- 15y K

Gifu University Institutional Repository

Mass Spectrometry-Based Lipidomic Profiling of
Indonesian Coffee Beans for Origin
Determination

E5&: English

HhRE

~EH: 2022-12-12

F—7— K (Ja):

*—7— K (En):

{EB & : FAWZAN SIGMA AURUM
X—=ILT7 KL R:

FlE:

http://hdl.handle.net/20.500.12099/88950




Mass Spectrometry—Based Lipidomic Profiling of

Indonesian Coffee Beans for Origin Determination

HERTICESKIEE e 7 74 ) v 7iC k54 v F A2 T — b — SO JFEEHH] )

2022

The United Graduate School of Agricultural Science,
Gifu University
Science of Biological Production

(Gifu University)

FAWZAN SIGMA AURUM



Mass Spectrometry—Based Lipidomic Profiling of

Indonesian Coffee Beans for Origin Determination

HEERTICESCIEE e 7 74 ) v 7C X 54 v F A2 7= — b — S JFEEHH )

FAWZAN SIGMA AURUM



NERECES 3 5 (B4 5%, %5 6 2kBIFR)  Form No.3

% M Wm X E K
DISSERTATION SUMMARY

K 4

Name FAWZAN SIGMA AURUM
=] H
Title of Dissertation

Mass Spectrometry—Based Lipidomic Profiling of Indonesian Coffee Beans for Origin
Determination

A Fm LB B (Dissertation Summary)

Coffee has attracted consumers worldwide for its unique sensorial properties. The
unique flavor of coffee is affected by numerous factors. The biochemical properties
associated with geographical features are one of the essential aspects that may modulate
distinct sensorial profiles of coffee. Among the factors influencing the hedonic preference of
coffee consumers, aroma and mouthfeel are by far the most important. The aroma is
associated with volatile compounds, while the mouthfeel is generally based on lipid
components.

Lipids are biochemical compounds that are substantially present in coffee beans.
However, lipids in coffee have not been comprehensively studied thus far and have not been
used to differentiate the geographical origin of coffee. Indonesian coffee offers unique flavor
characters, and its value in international trade is increasing. Nonetheless, the biochemical
compounds data on Indonesian coffee has not been established, not to mention the lipid
profile itself. This study aimed to investigate the applicability of lipid profiling for use in
coffee origin authentication of Indonesian coffee. Based on the literature, this is the first
study on comprehensive lipid profiling of superior coffee produced in various regions of
Indonesia.

In this study, coffees produced in six different provinces of Indonesia, from different
harvest years and different regions were obtained and grouped into training and validation
sets for the creation of a region-discriminating model. The green coffee beans from six
locations were roasted separately at the same temperature and time to obtain medium
roasted beans. The roasted beans were individually ground and lipids were extracted using
methyl tert-butyl ether (MTBE). Lipid extracts from roasted coffee were subjected to high-
performance liquid chromatography coupled with triple-quadrupole mass spectrometry
(LC-MS/MS). The lipid compounds were separated in a C-18 reversed-phase
chromatographic column. Mass spectrometry separation was performed based on the
multiple reaction monitoring (MRM) targeting 953 lipid features. This study used a
different sample set to build up the discriminant model based on their lipidomic profile,

followed by validation analysis. The obtained data were analyzed using the multivariate



approach, including partial least-squares discriminant analysis (PLS-DA), principal
component analysis (PCA), and clustering analysis.

The LC-MS/MS analysis tentatively identified 85 lipid species from five global lipid
classes, such as mneutral lipids, sphingolipids, sterol, glycerophospholipids, and
glyceroglycolipids. The PLS-DA model exhibited an accuracy of 90%—-100% in
discriminating the origins of coffee based on receiver operating characteristics—area under
the curve analysis. The selection of important lipid features for each coffee origin was
determined based on the Variable Importance in Projection (VIP) score > 0.9 and p-value <
0.05 based on the PLS-DA model. Based on this benchmark, 38 lipid species were assigned
as the discriminant features of the six coffee origins. Overall, the discriminant analysis
showed promising results for separating the coffee origins using the lipid profiles.

Furthermore, the validation sample set was extracted separately and subjected to
lipidomic analysis using the LC-MS/MS employing MRM mode to confirm the
discrimination capacity of the important features. The obtained dataset was then subjected
to an unsupervised data exploration using PCA to observe the natural classification of the
samples. A heatmap was visualized to illustrate the similarities between samples using a
tree-structured cluster. The results showed that both PCA pattern and heatmap
demonstrate natural discrimination of coffee samples based on their origins.

Conclusively, the results of this research provide solid evidence for the applicability
of lipidomics profiling using LC-MS/MS for the origin discrimination of coffee. Moreover,
this study might benefit the coffee industry by establishing an advanced method for

determining the origin of coffee.



¥ M Wm X E K
DISSERTATION SUMMARY

K 4

Name FAWZAN SIGMA AURUM
=] H
Title of Dissertation

Mass Spectrometry—Based Lipidomic Profiling of Indonesian Coffee Beans for Origin
Determination

(EEOTCEDSSIRET v 7 74 ) U I KD A R T2 — b — O EHRI)

FA R SCE S (Dissertation Summary)

a—b—X, TOZ=—7 RERERMNFHETCHRATOZRHEEBK T L TD, a— —0DH
Be7eBRIE, Z2< DORFIC X » TR SN D 28, PERICH ST 2 A LS sy OEWIE, B
R WBE B XD, i, MRIGEORBHEICHEZ 5 X 2 BKOF T, F & OY7-0 13
WTEETHD, HFVIFHEBEAHERE L TBY ., 0720 X —RICIRE Ry 23S
WTWA,

JEEIX., 2— b — BT GFETLELFER T TH D, L, a—e—IZ&FEN
HHEE RS D EFEIFZEIX 2N E TIZFAE 72 <, a—be—OEMHUBNICFIH S D 2 Lidk
Moty FRZ, A KRRV THEa—e — | IMBEORKZE LTSz, [EESES MBS &
FoTWb, LLERL, 42 RRUTHEI—Eb —OELFERDITET 2 2 IE KD Tl
<, lBETm 7 7 A NVZONWTONERITERETH D, £ 2 TR TIX, 2—b —0DpEH
REECBITARE T 7y A4V VORI OWTHET 2 Z A2 AE Lz, £ K%
T DEHEMITHAEESND L IT ha—b —&x R LAl RIEE e 7740 7
(BT DIRPIOMFIE L L TLESIT b b,

METIE, A RRTT D 6 DOBRBRDHINTTAEES NS a— —%, BIRDIERE, 5
IRAHIN S ANF L, N6 & EHHBET UAERDOTZDD b L —= 7% v b ERiEE v
MZZV—Fb Lz, oI roa—e —ATid, [F—RE - B CERL, hRive &L
THOWICHE L7, RERIT 2L, A F L tert-7 F /L —F /L (MTBE) Z MW THEE A4
ML7z, Bila—t—2ooFEMImIL, aEkEks e~ 777 4— NY T LINEM
B ESHEE (LC-MS/MS) 2 L - THEGEANCENT LTz, IEER I, C-18 M7 v~ N7
T4 — BT ATHEEL, 953 FEHOIEE Y &2 X —F vy NEe LIEZEKINE=XV T
(MRM) (ICESWTHT LT, RAsH 07ty hOAFERIEE 7 a7 7 A LKW T
HBIET NV ERBEE L, BEEEIT 21T o7, o hizT —& %, #ash ZFA5H8r (PLS-
DA). EDHHT (PCA), 7 T AKXV U T0iiie & DS ERRNTIZ X > THdr Lz,

LC-MS/MS #ric L v, HAEE., A7 4 TfFE, A7 u—1, ZUkr Y VjFE, 7
Vel E O 5 FEOIRE Y 7 A0 85 FMADIEE » TN T /7 —va v &, IFE
Tu 7y AKX GO PLS-DA 7 /0L, 22—t —OREHHBNIT 90%-100% DIEE %A
T 5 Z &2 ROC-AUC iric L v s, fa—e —pEMOBEERIFE S % PLS-DA £
7 W2 H55 < Variable Importance in Projection (VIP) A =27 730.9LL ETH-D, pfEa0.05
DITEEMRECERN L Z A, 38 MHEOIEEN 6 FHD a—b —JFRE 21545 7-d 0~
— A=l LTRSS, &L LT, IFET a7 7 AV ERHWHRIGHITIE, 22— —
DIFPEMZ T DDA R REZ R L, &5, BFEHAY 7t v b &RLR S
L., MRM E— RZHW= LC-MS/MS (12X D U B R—L2D0Hr 24TV, IR S 7z pEf A
B~ — 1 —IZ L D EHGRRIRE I A MERE LT-, MGEHT —4 &> F & PCA BRI 7 7 A % —
AT X D&M 72 LoaysEIcE U, Yo L oE R 2 Tk L=, Z D%, PCA <% —
V. T T AR E HIT, a—b—Y TV OFEMBBIN AR TH D Z E NI T,

LEDZ D, LC-MS/MS #HWeafEiEE 7 v 7 7 4 U 733 — e — O]
WCHEAFEETH D Z LR ENTz, 6T, ARFFEIEa— b —OFEHHEBIO =D O EE 72 T
EEAWSL LT DT, HoNEAREITa— bt —EEICRWVICERT 2 bDEEZ HND,



Table of Contents

CHAPTER 1ottt et sttt 1
INTRODUCTION ..ottt sttt ettt sttt s sbe e e i 1
1.1. General Background ............cccoiiiiiiiiiiiieeceee e 1
1.2. Objective of the Study ......cceeiiiiie e 4
CHAPTER 2 ..ottt ettt sttt e 6
LITERATURE BACKGROUND .....c..ooiiiiiiiiiiiiieiteeeeeete sttt 6
2.1. Systematic Literature Review on Coffee Origin Determination..........c...coceevuenene 6
2.2. Protocol and Eligibility Criteria..........cceoerieriiiieniiniiienienieeieseesieeeeeese e 9
2.3. Information Sources and Search Strategy..........ccceevueevieriieniieniiieiieeieeee e 10
2.4, Data EXITACTION ...ocuviiiiiiiieiie ettt ettt ettt sttt et esateebeesnaeeaeeas 10
2.5. General Overview of the Literature ............ccocueevieiiiiiiieniieieceee e 11
2.6. Analytical APPrOaches........coovuiiiiiiiiiiiiieiee e e 12
2.7. Nondestructive APPrOaChes ........cccuviieviieiiieeeiieeciee et e et e ereeeereeesreeesanee s 33
2.8. Multivariate Model and Data Analysis........ccccoooieriiiiieniiieiienieeeeeeee e 41
CHAPTER 3 ..ttt ettt ettt ettt e s et eene e seensesseenseeneas 46
METHODOLOGY ...ooiiieiieieeeeteeie ettt ettt e ae e sseesesneesseensasnsenseenes 46
3oL IMIALETIALS ..ottt ettt eas 46
3.2, LAPid EXTraCHION ...viiiiiie ettt ettt e et e e e e aae e e e e e e snaeesnnaeenes 48
3.3. Liquid Chromatography—Electrospray lonization—Triple Quadrupole Mass
SPECIIOMELIY ...ttt et e e et e e et e e e et e e e esnareeeeennaeeesassneeeannes 49
3.4, Pre-data PrOCESSING ... ..viiiiieeciiieciie ettt e e e e eeaae e e aee e e beeesnseeenes 50
3.5. StatistiCal ANALYSIS...ccuiieiiieeiiie ettt e e e e e e e e e re e e eree e 51
3.6. Multivariate Data ANAlYSIS ......eeeeiieeiiiieeiiieciie ettt et eee e sreeeeree e 52
3.7 Validation of the Potential Marker ...........ccooiiiiiiiiiiiiceeee 53
CHAPTER 4 ...ttt ettt ettt be et eeae e te e s e sneenseeneas 54
RESULTS AND DISCUSSION......oiiiiiieieeietee ettt 54
4.1. Comprehensive Analysis of Lipid Species in Indonesian Coffee........................ 54
4.2. Supervised Data EXplOration ..........cccccveeiiiieiiieeiiie e 57
4.3. Validation of the Potential Lipid Markers as Origin Discriminator .................... 65
CHAPTER 5.ttt ettt ettt e et et et e sneeseenees 72

CONCLUSION ..ottt et st 72



PUBLICATIONS .............
ACKNOWLEDGEMENT
REFERENCES.................



List of Tables

Table 1: PICO Summary in this TE@VIEW.........cccuieriieriieiiieniieeieesie et 10
Table 2: Syntax and keywords for database search..........c..ccoceeveniiniiiiniinininicnee, 11
Table 3: Previously published reviews on similar topics to the current article.............. 13
Table 4: List of studies employing analytical approaches............cccccevvvievveniienieniennnen. 17
Table 5: List of studies employing the nondestructive approach ...........cccoeceeevuiennennen. 35

Table 6: General comparison of the advantages and limitations between analytical

and NoNdestructive apPrOACHES ........ccvuiiiiieiieiie ettt ettt 43
Table 7: Several topics for future research on coffee origin authentication................... 44

Table 8: Geographical origin, harvest year and assigned dataset for the coffee

Table: 10 Classification performance rate based on area under the receiver
operating characteristic (ROC) curve before and after tuning the number of

variables in each component on PLS-DA............ccciiiriiiiiiieeeeeeeeee e 64

Table 11. List of the important putative lipid candidate markers of each coffee
0] 4151 s D USSR 66



List of Figures

Figure 1: PRISMA flow chart for primary literature SCreening .........c..cceceeeevvereevuennns 9
Figure 2: Map of Indonesia depicting the coffee origins used in this study................... 46

Figure 3: Overall lipid profile of Indonesian coffee from the six origins obtained

from the LC-MS/MS analysis, grouped based on 16 lipid class head groups................ 56

Figure 4: PLS-DA sample plot of the comprehensive lipid profile with all

tentative detected lipid species in the training dataset...........ccceeeveenieneniineencnienenn 57

Figure 5: Hierarchical Cluster Analysis (HCA) Dendrogram of coffee samples

from the training dataset illustrating the correlation between the origins. .................... 59

Figure: 6 Balanced error rate of the PLSDA model which illustrates the
classification error rate of each class, lower value indicates better accuracy of

the MOdel PrediCtion ...........ooouiiiiiiiiie et 60

Figure 7: Bar plot of the loading of components 1 (A), 2 (B), 3 (C), and 4 (D).
Lipid species contribution in each component as regression coefficient based

ON the PLS-DA MOUAEL ...t e e e e e e e e e eeeeeaeeaeaeeaees 61

Figure 8: Variable important in projection (VIP) score consists of the lipid

species with the score > 0.9 from component 1 to 4 based on PLS-DA model.............. 63

Figure 9: Principal component analysis (PCA) score plot to illustrate the

natural grouping of the validation sample ............ccccoeveiieiiiiieiiiieceeeeee e 68

Figure: 10 Heatmap and dendrogram to illustrate clustering of the validation

sample from each geographical OTIZIN.........cccuvieiiiiiiiiieeieeeeeeee e 70



CHAPTER 1

INTRODUCTION

1.1. General Background

Coffee is the most consumed hot beverage worldwide. Geographically, coffee-
producing countries are in the equatorial zone. Interestingly, coffee-consuming
countries are not included in the production area. Countries with a developed economy,
such as the European Union countries, United States, Japan, Russian Federation, and
Republic of Korea, are the top coffee importers. The global sales of coffee has exhibited
an increasing trend for the past decade (International Coffee Organization, 2020). In
recent years, consumers prefer single-origin coffee. Single-origin coffee offers a unique
flavor because it is obtained from a single farm or plantation in a specific region and is
not blended with coffee from other origins.

Several factors affect the flavor and character of coffee, such as the roasting
condition (Dias et al., 2014), product packaging method (Cincotta et al., 2020), pre- and
post-harvest practice (da Silva Oliveira et al., 2021), varieties of coffee cultivated,
environmental features (Bodner et al., 2019), and the portion of undergrade or defective
beans (J. R. Santos & Rodrigues, 2020; N. Yang et al., 2016). However, the biological
interaction between the genetic aspects and surrounding geographical environment can
be an essential factor in the flavor and character of coffee. This interaction may lead to
the distinction of a coffee phenotype as a biological entity which, in turn, contributes to
the distinctive and diverse flavor formation, which is reflected in the biochemical
profile.

Biochemical compounds are responsible for the sensorial profile and specific

notes formed during the developmental stage of coffee cherry fruit. This is followed by



post-harvest treatments all the way to cup serving. These compounds are essential in
influencing the hedonic preference of the coffee consumer. It is common practice in a
coffee community to conduct a cupping test in order to evaluate the sensorial attributes
of the coffee, especially for single-origin specialty coffee. The test method is
internationally standardized by the Specialty Coffee Association of America, and the
test is conducted by a certified panelist (Pereira et al., 2017). However, this method of
testing is arguably subjective.

Single-origin coffee has been changing market dynamics. However, the coffee
industry has not yet established critical indicators to claim coffee originality related to
its unique biochemical substance. In the market, the price of single-origin coffee is
determined by its grade and unique flavor, which, in turn, is based on the growing
region (Mehari et al., 2016a; Putri & Fukusaki, 2018). The price disparity between
Coffea arabica (Arabica coffee) and Coffea canephora (Robusta coffee), as well as
higher- and lower-grade quality coffee, may stimulate food fraud and the practice of
adulteration. Therefore, the coffee industry needs a robust method to authenticate the
origin of coffee, in which one of the most effective strategies is to create a database of
the biochemical profile and descriptors of coffee that is on the market.

Several works were completed on coffee origin authentication using various
biochemical compounds, including caffeine, chlorogenic acid, total phenolic, and
triglyceride compositions, as the basic chemical descriptor in coffee using high-
performance liquid chromatography (HPLC) and or gas chromatography—mass
spectrometry (GC/MS) (Carrera et al., 1998; Gonzalez et al., 2001; Martin et al., 2001,
Martin et al., 1998). These studies successfully distinguished the Arabica and Robusta

varieties but were not able to reveal the geographical origin classification.



Other studies used a volatile compound (Ongo et al., 2020; Risticevic et al.,
2008; Zambonin et al., 2005), volatile and carbohydrate (Choi et al., 2010), phenolic
compounds and chemical profile (Mehari et al., 2016b; Monteiro et al., 2019), and
alkaloid profile (Mehari et al., 2016a) to distinguish the different geolocations of each
coffee. However, only a few studies pay attention to the most abundant biochemical
compound in the coffee bean, which remains intact during storage and after being
roasted: the lipid constituent (Anese et al., 2000; Speer & Kolling-Speer, 2006). The
lipid constituent is not involved in the Maillard reaction during the roasting process. Yet,
it may derive a hydrophobic compound that influences the flavor and provides fat-
soluble vitamins that facilitate the organoleptic parameters of coffee (Selmar et al.,
2014).

A limited number of studies employed specific lipid class profiling to
discriminate the origin of coffee, especially the fatty acid group (Dong et al., 2015;
Mehari et al., 2019; Romano et al., 2014). Another study used a triacylglycerol (TAG)
profile to distinguish between Arabica and Robusta blends (Cossignani et al., 2016).
These studies indicate that lipids can be used as a discriminant marker in coffee.
However, lipids consist of five global classes, including sphingolipids, sterol, polar
glycerophospholipids, polar glyceroglycolipids, and neutral glycerolipids (Tarazona et
al., 2015). A more comprehensive lipid profile using the five classes of lipids has not
been studied for the geographical origin classification of coffee.

In this study, six Indonesian coffee origins were selected to represent the major
producing regions in Indonesia. In addition to the increasing market value, these coffee
offer unique flavor characters. Therefore, they are labeled with a geographical

indication by the Indonesian government (DJKI Kementerian Hukum dan HAM, 2022).



The coffee used in this study included Gayo, Mandheling, and Lampung, which all
came from Sumatera Island. Sumatera is one of the largest islands in Indonesia that
accounts for 70% of coffee production in Indonesia (Directorate General of Estate,
2020). Gayo and Mandheling coffee, originating from the Aceh province and North
Sumatera, respectively, are the most demanded varieties for the export market
(Damayanti & Setiadi, 2019). Lampung coffee is a Robusta variety with large
productivity and economic value (Rosiana, 2020). Coffee from Kintamani in Bali Island
is famous for its touristic name. Toraja coffee from Sulawesi Island has been exported
to Japan, the USA, and Australia as a premium coffee. As a representation of the East
Indonesian region, coffee from Wamena was selected owing to its unique sensorial

properties.

1.2. Objective of the Study

Currently, the study on biochemical compounds of Indonesian coffee is
developing, however, several data shortages are yet to be explored. Therefore, all parties,
including academia, government, and industry, need to establish accurate origin
assurance to convince the global market. To date, much of the coffee studies in
lipidomics reported on the specific class of lipid. Based on the literature, comprehensive
lipid profiling studies of Indonesian coffee have not been found.

Therefore, this main aim of this study was to investigate the applicability of lipid
profiling by LC-MS/MS for determining the origin of valuable Indonesian coffee. To
achieve this aim, several steps were done which are divided into several chapters in this
dissertation. The second chapter of this dissertation contains the literature review of the

most recent techniques for coffee authentication, origin determination, and adulteration



detection from both analytical and nondestructive approaches that have been published
in the literature (Aurum et al., 2022a). The review was done following the systematic
literature review (SLR) using Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines (Moher et al., 2009).

In chapter three, the methodology for analyzing and observing associated
parameters related to lipid metabolites profiling based on Liquid Chromatography Mass
Spectrometry (LC-MS/MS) technique are extensively discussed. This chapter also
mentions the method for identifying the variable important based on the analysis to find
the significant discriminant marker of coffee from each geographical origin followed by
model validation using the coffee samples from different harvest years. Furthermore,
several multivariate data analyses followed by a model performance evaluation are
employed in the present study to obtain a robust model. Chapter four describe the
results of the study and its substantial discussion pertaining to lipidomics profiling of
Indonesian coffee for geographical determination (Aurum et al., 2022b). To the best of
the authors’ knowledge, this is the first study reporting a comprehensive lipid profiling

of Indonesian coffee.



CHAPTER 2

LITERATURE BACKGROUND

2.1. Systematic Literature Review on Coffee Origin Determination

Generally, coffee consumers have a preferred or favorite coffee origin. This
consumer choice is related to sensory properties, such as aroma and mouthfeel. Coffee
has a unique organoleptic profile associated with its growth geographical location.
Single-origin coffee refers to coffee cultivated in a specific microclimate and typically
sourced from a certain geographical place, such as a farm or multiple farms, or
plantations, or a region within the same country. This type of consumption has been
increasing all over the globe (Wilson et al., 2012).

However, high-quality single-origin coffee is prone to misleading labels, false
declarations, and fraudulent practices to increase their economic profit. Recently, the
Federal Food Safety and Veterinary Office of Switzerland reported a falsely declared
“100% Arabica” coffee substituted by the cheaper Robusta coffee (Federal Food Safety
and Veterinary Office, 2019).

Coffee fraud may imply, for instance, counterfeiting high-quality and specialty
coffee beans with lower quality or defective beans. Another possibility is the
falsification of geographical origin information (Toci et al., 2016). As an indicator of
product and process quality, product origin shows increasing importance for the
business and for informing consumers’ purchasing decisions.

In response to consumer demands for authenticity of coffee origin, various
strategies encompassing a broad range of technology and scientific techniques have
been applied to assure this point. In the past decade, studies pertaining to coffee origin

authentication, determination and classification were done utilizing near-infrared (NIR)



(Bona et al., 2017; Okubo & Kurata, 2019; Scholz et al., 2014), Fourier Transform Mid-
infrared (FT-MIR) (Mendes et al., 2022), Terahertz Spectroscopy (S. Yang et al., 2021),
e-nose or e-tongue sensors (Dominguez et al., 2014; Flambeau et al., 2017), and UV-
visible spectroscopy (Suhandy & Yulia, 2017). Moreover, several studies with similar
purposes were conducted by gas (Dong et al., 2015; Mehari et al., 2019; S. P. Putri et al.,
2019) or liquid chromatography (Aurum et al., 2022b; Badmos et al., 2020; Mehari et
al., 2016b) coupled to mass spectrometry, nuclear magnetic resonance (NMR) (de
Moura Ribeiro et al., 2017; Happyana et al., 2020b), and polymerase chain reaction
(PCR) (Combes et al., 2018; Ferreira et al., 2016; Hamdouche et al., 2016).

These techniques can be categorized into nondestructive and analytical
approaches. The nondestructive technologies allow a rapid analysis and are less
laborious, considerably saving costs, and require little or no disruption of the
biochemical potency of the sample (Faith Ndlovu et al., 2022). On the other hand, the
advantage of using an analytical approach in the geographical determination of coffee is
associated with the possibility of analyzing important markers indicative of its origin
(Thorburn Burns et al., 2017).

Nondestructive equipment produces large number of spectral signals that can be
count as variables, therefore it is attractive in their data processing and chemometric
analysis. Machine learning and deep learning algorithms are often used to interpret the
data. Nevertheless, the data processing of analytical techniques can be more advanced
when coupled to the bioinformatics aspect to reveal the important compound markers.
Nondestructive methods require a large samples dataset to build the initial model. In
addition, data interpretation can be difficult. Therefore, other studies use analytical

approaches, such as chromatography and mass spectrometry, or a combination.



Regarding the capability of the analytical method to identify coffee markers, the
sensorial properties of coffee heavily rely on its biochemical compound content. Its
unique taste is affected by numerous factors. From the very beginning is the
environment where it is planted, followed by the coffee cherry growth stage, the local
farmers’ postharvest tradition and then successively up to the method of brewing the
coffee for serving in the cup.

Among the factors influencing the hedonic preference of coffee consumers,
aroma and mouthfeel are by far the most important. The aroma is associated with
volatile compounds, while the mouthfeel is generally based on its lipids components.
Both compounds can be analyzed using a metabolomics approach. According to Fiehn
(2002), metabolomics is the comprehensive analysis of global metabolites of a
biological system. Similarly, the comprehensive study of lipid compounds is commonly
called Lipidomics (Watson, 2006). Lipidomics is a developing research field supported
by the improvement of various analytical methods, especially mass spectrometry and
bioinformatics (Fahy et al., 2011).

Most studies applying chromatography and mass spectrometry aim to explore
the metabolite profile and identify the key flavors of coffee identifying different origin
locations. Furthermore, numerous studies show that each coffee origin is characterized
by distinct biochemical compounds.

This review aimed to investigate the most recent techniques for coffee
authentication, origin determination, and adulteration detection from both analytical and
nondestructive approaches. Despite the existence of previous similar reviews, this is the
first systematic literature review (SLR) following Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Moher et al., 2009).



2.2. Protocol and Eligibility Criteria

The objective of this SLR is to offer a thorough description of the latest findings
in the latest updated research context and the scope for research questions for future
study. This study aimed to deliver an accurate scientific report and avoid bias; therefore,
this study adopts SLR methodology by Moher et al. (2009). Figure 1 presents the study
flow, which began by identifying studies in literature databases according to certain
search words, followed by several screening steps. The article title was the first

screened, followed by the abstract. Finally, the full text was rigorously studied to be

included in the primary literature.

Scopus
(n=1268)

. Science Pub
Springer .
(n=86) Direct Med
(n= 66) (n=121)

Wiley
Blackwell
(n=56)

!

' 4 '

!

n = 642 of records

v

n = 189 of records after non-relevant title
removed

-
[ Included] [Eligibility] [ Screening J [Identiﬁcation
J

¥

n = 169 of records screened [—

!

n =101 full-text articles
assessed for eligibility

n = 68 of records
excluded based on

abstract

n =23 of records
excluded with reasons

!

n = 78 primary studies
included in synthesis

Figure 1: PRISMA flow chart for primary literature screening.

The PICO (Population, Intervention, Comparison, and Outcome) framework was
used to define the inclusion criteria (Table 1). The PICO framework is a model for

conducting a reference search that divides a formulated research question into four




distinct components: the population of interest, the applied intervention, the comparison

or controls, and the measured outcome.

2.3. Information Sources and Search Strategy

Articles were obtained from well-established databases, i.e., Scopus, Springer,
ScienceDirect, PubMed, and Wiley-Blackwell. Each database uses a different style of
search syntax and operators. The keywords or syntax used are indicated in Table 2. The
search strategy yielded several number of articles (n), which is indicated in Figure 1.
The syntax limited the search for peer-reviewed publications (original and review
papers), in English language, journal articles, and published within the past 10 years,
from 2012 onwards. These records were exported to Mendeley reference manager (Ver

1.19.8), following the removal of duplicated studies and irrelevant article types.

Table 1: PICO Summary in this review

Framework Criteria

Population (P) All coffee varieties in the Coffea (genus)
Intervention (I) Geographical authentication, origin determination
Comparison (C) Destructive vs. Nondestructive approaches
Outcomes (O) Comparison of both approaches

2.4. Data Extraction

Various data were extracted from the final list of included studies, namely, the

publication year, techniques or instrumental approach used, country of origin of coffee

10



samples, classification model algorithm and performance evaluation, feature selection,
associated information on coffee processing, and key findings.

Table 2: Syntax and keywords for database search

Database Keywords and syntax

ScienceDirect : [(coffee OR coffea) AND (geographic OR origin OR region OR
country) AND (authentication OR determination OR
discrimination)] year 2012-2022

Scopus : TITLE-ABS-KEY [(coffee OR coffea) AND (geographic* OR
region®)
AND (authenticat* OR origin OR provenance) AND
(determin® OR discriminat*)) AND PUBYEAR > 2011
AND (LIMIT-TO (PUBSTAGE, “final”’)) AND (LIMIT-
TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cp”) OR
LIMIT-TO (DOCTYPE, “ch”) OR LIMIT-TO (DOCTYPE, “re))
AND (LIMIT-TO (LANGUAGE, “English™ )]

Springer : with all of the words: coffee geographic* origin country
with at least one of the words: authenticat* discriminat* determin*
classif*
where the title contains: coffee
year: 2012-2022

PubMed : “coffee OR coffea” in Title and “(origin OR region* OR
geographic* OR country) AND (trac* AND authenticat®* OR
determin® OR discriminat®* OR classification)” in Abstract

Wiley- : “coffee OR coffea” in Title and “(origin OR region* OR

Blackwell geographic* OR country) AND (trac* AND authenticat® OR
determin®* OR discriminat® OR classification)” in Abstract
Year 2012-2022

2.5. General Overview of the Literature

Screening results using the PRISMA approach are indicated in Figure 1. The
search strategy identified a total of 642 records. Then, each record was rigorously
assessed for eligibility, after which 78 original research papers were retrieved to be
reviewed in detail. The number of studies using analytical and nondestructive methods
was 55 and 23, respectively. In addition to the original papers, seven review articles on
similar topics to the current study are listed and briefly discussed in Table 3. Generally,

said reviews discussed and identified common methodologies to determine coffee’s
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geographical origin, adulteration, and fraudulent practices. However, none of the
articles performed a systematic review. In contrast, the present study performed a more
detailed and structured assessment of the most updated research in coffee origin
classification, determination, and authentication. The importance, advantages, and

features of this review compared to existing reviews are shown in Table 3.

2.6. Analytical Approaches

Numerous studies on biochemical coffee profiling based on broad range
metabolome analysis have been conducted. The key information of the 55 studies on
coffee origin determination, authentication, and adulteration using the analytical
approaches are exhaustively summarized and listed according to publication date in
Table 4. Early studies on coffee classification used Nuclear Magnetic Resonance
(NMR)-based fingerprinting and elemental analysis using Inductively Coupled Plasma
Mass Spectrometry (ICP-MS)-based. Using NMR approaches, coffee green beans from
different countries (Wei et al., 2012) and roasted coffee from several continents were
classified (Consonni et al., 2012), as well as quantification of adulteration of coffee
varieties (Arabica and Robusta) (Cagliani et al., 2013). In addition, Arana et al. (2015)
employed NMR to distinguish Colombian coffee from that from other origins. These
studies found that the NMR spectra of coffee samples showed significant resonance
from caffeine, sugar compounds, chlorogenic acids, fatty acids, and amino acids. In
addition, recent research using the NMR approach also found that lipids, acetic acid,
lactic acid, and quinine were discriminative compounds for several Indonesian coffees

(Happyana et al., 2020a, 2020b).
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Table 3: Previously published reviews on similar topics to the current article

Authors Aim of the review Adoption of Number of Number of Interva Classification variables
(year) Articles Journals 1 Time
Tocietal. (2016) Reviewing three main general methods No 30 Not 1984— - Global methods classification
(physical, chemical, and biological) for the explicitly 2014 (Physical, Chemical, Biological)
determination of coffee adulteration. indicated  (Selecti - Equipment/Analytical method
ve - Authors
only) - Year
- Types of adulterants
Thorburn Burns Reviewing all kinds of method for the No 30 Not Not - Purpose of determination
et al. (2017) determination of coffee adulteration materials, explicitly  explicit - Identified or employed markers
geographical origin, and genotype. And indicated  ly - Equipment/Analytical method
suggesting the appropriate approach for the indicat
determination. ed
Martins et al. Reviewing analytical approach specifically for  No Not Not 1988— - Types of biochemical analytes
(2018) liquid and gas chromatography in coffee fraud explicitly  explicitly 2018 - Methods of fraud detection
studies. And explaining the economic indicated  indicated  (The - Fraud types (e.g., geographical
importance of coffee. last 30 authenticity, adulteration of
years undeclared plant materials, coffee
from variety substitution)
publica
tion
date)
Wang et al. Reviewing chemical profiling both targeted and No Not Not Not - Grouped based on methodology and
(2020) nontargeted method, including the explicitly  explicitly = explicit  analytical instrument
nondestructive approach for the detection of indicated  indicated ly
adulteration focusing on brewed coffee. indicat
ed
Thorburn Burns assessed for the identification of the most No Not Not 1820— - Types of adulteration materials
and Walker common materials used to adulterate coffee by explicitly  explicitly 2018 - Analytical Methods of fraud detection
(2020) dilution, to establish the geographic origins, the indicated  indicated - Identified and employed markers

genotypes of beans, and to assess the
authenticity of kopi luwak coffee. Also, this

- Geographical origin
- States of beans (e.g., green beans or
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report also provides a historical overview that roasted beans)
looks at studies across period of time.

dos Santos and Reviewing general aspects of coffee No Not Not 2010— - Analytical method and chemometrics
Boffo (2021) biochemical attributes, extraction methods, and explicitly  explicitly 2020 data processing, as well as the
the existing bioactive compounds. And indicated  indicated  (The combination of the analytical
comparing the analytical techniques employed last 20 methods.
for characterization and quantification of years
chemical composition of coffee associated with from
its quality, origin, and adulteration detection. the
publica
tion
date)
Perez et al. (2021) General review of the chromatography, No Not Not Not - Analytical method
spectroscopy, and single-nucleotide explicitly  explicitly ~ explicit - Biochemical compounds
polymorphism-based approaches that have indicated  indicated ly - Coffee origin
been employed to discriminate between the indicat - States of beans (e.g., green beans or
dominant coffee species Arabica and Robusta, ed roasted beans)
geographical origin, and adulteration. - Coffee variety or its blends

- Advantages and disadvantages
- Multivariate analysis

The current This review assesses the most recent studies Yes 78 37 2012— - Analytical methods/technique
article focusing on the comparison of analytical and 2022 - Number of classes of origin
nondestructive approaches for coffee (the - Number of samples per class
geographical origin determination and last 10 - Countries of origin
authentication. This study uses a more years) - Algorithm for classification
systematic structure. A brief and clear - Classification model performance
comparison parameter to compare the selected evaluation
literature that was rigorously studied employing - Model prediction performance
PRISMA framework. This is the first work of - Important feature selection method
SLR on coffee authentication studies which - Associated information regarding
focus and emphasize on methodology and its coffee production/processing steps
data processing or multivariate or - Important finding of the studies
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ICP is often used for fingerprinting the elemental compounds and or isotope ratios of
coffee samples. Green and roasted coffee beans analyzed by ICP-MS and ICP-Emission
Spectroscopy showed negligible differences in the elemental composition. Furthermore,
harvest year and degree of ripeness were nonsignificant (Valentin & Watling, 2013).
Another study employing ICP-optical emission spectrometry (OES) found that metal
element content could discriminate the coffee origin from different countries in South
America (Muiiiz-Valencia et al., 2013), the inter-Mexican region (Muiiiz-Valencia et al.,
2014), cross-continental samples (Carter et al., 2015), Ethiopian coffee from 11
different regions (Habte et al., 2016) and different postharvest process (Mehari et al.,
2016b), and Jamaican coffee against non-Jamaican (Antoine et al., 2016). In agreement
with Valentin and Watling (2013), Habte et al. (2016) confirmed that harvest year did
not significantly influence coffee’s elemental compounds.

The more recent studies in Table 4 use chromatography combined with mass
spectrometry. Gas Chromatography-Mass Spectrometry (GC/MS) volatile compound
profiling served to determine the coffee origin among several countries on different
continents; this study used postharvest process as a classification variable (Caporaso et
al., 2018), and also civet coffee (kopi luwak) discrimination against nonLuwak coffee
from the Philippines (Ongo et al., 2020). Other volatile metabolomic approaches were
applied for authentication by analyzing variation in its roasting levels (Abdelwareth et
al., 2021; Demianova et al., 2022). Overall, volatile profiling found that pyrazines,
furans, and other aromatic hydrocarbons influenced the coffee origin classification.
GC/MS untargeted metabolomics profiling was used to determine coffee from various
places in Indonesia, finding that the metabolome profile of green Arabica coffee beans

differed from Robusta beans, as well as, the differentiation of roasted coffee beans from
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various island (Putri et al., 2019). Recently, the same researchers indicated that the
postharvest process is the most discriminative aspect in coffee, followed by
geographical origin (Amalia et al., 2021).

The volatile compounds of coffee from 7 different cultivars in Hainan (China)
were profiled using headspace solid-phase microextraction (SPME) GC/MS, with
unsatisfactory results for the differentiation of green coffee beans. Yet, combining
several analysis including fatty acids, amino acids, and proteins, the study could
successfully classify the Robusta Hainan coffee samples (Dong et al., 2015). Volatile
profiling was not effective in discriminating the origin of raw green coffee because of
the lack of aroma at this stage. However, several studies could discriminate raw green
coffee beans. For instance, a study using Ultra Performance Liquid Chromatography-
Mass Spectrometry (UPLC-MS) to determine phenolic (Mehari et al., 2016b) and
alkaloid compound (Mehari et al., 2016a) profiles could classify Ethiopian coffee (east,
northwest, west, and south regions). As well as Yemeni (Mohammed et al., 2019) and

Ethiopian (Endaye et al., 2020), coffee green beans were classified using elemental

analysis by ICP-OES.
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Table 4: List of studies employing analytical approaches

Ref Publication Technique Number of class  Countries of Classification Availability of Associated Important finding
origin/number of  coffee origin model and feature selection  information in coffee
sample performance method processing
evaluation (postharvest,
roasting, etc.)
(Weiet J. Agric. Food BC-NMR 6 origins (60 total ~ Brazil, Columbia, PCA and OPLS- Guided selection  Different year of The general 'H-NMR fingerprints between the Arabica and the
al., Chem. samples) Guatemala, DA evaluated by  based on the S- harvest. Robusta samples were not significantly different. The selected
2012) Tanzania, R?X (goodness of  plot from OPLS- major features were sucrose, caffeine, chlorogenic acids,
Indonesia, fit) and Q? DA. choline, amino acids, organic acids, and trigonelline.
Vietnam. (predictability)
(Conso  Talanta "HNMR data 23 countries Cape Verde, OPLS-DA with Selected based Different roasting The use of OPLS-DA models on 1H-NMR data resulted in a
nni et divided into 3 Ethiopia, Kenya,  cross validation on S-plot process and powder clear discrimination of samples based on their origin. The
al., classes Malawi, Saint and evaluated by size primary components defining coffee from America: fatty acids
2012) (continent); total ~ Helena, Sensitivity and and chlorogenic acids; African was lactate and Asian samples
40 samples. Tanzania, Specificity. were acetate and trigonelline. OPLS-DA overall goodness of
Brazil, Colombia, fit (R?Y) of 81.5% and an overall cross-validation coefficient
Costa Rica, El (Q%Y) of 69.7% were achieved for the classification of samples
Salvador/Brazil, based on the continent of origin. Overall specificity of the
Galapagos, model was 100%, while sensitivity ranged from 88.89% to
Guatemala, 100%.
Hawaii,
Honduras,
Jamaica,
Nicaragua/
Guatemala, Peru,
Mix South
America,
India, Indonesia,
Nepal, Yemen.
(Garrett LWT Direct-infusion 2 classes Brazil, PLS-DA VIP score > 1 Green beans The study identified 20 important compounds: Caffeic acid,
etal., electrospray (cultivars) and 2 (Cultivars: evaluated by R? from PLS-DA Ferulic acid, Quinic acid, Caffeoylquinic acid, Feruloylquinic
2013) ionization sub classes Sarchimor and and Q? which is algorithm acid, diCaffeoylquinic acid, Feruloylcaffeoylquinic acid,
Fourier-transform  (growing region)  Catuai) cultivated validated by Palmitic acid, Linoleic acid, Oleic acid, Stearic acid, Arachidic
ion cyclotron in Londrina and LOOCV. acid, Behenic acid, Sucrose, Atractyloside II,
resonance mass Mandaguari Carboxyatractyloside II, Atractyloside III,
spectrometry regions. Carboxyatractyloside III, Atractyloside I, Carboxyatractyloside
(ESIFT-ICR I. Coffee from different cultivars and geographical origin can
MS) be distinguished based on these 20 compounds using PLS-DA.
(Caglia  Talanta "H-NMR 15 classes (from  Africa, America, =~ OPLS with model  Selected several ~ Roasted coffee Identified several compounds: acetate, chlorogenic acids,
ni et al., 0% to 100% Asia (not performance important caffeine, quinic acids, trigonelline, 2-furyl methanol, N-methyl
2013) Arabica coffee) explicitly parameter of R?2=  variables but not pyridine, and formiate.
mentioned) 0.998 on test explicitly
dataset and Q> mentioning the
97.0% (cross methods.
validation).
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(Sunet J. Radioanal. Photon activation 3 classes Columbia, Canonical Scores  Selected several Coftee sample from More than 30 elements were found in coffee samples: Na, Mg,
al., Nucl. Chem. analysis (PAA) Guatemala, Plot, not important one of the origins Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Zn, Ga, As, Se, Br, Rb, Y, Zr,
2013) Hawaii explicitly variables but not ~ were washed process Mo, Ag, Cd, Sn, Sb, Te, I, Ba, Ce, T, Pb, U. And Fe, Sn, and
mentioning the explicitly and dried process. Rb are the most important discriminant compounds based on
validation mentioning the the statistical analysis.
method. methods.
(Valenti  Food Chemistry Inductively 3 classes based Kenya, Ethiopia, = LDA with up to Forward stepwise  Roasting process, Most discriminative elements for regional separation Ca, Ti,
n& coupled plasma on continents, 3 Uganda, 100% correct method from coffee cherry Mn, Co, Ni, Se, Rb, Sr, Mo, Cs, and Ba. Harvest year, degree
Watling mass classes from the Indonesia, India,  cross validation. LDA algorithm. ripeness level, of ripeness, and roasting process had little influence on the
,2013) spectrometry same continent, 5  East Timor, harvest time. elemental composition of the samples.
(ICP-MS) and classes from the Australia, Papua
inductively same country New Guinea,
coupled plasma Cuba, Dominican
emission Republic, Costa
spectroscopy Rica, Guatemala,
(ICP-ES). Colombia, Brazil,
Peru.
(Muiiiz- Food Anal. Inductively 3 classes (total 46  Brazil, Colombia, LDA and Forward stepwise N/A Ca, Cu, Fe, K, Mg, Mn and Na were the most discriminant
Valenci  Methods coupled plasma samples) Mexico. SIMCA. Model method from variables.
aetal, optical emission performance of LDA algorithm
2013) spectrometry LDA (overall
(ICP-OES) Sensitivity 97%;
specificity 99%),
and SIMCA
(Sensitivity 94%;
Specificity 99%)
(Muiliz- J. Food Compos.  Inductively 4 classes (total 51  Mexican coffee LDA and Forward stepwise N/A ICP-OES can be employed for region-based same country
Valenci  Anal. coupled plasma samples) from Chiapas, Artificial Neural method from determination of coffee. Ca, K, Mn, Mg, Na, and Zn were the
aetal, optical emission Colima, Networks (ANN). LDA algorithm elements that can be employed for several Mexican coffee
2014) spectrometry Oaxaca and LDA overall differentiations.
(ICP-OES) Veracruz regions.  model
performance
(Sensitivity 81%
and Specificity
94%), ANN
overall model
performance
(Sensitivity 93%
and Specificity
98%)
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(Liu et Food Chem. High-resolution 4 classes (total 14  Taiwan, Ethiopia, PCA and Pearson  Selecting several ~ N/A Elemental analysis cannot be employed to classify coffee
al., inductively samples) Tanzania, Correlation. The important geographical origin based on PCA model. On the other hand,
2014) coupled plasma Malawi, Rwanda, article is not variables yet the isotope ratio of boron and strontium may discriminate the
mass Uganda, El informing the does not clearly origin of coffee in the continental level or smaller region.
spectrometer Salvador, model validation =~ mentioning the
(HR-ICP-MS) Guatemala, method. method.
Puerto Rico,
Jamaica,
Colombia, Brazil,
Papua New
Guinea,
Indonesia.
(Linket  Food Res. Int. Density (free fall 2 global classes Brazil (grownin  Self-organizing Visual N/A Several chemical analyses coupled with SOM data processing
al., method) and (modern Parana), 14 map (SOM). observation and modeling can be used to classify different genotypes of
2014) chemical analysis  genotypes and genotypes. Evaluated by based on a clear coffee from Brazil.
performed using traditional mean separation of the
several cultivars) (total quantization error  samples on the
techniques, e.g., 54 samples) and trained with maps.
caffeine 7000 epochs.
(spectrophotomet
ric), CGA [refers
to Clifford and
Wight (1976)],
total tannins
[refers to AOAC
(1990)], total
sugar (Somgyi
and Nelson
reagent), protein
and lipids
[AOAC (1990)]
(Yener  J. Mass Proton-Transfer- 3 classes (108 Brazil, Ethiopia, PLS-DA. Cross Variables Different batch was The provenance of the coffee beans shows significant effect on
etal, Spectrom. Reaction-Time of  samples) and Guatemala validation was Importance in used for validation the volatile composition of roasted and ground coftee.
2014) Flight-Mass used to calibrate Projection N-heterocycles like pyrazines

Spectrometry
(PTR-ToF-MS)

the model,
followed by
validation from
the different
batch of sample.

(VIP) > 1.5 was
used to select the
most influential
markers.

(e.g., 3-methylpyrazine), pyrroles (methyl pyrrole), pyrazole,
and
furans (3-penthlyfuran) are the most determinative compounds.
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(Arana  Food Chem. '"H-NMR 2 global classes Colombia, PLS-DA. Cross Selection based Two years "H-NMR untargeted fingerprinting may be used to differentiate
etal., (1. Colombian Brazil, validation was on the loading consecutive sample coffees from Colombia and with the other origins from several
2015) coffee 2. Non- Ecuador, done to reduce scores of PLS- collection. continents.
Colombian Peru, Hawaii, over fitting when  DA. Not clearly
coffee); 160 total ~ Costa Rica, constructing the mentioning the
samples. Dominican Rep, model. Dataset algorithm used
El Salvador, was divided into for the selection.
Guatemala, training (80%)
Honduras, and validation
Jamaica, (20%). Model
Mexico, goodness was
Nicaragua, evaluated by R?
Panama, and Q? analysis.
Uganda, Togo, Model sensitivity
Tanzania, 95% and
Ethiopia, specificity 97%.
Ivory Coast,
Cameron,
China, India,
Indonesia,
Vietnam
(Oliveir  Food Chem. High-Resolution 5 global classes Kenya, Canonical Synthesized from  Extracted with Elemental analysis based on Ca, Mg, Na, K, P, Fe, and Mn
aetal, Continuum (39 samples) Papua New Discriminant CDA model, yet  espresso coffee using HR-CS-AAS was able to be used to classify coffee from
2015) Source Atomic Guinea, Timor, Analysis (CDA) not clearly serving method different continental origin. In addition, the significant
Absorption Mussulo, mentioning the chemical descriptors (i.e., Mn and Ca) were able to be used to
Spectrometry Colombia, India, algorithm for classify coffee based on country of origin. Both were achieved
(HR-CS-AAS) Brazil, Honduras, selection. using CDA model.
Guatemala,
Cuba, Mexico,
China, Ethiopia
(Dong Molecules HS-SPME/GC- 7 classes (total 21  China (Hainan PCA, Based on loading N/A Fatty Acid, Amino Acid, and 77 volatile elements and
etal., MS, LC-MS samples) Province), from 7  Hierarchical plot of PCA. sensorial attributes were used for classification of cultivars.
2015) different Cluster Analysis Volatile compounds cannot be used to differentiate green beans
cultivars. (HCA) of Arabica against Robusta coftfee. Combination
(Carter  J. Agric. Food Isotope Ratio 7 classes (total 54  Region-based Principal Stepwise N/A PCA model cannot classify coffee from different region using
etal., Chem. Mass samples) classification, Component Discriminant elemental composition. Stepwise DA algorithm selected Ca,
2015) Spectrometer i.e., Africa, Discriminant Analysis (DA) Ti, Fe, Ni, Zn, (elemental composition) and §°H, §'3C, §'%0
(IRMS), ICP— Australia, Central ~ Analysis and using (isotopic data) as the major discriminant variables.
OES, GC/ISQ- America, Pearson Mahalanobis
MS Indonesia, India,  correlation. distance
Papua New Validation was
Guinea, and done using
South America jackknife

approach leave
one out for cross
validation.
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(Habte  Food Chem. ICP-OES, ICP- 11 classes (129 Ethiopia (11 LDA (cross Forward stepwise  For certain sampling ~ Micro and trace elements analyzed by ICP-OES or ICP-MS

etal., mass total samples) major producing  validation was method and PCA  location, two from the Ethiopian coffee can be used for geographical

2016) spectrometry regions) implemented for score plot. different harvest discrimination. LDA model shows better classification
(ICP-MS), and model years were used for compared to PCA model.
direct calibration). PCA building the LDA
mercury analyzer model was used model.

(DMA) to determine
sample
separation.

(Mehari ~ Anal. Lett. ICP-OES 3 global classes Ethiopia (East: LDA. Model Several Washed and ICP-OES was able to be used for elemental analysis of

etal., (49 total samples) Harar; South: assessment was important natural/dry process Ethiopian coffee, following its regional classification.

2016¢) Sidama, done by LOOCV. elements were Elements of P, Mn, S, Cu, and Fe were the most important

Yirgachefe; Data were selected based on variables for classification. Score plot of the three dimensional
West: Wollega, divided into LDA loading LDA canonical function was able to be used to classify the
Kaffa, Jimma) training and score. Canonical subregional level coffee origins.

validation set. function

Model coefficients value

performance was ~ was used to

evaluated by class  calculate the

prediction ability  loading

on the unlabeled contribution.

validation dataset.

Accuracy of 92%

and 79% were

achieved for

predicting

growing region

and variety,

respectively.

(Antoin  J. Radioanal. Instrumental 2 global classes (Jamaican and Agglomerative Several elements  Roasted, roasted and ~ INAA and ICP-OES were utilized to analyze elemental profile

eetal., Nucl. Chem. neutron (total of 24 Non-Jamaican) Hierarchical were claimed to powdered, of 16 elements (Al, Br, Ca, Cr, Cu, Fe, K, Mg, Mn,

2016) activation samples) Clustering (AHC)  be more instant/soluble Na, Ni, P, Rb, Sc, Sr, and Zn) for further classification of
analysis (INAA) and PCA. Not influential which  coffee. Jamaican vs. other origins. Brewed coffee shows different
and ICP-OES clearly was observed elemental profile compared to roasted or powdered coffee.

mentioning the based on their Interclassification of several Jamaican origins was not able to
validation concentrations. be done using this method.
method.

(Hamdo Food Control Microbial 2 classes of Cameroon PCA and Important feature ~ Dry and wet process Coffee origin cannot be discriminated based on its bacterial or

uche et community by geographical (Bafoussam and Ascending microbial DNA fungal community. The diversity of microbial community is

al., PCR-DGGE origin Dschang) Hierarchical markers were more closely associated with the postharvest process, i.e., wet

2016) Classification selected based on or dry method.

(AHC). Not the existence of

mentioning the the

validation microorganism in

method. samples, which is
shown by AHC
dendrogram.
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(Mehari  J. Food Compos.  Phenolic 4 classes (100 Ethiopia (East, PCA and LDA. Important N/A Polyphenolic compounds were found to be discriminative for
etal., Anal. compounds by samples) Northwest, PCA Model features selected classification of green. 3-O-caffeoylquinic;
2016b) UPLC-DAD and South, West) performance was by 3 consecutive 3,5-O-dicaffeoylquinic; 4,5-O-dicaffeoylquinic acids; and 3,4-
QTOF MS evaluated by R? steps, i.e., PCA O-dicaffeoylquinic acid are discriminant compounds for
(0.75) and Q? loading score Ethiopian coffee from several location. Several coffees can
(0.50) values. plot, significance also be classified using the ratio comparison of the important
LDA model was different in markers.
used for origin ANOVA, and
prediction using boxplot.
the LOOCV.
LDA recognition
and prediction
abilities of 91%
and 90%,
respectively, at
regional level.
(Ferreir  Food Chem. DNA marker - 3 classes (based South America, Comparison of N/A Ground roast and Detection of commercial coffee DNA adulterated with corn,
aetal, Real-time PCR on quality) Central America, the mean Ct and soluble instant coffee  barley, rice.
2016) and Asia grouped  quantification
into 3 quality of % adulterant in
levels: Gourmet coffee mixture.
(highest),
traditional
ground roast
coffee, and
traditional
soluble coffee.
(Mehari  Food Anal. Alkaloids 4 classes (99 total  Ethiopia (from LDA model N/A Green beans LDA model showed moderate prediction and classification
etal., Methods composition— samples) several regions, calibrated by ability based on the 4 selected alkaloids compounds (caffeine,
2016a) HPLC i.e., East, LOOCV. Dataset theobromine, theophylline and trigonelline). PCA model of the
Northwest, West,  was divided into samples showed overlap score plot between several samples
South) 75% training and from different origins.
25% validation
set.
(de J. Food Compos.  'H-NMR 2 global classes Brazil (Arabica PCA without Loading plot N/A Important spectral was found in the region from 5.1 t0 9.5
Moura Anal. fingerprint (total 31 samples) blend) and clear information ~ observation. ppm. Most of the pure coffee samples form a group cluster in
Ribeiro Adulterants on calibration and the PCA model. However, several pure coffee samples
etal, (Corn, Soy, validation steps. overlaps with adulterants (barley, corn and soybean), and also
2017) Barley, and some other samples clustered with coffee husks in the PCA
coffee husks) score plot.
(Gambo Food Anal. Direct-injection 2 classes of Mexico (Chiapas, Random Forest Mean decreased ~ Dry and wet DIESI-MS detected several important compounds for the
a- Methods electrospray species; 6 classes ~ Veracruz, Puebla, with 500 decision ~ Gini and mean postharvest process. differentiation of geographical origin: m/z 60.473
Becerra (DIESI) - MS of geographical Oaxaca) trees, dataset decreased Roasted and (trimethylamine), m/z 91.227 (lactic acid), m/z 115.176
etal., and low- origin; 2 classes Vietnamese divided into accuracy. Lyophilized coffee. (glycolic acid), m/z
2017) temperature of postharvest coffee, and training (70%), 265.168 (pentadecanoic acid) and ions m/z 681.361 and m/z
plasma ionization  process (100 total unknown origin.  validation (15%), 758.574. LTP-MS is a potential method for rapid classification
(LTP) - MS samples) and test (15%). of coffee from different origin, since it needs negligible sample

preparation.
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(Combe  Food Control DNA-based 7 classes Robusta Adulteration was ~ N/A Comparing the green  Classification of adulterated coffee was achieved using HRM
setal., authentication - (Cameroon and detected by and roasted coffee. analysis employing several primer pairs, especially for the
2018) High-Resolution Vietnam) and comparing the nonroasted green bean coffee. Detection of Robusta
Melting—PCR Arabica (India, Genotypes adulteration in an Arabica coffee was up to 1% limit.
Brazil and Confidence Authentication of roasted coffee is problematic due to the
Guatemala). Percentage using DNA damage during the roasting.
Adulteration pair-wise
admixture of comparison
Robusta on followed by
Arabica were Wilcoxon Rank
1%, 5%, 10%, Test to indicate
25%., and 50%. significant
different.
(Sezer Food Chem. Laser-Induced 7 classes (total 58  Coffee from 21 PCA was used for ~ Significant Roasted coffee LIBS spectral fingerprint analysis, as a simple method for
etal., Breakdown samples) different discrimination of ~ features were elemental profile showed potential identification of
2018) Spectroscopy countries pure coffee evaluated based adulteration in coffee.
(LIBS) for ensembled as one  against on spectral LIBS emission lines consist of organic molecules (C, N, O, and
fingerprinting group for adulterated fingerprint. H) and inorganic compounds (Ca, Mg, Na, K, P, Fe and Cu).
and ICP-OES for authentic coffee samples. Samples The most discriminative elements for coffee differentiation
elemental samples. divided into against the adulterated were K, P, Mg and Ca.
analysis. Adulterations training (2/3) and
were corn, validation (1/3)
chickpea, wheat,  dataset. PLS was
and durum wheat  used to predict
the adulteration
percentages.
(Montei  Food Control Volatile organic 2 classes of Brazil (Organic PLS-DA, Feature selection =~ Comparing coffee Overall model performance of PTR-MS and NIRS data were
ro et al., compounds cultivation and SIMCA, k-NN, algorithm from the organic and ~ comparable. Both methods reached 85% accuracy for
2018) (PTR-MS) and methods, 4 conventional); PCA-kNN, LDA-  derived from conventional farming  predicting the organic or conventional farming. Among several
nondestructive classes of (Regional: Minas kNN, SVM, each model for system. classification model, PLS-DA and LDA-kNN achieved the best
(NIRS) geographical Gerais, Sdo LDA-SVM. classification. performance.
origin. (Total 45 Paulo, Parana, Validation was PTR-MS data coupled to PLS-DA showed classification rates
samples) Espirito Santo, done in two steps, 69% higher than of NIRS

and Bahia)

i.e., Cross
validation and
splitting dataset
into training
(70%) and
validation (30%).

61% for the prediction of geographical origin of 5 regions in
Brazil in the calibration dataset.
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(Hoyos  Food Chem. Untargeted 5 classes (41 total  Colombia PLS-DA and DD-  Filtering Coffee from different  The findings indicate that UHPLC-QToF MS-based
Ossa et metabolomics— samples) (Naranjal, SIMCA. Data important feature  harvest year was used metabolomics is an appropriate method for developing green
al., UHPLC-QToF Rosario, Gigante, was cross was done by for validation. bean coffee origin discrimination techniques. Based on MS?
2018) HRMS Sirena, and San validated for selecting the first experiment, 13 biomarkers were discovered (8 of which were
Antonio) PLS-DA and top 50 variables tentatively elucidated, i.e., 1-O-Sinapoylglucose, 3-
acceptance plot from the VIP Hydroxysuberic acid, N-Acetyl-L-Phenylalanine, 5-Caffeoyl-
was used in DD- score coupled Methylquinic acid, Caffeoyl alcohol, 5-Caffeoylquinic acid, 5-
SIMCA model. with the VIP Caffeoyl-Methylquinic acid, Palmitic acid).
Validation of the  score > 1.
model was done
by using external
dataset. 94% of
sample was
properly
classified.
(Tociet Food Sci. '"H-NMR 4 classes (19 total ~ Brazil (Minas PCA-DA with Discriminant Roasted coffee Important compounds for classification identified were
al., Biotechnol. fingerprint samples) Gerais, Bahia, cross validation. analysis using trigonelline, formic acid, caffeine, n-methylpyridine7 CQAs,
2018) Sao Paulo, and the most catechol. The classification performance of DA was cross
Parand) influential validated resulting in 33.3% up to 66.7% correct origin
variables from prediction.
the NMR data.
(Capora Food Res. Int. Volatile aroma 4 classes of Brazil, Colombia, LDA and MLP used neural ~ Postharvest process, Single-origin coffee volatile compounds data can be employed
so et compounds— continents; 2 Costa Rica, Multiple Layer network feature i.e., wet and dry for developing a reliable classification models. LDA model
al., SPME-GC/MS classes of variety  Ethiopia, Perceptron extractor. LDA methods. indicates 95.97% correct classification for geographical origin
2018) (250 total Guatemala, (MLP). LDA was  used algorithm of coffee samples, and up to 82.3% to differentiate their
samples) Honduras, India,  cross validated. which is derived postharvest process. The alternative MLP algorithm model
Kenya, Mexico, MLP as a neural from the parent performance was comparable to the LDA accuracy. Pyrazines
Nicaragua, network-based model. compounds, 3-ethylpyridine, acetoxyacetone, guaiacol,
Rwanda, Uganda, algorithm ethylpyrazine, and 2-furanmethanol were volatiles that are
and Vietnam. segmented the effective for coffee geographical origin discrimination.
training sample
set as 90% and
test set as 10%.
(Moha Microchem. J. Elemental 2 global classes Yemeni (16 PCA and HAC Important Green coffee beans Yemeni coffee is strongly characterized by Ca-content in
mmed analysis ICP— (27 total samples) regions) and without obvious features were comparison to Ethiopian coffee. Macro element K, Ca, and Mg
etal, OES Ethiopia (11 information on selected based on were strongly associated with Yemeni origin, while Na is
2019) regions) validation the PCA loading strongly associated with Ethiopian coffee.
method. plot.
(Worku  Food Chem. Multielement 4 classes (103 Ethiopia (Harar, LDA with 10-fold  Several features Different cropping The overall classification accuracy after cross validation for the
etal, analysis using total samples) Southeast, cross validation. were selected as season and harvest XRF-multielements and §'3C values was about 89%. XRF can
2019) wavelength- Southwest, important yet year. be applied as a direct measurement of solid samples without
dispersive X-ray Northwest) there is no digestion steps as in ICP method. ICP-based techniques and
fluorescence unambiguous stable isotope ratios showed classification accuracy up to 80%,
spectrometry information yet the LDA plot was not showing clear separation in 2 out of
(XRF) and ICP. about the feature 4 of the sample classes. Incorrect classification of origin is
selection higher in ICP -based method compared to XRF-based.
algorithm.
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(Schipil  Food Anal. Carbon isotope 8 classes (320 Vietnam, Brazil, = Comprehensive Important Comparing green and  This study found the discrimination between the carbon
liti et Methods ratio (8'°C) of total samples) Cameroon, India, Isotopic Data features were roasted coffee. isotope ratio of caffeine extract of green and roasted coffee
al., caffeine and §'3C El Salvador, Evaluation selected based on from different geographical origin. CIDE approach is not
2019) of the whole Ethiopia, India (CIDE) with CIDE applicable in green beans. Data of volatile compounds of §'3C
volatile fraction (Monsonato), several criteria to  requirements, as x-axis using CIDE approach works well to separate the
using India (Robusta obtain a robust e.g., to obtain roasted coffee from several country of origins (including the
(GC-C-IRMS). Monsonato) model. Data were  valid 13C(y) coffee varieties) when coupled to the §'3C of caffeine as y-axis.
visualized by value, the y
plotting a 2D compound must
model of the be selected
selected features. ~ among well-
isolated
(chromatographi
cally pure)
compounds of
low sensory
importance.
(Mehari  J. Sci. Food Fatty acids 4 classes (100 Ethiopia LDA with Discriminant In the subregional Oleic, gondoic, arachidic, and stearic acids were primary
etal., Agric. profiling using total samples) (Northwest, west, LOOCYV for features were level, the coffee features to classify the Ethiopian coffee from four regions.
2019d) GC-MS east, south building up the selected from the  sample was harvested Based on LDA model, the overall true classification rate
regions) calibration model.  significance from different area. obtained 96% for the four regions. In the subregional level,
Dataset divided values from involving 8 primary locations, the overall proportion of correct
into training ANOVA classification is 92%.
(74%) and followed by their
validation (25%).  respective
boxplot
variations.
(Putriet Metabolomics Untargeted 4 global classes Indonesia PCA without Important Comparing green The untargeted metabolomics GC/MS approach found 64
al., metabolomics of  (Robusta, (Temanggung, indicating the features were beans and roasted compounds indicating cluster area of origin of the 4 global
2019) hydrophilic Arabica, Green Bondowoso, validation selected based on  beans, as well as classes from 16 samples. Also, it was found 53 compounds for
compounds— bean, Roasted Toraja, method. the observation using the coffee from  both Arabica and Robusta classes. Glycerol, glucuno-1,5-
GC/MS bean); 7 classes Lampung, of PCA loading different harvest year. lactone, gluconic acid, and sorbitol were among the
of origin of Toraja, plot. metabolites with higher concentrations in the coffee from
Arabica coffee; 3 Mandheling, Sulawesi, Papua, Flores, and Sumatra than in any of the other
classes of origin Aceh, samples studied. Galactitol and galactinol concentrations
of Robusta Andungsari, differed significantly across samples from the eastern and
coffee. (31 total Malang, Bali, western parts of Indonesia.
samples) Bima, Blue

Flores, Bajawa,
Pogapa, Kerinci,
and Kaliselogiri.

25



(Montei  J. Food Sci. Physicochemical 2 classes of Brazil (Organic PLS-DA, LDA, LDA-stepwise Roasted coffee Using the chemical composition and antioxidant activity

ro et al., properties and cultivation and conventional ~DD-SIMCA, algorithm. values, all model/algorithms showed remarkable performance

2019) antioxidant method; 8 classes  cultivated SVM, and k-NN. for classifying the coffee cultivation methods (conventional
activity coupled of geographical coffee); (Minas Samples were and organic) of Brazilian coffee. However, the specific
to chemometrics  origin (45 total Gerais, Sao cross validated producing region was not classified properly. Most
approach samples) Paulo, Parana, and then divided discriminative parameters were caffeine, quercetin-3-

Espirito Santo, into training rutinoside, the Folin—Ciocalteu reducing capacity, total soluble
and the blends) (75%) and solids, and antioxidant capacity (DPPH), especially for
validation (25%) separating the single-origin Arabica against the blends.
for PLS-DA and
LDA analysis.

(Peng et Food Chem. Stable isotope— 2 classes of Brazil (organic LDA, kNN, N/A Roasted beans From four isotopes ratiod'3C, §'%0, 6°H, and §'°N values, the

al., IRMS cultivation and conventional ~SVM. Data were organic and conventional coffee beans showed no significant

2019) system; 6 classes  cultivation cross validation different, except in §'°N ratio. All classification algorithms

of origin (67 total ~ system) and (Sdo 20 times. were not satisfactory for determining the coffee geographical
samples) Paulo, Minas Training dataset origin using the four isotopes ratio-IRMS based. The
Gerais, Parana, uses 70%, test maximum satisfactory of model was achieved by SVM with
Espirito Santo, dataset uses 30% accuracy for Sdo Paulo origin (75%), and LDA accuracy was
Bahia, their of the samples. 71% for Minas Gerais origin.
blends. ROC curve was
used to evaluate
SVM model.
The Chebyshev
distance metric
was used for KNN
classification.

(Badmo Food Res. Int. Identification of 2 classes (54 total ~ Arabica (Brazil, LDA with The discriminant ~ Green beans 16-O-methylcafestol identified in Robusta yet it was not found

setal., 16-O- samples) Colombia, validation dataset ~ features were in Arabica. In addition, this study found that the 16-O-

2019) methylcafestol by Nicaragua, of (3 Arabicaand  selected from the methylcafestol in Arabica and Robusta blends were only
NMR and Ethiopia, 3 Robusta LDA model detected in the threshold of < 40% Robusta mixture.
identification of Honduras, samples). supported with Feruloyl quinic acids and several di-O-caffeoylquinic acids
CGA profile by Guatemala, PCA. showed accuracy to discriminate Robusta against Arabica. This
LC-ESI-HRMS Jamaica, Costa study found 15 important CGAs compounds that are

Rica, Rwanda,
Laos, Kenya,
China, Peru, and
Papua New
Guinea) and

Robusta (Robusta

blend sample
from India,
Vietnam,
Ecuador,
Uganda,
Tanzania, and
Indonesia)
varieties.

discriminative for Arabica vs. Robusta green beans from 20
different countries and continents.
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(Ongo Food Res. Int. Volatile 8 classes (8 total ~ Philippines PCA and cluster Observation of Civet and noncivet Several discriminative volatiles metabolites responsible for the
etal., compounds— samples) (Arabica civet analysis PCA loading coffee classification of civet and noncivet of both Arabica and
2020) SPME-GC/MS and noncivet (dendrogram) score. Robusta coffees were acetic acid, furfural, 5-methylfurfural, 2-
coffee); (Robusta  without clear formylpyrrole, maltol, phenol and 4-ethyl-guaiacol. Overall,
civet and information on using the volatile compounds profile of the coffee samples, this
noncivet) validation method study was able to discriminate the origin and postharvest
process of coffee from the Philippines.
(Bitter Food Chem. Trace elements— (53 total samples) 21 countries Biplot projection ~ Comparing the Roasted beans Classification of coffee origins from certain origin may be
etal., ICP-MS (Brazil, Burundi,  of certain combination of easier to be conducted than others using this technical
2020) Colombia, Costa  elements from element ratio approach. The ration of Mn, Fe, and Rb were most frequently
Rica, El different origin. abundance from useful for origin discrimination. In country Brazilian sample
Salvador, Classification one country to was able to be discriminated by using ratios of Ce/Dy and
Ethiopia, employs “One vs.  the others. Ce/Nd. To distinguish Brazilian origin against other countries
Guatemala, Others” concept. ratios of Ce/Yb and La/Er. Guatemalan coffee can be classified
Hawaii, Hawaii— by biplot of Mn/Sr and U/Yb against the samples from other
Kona, Honduras, countries. This study use specific elements ratio biplot to
India, Indonesia, distinguish coffee origins, yet not all origins were classified in
Kenya, Mexico, this study.
Nicaragua,
Panama, PNG,
Peru, Rwanda,
Tanzania,
Vietnam, Yemen)
(Nufiez ~ Foods Untargeted 5 classes for Samples obtained PLS-DA for N/A Roasted coffee beans  PLS-DA model showed samples discrimination for the known
etal., fingerprinting— origins, varieties,  as a commercial geographical with various darkness ~ geographical origin, except the Central-South American coffee
2020) HPLC-UV and roasting Nespresso® origin levels, but not clearly ~ which is overlapped with other data plot. Separation of pure
detector degree; 2 classes  coffee, i.c., classification and mentioning the Robusta, Arabica, and their blends were observed in PLS-DA
for nearer Ethiopia, Brazil, =~ PLSR for temperature of model. the separation was also observed in the PLS-DA score
distance of Central-South adulteration roasting. plots of coffee with different roasting degrees. Adulterated
origins. (306 total ~ America, India, detection. Data coffee with mixture of different origins and composition of
samples) Uganda, Wwere Cross Arabica—Robusta, using this method PLSR showed good
Colombia, India,  validated performance for predicting the percentage of adulteration.
Nicaragua, (venetian blind).
Indonesia, and Data were split
the blends. As into training
well as Vietnam (70%) and
and Cambodia validation (30%)
from different set.
market.
(Enday  Biol. Trace Elem.  Elemental 4 classes (120 Ethiopia ( PCA with cross Features were Green coffee beans The most discriminative and important elements were Ca, Mg,
eetal, Res. analysis - ICP— total samples) (West Gojjam, validation of the selected based on K, Na, in PCA model. LDA provides classification model with
2020) OES East Gojjam, model and LDA PCA loading an overall 94.2% accuracy and 93.4% prediction ability of the
Awi, and Bahir with dataset split ~ plot. production zone of the coffee samples.
Dar Especial into training (80
Zones) samples) and
validation (40
samples) for
prediction.
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(Badmo Food Res. Int. Chlorogenic 7 classes of Brazil. Farming PLS-DA without  VIP score Roasted beans Several CGA compounds were significantly characterizing the
setal., Acids profile - origin; 3 classes system any information derived from differences in the farming system, i.e., 5-pCoQA, 5-CQA, and
2020) HPLC-ESI-TOF-  of farming (biolodynamic, about validation PLS-DA 4-CQA. The determination of geographical origin of Brazilian
MS system (67 total organic, method coffee grown in different location was not possible employing
samples) conventional); this methodology based on the PLS-DA model.
Origin (Sao
Paulo, Minas
Gerais, Espirito
Santo, Bahia,
Parana.
(Happy  Indones. J. '"H-NMR 2 classes (12 total  Indonesia (Aceh OPLS-DA with S-Plot derived Coffee from the same  Quinic acid is the main compound to discriminate coffee from
ana et Chem. fingerprint samples) and Lampung) cross validation from the OPLS- origin yet provided Lampung. Lipid is the most important compound for Aceh
al., and permutation DA model by different supplier coffee.
2020b) for 200 times. algorithm.
(Happy  Curr. Res. Nutr. "H-NMR 4 classes (24 total  Indonesia. PLS-DA and S-plot derived Roasted beans The distinctive metabolites of Gayo—Sumatra coffee were
ana et Food Sci. fingerprint samples) (Gayo—Sumatra, = OPLS-DA with from the OPLS- discovered to be lipids, acetic acid, and lactic acid. Quinide
al., Preanger—Java, cross validation DA model was discovered to be the most significant marker for Bajawa—
2020a) Bajawa—Flores, and 200 algorithm. Flores coffee. Meanwhile, Toraja—Sulawesi coffee has a
and Toraja— permutations. balanced chemical makeup, indicating a well-balanced taste.
Sulawasi) Model
performance
evaluated by R?X
and Q%Y.
(Amalia Metabolomics Metabolite 6 classes of Indonesia. OPLS-DA. The VIP score Roasted beans, Green  Postharvest process was suggested to be the primary
etal., profile-GC/MS postharvest Bajulmati, data was divided ~ derived from beans with different discrimination of coffee metabolite profile, followed by
2021) process (Dry, Kalibendo, Aceh  into training and OPLS-DA postharvest process, geographical origin and altitude of plantation. Glutamic acid
Honey, Washed Gayo, validation. RMSE  algorithm altitude and galactinol were important metabolites for washed and
coupled to 2 Andungsari, Estimate and honey process. Glycine, lysine, sorbose, fructose, glyceric acid,
different Bodowoso, RMSECYV were and glycolic acid were important for dry process coffee.
altitudes); 4 Manglayang, used for model
classes of Flores. evaluation.
altitudes. (23
total samples)
(Bosma LWT Internal 2 global classes Thailand and Confidence value ~ DNA marker Roasted coffee and Based on HRM analysis, the melting curve profiles are only
lietal., Transcribed for species commercial (%), i.e., square species specific brewed coffee in associated to the coffee species content regardless the coffee
2021) Spacer region 2 discrimination coffee from root of correlation  is decided. several methods. brewing methods. This study claims to be the first species-

(ITS2)-based
marker—-DNA
Barcoding
High-Resolution
Melting (HRM)
analysis.

(18 total samples)

Greek market

coefficient (R).

specific HRM analysis showed satisfactory results for the
direct authentication of the brewed product.

28



(Mehari  Int. J. Food. The total 4 classes (100 Ethiopia Statistical The significant Green beans It has been shown that the polyphenol content of green Arabica
etal., Prop. polyphenol total samples) (Northwestern, comparison different of mean coffee beans varies depending on their geographical origins.
2021) content - Southern, ANOVA. concentration of The majority of polyphenols were chlorogenic acids, while
Folin—Ciocalteu Western, and the compounds. flavonoids were only present in minimal amounts.
reagent. Total Eastern regions)
Flavonoid -
Spectrophotometr
y
(Zhuet LWT Protein, lipid, 8 classes (50 total ~ Brazil, Colombia, PLS-DA. The VIP score from Green beans from Samples from Kenya and Ethiopia were overlapped and cannot
al., sucrose, total samples) Ethiopia, goodness of fitof  PLS-DA different harvest be separated in the PLS-DA model. Important variables in this
2021) phenolics (TPC), Guatemala, the model was algorithm. years. study were total lipid content, C24:0, C22:0, C18:3, C17:0,
and total Honduras, R*X =0.568, R’Y C18:0, C20:0, C16:0, protein, C18:1, and C18:2.
titratable acidity Indonesia, =0.27
as well as fatty Kenya, China
acid profile—GC-
FID
(Hung J. Food Process. Fatty acid—Gas 4 classes (74 total ~ Vietnam, Brazil, = Cluster analysis, Statistical Green and roasted Fatty acid species of C18:1, C18:2, and C18:3 were strong
etal., Preserv. Chromatography  samples) Colombia, El LDA, and Neural  significant and beans compounds for coffee classification of both roasted and green
2021) Salvador, Fros, Network model. coefficient of to differentiate the Arabica and Robusta type.
Malan, and No clear variance of each
Mandheling information about  compounds.
the model
validation.
(Nufiez, Food Control Untargeted 11 classes of Colombia, PLS-DA with Observation of Roasted beans. The wavelength for excitation 310 nm and emission 410 nm
Saurina, fingerprinting— adulterated Ethiopia, India, cross validation the signal profile were satisfactory to be used as fingerprint descriptor for further
etal., HPLC-FLD coffee. Indonesia, and dividing data ~ of HPLC. determination of adulteration in coffee (origin admixtures).
2021) Nicaragua, into calibration
Vietnam and and prediction
Cambodia. groups.
(Abdel Food Chem. Volatile aroma 10 classes (10 Brazil (Minas HCA and OPLS-  Score-plot of Several roasting Robusta coffee showed strong volatile markers (pyrazines,
wareth compounds (HS-  samples) Gerais) and DA using cross OPLS-DA levels were compared  furans, and aromatic hydrocarbons compounds) which were
etal., SPME-GC/MS) commercial validation. Model found to be less abundant in Arabica. Several volatile
2021) coffee from the performance was compounds were effective to discriminate the brewed coffee
market evaluated by Q?, from different origins, such as, eugenol for Brazilian roasted
R?, and p-values Robusta coffee decoction method against the Arabica type,
also terpinyl acetate and octyl acetate for several coffee brews.
(Nuiez, J. Sci. Food Untargeted 6 classes of Colombia, PLS-DA with The important Roasted beans with Several important chromatogram ranges for classification of
Martine ~ Agric. fingerprinting - country of Ethiopia, India, cross validation features were the  several levels of origin were, from 2 to 4.5 min, 827 min and 36.5-38 min
z, etal,, HPLC-FLD origins; 2 classes  Indonesia, (venetian blind) range of darkness. segments. Also, 2—5 min and 8-27 min segments were
2021) of coffee types, 4  Nicaragua, and dividing data ~ chromatographic important specifically for nearer distance origin (Cambodia
classes of Vietnam and into calibration windows, and Vietnam). Overall classification rate was 100% for both
roasting degree Cambodia. (70%) and observed from calibration and prediction steps.
(186 total prediction (30%)  the loading plot
samples) groups. of PLS-DA.
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(Demia  Food Control Soluble 3 global classes Africa, Central LDA with N/A Green beans LDA model showed promising results for classifying African,
nova et compound (continents) (23 America, South LOOCYV followed South American, and Central American coffees based on both
al., characters and total samples) America by model volatile and chemical compounds. The confusion matrix

2022) Volatile application on the showed that 71%—-100% correct classification based on volatile

compounds prediction profile, slightly higher than the classification using the soluble
(SPME-GC/MS) dataset. chemical compounds profile.

Confusion matrix

of CV

probabilities was

used to evaluate

model

performance.

(Miao Food bioscience Untargeted 5 global classes Asia (China: 6 OPLS-DA S-plot and VIP Green beans Untargeted fingerprint was able to discriminate coffee samples

etal., fingerprint - of origins and 3 origins, without score derived based on the cultivars with 15 potential markers, i.e., 3-

2022) UHPLC-QE-MS  classes of Indonesia: 1 information about  from OPLS-DA hydroxycoumarin, quinic acid, 4,5-di-o-caffeoylquinic acid,
cultivars (18 total  origin), North model validation. cryptochlorogenic acid (4-O-caffeoylquinic acid), palmitic
samples) America: 4 Model was amide, linoleamide, arachidic acid, 16-methylheptadeca- noic

origins, South evaluated based acid, ethyl oleate, 13S-hydroxyoctadecadienoic acid,
America: 2 on RZX, R?Y, and petroselinic acid, 8,9-DIHETTE, L-malic acid, trehalose, L-

origins, Africa: 4
origins, Oceania:
1 origin)

QZ

glutamic acid. Additionally, 10 compounds were important for
continent-based classification, i.e., 3-hydroxycoumarin, 4,5-di-
O-caffeoylquinic, cryptochlorogenic acid, palmitic amide,
linoleamide, arachidic acid, petroselinic acid, trehalose,
L-glutamic acid, L-malic acid.
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Other authentication method employed various techniques. For instance, photon
activation analysis (PAA) using a radioanalytical method in the elemental analysis was
employed for classifying three South American coffee beans and for distinguishing
washed and natural process coffee (Sun et al., 2013). Proton-Transfer-Reaction (PTR-
ToF-MS) showed different volatile compound profiles in coffee from Brazil, Ethiopia,
and Guatemala (Yener et al., 2014). High-Resolution Continuum Source Atomic
Absorption Spectrometry could classify the espresso extracted coffee based on its
elemental profile (Oliveira et al., 2015). Other studies applied direct-injection
electrospray-MS for fingerprinting and low-temperature plasma ionization-MS for rapid
analysis (Gamboa-Becerra et al., 2017). The carbon isotope ratio (8'3C) of caffeine and
that of the whole volatile fraction have been analyzed using GC-Carbon Isotope Ratio-
MS (Schipilliti et al., 2019). Laser-Induced Breakdown Spectroscopy (LIBS), a new
technique to detect and quantify coffee adulterants (chickpeas, maize, and wheat), could
identify < 0.6% adulterations in coffee (Sezer et al., 2018).

A few studies used a DNA-based approach, Polymerase Chain Reaction
(PCR)—Denaturing Gradient Gel Electrophoresis (DGGE) to understand the microbial
community existing in coffee from different origins and processing. The study found
that geographical origin has little effect on microbial diversity (Hamdouche et al., 2016).
In addition, Ferreira et al. (2016) used DNA markers of adulterants such as corn, barley,
and rice to quantify the percentage of noncoffee contents by Real-time PCR. Combes et
al. (2018) employed high-resolution melting (HRM)—PCR to identify adulterated coffee
in both green and roasted beans, resulting in a 1% threshold for adulterants content

detection. Recently, the HRM method was applied to brewed Thailand samples,
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showing promising results for the detection of Arabica—Robusta admixtures in brewed
coffee (Bosmali et al., 2021).

Interestingly, a couple of studies performed untargeted fingerprinting analysis
using HPLC without MS. High Performance Liquid Chromatography (HPLC)-UV
fingerprinting was used to classify coffee samples from several countries and continents
with varied roasting levels (Nufiez et al., 2020). The same group used HPLC-
Fluorescence Detection (FLD) to identify an admixture of coffee from different origins
(Nunez, Saurina, et al., 2021), and classify coffee origin based on countries, variety
(Arabica and Robusta), and roasting degree (Nufiez, Martinez, et al., 2021). HPLC-FLD
achieved a richer chromatogram fingerprint than HPLC-UV.

With respect to analytical approaches, several studies used specific chemical
compounds such as antioxidant compounds (Monteiro et al., 2019), total phenolic
compounds, protein, and total lipids (Zhu et al., 2021) as variables for coffee origin
classification. However, these studies did not find a significant origin classification
when data were modeled with multivariate analysis, as confirmed by Alnsour et al.
(2022).

Generally, various analytical methods used to determine the geographical origin
of coffee from numerous countries, establish authentication methods, and detect
adulteration with noncoffee materials or addition of lower value substances. Overall,
NMR is a high-throughput analytical device. This method requires little sample
preparation, and can separate substances based on their NMR fingerprint. In comparison
to MS-based approaches, NMR has limited sensitivity. Given its effectiveness and
superior separation capabilities, numerous coffee research uses chromatography coupled

to MS which has been proven for its reproducibility.

32



Moreover, high-resolution MS offers accurate mass measurements and can lead to the
prediction of empirical formulas for unidentified compounds. This tool is widely
employed when coupled with GC, and supported by fragmentation libraries
(commercial and open-source) that assist metabolite identification. However, the
method requires chemical derivatization and cannot be used for larger, nonvolatile
substances. New HPLC methods have increased its separation efficiency, and together
with MS permits the identification of substances without chemical derivatization.
Additionally, the automated sampling facilitates the daily assessment of several samples.
In terms of data comparison, it is difficult because of uniform ionization and

fragmentation.

2.7. Nondestructive Approaches

The 23 selected articles on this topic are shown in Table 5. During the last 10
years, numerous nondestructive approaches for coffee origin determination,
authentication, and variety assessment of the raw green, roasted, and brewed coffee
samples have been extensively done. Most of the studies used spectroscopy-based
methods. Spectroscopy is a fast-growing technique due to its speed, simplicity, safety,
and ability to examine several characteristics simultaneously without requiring lengthy
sample preparation (Barbin et al., 2014). Particularly, spectroscopic procedures in the
visible, near, and midinfrared regions are rapid, almost chemical-free, inexpensive, and
sample-processing-free techniques widely used to predict the chemical composition of
coffee, making them suitable for routine application.

Several studies on this topic use single equipment, but most applied combined

approaches to achieve their goals. Infrared (IR)-based technology is the most employed
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method in nondestructive analysis. It is categorized into three regions, i.e., near IR
(NIR) from 0.77 to 2.5 um (corresponds to wavenumber = 13000-4000 ¢cm™!); mid-
IR(MIR) from 2.5 to 15 um (4000-400 cm™'), and far IR >25 pum (<400 cm™!) (Wang et
al., 2020). This technique can create a spectral “fingerprint” of coffee samples by direct
measurement. However, for coffee authentication or origin determination studies, only a
certain range of wavelengths is meaningful. For instance, a study using FTIR coupled to
a specific detector selected wavelengths ranging between 600 and 1000 c¢cm™! for
differentiation of two cultivation systems of roasted coffee (organic and conventional)
(Gordillo-Delgado et al., 2012), while other studies using MIR employed spectral
features between 2970 and 3600 cm™! to classify Robusta and Arabica coffee (Assis et
al., 2018).

The studies listed in Table 5 used NIR for numerous purposes, e.g.,
differentiation of modern and traditional coffee cultivars from Brazil (Scholz et al.,
2014), regional classification of Brazilian coffee samples (Marquetti et al., 2016), origin
determination of coffee from Cuba, Ethiopia, Indonesia (Bali, Java, and Sumatra),
Tanzania, and Yemen (Mendez et al., 2022) comparison between South American and
Asian coffee (Giraudo et al., 2019), and to detect impurities (Corn, Rice, Barley,
Soybeans, Coffee husks) in Arabica roasted coffee samples as well as to separate South
and Central American coffee samples (de Carvalho Couto et al., 2021). All the above
studies used >100 total samples. The number of samples is probably one of the good

parameters for obtaining robust classification in NIR approaches.
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Table 5: List of studies employing the nondestructive approach

Ref Publication Technique Number of class  Countries of Classification model and ~ Availability of Associated Important finding
origin/number of  coffee origin performance evaluation feature selection  information in coffee
sample method processing
(postharvest,
roasting, etc)
(Ongoet  Procedia E-nose and 8 classes Philippines PCA and dendrogram NA Civet coffee and The volatile chemical composition of civet coffee is nearly
al.,2012)  Engineering GC/MS (Kalinga, without information normal (control) identical to that of its controls, but at differing amounts. E-
Asipulo, about model validation coffee nose data showed clear separation on PCA plot and
Cordillera, and method. dendrogram for civet and noncivet coffee samples. The
South Cotabato) finding was supported by GC-MS headspace analysis.
(Gordillo  J. Sci Food FTIR-photo- 2 classes Colombia C. PCA without PC scores from Roasted coffee The method can be used to indicate the cultivation system
-Delgado  Agric. acoustic (Organic and Arabica information about model  the PCA model difference. Spectra in the range between 600 and 1000
etal., spectrometry conventional); (“Caturra,” validation method. cm ! were used for differentiation of the two cultivation
2012) (60 total “Castilla,” and systems (organic and conventional)
samples) “Tipica”)
(Doming  Sensors Voltametric 3 classes (42 Mexico LDA and SVM NA Organic and ET can be employed in a simple and rapid way to
uez et al., Sensor - total samples) evaluated by Sensitivity nonorganic, and the distinguish samples from different origin and cultivation
2014) Electronic and Specificity. growing altitude of practice (organic vs. conventional) as well as altitude of the
Tongue (ET) Prediction accuracy: the plantation. plantation of the Mexican coffee.
87.5% (LDA); 97.5%
(SVM).
(Scholz J. Near-Infrared ~ Nondestructive - 3 classes (N Ethiopian coffee =~ Modified PLS using No variable N/A This study found the ability of NIRs for predicting several
etal., Spectrosc. NIR samples = 254— accession grown  cross validation selection quality parameters (Caffeine, CGA, Sucrose, total sugars,
2014) 427, selected in Brazil and protein, lipids, phenolic compounds) and further to
randomly) several modern determine the cultivars of coffee.
and traditional
cultivars from
Brazil.
(Lopetch  J. Food Eng. Cyclic 8 classes (no Thailand PCA (no information N/A Civet coffee, weasel ~ ET can be used to differentiate coffee from different
arat et al., voltametric information (Doitung, about the model coffee, and wet country of origin as well as processing technique (civet vs.
2016) electronic tongue  about the number Doichang, validation) process coftee weasel vs. wet-processed coffee)
(ET) of total samples)  Chiang Rai,

Loei), Indonesia,
and Vietnam
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(Medina ~ Int.J. Anal. Attenuated Total 2 global classes Colombia PCA evaluated by N/A N/A Three methodologies to discriminate Colombian against
etal., Chem. Reflectance Mid-  (total 97 against other Receiver Operating other coffee origins were compared. ATR-mIR indicated
2017) Infrared (ATR- samples) origins (Arabica  Characteristics (ROC)— better classification of the coffee species and country of
mIR), Near group: Area Under the Curve origin, compared to NIR and '"H-NMR. oPLS-DA model
Infrared (NIR), Guatemala, Peru, and Q values. was the best model for classifying ATR-mIR and 'H-NMR,
and '"H-NMR Brazil, Costa while PLS-DA was outstanding for NIR data.
Rica, and
Panama. Robusta
group: Vietnam,
India, Uganda,
Indonesia, Togo,
Tanzania, Ivory
Coast, and
Cameroon)
(Knysak,  Food Sci. Electronic nose 4 classes (not Nepal, PCA without clear N/A N/A Electronic nose coupled to GC-FID proven to be useful in
2017) Technol. with Ultra-Fast clearly mentions  Colombia, information on classification of coffee from several countries. Each coffee
GC- Flame the number of Vietnam, calibration and origin identified with distinct volatile compounds.
Ionization sample) Uganda validation steps.
Detectors (FID)
(Bonaet LWT (Non- 4 classes (74 Brazil SVM with 10-fold cross ~ Stable feature Different harvest NIRS performs better accuracy for geographical origin
al., 2017) destructive) samples) (Paranavai, validation. Dataset was selected as year and genotypes. classification compared to FTIR. NIRS method coupled
NIRS and FTIR Cornelio divided into training support vector in with SVM model reach 100% specificity and sensitivity in
Procopio, (2/3) and test (1/3) SVM algorithm. AUROC algorithm.
Mandaguari, group.
Londrina)
(Botelho  Food Control Fluorescene 4 classes (110 Brazil (Cerrado PARAFAC, NPLS-DA,  VIP score Samples harvested in ~ Fluorescence spectroscopy was able to be used for
etal., spectroscopy total samples) Mineiro, Matas UPLS-DA. inherited from different years classification of Brazilian coffee from 4 regions with a
2017) de Minas, Norte  f-scores was used to NPLS-DA and simple sample preparation. UPLS-DA model was the most
de Minas, e Sul indicate accuracy of UPLS-DA accurate compared to PARAFAC and NPLS-DA for
de Minas) classification. Model classification based on f-score value. UPLS-DA
were cross validation, outperformed with f-score range from 0.82 to 1.00 in
followed by dividing training dataset.
dataset into training
(2/3) and test (1/3) data.
(Flambea  Food Sci Nondestructive 10 classes Rwanda PCA and Discriminant Important Two different E-nose peak data was able to be used for bourbon Rwanda
uetal, Biotechnol e-nose and e- (growing area) (Gekenke, Factorial Analysis. features were roasting temperatures ~ coffee discrimination against the non-Rwanda. Several
2017) tongue (50 total Rulindo, Model validation was selected by was applied using the = Bourbon samples from different provinces in Rwanda
samples) Kamonyi 1 and not clearly indicated in observing the same coffee origin cluster to each other and form two distinct groups in PCA
2, Rwamagana, the article. peaks with for sample plot. E-tongue peak data was not significant for
Rutsiro, Rusizi, discrimination references. discrimination due to similar profiles among the samples.
Rubavu) power >95%.
Ethiopia
(Yirgachefte),
Brazil (Cerrado)
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(Suhandy Int.J. Food Sci. Nondestructive 2 classes (98 Indonesian civet ~ PLSR with cross Observation of Roasted coffee A simple preparation of sample was applicable for the
& Yulia, UV-Visible total samples) coffee (kopi validation. Samples the loading authenticity determination of Indonesian civet coffee
2017) Spectrophotomet luwak Lampung)  divided into training weight values. against its adulterated one using UV-Visible
er against (58) and test (40). The The larger the spectrophotometer. The UV-Vis spectral data was
adulterated kopi ~ Ratio Prediction to absolute the processed by PLSR model with several preprocessing
luwak. Deviation value and more important steps, the model was satisfactory for separating the original
Range Error Ratio were  and significant civet coffee from it counterfeit.
used to evaluate the the wavelength
model performance. feature for
classification.
(Assiset  Food Anal. Nondestructive 3 global classes Brazil. Arabica Ordered predictors Important Coffee roasted in The best variable selection results were obtained with
al., 2018)  Methods Midinfrared (light, medium, (State of Minas selection (OPS), interval ~ features were light, medium, and discrete methods, OPS and GA. The region of 3000 and
(4000-800 cm™")  dark roast Gerais); Robusta ~ PLS, successive selected using dark mode were 2800 cm ! reported to be important information associated
- ATR-FTIR coffee) (120 total ~ (State of Espirito  projections algorithm the algorithm compared for model ~ with hydrocarbon or carboxylic acid. Spectrum of 3600
spectroscopy samples) Santo) (SPA), and Genetic derived from calibration and and 2970 cm ™! was fit to be included in the robust model
Algorithm (GA). Cross each model, i.e.,  validation. yet it was not informative for individual roasting levels. A
validation was done for OPS, SPA, GA, robust model that was built based on all roasting degrees
all models. Dataset were ~ iPLS. performed better prediction independent of roasting degree.
divided into calibration
(70%) and validation
(30) sets.
(Obeidat  J. Appl. ATR-FTIR 5 classes (48 Brazil, PCA with LOOCV. Important Green coffee beans Important spectral visual comparison was indicated in the
etal., Spectrosc. (6004000 cm™)  total samples) Colombia, features were region 17751500 cm™' and 3030-2750 cm™! which
2018) Ethiopia, Kenya, obtained by illustrate differentiation between coftee origins.
and Yemen. observing the
PCA loading
plot.
(Makim Food Anal. Nondestructive - 6 classes (53 Brazil Common Dimension Feature Different degree of All models achieved sensitivity and specificity value of
ori & Methods E-nose total samples) (commercial Analysis (ComDim) and  extraction was roasting of instant 100%.
Bona coffee samples) LDA with LOOCV. done based on commercial coffee E-nose transient signal showed differentiation among the
! the program and ~ without indicating samples, therefore it can be used for discrimination of
2019) setting of e-nose  the roasting method.  coffee origin when coupled with chemometrics approach.
equipment. This method is applicable for aromatic quality control in
instant coffee industry.
(Mendes  Foods Nondestructive - 5 classes Cuba, SIMCA with cross Important Green beans Using the nondestructive NIRS coupled to SIMCA model,
etal., NIRS Ethiopia, validation followed by features selected the classification rate reaches 70%. However, several
2019) Indonesia (Bali, building a model from based on the coffee samples from different origin were overlapped as
Java, and the training dataset. The  absorption showed in the score-plot PCA model. NIR spectra between
Sumatra), test dataset was used to spectra after data 1850 and 1950 as well as 2000 and 2500 were expressing
Tanzania, and validate the model normalization the existence of C=0 and H,O absorption.
Yemen performance.
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(Giraudo  Food Control Nondestructive - 2 classes of America (Brazil, PLS-DA with cross The most Green coffee beans iPLS-DA algorithm selected 90 important spectral features

etal., FT-NIR continents; 5 Honduras, validation for calibration  discriminative from the NIR data in the range of (9018-8871 cm™!, 8632—

2019) spectrometer classes of Guatemala, data. Dataset were subset of NIR 8177 cm™!, and 6009-5940 cm™") for country-based
countries (191 Colombia, Costa  divided into training spectra were classification. The algorithm was selected 40 important
total samples) Rica, (75%) and validation selected by spectra for continent-based classification. The results of

Nicaragua); Asia  (25%). Further interval PLS-DA prediction showed efficiency from 98% to 100% correct

(India, Vietnam,  validation were done by  algorithm. classification for continent cluster. Country-wise

Indonesia) conducting the same classification achieved 95.9% for training dataset, and

methodology in the 94.6% for validation dataset obtained from different
different laboratory. laboratory.
(Bilge, J. Food Sci. Physicochemical 3 classes of (Peru, Colombia, PCA with cross Derived from the  Samples were Geographical origin of coffee showed no significant effect
2020) Technol. properties, geographical and Brazil) validation evaluated by PCA model. roasted using several  on the differences of antioxidant activity and total phenolic
antioxidant, and  origins; 3 classes RMSEC for the darkness levels, i.e., compounds. However, UV-Vis spectral data varies for
spectral of roasting calibration and light city, city, and coffee from different geographical origin. Roasting levels
properties (UV- methods; 2 RMSECYV for the cross full city. The coffee able to cluster the coffee samples in PCA plot, independent
Vis and classes of validation. was powdered in fine  from the geographical origin. The fluorescence spectral
Fluorescence particle size and coarse particle data documented that the geographical origin, particle size
Spectroscopy). size. Several brewing  and roasting degree
methods were used, had less influence on the formed molecules compared to
i.e., hot (French brewing method.
press and chemex
methods) and cold
brew
methods.
(Marek et Sensors Volatile 5 classes Brazil, Ethiopia, =~ PCA without Loading plot of Roasted beans The E-nose volatile compounds analysis was consistent
al., 2020) compound-E- Guatemala, information about PCA model. with the results GC-MS analysis for the discrimination of
nose and GC-MS Costa Rica, and validation method. coffee from the particular origin.

Peru Pyridine and 2-oxoproponal were abundant in samples
from Brazil and Peru. Butan-2-one, 2-methylpirimidine,
and 4.6-dimethylpyrimidine were high in other 3 samples.

(Arrieta Int. J. Technol. Non-destructive 5 classes Colombia PCA without N/A Coffee suspension The nondestructive approach, the electronic tongue sensor
etal., cyclic (Cauca, information about the array was able to discriminate coffee from different region
2020) voltammetry Risaralda, Cesar, validation method. of Colombia origin, sufficiently.

mini electronic Quindio, and

tongue Antioquia)
(Couto et Foods Nondestructive 3 global classes Coftee samples PCA with cross N/A Roasted beans NIR spectroscopy can distinguish pure Arabica coffee
al., 2022) NIR from Brazil, validation. The data was samples from contaminated ones, including mix of Robusta

Honduras, divided into training and coffees or coffee husks. The identification of the adulterant
Colombia, validation. RMSEC and in the sample was only possible for single or double
Vietnam, RMSECYV were used for adulterations at concentrations of < 10%. NIR

Cameroon. model evaluation. spectroscopy also shown promise for the geographic
Adulterants: classification of Arabica coffees (South and Central

Corn, Rice, America).

Barley,

Soybeans,

Coffee husks
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(S. Yang  Front. Nutr Nondestructive 3 classes (96 Kenya, Convolutional Neural Features were One of the samples THz amplitudes of the samples from several origins
etal., Terahertz (THz)  total samples) Kilimanjaro, Network (CNN), PCA- selected using were roasted in 3 showed differentiation. Most convincing classification
2021) spectroscopy Yunnan (China). LDA, GA-LDA, PCA- the derived from  different levels results were showed by deep learning CNN model, e.g.,
SVM, and GA-SVM. the dimensional (light, medium, 90.0% Accuracy, 90.5% Sensitivity, and 95% Specificity
Dataset were cross reduction dark). in the prediction set after feature extraction using GA.
validation followed by algorithm, e.g.,
splitting samples into PCA and GA.
training and validation
with various
combinations.
(Mendes  Curr. Res. Nutr. Nondestructive - 4 classes (36 Brazil (Minas PLS-DA with LOOCV Loading plot Green beans PLS-DA model showed R?X = 0.892, R?Y = 0.659; Q%Y =
etal., Food Sci. Fourier- samples) gerais from (24 samples) and from the MIR 0.494, RMSEP = 0.182387. Also, it shows 100% of both
2022) Transform Mid- Cerrado, Matas,  validation (12 samples).  spectra. sensitivity and specificity. Coffee origin class prediction
Infrared (FT- North, South using MIR spectra obtained correct classification rate from
MIR) regions) 83% to 100%.
(Robert Food Chem. Nondestructive 4 classes (200 Brazil LDA, QDA, RDA, Spectral Green beans Direct solid sample analysis was enable rapid and simple
etal., Fluorescene total samples) (Ariquemesm, MDA, SVM (linear), selection based coffee origin determination using this technique. Spectral
2022) spectroscopy Alta Floresta SVM (polynomial), on PCA model. data process was done by combining the data array from
D’Oeste, Ouro SVM (radial base the sensors and principal components of the PCA scores

Preto do Oeste,
Porto Velho

function), RF, GBM,
ANN, k-NN, LVQ, and
optimized LVQ. Data
were cross validated and
divided into training
(75%) and validation
(25%).

with subsequent fusion. Pareto data scaling improve the
accuracy of the prediction. SVM polynomial model
showed the highest accuracy 0.97 with both specificity and
sensitivity maximum to 1 for determining the Brazilian
coffee geographical origin.
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Other noninvasive methods listed in our study are the combination of several
tools. For instance, a study compared the effectiveness of Attenuated Total Reflectance
Mid-Infrared (ATR-MIR), NIR, and '"H-NMR. ATR-MIR led to better classification of
coffee species and country of origin than NIR and '"H-NMR to distinguish Colombian
coffee from counterfeit beans (Medina et al., 2017).

Furthermore, voltametric sensor technology, particularly the electronic nose (E-
nose) and electronic tongue (ET), was used in several studies. Some studies used the
sensor together with other analytical approaches to confirm sensor data. For example,
the E-nose and GC/MS were used to determine the origin of civet coffee (the
Philippines) against regular coffee from the same region (Ongo et al., 2012) and to
discriminate against coffee from Brazil, Ethiopia, Guatemala, Costa Rica, and Peru
(Marek et al., 2020). As well as E-nose and GC/FID which was used in classifying
coffee samples from several countries (Knysak, 2017). The E-nose and GC were used to
assess the volatile aroma compounds of coffee samples. Meanwhile, several ET sensors
were used to distinguish samples from different origins and cultivation practices
(organic vs. conventional) as well as the altitude of t Mexican coffee plantations
(Dominguez et al., 2014).

On this subtopic, one study in Table 5 used a UV-Vis spectrometer to
distinguish Indonesian civet coffee (kopi luwak Lampung) from adulterated kopi luwak
(Suhandy & Yulia, 2017). Recently, Terahertz spectroscopy was used to discriminate
coffee samples from Kenya, Kilimanjaro, and Yunnan (China). One of the samples was
roasted at three different levels (light, medium, and dark). The result of model

classification was satisfactory (S. Yang et al., 2021).
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Overall, coffee origin determination, authentication against contaminated
samples, and in-country origin determination can be performed by simple and rapid,
nondestructive approaches. Most of the studies used a lot of samples with multiple
replications. Furthermore, the spectral data from these approaches were processed with

multivariate analysis or employing machine learning modeling.

2.8. Multivariate Model and Data Analysis

Prior to data analysis, several aspects of data collection are essential to obtain
robust classification and coffee origin determination or authentication. The number of
samples and representation of biological samples from a certain geographical origin
follows a rule of thumb, especially when applying a multivariate analysis or machine
learning model. Using highly representative samples for creating a calibration model
will be more accurate in predicting the studied class. Therefore, this review indicates
not only the number of samples used but also the model performance evaluation method.

Comparing the classification model performance among studies is difficult due
to technical bias, such as HPLC or GC/MS methodology or NIR setup. A study using
both analytical and nondestructive approaches on the same samples is required for a
valuable comparison. A study by Monteiro et al. (2018) (Table 4) may illustrate this
comparison, where volatile organic compounds profiling (based on PTR-MS) and
nondestructive (based on NIR) was used to classify organic vs. conventional coffee
farming. The data was processed with several machine learning models using cross
validation, followed by validation by an external dataset. In the model both method can

be compared for the percentage of accuracy.

41



Spectral data from analytical platforms like NIR, MIR, NMR, chromatography,
and MS, contain molecular information that can serve as fingerprints for coffee origin,
species, and types. So that spectral data can be useful for coffee authentication,
statistical analysis are frequently required to reduce data dimensionality, such as the
identification of spectrum regions relevant to quality parameters, pattern recognition,
and detecting outliers. Unsupervised exploratory approaches, including PCA, factorial
analysis, Soft Independent Modeling of Class Analogy (SIMCA), and cluster analysis,
are frequently employed for this purpose. The main aim of unsupervised modeling is to
explore the natural sample grouping (Kotu & Deshpande, 2019). This model is not
aimed at finding important variables in large data, such as in metabolomics. However,
numerous studies used this model and arbitrarily selected the important compounds by
observing the loading plot.

Other studies used better data modeling, such as supervised machine learning.
Several algorithms can provide insights into feature selection, such as Linear
Discriminant Analysis (LDA) (Mehari, et al., 2016a; Muiiz-Valencia et al., 2013;
Valentin & Watling, 2013), Partial Least Square (PLS)-Discriminant Analysis (DA)
(Hoyos Ossa et al., 2018; Yener et al., 2014), PLS Regression (Nuiiez et al., 2020),
Orthogonal PLS-DA (Miao et al., 2022), [29], [32], Random Forest (RF) (Gamboa-
Becerra et al., 2017), support vector machine (SVM) (Monteiro et al., 2018, 2019; Peng
et al., 2019), and k-nearest neighbour (k-NN) (Monteiro et al., 2018; Peng et al., 2019).
The model used in all studies is indicated in Tables 4 and 5. These algorithms have been
adopted to handle metabolomic datasets in a supervised method. In the supervised
model, the class of observation is already decided for the classification of the sample

data. Therefore, the subjectivity of the human interference in the mathematical
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formulation can be considered not the best fit for the grouping from random set of data,

yet the result of the model might be as satisfactory (Nocairi et al., 2005). Moreover,

model resulted in the DA can be more stable (James et al., 2013).

Table 6: General comparison of the advantages and limitations between analytical and

nondestructive approaches

Method

Advantages

Limitations

Analytical

(in general)

Proper technique for
elucidation of the biochemical
fingerprint of food materials.

Golden standard to find the

information of important
biochemical compounds
which drive sample
discrimination.

In certain approaches, it can

be interpreted immediately
real time, employing simple

statistical analysis.

Labor intensive since it

requires trained operator to

comprehend the advanced
technology.
High investment for

purchasing the whole system
and certain components.
Requires

complex sample

preparation and pretreatments.

Nondestructive

(in general)

Minimum sample preparation

(e.g., does not require
extraction, derivatization, and
other pretreatments).

Relatively simple and rapid

operation.

May accurately be
implemented  when  the
training model have been

developed, and
In certain case, can be used

along with the different

Could not be used to discover
the important biomarker of a
product.

Need a large number of
samples to create an accurate
determination.

Could not be interpreted
immediately to indicate the
discrimination factor since the
spectral patter might be
similar, and thus it should be

proceeded to the chemometrics
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production steps to provide data analysis to find the

real-time information. discriminative wavelength.

Another important part of data analysis is cross validation (CV). Several studies
used CV to reduce bias and avoid overfitting (Tables 4 and 5), whereas others split data
into calibration/training datasets and validation/test samples. Furthermore, normally a
DA uses root mean square error to indicate the error level of a model, as shown in
Amalia et al. (Amalia et al., 2021). Yet, other models prefer to use R?X and QY to
evaluate the goodness of fit of their model (Happyana et al., 2020b). Important features
for discrimination are normally selected based on the model algorithm capacity. For
example, the PLS family model uses a Variables Importance in Projection (VIP) score
or S-plot to indicate the influence of different variables in the classification. An
exhaustive list of models and evaluation parameters, as well as the feature selection
methods can be found in Tables 4 and 5.

Table 7: Several topics for future research on coffee origin authentication

No Ideas for future prospective studies

1. Authentication of coffee based on untargeted metabolomics analysis have not been
studied comprehensively especially for the samples involving the variability of
origins coupled to the variations of degree of roasting as well as the different

harvest seasons.

2. Volatile compounds and lipid fraction investigation in association with
geographical origin of coffee with variation on their altitudes and postharvest
processing.

3. As a future direction, LC/MS represents a potential tool for targeting nonvolatile
metabolites in brews, including primary and secondary metabolites.

4.  Untargeted HPLC-UV or HPLC-FLD have not been thoroughly studied,

specifically for the coffee green beans and roasted bean of the highly valued

44



coffee such as kopi luwak and Monsoonal processed coffee.
5. Numerous studies identified potential markers compounds for geographical origin
determination. However, the confirmation of the selected markers after long

storage has never been found in the literature.

Finally, a general comparison of the advantages and disadvantages of analytical
and nondestructive approaches is illustrated in Table 6. Furthermore, future research

ideas on coffee origin classification and/or authentication are indicated in Table 7.
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CHAPTER 3

METHODOLOGY

3.1. Materials

Indonesian coffee, both Coffea arabica (Arabica coffee) and Coffea canephora
(Robusta coffee), were partially obtained from the University of Lampung (Indonesia),
local coffee farmers, and a trusted distributor from each geographical origin in
Indonesia. As presented in Figure 2, the roasted beans from six districts across four
different islands were selected. A sample harvested in 2019 was used to build up the
discriminant model based on the comprehensive analysis of lipid species. Coffee from
the harvest year of 2019 or 2020 from different harvesting locations was used to
validate the model by measuring the important lipid species selected by the model

(details in Table 8).

Figure 2: Map of Indonesia depicting the coffee origins used in this study

The green bean was roasted by a 500-g capacity roaster machine (WE 6001,
Indonesia) using a controlled temperature of 195 °C for 12 min, followed by fan-
assisted cooling for 10 min. The roasted coffee beans were ground using a home grinder

(Tiamo, DongGuan Co., Ltd., China), and the powder was sieved with a stainless-steel
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testing sieve with a sieve opening of 425 pm (Tokyo Screen, Ltd, Tokyo, Japan). The

coffee samples were stored inside sealed aluminum foil at —80 °C for future use.

Table 8: Geographical origin, harvest year and assigned dataset for the coffee sample

No Origin Harvest Region Island Type Dataset
Year

1 Gayo Aceh 2019 Atu Lintang Sumatera Arabica Training

2 Gayo Aceh 2020 Bener meriah Sumatera Arabica Training

3  Gayo Aceh 2019 Bener meriah Sumatera Arabica Validation
4  Kintamani 2019 Belantih Bali Arabica Training

5 Kintamani 2019 Catur Bali Arabica Training

6  Kintamani 2020 Catur Bali Arabica Validation
7 Lampung 2019 Tanggamus Sumatera Robusta Training

8  Lampung 2019 Tanggamus Sumatera Robusta Training

9  Lampung 2019 Margoyoso Sumatera Robusta Validation
10 Mandheling 2019 Simpang Banyak Sumatera Arabica Training
11  Mandheling 2019 Panyabungan Sumatera Arabica Training
12 Mandheling 2020 Panyabungan Sumatera Arabica Validation
13 Toraja 2019 Sapan Sulawesi Arabica Training
14 Toraja 2019 Pulu-pulu Sulawesi Arabica Training
15 Toraja 2020 Pulu-pulu Sulawesi Arabica Validation
16 Wamena 2019 Baliem Papua Arabica Training
17 Wamena 2019 Mimika Papua Arabica Training
18 Wamena 2019 Baliem Papua Arabica Validation
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The chemical reagents used in this study were of LC-MS and HPLC grades. The
LC-MS-grade chemicals of chloroform (CHCIz), 2-isopropanol (IPA), acetonitrile
(MeCN), methanol (MeOH), methyl tert-butyl ether (MTBE) were purchased from
Fujifilm Wako Pure Chemical (Osaka, Japan). A 20-mm ammonium acetate solution
was prepared from HPLC-grade ammonium acetate (Sigma-Aldrich, St. Louis, USA)
using high-purity water (resistivity > 18MQ cm) provided by a Millipore Direct-Q 3UV
system (Merck KGaA, Darmstadt, Germany). A mixture of 20 pg/mL of 1,2-
diheptadecanoyl-sn-glycero-3-phosphocholine (PC 17:0/17:0) and 1,2-diheptadecanoyl-
sn-glycero-3-phosphoethanolamine (PE 17:0/17:0) (Avanti Polar Lipids, Inc., USA)
was used as an internal standard (IS). PC 17:0/17:0 was dissolved in MeOH, and PE

17:0/17:0 was dissolved in a mixture of CHCI3: MeOH: H>O (6:4:0.5, v/v/v).

3.2. Lipid Extraction

Lipids were extracted from coffee samples as described by Matyash et al.
(2008), with a slight modification. A homogenized 50-mg powder sample was added to
300-uL MeOH, 1000-uL MTBE, and 50-uL IS followed by a vortex for 1 min. The
solution was incubated in a water-bath shaker (Personal 11, Taitec, Japan) for 1 h at 25
°C at 100 rpm. Phase separation was triggered by adding 250 uL of H>O followed by
centrifugation at 20000 x g for 5 min at 10 °C (Model 1720, Kubota, Japan). The
separated aqueous solution was withdrawn and transferred into a new tube and
subjected to a centrifugal evaporator system (EYELA CVE 2100, Tokyo Rikakikai Co.

Ltd., Japan) for 4 h to obtain a dried lipid residue.
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3.3. Liquid Chromatography—Electrospray Ionization—Triple Quadrupole Mass

Spectrometry

The lipid in the samples was analyzed using a series of HPLC system coupled
with a triple quadrupole mass spectrometry with an electrospray ionization (ESI) source
(Q-TRAP 4500, AB-Sciex, Framingham, MA, USA). This system consists of an
autosampler (SIL-20AC, Shimadzu, Kyoto, Japan), two high-pressure gradient pumps
(LC-20AD, Shimadzu, Kyoto, Japan), a column oven (CTO-20A, Shimadzu, Kyoto,
Japan), a reversed-phase chromatographic column (Cadenza CD-C18, particle size 3 um,
150 x 2 mm, Imtakt, Kyoto, Japan), and a communication bus module (CBM-20A,
Shimadzu, Kyoto, Japan).

The HPLC separation used binary flow pumping on IPA/MeOH/20-mM
ammonium acetate (1:3:7, v/v/v) with the addition of 0.1% acetic acid (mobile phase A)
and IPA/MeCN/20-mM ammonium acetate (7:3:1, v/v/v) with the addition of 0.1%
acetic acid (mobile phase B). The time program elution was started at 40% of B in the
first minute. The gradient increased to 80% of B in 3 min; then, it was held for 3 min,
followed by 95% of B, which was held for 2 min. It ended with the isocratic elution at
100% of B for 14 min. The column then equilibrated at 40/60 (B/A) for 1.8 min before
the next sample was evaluated. The total flow rate of the mobile phase was 0.35
mL/min. The column oven temperature was set to 40 °C.

Lipid extraction (10 uL), in which the dried lipid was reconstituted via the
mobile phase B, was injected into HPLC and then subjected to the following tandem
MS experiment: the acquisition batch of samples were analyzed in the randomized order

with five replications and three injections. A pooled quality control (QC) sample
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(consisting of all samples of the mixed solution) was sequentially injected every five
samples during the run.

Mass spectrometry separation was performed on the basis of the multiple
reaction monitoring (MRM) by the triple quadrupole mass spectrometer as previously
studied (Aurum et al., 2022b) based on Tarazona et al. (2015) and Abhyankar et al.
(2018). The MRM transitions for the targeted lipid species are listed in Tables S2 and
S3 of the published article. A total of 953 lipid features were targeted and divided into
five LC-MS/MS acquisition blocks. Each block consists of around 190 targeted
molecules to obtain enough dwell time and data points in the chromatogram. The
electrospray ionization (ESI) was applied for ionization using the TurboV ion source,
which was operated in both the positive and negative modes with a source temperature
of 300 °C. The positive ESI mode setup was as follows: ion spray, 5500 V; curtain gas,
30 kPa; collision gas, 9 kPa; ion source gas 1 (sheath gas), 50 kPa; and ion source gas 2
(drying gas), 80 kPa. The declustering potentials, entrance potential, collision energy,
and collision exit potential (CXP) were different depending on the target metabolites.
The negative ESI was conducted at —4500 V in ion spray voltage, whereas other

parameters remained the same as the positive one.

3.4. Pre-data Processing

The raw peak intensity data (*.wiff) from the Analyst® software (SCIEX,
Framingham, MA, USA) was extracted using the Marker View™ 1.2.1 software
(SCIEX, Framingham, MA, USA), followed by a transformation into a comma
delimited (CSV) file for further data processing. The peaks in MRM chromatograms

were extracted in the following parameters: Gaussian smoothing, 1.5 points; noise
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percentage, 50%; baseline subwindow, 1 min; peak-splitting factor, 4 points. The peaks
were filtered with a minimum intensity of 1500 cps and minimum signal/noise ratio of
300 with a minimum of 5000 peaks. Pre-processing of the data, such as the elimination
of the non-informative peaks, QC-based robust LOESS (locally estimated scatterplot
smoothing) signal correction (QC-RLSC) (Dunn et al., 2011), the normalization by IS
and sample weight, was performed using the in-house script written in R (version 4.0.3)
(R Core Team, 2020) and run in RStudio (Rstudio, 2020). LOESS smoothing was
applied to the pooled QC data with a smoother span value of 0.5 and spline
interpolation. In the lipid feature filtering, a minimum threshold of 20% RSD based on
QC values was used. The raw data was normalized by the smoothed QC values,
followed by normalizing it by the value of the ratio of the IS (average divided by the IS
of the sample). The peaks from the positive ESI mode data were normalized by IS PC
17:0/17:0, whereas the negative ESI mode data were normalized by IS PE 17:0/17:0.
Cleaning of the non-informative data and any other incompatible values was performed
simultaneously. The zero value in the detected lipid species was replaced with the
means of the replication in the same sample. Normalization by weight of each sample
was performed, followed by auto-scaling of the dataset, which was applied prior to the

further multivariate analysis.

3.5. Statistical Analysis

The overall detected lipid species data were grouped into the associated head
group. A statistical analysis of the overall data was conducted to understand the
significant difference in the intensity of the lipid subclass among the coffee origins

using the nonparametric ANOVA, Kruskal-Wallis test, because they do not meet the
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normality assumption. The data was further subjected to a post hoc test using the Dunn
method to find the differences with a probability level of 5%. The statistical test was
conducted in R (version 4.0.3) (R Core Team, 2020) using the FSA package (Ogle et al.,

2021).

3.6. Multivariate Data Analysis

In the multivariate data analysis, the mixOmics R package version 6.15.0 was
used (Rohart et al., 2017). The partial least squares discriminant analysis (PLS-DA) was
employed to classify coffee samples into the known groups of origins and predict the
class of the test dataset samples (Indahl et al., 2007). In this study, the multivariate
regression was used to build the model. Also, in the PLS-DA algorithm, the variable
important in projection (VIP) can indicate the key lipid species that drive such a
classification. Calibration of the model was performed using 5-fold cross-validation and
was repeated 20 times to reduce bias on the model. A Hierarchical Cluster Analysis
(HCA) dendrogram was built to support the supervised data analysis measured by
Euclidian distance and Ward’s method in “cluster” R package Ver 2.1.2.

The selection of potential markers for each coffee origin was determined based
on the VIP score > 0.9 and P-value < 0.05 (Lim et al., 2018; Thammarat et al., 2018).
They were selected from the loading of the chosen components. The number of
components is determined by the lowest overall misclassification or balanced error rate
and soft-thresholding penalization of the selected features extracted from the PLS-DA
algorithm. The ability of the model to classify the coffee origin was evaluated using the

area under the curve-receiver operating characteristics (AUC-ROC) curve (Fawcett,
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2006). Subsequently, each coffee origin was designated with fewer than 10 important

lipid species.

3.7 Validation of the Potential Marker

The validation of the potential marker from the important lipid species of each
coffee origin was completed in a different experiment time. Validation of the model was
performed using a separated sample set, as presented in Table 8. The coffee from either
harvest year or the village of cultivation in the same harvest year was used for the
validation sample set. After determining the most important lipid species from each
coffee origin based on the model created using the PLS-DA (Section 3.6.), the
validation sample set was further subjected to the lipid extraction step (Section 3.2.),
followed by LC-MS/MS analysis (Section 2.3), in which only the specific lipids of
interest for each coffee origin were targeted. The validation dataset was then subjected
to an unsupervised data exploration using the principal component analysis (PCA) to
observe the natural classification of the samples. A heatmap was visualized to illustrate
the similarities between samples using a tree-structured cluster. The lipid features and
the associated coffee origins were reordered based on a hierarchical clustering method
to explore informative correlation patterns. A dendrogram was calculated based on the
Euclidian distance of the n-dimensional plane, and the clustering analysis was
conducted based on the complete-linkage algorithm that computes the least similar bits

of a cluster.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1. Comprehensive Analysis of Lipid Species in Indonesian Coffee

This study tentatively identified 85 lipid species from five major classes of lipids
analyzed by LC-MS/MS from all six coffee origins in the training sample set after data
filtering, as presented in Table 9. Several lipid features were eliminated due to
inconsistency and instability of the peak intensity based on the QC samples within the
threshold limit of 20% RSD. In this study, the neutral glycerolipid class was
outnumbered compared with the sphingolipids and sterol lipid classes. Neutral lipids in
the subclass of TAG were detected with 22 species, seven species of diacylglycerol
(DAG), and one species of monoacylglycerol (MAG). Ceramides (Cer) and
glycoceramides (GlcCer) from the sphingolipid class were detected with three and one
species, respectively.

The sterol lipid group is dominated by acylated steryl glycosides (ASG) and
steryl esters (SE) with the number of species being seven and five, respectively. The
polar glycerophospholipid class contributes 26 species, and the polar glyceroglycolipid
class shares 12 species. Phosphatidylinositol (PI), phosphatidylethanolamine (PE), and
phosphatidylglycerol (PG) are the major lipid subclasses in polar glycerophospholipids,
with the number of species being four, eight, and nine, respectively. In addition, several
lipid species categorized as sulfoquinovosyldiacylglycerols (SQDG),
sulfoquinovosylmonoacylglycerols (SQMG), and monogalactosyldiacylglycerol
(MGDG) subclasses were also detected in the coffee samples.

Figure 3 presents the overall lipid feature of Indonesian coffee from six major

producing areas. The bar graph expresses the mean abundance of each lipid class, in
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which the statistical test indicates that 15 out of 16 lipid groups were statistically

significantly different (P < 0.05) among the coffee origins. For instance, coffee from

Gayo and Toraja are both from the same Coffea arabica species, yet several lipid

classes exhibit significant differences between the two geographical origins, such as in

the PE, PG, PI, and SQDG groups. However, both origins share several lipid class

features in DAG, LGPL, and TAG.

Table 9: Number of tentative lipid species detected in coffee samples by LC-MS/MS

Number Number
Lipid Class (Positive ESI) of Lipid Class (Negative ESI) of
species species
Sphingolipids Polar glycerophospholipids
Ceramides (Cer) 3 | Phosphatidylinositols (PI) 4
Glycoceramides (GlcCer) 1 | Phosphatidylcholine (PC) 1
Sphingomyelin (SM) 1 | Phosphatidylglycerols (PG) 9
Sterol lipids Phosphatidylethanolamine (PE) 8
Acylated steryl glycosides 7 | Lysoglycerophospholipids (LGPL) 4
(ASG)
Steryl esters (SE) 5 | Polar glyceroglycolipids
Neutral glycerolipids Monogalactosyldiacylglycerols 5
(MGDG)
Triacylglycerol (TAG) - Sulfoquinovosyldiacylglycerols .
(SQDG)
Diacylglycerol (DAG) . Sulfoquinovosylmonoacylglycerols 5
(SQOMQG)
Monoacylglycerol (MAG) 1
Total number of species 47 | Total number of species 38

Note: Lysoglycerophospholipids (LGPL) class includes Lyso-Phosphatidylinositols (LPI), Lyso-
Phosphatidylcholine (LPC), Lyso-Phosphatidylglycerols (LPG)
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On the other hand, several lipid groups may not be detected in all of the samples

or were detected but were below the threshold value of 20% RSD, such as SM and PC,

which are not available in Kintamani and Toraja, as both are from central Indonesia, as

well as MGDG, which is not present in Kintamani. Furthermore, TAG was observed in

all six coffee origins with similar abundance. Hence, it statistically demonstrated the

same value for all origins. TAG is naturally present in coffee, since it may account for

about 75% of the lipids in crude coffee, as previously studied by Nikolova-Damyanova

et al. (1998). Therefore, both compounds were shown to be among the highest in

abundance and were plentiful in the species detected in the coffee samples.

Figure 3: Overall lipid profile of Indonesian coffee from the six origins obtained from
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Several studies on the identification and quantification of lipid groups in coffee

were conducted based on the FA content (Bertrand et al., 2008; Martin et al., 2001;

Mehari et al., 2019d; Romano et al., 2014). TAG and DAG were also elucidated in the

other studies (Cossignani et al., 2016; Toci et al., 2013). Recently, a study found that
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lysophosphatidylcholine (LPC), PC, and PI were detected in Brazilian coffee from the

species of Coffea arabica (Silva et al., 2020).

4.2. Supervised Data Exploration

In this study, the PLS-DA algorithm as a supervised analysis was used to
develop the discriminative model to classify the coffee samples. Figure 4 presents the
PLS-DA sample plot of the training dataset of the coffee samples from all six origins.

The PLS-DA model illustrates promising results for the separation of the class of origin.
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Figure 4: PLS-DA sample plot of the comprehensive lipid profile with all

tentative detected lipid species in the training dataset
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It shows total explainable variations of R?X (cum) = 0.861, R?Y (cum) = 0.949,
and predictive capability Q? = 0.838 (values near to 1 shows better performance) built
by a total of 10 x-variates. In this plot, all samples from the same origins are clustered
together. The coffee samples are separated based on each origin, with a confidence
ellipse of 95%. In Figure 4, discrimination can be found in either Kintamani or Toraja
against the Gayo, Mandheling, Wamena, and Lampung origins on X-variate 1 (x-axis).
Differentiation of Gayo, Mandheling, Wamena, and Lampung can be seen from X-
variate 2 (y-axis). The sample plot of Lampung origin independently creates its own
cluster since it may contain unique lipid profiles compared to other samples. Moreover,
the Lampung coffee used in this study is a C. canephora Robusta variety, thus it is
natural to depict different lipid profiles.

Gayo, Mandheling, and Wamena which are Arabica coffees independently
assemble their clusters in the top left corner. These coffee samples are unique in their
taste and characters, originating from different islands. Gayo indicates a strong body
taste compared with other coffee, while Toraja coffee taste is more balance between the
body and acidity (Happyana et al., 2020a). On the positive side of X-variate 1 of the
PLS-DA sample plot, the origins of Toraja and Kintamani are separated with a very
slight eclipse. In this case, these two coffee origins may share a few similar features.
Although they come from different islands, both are in the central part of Indonesia.
Overall, the PLS-DA sample plot indicates separation among the different origins. To
support these findings an HCA dendrogram was built to show the correlation between
the samples, as seen in Figure 5.

In PLS-DA, the X-variate, components, or latent variables indicate the amount

of covariation explained. Contrary to PCA, the component in the PLS-DA maximizes
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the sample co-variance between the response (y) and the linear combination of the
predictor variable (x) by developing an array of orthogonal components. The PLS-DA
performance is indicated by the balanced error rate (BER), which is the average
proportion of the misclassified samples weighted by the number of samples in each

class, as presented in Figure 6 (L€ Cao et al., 2011).
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Figure 5: Hierarchical Cluster Analysis (HCA) Dendrogram of coffee samples from the
training dataset illustrating the correlation between the origins. Each coffee sample
clusters to its origins. Kintamani and Toraja assemble nearer distance, as well Gayo and
Mandheling are in the nearby cluster linking to Wamena, while Lampung coffee forms a
different cluster. HCA used Ward's algorithm and squared Euclidean distance measure

criterion.
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Figure: 6 Balanced error rate of the PLSDA model which illustrates the classification

error rate of each class, lower value indicates better accuracy of the model prediction.

To elucidate the contribution of lipid species that drive such discrimination in
the PLS-DA model, Figure 7 presents the pyramid bar plots in order of increasing
importance (the bottom part is the most important and strongest contribution). Moreover,
because using only two dimensions of the component will not be informative, four
dimensions of the component are presented to point out the separation. The number of
dimensions was selected based on the error rate (Figure 6) which illustrates that four
components achieved the lowest classification error rate while avoiding overfitting of
the model. The color of the bar in Figure 7 shows a sample class (coffee origin) with the

maximum average loading weight value.
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The lipid feature was determined to be discriminative for the origin of coffee if
the normalized mean value in that specific coffee was higher than the others. For
instance, Figure 7A presents component 1 loading (51% expl. var) that showed that PC
18:3 16:0 is associated with the Gayo origin, indicating a negative coefficient. SM 22:6
and LPC 18:1 are both associated with Wamena. On the other hand, ASG-campesteryl
18:2 shows the highest value for Kintamani in a positive coefficient. This indicates that
the mentioned features are important for the differentiation of the associated coffee
originating elsewhere. Moreover, the opposite position in the y-axis of the bar plot
indicates that these important lipids in each coffee origin led to discrimination between
classes. Overall, the point of view of component 1 expresses discrimination between
Kintamani against Mandheling, Wamena, Gayo, and Lampung.

Discrimination of the Lampung origin coffee against all other samples can be
found in the loading of component 2 (15.1% expl. var) (Figure 7B), since a high loading
coefficient of GlcCer t18:1 22:0, LPC 18:2, and SE-cholesteryl 20:0 is indicated by the
Lampung coffee in positive coefficient. On the other hand, PI 16:0 16:1 and Cer
t18:1 16:0 contributed to the discrimination of the origin of Toraja coffee. Thus, these
species are notable for both coffee origins. Furthermore, Wamena is strongly
characterized by several PI species in component 3 (8.3% expl. var) (Figure 7C).
Component 4 (5.5% expl. var) (Figure 7D) indicates several loading weights; however,
several loadings in this component overlap with the other components. Thus, the
loadings in the earlier components can be selected as stronger marker candidates.

The loading weights demonstrate the magnitude of each predictor’s (lipid
species) contribution to the determination of the sample class (coffee origin) on each

model component. The higher the absolute value of the loading, the more significant the
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contribution is in explaining the coffee’s origin class. However, it is important to note

that each component in the model has a different loading weight range.
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Figure 8: Variable important in projection (VIP) score consists of the lipid species

with the score > 0.9 from component 1 to 4 based on PLS-DA model
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Thus, the loading weight of the four components in the model coffee from
different origins generally indicates different lipid metabolites. In agreement with the
loading weight, the VIP score of each significant species associated with coffee origins
indicates a value > 0.9 and a P-value < 0.05 in the univariate analysis (Figure 8).
Furthermore, narrowing down the number of important lipid species of each class is
more insightful for understanding the potential marker of each coffee origin.

Therefore, after getting an accurate model using PLS-DA, it is necessary to tune
the number of components to lessen the computational time and reduce the required
resources. Tuning was performed using the sparse mode of the PLS-DA algorithm to
obtain the most discriminative lipid species, which may lead to the selection of the
potential marker of each coffee origin (Lé Cao et al., 2011). The validity of the
classification of coffee samples based on the variable importance of each component

was evaluated using AUC-ROC, as presented in Table 10.

Table: 10 Classification performance rate based on area under the receiver operating characteristic

(ROC) curve before and after tuning the number of variables in each component on PLS-DA

Origin comparison AUC AUC P-value  P-value  Classification Classification
(Initial) (Tuned) (Initial)  (Tuned) error rate error rate
(Initial) (Tuned)
Gayo vs Other(s) 0.998 1.000 .00236 .00006 0.11 0.00
Kintamani vs Other(s)  1.000  1.000 .00006 .00006 0.00 0.00
Lampung vs Other(s) 1.000  0.938 .00006 .00505 0.00 0.17
Mandheling vs Other(s) 0.907 1.000 .00761 .00006 0.19 0.00
Toraja vs Other(s) 0.938  0.990 .0024 .00210 0.17 0.11
Wamena vs Other(s) 1.000  1.000 .00005 .00005 0.00 0.00
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The initial AUC for Kintamani, Lampung, and Wamena versus other coffee
origins is equal to 1, whereas that for Gayo, Mandheling and Toraja is less than 1. After
tuning the model, the AUC of Gayo and Mandheling was increased to 1, and that of
Toraja was increased to 0.99. However, the AUC of Lampung decreased to 0.93 after
tuning. Overall, based on the AUC, the model classification error can be reasonably
used to determine the geographical origin of coffee. Theoretically, the ROC curve
expresses the capability of the sparse PLS-DA to distinguish among the coffee origins
with maximum ideal performances equal to 1 (Fawcett, 2006). This classification
performance may not be absolutely accurate or in full agreement with the PLS-DA
performance due to different thresholds. Furthermore, this model is elaborated to find

the potential lipid marker of each coffee origin.

4.3. Validation of the Potential Lipid Markers as Origin Discriminator

To determine the discriminant feature of each coffee origin in this study, the
lipid species in the loading plot must demonstrate the essential contribution in each
component indicated by a VIP score larger than 0.9, which is statistically significant.
Based on this benchmark, 38 lipid species were assigned as the discriminant features of
the six coffee origins, as presented in Table 11. The important lipid species used as
discriminator compounds from each location may have a different number to satisfy the
statistical model qualification. Categorically, the Kintamani origin is characterized by
nine lipid species, Lampung by seven, Gayo by seven, Mandheling by nine, Toraja by
seven, and Wamena by six features. A few coffee origins share the same prospective
discriminant compound, such as Kintamani and Toraja, which share ASG-campesteryl

18:2. In addition, coffee from Gayo and Lampung share PG 18:1 18:2 as the important
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variable. This circumstance is likely due to Sumatra Island being the same origin of
Gayo and Lampung in western Indonesia.

Table 11. List of the important putative lipid candidate markers of each coffee origin

Origin Lipid Species Precursor Fragmen Retentio VIP p-value
Ion t Ion n Time score
(min)
Kintamani DAG 18:1 18:3 634.5 3353 13.1 1.1043  2.12E-11
DAG 18:2 18:1 636.6 337.3 14.4 1.1163 1.60E-11
TAG 52:2 18:0 876.8 575.5 29.0 1.0622  6.30E-09
PE 18:2 18:1 740.5 279.2 9.1 1.0090 8.10E-04
PE 16:0 16:0 690.5 255.2 7.1 1.6189 2.38E-18
Cer t18:1 20:0 610.6 262.3 11.2 1.3330 1.11E-31
Cer t18:1 22:1 636.6 262.3 10.4 1.1022  3.05E-09
ASG.campesteryl 18 842.7 383.4 18.5 1.2940 1.24E-08
2
TAG 50:2 16:0 848.8 575.5 30.7 1.0293  1.61E-06
Toraja Cer t18:1 16:0 554.5 262.3 12.0 1.3508 1.08E-41
Cer t18:1 22:1 636.6 262.3 10.4 1.1022  3.05E-09
TAG 50:2_16:0 848.8 575.5 30.7 1.2940 1.61E-06
PI116:0 _16.1 807.5 255.2 9.2 1.6602  8.03E-19
ASG.campesteryl 18 842.7 383.4 18.5 1.0060 1.24E-08
2
MGDG 18:3 18:3 833.5 277.2 10.5 1.2070 1.74E-08
Cer t18:1 20:0 610.6 262.3 11.2 1.3330 1.11E-31
Mandheling TAG 54:4 18:2 900.8 603.5 30.7 1.1644 4.65E-06
PE 18:2 22:0 798.6 279.2 15.8 1.2742  8.36E-18
SQDG 18:2 18:0 845.5 279.2 13.6 1.2856 5.48E-21
SQDG 18:1_18:3 841.5 281.2 13.7 1.1878 7.53E-17
SQDG 16:1 _18:3 813.5 253.2 12.2 1.2020 9.73E-17
SQDG 18:1 _16:2 815.5 281.2 13.4 1.2099 2.14E-15
PG 18:1_16:1 745.5 283.2 12.1 1.2270 1.17E-14
PG 18:0_16:3 743.5 249.2 11.5 1.2799 1.54E-22
SOMG 18:2 583.3 283.3 5.2 1.2854 6.02E-21
Lampung TAG 52:6_16:0 868.7 595.5 24.7 1.1813 5.20E-04
GlcCer t18:1_22:0 816.7 280.3 14.1 1.7402 3.19E-23
SE.cholesteryl 20:0  698.7 369.4 25.4 1.5596 9.58E-12
LPC 18:2 578.3 279.2 11.2 1.6734 4.78E-29
PG 18:1 18:2 771.5 279.2 13.0 1.4409 5.96E-20
PG 18:1 _18:1 773.5 281.2 14.2 1.2565 6.20E-23
PE 18:1 18:0 744.6 281.2 11.0 1.1791 5.93E-16
Wamena PG 18:2 18:2 769.5 279.2 11.7 1.1721  6.04E-16
PI116:0 _18.1 835.5 255.2 10.4 1.1285 2.96E-18
PI118:2 16:0 833.5 279.2 9.5 1.0712  2.14E-17
PI118:2 18:2 857.5 279.2 10.7 1.0656 2.69E-17
SM 22:6 775.6 184 13.1 1.2987 1.33E-25
LPC 18:1 580.4 281.2 11.5 1.2983 1.28E-20
Gayo PG 18:1 18:2 773.5 279.2 13.0 1.4409 5.96E-20
MGDG 18:3 18:3 833.5 277.2 10.5 1.2070  7.96E-20
PG 18:1_16:3 741.5 249.2 10.0 1.2917 8.78E-26
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Origin Lipid Species Precursor Fragmen Retentio VIP p-value

Ton t Ton n Time score
(min)
PG 18:1 _16:1 745.5 283.2 12.1 1.2270 1.17E-14
PG 18:0 _16:3 743.5 249.2 11.6 1.2799 1.54E-22
PE 16:0 18:1 716.5 255.2 12.8 1.2981 7.33E-23
PC 18:3 16:0 814.6 277.2 11.5 1.3152 4.30E-24

Furthermore, to examine the efficacy of the selected potential markers, the
validation sample set was extracted separately to obtain the lipid compounds. It was
then subjected to analysis using the LC-MS/MS MRM mode to confirm the
discrimination capacity of the selected species. The discrimination is presented in
Figure 9 as a PCA plot and in Figure 10 as a heatmap. To evaluate the separation among
the samples, PCA was used as an unsupervised multivariate analysis. The PCA pattern
demonstrates natural discrimination of coffee samples based on their origins, employing
<10 lipid species for each coffee origin. In this plot, the PCA algorithm finds the
directions of the sample points without referring to the class labels with the explainable
variant of 55% in PC1 and 22% in PC2, as well as the total sum of variation in X
explained by the model (R?X) = 0.993, and predictive ability (Q*) = 0.836 based on
cross-validation, built on 10 PCs. The PCA plot gives insight into the selected features
of each sample, which can be used as a prospective discrimination marker of the origin
of coffee.

Figure 10 presents a heatmap coupled with a dendrogram to illustrate the cluster
of the samples against the associated important lipid species. The y-axis in Figure 10
shows that the samples from the same origin indicate the same pattern of associated
variables. A hierarchical relationship among the samples is illustrated by the length of
the lines on the left side of the heatmap. The samples from the same origin were

connected in the nearest distance measured using the Euclidean formula. At the x-axis,
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the correlated lipid species tended to construct a nearer distance. In Table 11, the
selected species from each origin organized the tiles on the heatmap and showed a
substantial contribution, as indicated by the orange tiles. For instance, coffee from

Wamena was clearly discriminated by several PI and PG groups with a positive

correlation.
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Figure 9: Principal component analysis (PCA) score plot to illustrate the natural

grouping of the validation sample

On the other hand, the species that characterize Wamena negatively correlated

with other origins, such as in Toraja and Kintamani, indicated by the blue tiles. The
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lipid group of PI was found in Brazilian coffee by Silva et al. (2020), yet PG was not
found in that particular study.

Kintamani and Toraja coffee exhibits a tentative lipid profile of Cer t18:1 20:0
and Cer t18:1 22:1. Ceramides in plants are usually found as 4-hydroxy-8-sphingadenin
(t18:1), which have been studied to reduce Alzheimer’s disease (Eguchi et al., 2020).
This is the first report that suggests the presence of lipid feature believed to be
Ceramides in coffee, although it requires further study for confirmation.

Toraja coffee also shares most of the same features with Kintamani, as presented
in Figure 10, yet Kintamani shows higher DAG 18:2 18:1 and DAG 18:1_18:3, as well
as several TAG feature intensities useful in distinguishing between the two. It should be
noted that even though Kintamani and Toraja are from different islands, they are both in
central Indonesia and are from the Arabica variety. According to Speer and Kolling-
Speer (2006), the acyglycerol DAG and TAG are found in the endosperm of coffee
beans. In addition, TAG is an aroma enhancer found in roasted coffee beans (Flament,
2002).

Gayo coffee was potentially described with glycerophospholipids owing to its
strong abundance in PE 18:1 18:0, PG 18:0 16:3, and PE 16:0 18:1. In addition,
MGDG and SQDG from the group of glyceroglycolipids were also present. Lampung
coffee was significantly influenced by TAG 52:6 16:0, GlcCer t18:1 22:0, SE-
cholesteryl 20:0, and LPC 18:2. The Mandheling coffee was strongly associated with an
abundance of TAG 54:4 18:2, which is significant compared with other samples, as
well as several SQDG features, which have the potential to be selected as discriminant

features.
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Figure: 10 Heatmap and dendrogram to illustrate clustering of the validation sample

from each geographical origin

Overall, both the PCA (Figure 9) and heatmap (Figure 10) support that the
selected features of each origin are dependable for the accurate discrimination of coffee
samples. A clear separation was illustrated in both figures. Lastly, this study confirms
that the lipid profile of coffee is a useful chemical descriptor that can be used for the
discrimination of origin. Moreover, the results of this study will be advantageous,

because this is the first lipidomic profiling of Indonesian coffee that is exported
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worldwide. The methodological approach, multivariate model, and results of this study
are valuable information for the industrial application of lipid profile identification,

especially in the application of LC-MS/MS for coffee authentication.

71



CHAPTER 5

CONCLUSION

The classification of coffee expanded over time, earlier studies still classify and
identify coffee types (Arabica—Robusta), yet currently numerous studies were done
employing diverse origins of coffee. However, the in-country geographical
classification remains an issue since coffee within nearby cultivation areas cannot be
separated. Lipidomic profiling using LC-MS/MS to discriminate the geographical origin
of coffee from several regions in Indonesia showed promising results. With the aid of a
multivariate analysis, the lipid feature demonstrates the possibility to discriminate
coffee origins, which leads to finding potential markers. The selected lipid species
assigned to each coffee origin demonstrate reliability as the geographical origin
descriptor. This study will be valuable for coffee industries to determine the coffee
origin based on the lipid profile of coffee. This research may also enrich the metabolite
database of single-origin coffee. In addition, the proposed bioactive lipid features might

be a useful information for further study.

72



PUBLICATIONS

Aurum, Fawzan Sigma., Imaizumi, Teppei., Thammawong, Manasikan., Suhandy,
Diding., Praseptiangga, Danar., Tsuta, Mizuki., Nagata, Masayasu., Nakano, Kohei.
2022. Lipidomic profiling of Indonesian coffee to determine its geographical origin by
LC- MS/MS. European Food Research and Technology.

https://doi.org/10.1007/s00217-022-04098-5

Aurum, Fawzan Sigma., Imaizumi, Teppei., Thammawong, Manasikan., Preseptiangga,
Danar., Nakano, Kohei. 2022. Coffee Origin Determination Based on Analytical and
Nondestructive Approaches—A Systematic Literature Review. Reviews in Agricultural

Science. https://doi.org/g/10.7831/ras.10.0_257

73



ACKNOWLEDGEMENT

First of all, sincere praise and gratitude to Allaah God the Almighty, we seek His help,
forgiveness, grace and mercy so that I can finish this thesis. Salutation is always
devoted to the Prophet Muhammad and whoever is constantly following his path until
the end of time.

I would like to thank my supervisor, Prof. Kohei Nakano, for his patience during the
process of research experiment and publication writing. And for his countless times for
giving me excellent guidance and advice for the problem-solving that encompasses the
success of my PhD finalization. Also, I would like to thank the MEXT Scholarship- the
Japanese Government for the financial support and for allowing me to pursue my PhD
at Gifu University. My highest appreciation for IAARD, The Ministry of Agriculture
Indonesia, for the permission to study and support.

I also thank all co-supervisors, Dr. Danar Praseptiangga, Dr. Mizuki Tsuta, Dr. Teppei
Imaizumi, and Dr. Thammawong Manasikan, for not only strengthening our knowledge
in the current field of study and related science but also for always supporting us in any
situation during all stages of my study.

And for Dr. Diding Suhandy, thank you for always being available to give suggestions
and involved in an exciting discussion.

To all my friends in Postharvest Engineering Laboratory, we have made such an
unforgettable memory. To Madam Nakano, thank you for making a friendly
environment both inside and outside academic activities.

To my family member in Indonesia, my mother, father and sister and also my parents-
in-law, my appreciation and prayer for them will never end. And because of their prayer,

God the Almighty has always blessed me in all my life processes.

74



My deepest gratitude also to my wife, Zoraya Amalia, and my daughter Laksmi
Asshoffa who have been through a very hard life during my PhD study. They always
give me total support and motivation. To realize that they are always here to stand by
me is the highest relief I have ever experienced. There are no words to express my great

thank and love for them.

75



REFERENCES

Abdelwareth, A., Zayed, A., & Farag, M. A. (2021). Chemometrics-based aroma
profiling for revealing origin, roasting indices, and brewing method in coffee seeds
and its commercial blends in the Middle East. Food Chemistry, 349, 129162.
https://doi.org/10.1016/j.foodchem.2021.129162

Abhyankar, V., Kaduskar, B., Kamat, S. S., Deobagkar, D., & Ratnaparkhi, G. S. (2018).
Drosophila DNA/RNA methyltransferase contributes to robust host defense in
aging animals by regulating sphingolipid metabolism. Journal of Experimental
Biology, 221(22), 187989. https://doi.org/10.1242/jeb.187989

Alnsour, L., Issa, R., Awwad, S., Albals, D., & Al-Momani, I. (2022). Quantification of
Total Phenols and Antioxidants in Coffee Samples of Different Origins and
Evaluation of the Effect of Degree of Roasting on Their Levels. Molecules, 27(5),
1-10. https://doi.org/10.3390/molecules27051591

Amalia, F., Aditiawati, P., Yusianto, Putri, S. P., & Fukusaki, E. (2021). Gas
chromatography/mass spectrometry-based metabolite profiling of coffee beans
obtained from different altitudes and origins with various postharvest processing.
Metabolomics, 17(7), 69. https://doi.org/10.1007/s11306-021-01817-z

Anese, M., De Pilli, T., Massini, R., & Lerici, C. R. (2000). Oxidative stability of the
lipid fraction in roasted coffee. ltalian Journal of Food Science, 12(4), 457-462.

Antoine, J. M. R, Hoo Fung, L. A., & Grant, C. N. (2016). Geographic determination
of the growing origins of Jamaican and international coffee using instrumental
neutron activation analysis and other methods. Journal of Radioanalytical and
Nuclear Chemistry, 309(2), 525-534. https://doi.org/10.1007/s10967-015-4666-4

Arana, V. A., Medina, J., Alarcon, R., Moreno, E., Heintz, L., Schéifer, H., & Wist, J.
(2015). Coftee’s country of origin determined by NMR: The Colombian case.
Food Chemistry, 175, 500-506. https://doi.org/10.1016/j.foodchem.2014.11.160

Arrieta, A. A. A., Nufiez, Y. E., Mendoza, J]. M. M., Nufiez, Y. E., & Mendoza, J. M. M.
(2020). Mini-electronic Tongue Used to Discriminate between Coffee Samples of
Different Geographical Origin. International Journal of Technology, 11(2), 288—
298. https://doi.org/10.14716/ijtech.v11i2.3225

Assis, C., Oliveira, L. S., & Sena, M. M. (2018). Variable Selection Applied to the
Development of a Robust Method for the Quantification of Coffee Blends Using
Mid Infrared Spectroscopy. Food Analytical Methods, 11(2), 578-588.
https://doi.org/10.1007/s12161-017-1027-7

Aurum, F. S., Imaizumi, T., Manasikan, T., Praseptiangga, D., & Nakano, K. (2022a).
Coffee Origin Determination Based on Analytical and Nondestructive Approaches-
A Systematic Literature Review. Reviews in Agricultural Science, 10, 257-287.
https://doi.org/10.7831/ras.10.0 257

76



Aurum, F. S., Imaizumi, T., Manasikan, T., Suhandy, D., Praseptiangga, D., Tsuta, M.,
Nagata, M., & Nakano, K. (2022b). Lipidomic profiling of Indonesian coffee to
determine its geographical origin by LC-MS/MS. European Food Research and
Technology. https://doi.org/10.1007/s00217-022-04098-5

Badmos, S., Fu, M., Granato, D., & Kuhnert, N. (2020). Classification of Brazilian
roasted coffees from different geographical origins and farming practices based on
chlorogenic acid profiles. Food Research International, 134, 109218.
https://doi.org/10.1016/j.foodres.2020.109218

Badmos, S., Lee, S.H.H., & Kuhnert, N. (2019). Comparison and quantification of
chlorogenic acids for differentiation of green Robusta and Arabica coffee beans.
Food Research International, 126, 108544.
https://doi.org/10.1016/j.foodres.2019.108544

Barbin, F. D., Felicio, A. L. de S. M., Sun, D., Nixdorf, S. L., & Hirooka, E. Y. (2014).
Application of infrared spectral techniques on quality and compositional attributes
of coffee : An overview. Food Research International, 61, 23-32.
https://doi.org/10.1016/j.foodres.2014.01.005

Bertrand, B., Villarreal, D., Laffargue, A., Posada, H., Lashermes, P., & Dussert, S.
(2008). Comparison of the effectiveness of fatty acids, chlorogenic acids, and
elements for the chemometric discrimination of coffee (Coffea arabica L.) varieties
and growing origins. Journal of Agricultural and Food Chemistry, 56(6), 2273—
2280. https://doi.org/10.1021/5073314f

Bilge, G. (2020). Investigating the effects of geographical origin, roasting degree,
particle size and brewing method on the physicochemical and spectral properties of
Arabica coffee by PCA analysis. Journal of Food Science and Technology, 57(9),
3345-3354. https://doi.org/10.1007/s13197-020-04367-9

Bitter, N. Q., Fernandez, D. P., Driscoll, A. W., Howa, J. D., & Ehleringer, J. R. (2020).
Distinguishing the region-of-origin of roasted coffee beans with trace element
ratios. Food Chemistry, 320, 126602.
https://doi.org/10.1016/j.foodchem.2020.126602

Bodner, M., Morozova, K., Kruathongsri, P., Thakeow, P., & Scampicchio, M. (2019).
Effect of harvesting altitude, fermentation time and roasting degree on the aroma
released by coffee powder monitored by proton transfer reaction mass
spectrometry. European Food Research and Technology, 245(7), 1499—-1506.
https://doi.org/10.1007/s00217-019-03281-5

Bona, E., Marquetti, 1., Link, J. V., Makimori, G. Y. F., da Costa Arca, V., Guimaraes
Lemes, A. L., Ferreira, J. M. G., dos Santos Scholz, M. B., Valderrama, P., &
Poppi, R. J. (2017). Support vector machines in tandem with infrared spectroscopy
for geographical classification of green arabica coffee. LWT - Food Science and
Technology, 76, 330-336. https://doi.org/10.1016/j.1wt.2016.04.048

77



Bosmali, 1., Lagiotis, G., Stavridou, E., Haider, N., Osathanunkul, M., Pasentsis, K., &
Madesis, P. (2021). Novel authentication approach for coffee beans and the brewed
beverage using a nuclear-based species-specific marker coupled with high
resolution melting analysis. LWT, 137, 110336.
https://doi.org/10.1016/j.1wt.2020.110336

Botelho, B. G., Oliveira, L. S., & Franca, A. S. (2017). Fluorescence spectroscopy as
tool for the geographical discrimination of coffees produced in different regions of
Minas Gerais State in Brazil. Food Control, 77, 25-31.
https://doi.org/10.1016/j.foodcont.2017.01.020

Burns, D. T., & Walker, M. J. (2020). Critical Review of Analytical and Bioanalytical
Verification of the Authenticity of Coftee. Journal of AOAC INTERNATIONAL,
103(2), 283-294. https://doi.org/10.5740/jaoacint.18-0392

Cagliani, L. R., Pellegrino, G., Giugno, G., & Consonni, R. (2013). Quantification of
Coffea arabica and Coffea canephora var. robusta in roasted and ground coffee
blends. Talanta, 106, 169—173. https://doi.org/10.1016/j.talanta.2012.12.003

Caporaso, N., Whitworth, M. B., Cui, C., & Fisk, I. D. (2018). Variability of single bean
coffee volatile compounds of Arabica and robusta roasted coffees analysed by
SPME-GC-MS. Food Research International, 108, 628—640.
https://doi.org/10.1016/j.foodres.2018.03.077

Carrera, F., Leon-Camacho, M., Pablos, F., & Gonzalez, A. G. (1998). Authentication
of green coffee varieties according to their sterolic profile. Analytica Chimica Acta,
370(2-3), 131-139. https://doi.org/10.1016/S0003-2670(98)00303-1

Carter, J. F., Yates, H. S. A., & Tinggi, U. (2015). Isotopic and Elemental Composition
of Roasted Coffee as a Guide to Authenticity and Origin. Journal of Agricultural
and Food Chemistry, 63(24), 5771-5779. https://doi.org/10.1021/acs.jafc.5b01526

Choi, M. Y., Choi, W., Park, J. H., Lim, J., & Kwon, S. W. (2010). Determination of
coffee origins by integrated metabolomic approach of combining multiple
analytical data. Food Chemistry, 121(4), 1260—1268.
https://doi.org/10.1016/j.foodchem.2010.01.035

Cincotta, F., Tripodi, G., Merlino, M., Verzera, A., & Condurso, C. (2020). Variety and
shelf-life of coffee packaged in capsules. LWT - Food Science and Technology,
118, 108718. https://doi.org/10.1016/j.1wt.2019.108718

Combes, M.-C., Joét, T., & Lashermes, P. (2018). Development of a rapid and efficient
DNA-based method to detect and quantify adulterations in coffee (Arabica versus
Robusta). Food Control, 88, 198-206.
https://doi.org/10.1016/j.foodcont.2018.01.014

Consonni, R., Cagliani, L. R., & Cogliati, C. (2012). NMR based geographical
characterization of roasted coffee. Talanta, 88, 420—-426.
https://doi.org/10.1016/j.talanta.2011.11.010

78



Cossignani, L., Montesano, D., Simonetti, M. S., & Blasi, F. (2016). Authentication of
Coffea arabica according to Triacylglycerol Stereospecific Composition. Journal
of Analytical Methods in Chemistry, 2016, 1-7.
https://doi.org/10.1155/2016/7482620

Couto, C. de C., Freitas-Silva, O., Oliveira, E. M. M., Sousa, C., & Casal, S. (2022).
Near-infrared spectroscopy applied to the detection of multiple adulterants in
roasted and ground arabica coffee. Foods. https://doi.org/10.3390/foods11010061

da Silva Oliveira, E. C., da Luz, J. M. R., de Castro, M. G, Filgueiras, P. R., Guargoni,
R. C., de Castro, E. V. R., da Silva, M. de C. S., Pereira, L. L., Catarina, E., Jos¢,
0., Rodrigues, M., Gomes, M., Roberto, P., Rogério, F., Guarconi, C., Vinicius, E.,
& Castro, R. De. (2021). Chemical and sensory discrimination of coffee: impacts

of the planting altitude and fermentation. European Food Research and
Technology. https://doi.org/10.1007/s00217-021-03912-w

Damayanti, T., & Setiadi, H. (2019). The Influence of Certificaton of Gayo Coffee
Geographical Indication Against Value Added of Coffee in Gayo Highlands, Aceh.
1OP Conference Series: Earth and Environmental Science, 338(1).
https://doi.org/10.1088/1755-1315/338/1/012028

de Carvalho Couto, C., Freitas-Silva, O., Morais Oliveira, E. M., Sousa, C., & Casal, S.
(2021). Near-Infrared Spectroscopy Applied to the Detection of Multiple
Adulterants in Roasted and Ground Arabica Coffee. Foods, 11(1), 61.
https://doi.org/10.3390/foods11010061

de Moura Ribeiro, M. V., Boralle, N., Redigolo Pezza, H., Pezza, L., & Toci, A. T.
(2017). Authenticity of roasted coffee using 1H NMR spectroscopy. Journal of
Food Composition and Analysis, 57, 24-30.
https://doi.org/10.1016/j.jfca.2016.12.004

Demianova, A., Bobkova, A., Lidikova, J., Juraga, L., Bobko, M., Belej, L., Kolek, E.,
Polékova, K., Iriondo-DeHond, A., & Dolores del Castillo, M. (2022). Volatiles as
chemical markers suitable for identification of the geographical origin of green
Coffea arabica L. Food Control, 136, 108869.
https://doi.org/https://doi.org/10.1016/j.foodcont.2022.108869

Dias, R. C. E., de Faria-Machado, A. F., Mercadante, A. Z., Bragagnolo, N., & Benassi,
M. de T. (2014). Roasting process affects the profile of diterpenes in coffee.
European Food Research and Technology, 239(6), 961-970.
https://doi.org/10.1007/s00217-014-2293-x

Directorate General of Estate. (2020). Coffee Production by Province in Indonesia
2019-2021. https://ditjenbun.pertanian.go.id/?publikasi=buku-statistik-perkebunan-
2019-2021 (Accessed date: 24 December 2021)

DJKI Kementerian Hukum dan HAM. (2022). E-Indikasi Geografis. Listing Indikasi
Geografis Terdaftar. https://ig.dgip.go.id/ (Accessed date: 23 December 2021)

79



Dominguez, R. B., Moreno-Baron, L., Mufioz, R., & Gutiérrez, J. M. (2014).
Voltammetric Electronic Tongue and Support Vector Machines for Identification
of Selected Features in Mexican Coffee. Sensors, 14(9), 17770-17785.
https://doi.org/10.3390/s140917770

Dong, W., Tan, L., Zhao, J., Hu, R., & Lu, M. (2015). Characterization of fatty acid,
amino acid and volatile compound compositions and bioactive components of
seven coffee (Coffea robusta) cultivars grown in Hainan Province, China.
Molecules, 20(9), 16687—-16708. https://doi.org/10.3390/molecules200916687

dos Santos, H. D., & Boffo, E. F. (2021). Coffee beyond the cup: analytical techniques
used in chemical composition research—a review. European Food Research and
Technology, 247(4), 749-775. https://doi.org/10.1007/s00217-020-03679-6

Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N.,
Brown, M., Knowles, J. D., Halsall, A., Haselden, J. N., Nicholls, A. W., Wilson, 1.
D., Kell, D. B., & Goodacre, R. (2011). Procedures for large-scale metabolic
profiling of serum and plasma using gas chromatography and liquid
chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060—1083.
https://doi.org/10.1038/nprot.2011.335

Eguchi, K., Mikami, D., Sun, H., Tsumita, T., Takahashi, K., Mukai, K., Yuyama, K., &
Igarashi, Y. (2020). Blood-brain barrier permeability analysis of plant ceramides.
PLoS ONE, 15, 1-12. https://doi.org/10.1371/journal.pone.0241640

Endaye, M., Atlabachew, M., Mehari, B., Alemayehu, M., Mengistu, D. A., & Kerisew,
B. (2020). Combining Multi-Element Analysis with Statistical Modeling for
Tracing the Origin of Green Coffee Beans from Amhara Region, Ethiopia.
Biological Trace Element Research, 195(2), 669—678.
https://doi.org/10.1007/s12011-019-01866-5

Fahy, E., Cotter, D., Sud, M., & Subramaniam, S. (2011). Lipid classification, structures
and tools. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of
Lipids, 1811(11), 637-647. https://doi.org/10.1016/j.bbalip.2011.06.009

Faith Ndlovu, P., Samukelo Magwaza, L., Zeray Tesfay, S., & Ramaesele Mphahlele, R.
(2022). Destructive and rapid non-invasive methods used to detect adulteration of
dried powdered horticultural products: A review. Food Research International,

157, 111198. https://doi.org/10.1016/j.foodres.2022.111198

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8),
861-874. https://doi.org/10.1016/j.patrec.2005.10.010

Ferreira, T., Farah, A., Oliveira, T. C., Lima, I. S., Vitorio, F., & Oliveira, E. M. M.
(2016). Using Real-Time PCR as a tool for monitoring the authenticity of
commercial coffees. Food Chemistry, 199, 433—438.
https://doi.org/10.1016/j.foodchem.2015.12.045

80



Fiehn, O. (2002). Metabolomics - The link between genotypes and phenotypes. Plant
Molecular Biology, 48(1-2), 155—171. https://doi.org/10.1023/A:1013713905833

Flambeau, K. J., Lee, W.J., & Yoon, J. (2017). Discrimination and geographical origin
prediction of washed specialty Bourbon coffee from different coffee growing areas
in Rwanda by using electronic nose and electronic tongue. Food Science and
Biotechnology, 26(5), 1245—1254. https://doi.org/10.1007/s10068-017-0168-1

Flament, 1. (2002). Coffee Flavor Chemistry. John Wiley &Sons, Ltd.

Federal Food Safety and Veterinary Office. (2019). Checking of coffee labelling: three
false declarations in Switzerland.
https://www.blv.admin.ch/blv/en/home/dokumentation/nsb-news-list. msg-id-
75501.html (Accessed date: 13 December 2021)

Gamboa-Becerra, R., Montero-Vargas, J. M., Martinez-Jarquin, S., Galvez-Ponce, E.,
Moreno-Pedraza, A., & Winkler, R. (2017). Rapid Classification of Coffee
Products by Data Mining Models from Direct Electrospray and Plasma-Based
Mass Spectrometry Analyses. Food Analytical Methods, 10(5), 1359-1368.
https://doi.org/10.1007/s12161-016-0696-y

Garrett, R., Schmidt, E. M., Pereira, L. F. P., Kitzberger, C. S. G., Scholz, M. B. S.,
Eberlin, M. N., & Rezende, C. M. (2013). Discrimination of arabica coffee
cultivars by electrospray ionization Fourier transform ion cyclotron resonance
mass spectrometry and chemometrics. LWT - Food Science and Technology, 50(2),
496-502. https://doi.org/10.1016/5.1wt.2012.08.016

Giraudo, A., Grassi, S., Savorani, F., Gavoci, G., Casiraghi, E., & Geobaldo, F. (2019).
Determination of the geographical origin of green coffee beans using NIR
spectroscopy and multivariate data analysis. Food Control, 99, 137-145.
https://doi.org/10.1016/j.foodcont.2018.12.033

Gonzalez, A. G., Pablos, F., Martin, M. J., Ledn-Camacho, M., & Valdenebro, M. S.
(2001). HPLC analysis of tocopherols and triglycerides in coffee and their use as
authentication parameters. Food Chemistry, 73(1), 93—101.
https://doi.org/10.1016/S0308-8146(00)00282-X

Gordillo-Delgado, F., Marin, E., Cortés-Hernandez, D. M., Mejia-Morales, C., &
Garcia-Salcedo, A. J. (2012). Discrimination of organic coffee via Fourier

transform infrared-photoacoustic spectroscopy. Journal of the Science of Food and
Agriculture, 92(11), 2316-2319. https://doi.org/10.1002/jsfa.5628

Habte, G., Hwang, I. M., Kim, J. S., Hong, J. H., Hong, Y. S., Choi, J. Y., Nho, E. Y.,
Jamila, N., Khan, N., & Kim, K. S. (2016). Elemental profiling and geographical
differentiation of Ethiopian coffee samples through inductively coupled plasma-
optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and
direct mercury analyzer (DMA). Food Chemistry, 212, 512-520.
https://doi.org/https://doi.org/10.1016/j.foodchem.2016.05.178

81



Hamdouche, Y., Meile, J. C., Nganou, D. N., Durand, N., Teyssier, C., & Montet, D.
(2016). Discrimination of post-harvest coffee processing methods by microbial
ecology analyses. Food Control, 65, 112—120.
https://doi.org/10.1016/j.foodcont.2016.01.022

Happyana, N., Hermawati, E., Syah, Y. M., & Hakim, E. H. (2020a). Discrimination of
the Indonesian roasted arabica coffees using 1H NMR-based metabolomics.
Current Research in Nutrition and Food Science, 8(2), 479-488.
https://doi.org/10.12944/CRNFSJ.8.2.13

Happyana, N., Hermawati, E., Syah, Y. M., & Hakim, E. H. (2020b). Metabolite profile
evaluation of Indonesian roasted robusta coffees by 1H NMR technique and
chemometrics. Indonesian Journal of Chemistry, 20(4), 850—857.
https://doi.org/10.22146/1JC.46492

Hoyos Ossa, D. E., Gil-Solsona, R., Peniuela, G. A., Sancho, J. V., & Hernandez, F. J.
(2018). Assessment of protected designation of origin for Colombian coffees based
on HRMS-based metabolomics. Food Chemistry, 250, 89-97.
https://doi.org/10.1016/j.foodchem.2018.01.038

Hung, Y. C., Lee, F. S., & Lin, C. 1. (2021). Classification of coffee bean categories
based upon analysis of fatty acid ingredients. Journal of Food Processing and
Preservation, 45(9), 1-17. https://doi.org/10.1111/jfpp.15703

International Coffee Organization. (2020). World coffee consumption.
https://www.ico.org/trade_statistics.asp?section=Statistics (Accessed date: 6 Dec
2021).

Indahl, U. G., Martens, H., & Nas, T. (2007). From dummy regression to prior
probabilities in PLS-DA. Journal of Chemometrics, 21(12), 529-536.
https://doi.org/10.1002/cem.1061

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical
Learning. In Synthesis Lectures on Mathematics and Statistics (Vol. 103, Issue 4).
Springer New York. https://doi.org/10.1007/978-1-4614-7138-7

Knysak, D. (2017). Volatile compounds profiles in unroasted Coffea arabica and Coffea
canephora beans from different countries. Food Science and Technology, 37(3),
444-448. https://doi.org/10.1590/1678-457x.19216

Kotu, V., & Deshpande, B. (2019). Introduction. In Data Science (2nd Ed, pp. 1-18).
Elsevier. https://doi.org/10.1016/B978-0-12-814761-0.00001-0

Lé Cao, K. A., Boitard, S., & Besse, P. (2011). Sparse PLS discriminant analysis:
Biologically relevant feature selection and graphical displays for multiclass
problems. BMC Bioinformatics, 12(June). https://doi.org/10.1186/1471-2105-12-
253

Lim, D. K., Mo, C,, Lee, J. H., Long, N. P., Dong, Z., Li, J., Lim, J., & Kwon, S. W.
(2018). The integration of multi-platform MS-based metabolomics and

82



multivariate analysis for the geographical origin discrimination of Oryza sativa L.
Journal of Food and Drug Analysis, 26(2), 769-777.
https://doi.org/10.1016/j.jfda.2017.09.004

Link, J. V., Guimaraes Lemes, A. L., Marquetti, 1., dos Santos Scholz, M. B., & Bona,
E. (2014). Geographical and genotypic segmentation of arabica coffee using self-
organizing maps. Food Research International, 59, 1-7.
https://doi.org/10.1016/j.foodres.2014.01.063

Liu, H.C, You, C.F., Chen, C.Y., Liu, Y.C., & Chung, M.T. (2014). Geographic
determination of coffee beans using multi-element analysis and isotope ratios of
boron and strontium. Food Chemistry, 142, 439-445.
https://doi.org/10.1016/j.foodchem.2013.07.082

Lopetcharat, K., Kulapichitr, F., Suppavorasatit, 1., Chodjarusawad, T., Phatthara-
Aneksin, A., Pratontep, S., & Borompichaichartkul, C. (2016). Relationship
between overall difference decision and electronic tongue: Discrimination of civet
coffee. Journal of Food Engineering, 180, 60—68.
https://doi.org/10.1016/j.jfoodeng.2016.02.011

Makimori, G. Y. F., & Bona, E. (2019). Commercial Instant Coffee Classification
Using an Electronic Nose in Tandem with the ComDim-LDA Approach. Food
Analytical Methods, 12(5), 1067—1076. https://doi.org/10.1007/s12161-019-01443-
5

Marek, G., Dobrzanski, B., Oniszczuk, T., Combrzynski, M., Cwikla, D., & Rusinek, R.
(2020). Detection and differentiation of volatile compound profiles in roasted
coffee arabica beans from different countries using an electronic nose and GC-MS.
Sensors, 20(7). https://doi.org/10.3390/s20072124

Martin, M. J., Pablos, F., Gonzalez, A. G., Valdenebro, M. S., & Ledén-Camacho, M.
(2001). Fatty acid profiles as discriminant parameters for coffee varieties
differentiation. Talanta, 54(2), 291-297. https://doi.org/10.1016/S0039-
9140(00)00647-0

Martins, V. D. C., Godoy, R. L. D. O., Gouvea, A. C. M. S., Santiago, M. C. P. D. A.,
Borguini, R. G., Braga, E. C. D. O., Pacheco, S., & Nascimento, L. D. S. D. M.
(2018). Fraud investigation in commercial coffee by chromatography. Food
Quality and Safety, 2(3), 121-133. https://doi.org/10.1093/fgsafe/fyy017

Martin, M. J., Pablos, F., & Gonzalez, A. G. (1998). Discrimination between arabica
and robusta green coffee varieties according to their chemical composition.
Talanta, 46(6), 1259-1264. https://doi.org/10.1016/S0039-9140(97)00409-8

Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A., & Schwudke, D. (2008).
Lipid extraction by methyl- tert -butyl ether for high-throughput lipidomics.
Journal of Lipid Research, 49(5), 1137-1146. https://doi.org/10.1194/j1r.D700041-
JLR200

83



Medina, J., Caro Rodriguez, D., Arana, V. A., Bernal, A., Esseiva, P., & Wist, J. (2017).
Comparison of Attenuated Total Reflectance Mid-Infrared, Near Infrared, and 1 H-
Nuclear Magnetic Resonance Spectroscopies for the Determination of Coffee’s
Geographical Origin. International Journal of Analytical Chemistry, 2017, 1-8.
https://doi.org/10.1155/2017/7210463

Mehari, B., Chandravanshi, B. S., Redi-Abshiro, M., Combrinck, S., McCrindle, R., &
Atlabachew, M. (2021). Polyphenol contents of green coffee beans from different
regions of Ethiopia. International Journal of Food Properties, 24(1), 17-27.
https://doi.org/10.1080/10942912.2020.1858866

Mehari, B., Redi-Abshiro, M., Chandravanshi, B. S., Atlabachew, M., Combrinck, S., &
McCrindle, R. (2016a). Simultaneous Determination of Alkaloids in Green Coffee
Beans from Ethiopia: Chemometric Evaluation of Geographical Origin. Food
Analytical Methods, 9(6), 1627-1637. https://doi.org/10.1007/s12161-015-0340-2

Mehari, B., Redi-Abshiro, M., Chandravanshi, B. S., Combrinck, S., Atlabachew, M., &
McCrindle, R. (2016b). Profiling of phenolic compounds using UPLC-MS for
determining the geographical origin of green coffee beans from Ethiopia. Journal
of Food Composition and Analysis, 45, 16-25.
https://doi.org/10.1016/j.jfca.2015.09.006

Mehari, B., Redi-Abshiro, M., Chandravanshi, B. S., Combrinck, S., & McCrindle, R.
(2016c¢). Characterization of the Cultivation Region of Ethiopian Coffee by
Elemental Analysis. Analytical Letters, 49(15), 2474-2489.
https://doi.org/10.1080/00032719.2016.1151023

Mehari, B., Redi-Abshiro, M., Chandravanshi, B. S., Combrinck, S., McCrindle, R., &
Atlabachew, M. (2019d). GC-MS profiling of fatty acids in green coffee (Coffea
arabica L.) beans and chemometric modeling for tracing geographical origins from
Ethiopia. Journal of the Science of Food and Agriculture, 99(8), 3811-3823.
https://doi.org/10.1002/jsfa.9603

Mendes, G. de A., de Oliveira, M. A. L., Rodarte, M. P., de Carvalho dos Anjos, V., &
Bell, M. J. V. (2022). Origin geographical classification of green coffee beans
(Coffea arabica L.) produced in different regions of the Minas Gerais state by FT-
MIR and chemometric. Current Research in Food Science, 5, 298-305.
https://doi.org/10.1016/j.crfs.2022.01.017

Miao, Y., Zou, Q., Wang, Q., Gong, J., Tan, C., Peng, C., Zhao, C., & Li, Z. (2022).
Evaluation of the physiochemical and metabolite of different region coffee beans
by using UHPLC-QE-MS untargeted-metabonomics approaches. Food Bioscience,
46, 101561. https://doi.org/10.1016/j.fb10.2022.101561

Mohammed, F., Guillaume, D., Dowman, S., & Abdulwali, N. (2019). An easy way to
discriminate Yemeni against Ethiopian coffee. Microchemical Journal, 145, 173—
179. https://doi.org/10.1016/j.microc.2018.10.039

84



Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred Reporting Items
for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS
Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097

Monteiro, P. I., Santos, J. S., Alvarenga Brizola, V. R., Pasini Deolindo, C. T., Koot, A.,
Boerrigter-Eenling, R., van Ruth, S., Georgouli, K., Koidis, A., & Granato, D.
(2018). Comparison between proton transfer reaction mass spectrometry and near
infrared spectroscopy for the authentication of Brazilian coffee: A preliminary
chemometric study. Food Control, 91(10), 276-283.
https://doi.org/10.1016/j.foodcont.2018.04.009

Monteiro, P. 1., Santos, J. S., Rodionova, O. Y., Pomerantsev, A., Chaves, E. S., Rosso,
N. D., & Granato, D. (2019). Chemometric Authentication of Brazilian Coffees
Based on Chemical Profiling. Journal of Food Science, 84(11), 3099-3108.
https://doi.org/10.1111/1750-3841.14815

Muiiiz-Valencia, R., Jurado, J. M., Ceballos-Magafia, S. G., Alcazar, A., & Hernandez-
Diaz, J. (2014). Characterization of Mexican coffee according to mineral contents
by means of multilayer perceptrons artificial neural networks. Journal of Food
Composition and Analysis, 34(1), 7-11. https://doi.org/10.1016/j.jfca.2014.02.003

Muiiiz-Valencia, R., Jurado, J. M., Ceballos-Magafia, S. G., Alcazar, A., & Reyes, J.
(2013). Geographical Differentiation of Green Coffees According to Their Metal
Content by Means of Supervised Pattern Recognition Techniques. Food Analytical
Methods, 6(5), 1271-1277. https://doi.org/10.1007/s12161-012-9538-8

Nikolova-Damyanova, B., Velikova, R., & Jham, G. N. (1998). Lipid classes, fatty acid
composition and triacylglycerol molecular species in crude coffee beans harvested
in Brazil. Food Research International, 31(6-7), 479—486.
https://doi.org/10.1016/S0963-9969(99)00016-2

Nocairi, H., Mostafa Qannari, E., Vigneau, E., & Bertrand, D. (2005). Discrimination
on latent components with respect to patterns. Application to multicollinear data.
Computational Statistics & Data Analysis, 48(1), 139—147.
https://doi.org/10.1016/j.csda.2003.09.008

Nuiiez, N., Collado, X., Martinez, C., Saurina, J., & Nufiez, O. (2020). Authentication
of the Origin, Variety and Roasting Degree of Coffee Samples by Non-Targeted
HPLC-UYV Fingerprinting and Chemometrics. Application to the Detection and
Quantitation of Adulterated Coffee Samples. Foods, 9(3), 378.
https://doi.org/10.3390/foods9030378

Nuiiez, N., Martinez, C., Saurina, J., & Nuifiez, O. (2021). High-performance liquid
chromatography with fluorescence detection fingerprints as chemical descriptors to
authenticate the origin, variety and roasting degree of coffee by multivariate
chemometric methods. Journal of the Science of Food and Agriculture, 101(1),
65—73. https://doi.org/10.1002/jsfa.10615

85



Nuiez, N., Saurina, J., & Nuifiez, O. (2021). Non-targeted HPLC-FLD fingerprinting for
the detection and quantitation of adulterated coffee samples by chemometrics.
Food Control, 124, 107912.
https://doi.org/https://doi.org/10.1016/j.foodcont.2021.107912

Obeidat, S. M., Hammoudeh, A. Y., & Alomary, A. A. (2018). Application of FTIR
Spectroscopy for Assessment of Green Coffee Beans According to Their Origin.
Journal of Applied Spectroscopy, 84(6), 1051-1055.
https://doi.org/10.1007/s10812-018-0585-9

Ogle, D. H., Wheeler, P., & Dinno, A. (2021). FSA: Fisheries Stock Analysis (R
package version 0.8.32).

Okubo, N., & Kurata, Y. (2019a). Nondestructive classification analysis of green coffee
beans by using near-infrared spectroscopy. Foods, 8(2).
https://doi.org/10.3390/foods8020082

Oliveira, M., Ramos, S., Delerue-Matos, C., & Morais, S. (2015). Espresso beverages of
pure origin coffee: Mineral characterization, contribution for mineral intake and
geographical discrimination. Food Chemistry, 177, 330-338.
https://doi.org/10.1016/j.foodchem.2015.01.061

Ongo, E. A., Montevecchi, G., Antonelli, A., Sberveglieri, V., & Sevilla, F. (2020).
Metabolomics fingerprint of Philippine coffee by SPME-GC-MS for geographical
and varietal classification. Food Research International, 134(April), 109227.
https://doi.org/10.1016/j.foodres.2020.109227

Ongo, E., Falasconi, M., Sberveglieri, G., Antonelli, A., Montevecchi, G., Sberveglieri,
V., Concina, I., & Ii1, F. S. (2012). Chemometric discrimination of philippine civet
coffee using electronic nose and gas chromatography mass spectrometry. Procedia
Engineering, 47, 977-980. https://doi.org/10.1016/j.proeng.2012.09.310

Peng, C. yi, Zhang, Y. ling, Song, W., Cai, H. mei, Wang, Y., & Granato, D. (2019).
Characterization of Brazilian coffee based on isotope ratio mass spectrometry
(013C, 0180, 62H, and 615N) and supervised chemometrics. Food Chemistry, 297,
124963. https://doi.org/10.1016/j.foodchem.2019.124963

Pereira, L. L., Cardoso, W. S., Guarc¢oni, R. C., da Fonseca, A. F. A., Moreira, T. R., &
Caten, C. S. ten. (2017). The consistency in the sensory analysis of coffees using
Q-graders. European Food Research and Technology, 243(9), 1545-1554.
https://doi.org/10.1007/s00217-017-2863-9

Perez, M., Dominguez-Lopez, 1., Lopez-Yerena, A., & Vallverda Queralt, A. (2021).
Current strategies to guarantee the authenticity of coffee. Critical Reviews in Food
Science and Nutrition. https://doi.org/10.1080/10408398.2021.1951651

Putri, S., & Fukusaki, E. (2018). Achieving sustainable cultivation of coffee. In P.
Lashermes (Ed.), Achieving sustainable cultivation of coffee (First Ed). Burleigh
Dodds Science Publishing. London. https://doi.org/10.4324/9781351114363

86



Putri, S. P., Irifune, T., Yusianto, & Fukusaki, E. (2019). GC/MS based metabolite
profiling of Indonesian specialty coffee from different species and geographical
origin. Metabolomics, 15(10), 126. https://doi.org/10.1007/s11306-019-1591-5

R Core Team. (2020). R: A language and environment for statistical computing. In R
Foundation for Statistical Computing (4.0.3).

Risticevic, S., Carasek, E., & Pawliszyn, J. (2008). Headspace solid-phase
microextraction—gas chromatographic—time-of-flight mass spectrometric
methodology for geographical origin verification of coffee. Analytica Chimica
Acta, 617(1-2), 72—84. https://doi.org/10.1016/j.aca.2008.04.009

Robert, J. V., de Gois, J. S., Rocha, R. B., & Luna, A. S. (2022). Direct solid sample
analysis using synchronous fluorescence spectroscopy coupled with chemometric
tools for the geographical discrimination of coffee samples. Food Chemistry, 371,
131063. https://doi.org/10.1016/j.foodchem.2021.131063

Rohart, F., Gautier, B., Singh, A., & Lé Cao, K.-A. A. (2017). mixOmics: An R
package for ‘omics feature selection and multiple data integration. PLoS
Computational Biology, 13(11), €1005752.
https://doi.org/10.1371/journal.pcbi. 1005752

Romano, R., Santini, A., Le Grottaglie, L., Manzo, N., Visconti, A., & Ritieni, A.
(2014). Identification markers based on fatty acid composition to differentiate
between roasted Arabica and Canephora (Robusta) coffee varieties in mixtures.
Journal of Food Composition and Analysis, 35(1), 1-9.
https://doi.org/10.1016/j.jfca.2014.04.001

Rosiana, N. (2020). Dinamika Pola Pemasaran Kopi pada Wilayah Sentra Produksi
Utama di Indonesia. Jurnal Agrosains Dan Teknologi, 5(1), 1-10.

Rstudio, T. (2020). RStudio: Integrated Development for R. In Rstudio Team, PBC,
Boston, MA URL http.//www.rstudio.com/ (1.3.1093).
https://doi.org/10.1145/3132847.3132886

Santos, J. R., & Rodrigues, J. A. (2020). Characterization of volatile carbonyl
compounds in defective green coffee beans using a fan assisted extraction process.
Food Control, 108, 106879. https://doi.org/10.1016/j.foodcont.2019.106879

Schipilliti, L., Bonaccorsi, 1., Buglia, A. G., & Mondello, L. (2019). Comprehensive
Isotopic Data Evaluation (CIDE) of Carbon Isotope Ratios for Quality Assessment
and Traceability of Coffee. Food Analytical Methods, 12(1), 121-127.
https://doi.org/10.1007/s12161-018-1344-5

Scholz, M. B. D. S., Kitzberger, C. S. G., Pereira, L. F. P., Davrieux, F., Pot, D.,
Charmetant, P., & Leroy, T. (2014). Application of near infrared spectroscopy for
green coffee biochemical phenotyping. Journal of Near Infrared Spectroscopy,
22(6),411-421. https://doi.org/10.1255/jnirs.1134

87



Selmar, D., Kleinwachter, M., & Bytof, G. (2014). Metabolic responses of coffee beans
during processing and their impact on coffee flavor. In R. F. Schwan & G. H. Fleet
(Eds.), Cocoa and Coffee Fermentations (1st Edition, pp. 432—462). CRC Press.
London. https://doi.org/https://doi.org/10.1201/b17536

Sezer, B., Apaydin, H., Bilge, G., & Boyaci, I. H. (2018). Coffee arabica adulteration:
Detection of wheat, corn and chickpea. Food Chemistry, 264, 142—148.
https://doi.org/10.1016/j.foodchem.2018.05.037

Silva, A. C. R., da Silva, C. C., Garrett, R., & Rezende, C. M. (2020). Comprehensive
lipid analysis of green Arabica coffee beans by LC-HRMS/MS. Food Research
International, 137, 109727. https://doi.org/10.1016/j.foodres.2020.109727

Speer, K., & Kolling-Speer, 1. (2006). The lipid fraction of the coffee bean. Brazilian
Journal of Plant Physiology, 18(1), 201-216. https://doi.org/10.1590/S1677-
04202006000100014

Suhandy, D., & Yulia, M. (2017). The Use of Partial Least Square Regression and
Spectral Data in UV-Visible Region for Quantification of Adulteration in
Indonesian Palm Civet Coffee. International Journal of Food Science, 2017, 1-7.
https://doi.org/10.1155/2017/6274178

Sun, Z. J., Wells, D. P., Segebade, C., Maschner, H., & Benson, B. (2013a). A
provenance study of coffee by photon activation analysis. Journal of
Radioanalytical and Nuclear Chemistry, 296(1), 293-299.
https://doi.org/10.1007/s10967-012-2021-6

Tarazona, P., Feussner, K., & Feussner, 1. (2015). An enhanced plant lipidomics method
based on multiplexed liquid chromatography-mass spectrometry reveals additional
insights into cold- and drought-induced membrane remodeling. The Plant Journal,
84(3), 621-633. https://doi.org/10.1111/tpj.13013

Thammarat, P., Kulsing, C., Wongravee, K., Leepipatpiboon, N., & Nhujak, T. (2018).
Identification of Volatile Compounds and Selection of Discriminant Markers for
Elephant Dung Coffee Using Static Headspace Gas Chromatography—Mass
Spectrometry and Chemometrics. Molecules, 23(8), 1910.
https://doi.org/10.3390/molecules23081910

Thorburn Burns, D., Tweed, L., & Walker, M. J. (2017). Ground Roast Coffee: Review
of Analytical Strategies to Estimate Geographic Origin, Species Authenticity and
Adulteration by Dilution. Food Analytical Methods, 10(7), 2302-2310.
https://doi.org/10.1007/s12161-016-0756-3

Toci, A. T., de Moura Ribeiro, M. V., de Toledo, P. R. A. B., Boralle, N., Pezza, H. R.,
& Pezza, L. (2018). Fingerprint and authenticity roasted coffees by 1H-NMR: the
Brazilian coffee case. Food Science and Biotechnology, 27(1), 19-26.
https://doi.org/10.1007/s10068-017-0243-7

88



Toci, A. T., Farah, A., Pezza, H. R., & Pezza, L. (2016). Coffee Adulteration: More
than Two Decades of Research. Critical Reviews in Analytical Chemistry, 46(2),
83-92 https://doi.org/10.1080/10408347.2014.966185

Toci, A. T., Neto, V. J. M. F., Torres, A. G., & Farah, A. (2013). Changes in
triacylglycerols and free fatty acids composition during storage of roasted coffee.
LWT - Food Science and Technology, 50(2), 581-590.
https://doi.org/10.1016/j.1wt.2012.08.007

Valentin, J. L., & Watling, R. J. (2013). Provenance establishment of coffee using
solution ICP-MS and ICP-AES. Food Chemistry, 141(1), 98—104.
https://doi.org/10.1016/j.foodchem.2013.02.101

Wang, X., Lim, L.-T., & Fu, Y. (2020). Review of analytical methods to detect
adulteration in coffee. Journal of AOAC International, 103(2), 295-305.
https://doi.org/10.1093/JAOCINT/QSZ019

Watson, A. D. (2006). Lipidomics: A global approach to lipid analysis in biological
systems. Journal of Lipid Research, 47(10), 2101-2111.
https://doi.org/10.1194/jlr.R600022-JLR200

Wei, F., Furihata, K., Koda, M., Hu, F., Kato, R., Miyakawa, T., & Tanokura, M.
(2012). 13C NMR-based metabolomics for the classification of green coffee beans

according to variety and origin. Journal of Agricultural and Food Chemistry,
60(40), 10118-10125. https://doi.org/10.1021/5£3033057

Wilson, B. R., Conley, J. F., Harris, T. M., & Lafone, F. (2012). New terrains of taste:
Spatial analysis of price premiums for single origin coffees in Central America.
Applied Geography, 35(1-2), 499-507.
https://doi.org/10.1016/j.apgeog.2012.10.004

Worku, M., Upadhayay, H. R., Latruwe, K., Taylor, A., Blake, W., Vanhaecke, F.,
Duchateau, L., & Boeckx, P. (2019). Differentiating the geographical origin of
Ethiopian coffee using XRF- and ICP-based multi-element and stable isotope
profiling. Food Chemistry, 290, 295-307.
https://doi.org/10.1016/j.foodchem.2019.03.135

Yang, N., Liu, C., Liu, X., Degn, T. K., Munchow, M., & Fisk, I. (2016). Determination
of volatile marker compounds of common coffee roast defects. Food Chemistry,
211,206-214. https://doi.org/10.1016/j.foodchem.2016.04.124

Yang, S., Li, C., Mei, Y., Liu, W., Liu, R., Chen, W., Han, D., & Xu, K. (2021).
Determination of the Geographical Origin of Coffee Beans Using Terahertz
Spectroscopy Combined With Machine Learning Methods. Frontiers in Nutrition,
8, 1-10. https://doi.org/10.3389/thut.2021.680627

Yener, S., Romano, A., Cappellin, L., Méark, T. D., Del Pulgar, J. S., Gasperi, F.,
Navarinic, L., Biasioli, F., Sdnchez del Pulgar, J., Gasperi, F., Navarini, L., Biasioli,
F., Del Pulgar, J. S., Gasperi, F., Navarinic, L., & Biasioli, F. (2014). PTR-ToF-

89



MS characterisation of roasted coffees (C. arabica) from different geographic
origins. Journal of Mass Spectrometry, 49(9), 929-935.
https://doi.org/10.1002/jms.3455

Zambonin, C. G., Balest, L., De Benedetto, G. E., & Palmisano, F. (2005). Solid-phase
microextraction—gas chromatography mass spectrometry and multivariate analysis
for the characterization of roasted coffees. Talanta, 66(1), 261-265.
https://doi.org/10.1016/j.talanta.2004.11.023

Zhu, M., Long, Y., Ma, Y., Chen, Y., Yu, Q., Xie, J., Li, B., & Tian, J. (2021).
Comparison of chemical and fatty acid composition of green coffee bean (Coffea
arabica L.) from different geographical origins. LWT, 140, 110802.
https://doi.org/10.1016/j.1wt.2020.110802

90



