  

Body weight and length were measured at the beginning and end of the feeding period. 

Body length (from the base of the neck to the base of the tail) was measured using a 

measuring tape.  

 

Hematology and clinical chemistries.  

All blood samples were collected from the superior vena cava at the end of the 

experimental period. Blood (prevented from clotting with ethylenediaminetetraacetic 

acid [EDTA]), plasma (with EDTA), and serum samples were collected for hematology 

and biochemical tests. Hematology and biochemical tests were conducted by the 
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Clinical Pathology Laboratory, Inc. (http://www.patho.co.jp/index.html) (Kagoshima, 

Japan) using standard clinical methods. 

 

Preparation of samples and RNA extraction.  

For microarray analysis, 16–20 mL of blood was collected from each subject, placed in 

two PAXgene™ tubes (Qiagen/ BD GmbH, Crawley, U.K.), incubated at 18–25°C for 4 

h for RNA stabilization, and stored at -80°C. Total RNA was extracted from whole 

blood using the PAXgene™ Blood RNA System Kit (Qiagen GmbH, Hilden, Germany) 

according to the manufacturer's guidelines. Quantification of extracted RNA was 

performed with a NanoDrop® ND-1000 spectrophotometer (NanoDrop Technologies, 

Wilmington, DE). Quality of the purified RNA was confirmed on an Agilent® 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, CA).  

 

Microarray assay. 

Labeled cDNA with fluorescent Cyanine 3-CTP was used for hybridization onto 

porcine gene expression microarray template slides (44K) (#G2519F#20109, Agilent 

Technologies) using the in situ Hybridization Kit Plus (Agilent Technologies). Array 

slides were incubated at 65°C for 17 h in microarray hybridization chambers (Agilent 
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Technologies). After hybridization, microarray slides were washed following the 

manufacturer's protocol, and were scanned with an Agilent DNA Microarray Scanner 

(#G2565BA, Agilent Technologies) at 5-μm resolution. The scanned images were 

analyzed using Agilent Feature Extraction Software, version 9.5.3.1 (Agilent 

Technologies). 

 

Analysis of microarray data.  

The signal intensity of each gene was globally normalized using quantile normalization. 

Background levels were defined by the spots outside of the gene probing area. Using the 

Agilent microarray slides, spots of each probe were divided into two groups: “absent” 

and “present” using the flag values provided by the scanner. “Absent” spots had a signal 

intensity that was less than that of the background level, whereas the rest of the spots 

were designated as “present”. Only data for “present” spots were used for the analysis. 

The data were analyzed using Pearson’s correlation coefficient. Correlation data were 

converted using the z-Fisher transformation, and were tested for significant differences 

using a one-way analysis of variance (ANOVA) followed by the Tukey's post-hoc test 

among all groups, and Welch’s t-tests between two groups. A probability of a false 

positive of p < 0.05 was considered statistically significant. The expression data were 
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logarithm-transformed and grouped using hierarchical cluster analysis in the Gene 

Cluster 3.0 program (de Hoon et al., 2004) available from: 

http://bonsai.hgc.jp/~mdehoon/software/cluster/. To create the hierarchical clustering 

map, we used the Java Treeview program (Saldanha, 2004) available from: 

http://jtreeview.sourceforge.net/. 

 

Ethical considerations.  

All experimental protocols were approved by the Committee for the Care and Use of 

Experimental Animals at AIST (Permit Number: 2016-055). 

 

3 Results 

Physical examination.  

There was no difference in preference between the control and SDW diets; thus, the 

same volume of feed was consumed by both groups. Temporal changes in mean body 

length and weight for the two dietary groups are shown in Figure. 9. Body length and 

weight did not differ according to the dietary treatment at any time, and the variables 
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increased smoothly in both groups during the feeding period. Paired t-test analysis for 

dietary-related variation revealed no significant difference at any time.  

 

Hematological analysis.  

Table 25 lists the results of the hematological analysis. Hematopoietic parameters are 

some of the most sensitive markers to assess toxicity in humans and non-human animals 

(Liju et al., 2013). Very few differences were observed in the complete blood count test 

(white blood cell count, red blood cell count, hemoglobin concentration, mean 

corpuscular volume, and platelet count) between the two groups. Based on the blood 

biochemical analysis, no phenotypic parameter changes, such as hepatic dysfunction 

(total bilirubin, aspartate transaminase, alanine transaminase, alkaline phosphatase, and 

γ-glutamyltransferase), renal dysfunction (urea nitrogen, creatinine, and uric acid), or 

pancreatic dysfunction (serum amylase) were caused by toxicity of the SDW diet. 

Additionally, the parameters indicating the nutritional state of the animals (e.g., total 

protein, total cholesterol, and albumin) were normal in the SDW diet-treated pigs. There 

was also no abnormality in lipid metabolism (triglycerides), glycometabolism (blood 

glucose), clotting function (prothrombin time, activated partial thromboplastin time, and 

fibrinogen level), or electrolyte concentration (Na, Cl, K, and Ca) in the SDW diet-fed 
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group. Statistically significant differences, according to t-test analysis, between the 

values from the control and SDW groups were not observed for any item. 

 

Microarray analysis of gene expression profiles.  

RNA analyses were conducted with blood samples obtained at the end of the feeding 

period to characterize the dietary effects on gene expression profiles in the whole blood 

of miniature pigs. Each RNA sample was analyzed by a porcine gene expression 

microarray consisting of 43,603 oligonucleotide probes. 

We compared the Pearson’s correlation coefficients for gene expression profiles 

between the control and SDW groups. High correlations were found not only within the 

same group, but also between the two groups. Figure. 10 shows a scatterplot of the 

microarray intensities of the two groups. The resulting data showed a high degree of 

correlation (r = 0.9748). Therefore, DNA microarray analysis indicated that the global 

gene-expression patterns were similar between the control and SDW groups. 

 

Reproducibility and variation of mRNA expression among stress feeding factors.  

To compare other feeding stress factors, we evaluated microarray data of five groups: 

control; SDW; high-fat and high-cholesterol diet (HFCD) (Takahashi et al., 2012); 



86 
 

high-fat, high-cholesterol, and high-sucrose diet (HFCSD) (Takahashi et al., 2012); and 

sodium azide (AZIDE). The data were already deposited in the Gene Expression 

Omnibus (GEO) database, accession number GSE78769. AZIDE was administered 

orally to the pigs over 20 weeks. There were no changes in hematological or 

biochemical parameters for the administered dose of 300 μg/kg, one hundredth of the 

LD50.  

A color-coded pairwise correlation matrix is displayed in Figure. 11. Figure. 12 shows 

the Pearson’s correlation coefficients for gene expression profiles among individuals 

within the same dietary group; this figure displays the inter-individual differences in 

gene expression profiles under the same dietary conditions during the dietary period. 

Correlation coefficients varied from 0.91 to 0.99, with an average of 0.96 and an S.D. of 

0.02. No significant differences in correlation coefficients within dietary groups were 

observed for any gene product after the treatments (Figures. 11, 12). This indicated 

uniformity in the dietary experiences within each group, and it was possible to compare 

the gene expression profiles among the groups. 

Next, we analyzed expression profile correlations among the different diet groups 

(Figure. 13). First, we confirmed the high correlation between the control and SDW 

group individuals; the correlation factors varied from 0.93 to 1.00, with an average of 
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0.97 and an S.D. of 0.02. The values indicated similarity between the control and SDW 

groups, and suggested that the SDW diet did not change the RNA expression profile of 

the pigs. 

The correlation factors between the control and the two types of hyperlipidemia-induced 

diet groups ranged from 0.87 to 0.96, with an average of 0.93 and S.D. of 0.03 (control 

vs. HFCD), and 0.83 to 0.96, with an average of 0.91 and S.D. of 0.04 (control vs. 

HFCSD). In the comparison of the control vs. SDW, correlations for whole blood 

expression profiles were statistically significant according to Tukey’s post-hoc tests. A 

low correlation coefficient was obtained for the control vs. hyperlipidemia-induced diet 

groups (p < 0.01).  

For a toxicity evaluation of the SDW diet, we investigated the correlation coefficient 

between the control and AZIDE groups. The whole blood correlation coefficients 

between the control and AZIDE group was 0.82 to 0.88, with an average of 0.85 and an 

S.D. of 0.02. 

Significant differences were observed between the control vs. SDW and the control vs. 

AZIDE comparisons, according to Tukey’s post-hoc test (p < 0.01), and this indicates 

that the gene expression profiles of the SDW group and AZIDE groups were strikingly 

different. 
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To compare with the various food stress factors (i.e., HFCD, HFCSD, and AZIDE), we 

conducted a cluster analysis of the microarray expression data. As shown in Figure. 14, 

the data were roughly divided into two groups: the control and SDW data were 

classified in the same cluster, which was separated from the AZIDE cluster. 

 

4 Discussion 

In this study, we investigated the biochemical characterization and the gene expression 

profile of blood from pigs fed an SDW diet for the evaluation of their overall health 

status. There were no differences in growth or blood biochemistry between the control 

and SDW group pigs, indicating that the SDW diet maintained sufficient nutritional and 

good physiological condition of pigs.  

In the assessment of gene expression, we conducted a microarray analysis with whole 

blood. For gene expression levels between the two groups (control and SDW), we found 

high correlations. Interestingly, in the SDW groups, the number of genes with fold 

changes in expression greater than 2.0 (p < 0.05) or less than 0.5 (p < 0.05) was only 56 

(47 up-regulated and nine down-regulated genes) compared to the control group. This 

result indicated that the gene expression pattern of the SDW group was nearly identical 
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to that of the control group, suggesting that the SDW diet did not affect the gene 

expression of the pigs. For toxicity evaluation of the SDW diet, we compared the gene 

profile to that of the AZIDE group. AZIDE is an environmental pollutant. Because 

AZIDE is a readily biodegradable material and has no discharge regulation, some 

researchers have used AZIDE for toxicity examination (Rippen et al., 1996; Berndt et 

al., 2001; Massie et al., 2003). Through microarray analyses, we found that 4,521 genes 

(2,312 up-regulated and 2,209 down-regulated genes) were significantly altered in the 

AZIDE group compared to the control group; yet, very few genes were altered in the 

SDW group. Pistol et al. (2015) revealed differentially expressed genes as an effect of a 

zearalenone mycotoxin-contaminated diet in pigs. Similarly, we detected differentially 

expressed genes, including TLR7 (toll-like receptor 7) and ID2 (inhibitor of DNA 

binding 2), in the AZIDE-treated group; in contrast, these genes were not altered in the 

SDW group. Because these characteristic biomarker genes for toxic stress were 

unchanged in the SDW group, the SDW diet did not appear to be toxic or stressful for 

pigs.  

The results of our cluster analysis also clearly demonstrated that the SDW-fed pigs had 

an expression pattern similar to that by normal feeding and, by contrast, the 

hyperlipidemia-inducing diets and the toxic AZIDE diet led to different gene expression 
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patterns. Many researchers have established the evaluation method for physiology and 

health of pigs through gene expression profiling by microarray analysis (da Costa et al., 

2004; Moser et al., 2004; Niewold et al., 2005; Pena et al., 2014). We previously 

revealed the uniformity of the gene expression profile in miniature pigs older than 20 

weeks of age (Takahashi et al., 2011), and reported the effectiveness of the microarray 

in the evaluation of physiological changes caused by the diet of the pigs (Takahashi et 

al., 2012). Our results support the efficacy of whole blood RNA microarray analysis for 

generating information concerning physiological changes resulting from the diet of 

Clawn miniature pigs. Furthermore, they indicate that whole blood RNA microarray 

analysis could be a useful tool for discriminating safe feed.  

The pig populace in the Kagoshima Prefecture, Japan's top pig farming prefecture, was 

1,332,000 in 2015 (Ministry of Agriculture, Forestry and Fisheries reference: 

http://www.maff.go.jp/). The standard dry feed amount required per pig throughout the 

fattening period is approximately 295 kg (Kawaida et al., 2007). When we substitute the 

SDW diet (feed intake: 266 kg/pig) for standard dry feed throughout the fattening 

period, we could use approximately 350,000 tons of SDW as a biomass resource. In this 

study, we fed SDW to animals for 3 months. The length of this period is equivalent to 

the fattening period. Even if we completely substituted standard dry feed with 
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SDW-containing feed, we could efficiently feed with SDW. The use of SDW-treated 

feed as a substitute feed could thus become one of the best solutions to the handling of 

the industrial waste, SDW. To establish the safety of SDW made from other sources, 

such as rice and barley, further investigation would be necessary. 

In conclusion, our study clarified the physiological invariance of pigs fed the SDW diet, 

and showed that the SDW diet is an available and safe feed substitute for standard dry 

feed. 
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