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Fig. 1 Effect of MPTP on DAergic neurons in the SNpc and the striatum. 
(A) Photomicrograph images of tyrosine hydroxylase (TH) immunostaining in the SNpc

and striatum of control and 7, 9 and 16 days after MPTP-treated mouse. Scale bar: 500 μm. 
(B) Total number of TH-positive cells in the SNpc of control (n = 7) and 7 (n = 9), 9 (n = 6) 
and 16 (n = 5) days after MPTP-treated mice (**p < 0.01 vs. control). Results represent 
mean SD.
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Fig.2 Westernblot analysis for the TH expression levels in CPu of the control and PD mice. 
(A) The images show the representative results (upper: TH, lower: γ-tubulin). (B) Bar 

graph shows the TH expression levels normalized by γ-tubulin (*p < 0.05 vs. control, n = 7 
per group). Results represent mean SD.

59

A

B



0

100

200

300

400

500

600

control                 MPTP

*

La
te

nc
y 

to
 fa

ll 
(s

ec
)

Fig.3 Effect of MPTP on motor coordination in the rotarod test.
The latency of each mouse fell from the rod rotating at 20 rpm was recorded over two 

trials per a mouse at 20 min intervals and a maximum trial time length of 600 s per trial. 
Data are presented as mean of latency to fall from the rod over two test trials. The latency 
time to fall from the rod in PD mice significantly decreased as compared with control mice 
(* p < 0.05 vs. control, n = 5 per group). Results represents mean SEM.
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Fig.5 Effect of MPTP on the contextual fear conditioning test under a weak unconditioned 
stimulus (US). 

(A) Reconsolidation test: mice were trained with a single footshock (US: Day 0, 
stimulation: 1 mA/ 2 s duration, once) and, 24 h later, reexposed to the training context 
(conditioned stimulus: CS) for 3 min without US (Day 1). Reconsolidation memory was 
assessed by placing mice once again in the CS for 3 min 24 h after consolidation (Day 2). 
There were no significant differences between control and PD mice (control: n = 12, MPTP: 
n = 11). (B) Extinction test: mice were trained with a single footshock (US: Day 0, 
stimulation: 1 mA/ 2 s duration, once) and, 24 h later, reexposed to the CS for 30 min (Day 
1). Memory extinction was determined by assessment of freezing by placing mice once again 
in the CS 24 h after consolidation (Day 2). All tests were assessed as percentage of time 
spent freezing during the initial 3 min of the entire duration of CS. Freezing levels in both 
control and PD mice significantly decreased after re-exposure. But there were no 
differences between the groups (*p < 0.05 vs. control-Day1, #p < 0.05 vs. MPTP-Day1, n = 
10 per group). Results represent mean SD. 
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Fig.6 Effect of MPTP on the contextual fear conditioning test under an intense US. 
(A) Reconsolidation test: Mice were trained with an intense US (Day 0) and, 24 h later, 

reexposed to the training context (CS) for 3 min (for consolidation) without US (Day 1). 
Reconsolidation memory was assessed by placing mice once again in the CS for 3 min 24 h 
after consolidation (Day 2) (n = 7 per group). There were no differences between control and 
PD mice. (B) Extinction test: Mice were trained with intense US (Day 0) and reexposed to 
the CS for 30 min every day over 3 days after training with the intense US (Day 1 - 3). All 
tests were assessed as percentage of time spent freezing during the initial 3 min of the 
entire duration of CS. Freezing (extinction memory) 3 days after training with the intense 
US significantly decreased in the PD mice but not the control mice (*p < 0.05 vs. control-
Day1, #p < 0.05 vs. MPTP-Day1, n = 4 per group). Results represent mean SD.
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Fig.7 Effect of MPTP on the memory retention under an intense US. 
Mice were trained with an intense US (Day 0) and then reexposed to the CS for 3 min 

every day over 9 days after training with the intense US (Day 1 - 9). A significant decrease 
in freezing was observed at 8 and 9 days after training with the intense US (Day 8 - 9) in 
control mice. PD mice showed a significant decrease in freezing between 5 - 9 days after 
training with the intense US (Day 5 - 9) (* p < 0.05 vs. control-Day 1, # p < 0.05 vs. MPTP-
Day 1, n = 7 per group). Result represents mean SD.
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Fig. 8 Administration of clonidine (CLO) immediately after reactivation of fear memory.
(A) Mice were trained with a weak US, and 24 h later, mice were re-exposed to CS for 3 

min without US (Day 1). Mice were then removed from CS and clonidine hydrochloride 
(0.3mg/kg) or its vehicle was administered immediately. Mice were again placed in CS for 3 
min 24 h after the first retrieval (Day 2). Clonidine significantly decreased in freezing levels 
at Day 2 in both control (n = 12: control-CLO) and PD mice (n = 10: MPTP-CLO) compared 
to the freezing levels during the first memory retrieval (Day 1) but vehicle did not (n = 12: 
control-VEH, n = 10:MPTP-VEH) (ap < 0.05 vs. control-CLO-Day 1; bp < 0.05 vs. MPTP-
CLO-Day 1; cp < 0.05 vs. control-VEH-Day 2; dp < 0.05 vs. MPTP-VEH-Day 2).
(B) Mice were trained with an intense US, and 24 h later, mice were re-exposed to CS for 3 
min without US (Day 1). Mice were then removed from CS and clonidine hydrochloride (0.3 
mg/kg) or its vehicle was administered intraperitoneally immediately. Mice were again 
placed in the CS for 3 min 24 h after the first retrieval (Day 2). Clonidine did not affect 
freezing levels at Day 2 in both control and PD mice compared to the levels during the first 
memory retrieval (Day 1) (n = 11: control-CLO, n = 11: MPTP-CLO, n = 11: control-VEH, n
= 11: MPTP-VEH).
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Fig. 9 Schematic illustration of the CREB phosphorylation signaling pathway.
Activation of the G protein-coupled receptors or receptors induced Ca2+ influx such as the 

NMDA receptor leads to the production a second messenger such as cAMP or Ca2+, which in 
term activates a protein kinase A (PKA). PKA translocated to the nucleus and 
phosphorylates the ser133 of CREB. PDEs degrade the cAMP to the 5’-AMP and rolipram, 
a PDE IV inhibitor, inhibits the degradation of cAMP and enhances the cAMP-CREB 
pathway.
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Fig. 10 Number of c-Fos positive cells in hippocampus after contextual fear extinction.
(A) Photomicrograph images of c-Fos immunostaining in the hippocampal DG and CA1 

immediately, 30 and 60 mins after fear extinction. (B, C)Number of c-Fos positive-cells in 
DG (B) and CA1 (C). n = 3 per group. Data are mean SD. *p < 0.05 vs. control-0 min, #p < 
0.05 vs. MPTP-0 min by student’s t test. Scale bar = 100 μm.
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Fig. 11 Number of c-Fos positive cells in 
amygdala after contextual fear extinction.

(A) Photomicrograph images of c-Fos
immunostaining in the amygdala 
immediately, 30 and 60 mins after extinction. 
(B, C, D) Number of c-Fos positive-cells in LA 
(B), BLA (C) and CeA (D). n = 3 per group. 
Data are mean SD. *p < 0.05 vs. control-0 
min, #p < 0.05 vs. MPTP-0 min by student’s t
test. Scale bar = 100 μm.
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Fig. 12 Number of c-Fos positive cells in mPFC after contextual fear extinction.
(A) Photomicrograph images of c-Fos immunostaining in the mPFC immediately, 30 and 

60 mins after extinction. (B, C) Number of c-Fos positive-cells in PL (B) and IL (C). n = 3 
per group. Data are mean SD. *p < 0.05 vs. control-0 min, #p < 0.05 vs. MPTP-0 min by 
student’s t test. Scale bar = 100 μm.

control

MPTP

control

MPTP

PL

IL

69

#*

#*

#*

#*



0

0.2

0.4

0.6

0.8

1

1.2

control MPTP
0

0.2

0.4

0.6

0.8

1

1.2

control MPTP

H
ip

po
ca

m
pa

l c
AM

P
le

ve
ls

H
ip

po
ca

m
pa

l c
AM

P
le

ve
ls

A B

Fig. 13 Analysis of cAMP levels in hippocampus (A) before or (B) immediately after 
extinction training. 

The hippocampal cAMP levels were detected without fear extinction (A) and immediately 
after extinction (B). The cAMP levels were represented as relative ratio of control. Data are 
mean SEM; n = 7 for each group. *p < 0.05 by student’s t test.
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Fig. 14 Analysis of p-CREB expression in hippocampal CA1 and CA3 after fear extinction. 
Immunohistochemistry for NeuN (green) and p-CREB (red) in the hippocampal CA1 (A) 

and CA3 (B) 30 mins after extinction. Arrows indicate p-CREB positive-cells. Scale bar = 
100 μm.
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Fig. 15 Analysis of p-CREB expression in hippocampal DG after extinction training. 
(A) Immunohistochemistry for NeuN (green) and p-CREB (red) in hippocampal DG 30 

mins after fear extinction. Scale bar = 100 μm. (B) The counts of p-CREB positive cells in 
hippocampal DG. Data are mean SD; n = 6 for each group. *p < 0.05 by student’s t test.
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Fig. 16 Analysis of the percentage of p-CREB positive-cells positive for NeuN in 
hippocampal DG after extinction training.

(A) Immunohistochemistry for NeuN (green) and p-CREB (red) in hippocampal DG 30 
mins after fear extinction. (B) Rate of p-CREB positive-cells positive for NeuN. Data are 
represented as (p-CREB positive-cells positive for NeuN/total of p-CREB positive-
cells) 100. There were no significance between control and MPTP mice (control: 28.01 
4.41%, MPTP: 26.88 1.69%). Data are mean SD; n = 5 for each group. Scale bar = 100 
μm. Arrows indicate p-CREB positive-cells merged with NeuN.
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Fig. 17 Analysis of p-CREB expression in the astrocytes or immature cells.
Immunohistochemistry for GFAP (green) makar of astrocyte and p-CREB (red) (A), or 

DCX (green) marker of immature cell and p-CREB (red) (B) in the hippocampal DG 30 mins 
after extinction. Scale bar = 100 μm. Arrows indicate p-CREB positive-cells merged with 
GFAP (A) or DCX (B).
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Fig. 18 Effect of rolipram on the contextual fear extinction in mice. 
Rolipram was administrated 2 h before extinction training at dose of 1, 2 or 3 mg/kg.

(A) Effect of rolipram on fear extinction in the control mice. Data are mean SD; n = 6 - 7. 
(B) Effect of rolipram on fear extinction in the PD mice. Data are mean SD; n = 5 - 7. *p < 
0.05 vs. MPTP-DMSO-Day1, # p < 0.05 vs. MPTP-1 mg/kg rolipram-Day1 by two-way 
ANOVA with repeated measures followed by Tukey’s post hoc tests.
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Fig. 19 Effect of rolipram on p-CREB expression in hippocampal DG after fear extinction. 
(A) Immunohistochemistry for p-CREB (red) and NeuN (green) in hippocampal DG after 

fear extinction. Scale bar = 100 μm. (B) Counts of p-CREB positive cells in hippocampal DG. 
Data are mean SD; n =7 – 9. *p < 0.05 vs. control-DMSO, # p < 0.05 vs. MPTP-DMSO by 
Kruskal-Wallis analysis of variance followed by Mann-Whitney U-tests.
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Fig. 20 Analysis of the percentage of p-CREB positive-cells positive for NeuN in 
hippocampal DG after extinction training.

(A) Immunohistochemistry for p-CREB (red) and NeuN (green) in hippocampal DG after 
fear extinction. Scale bar = 100 μm. Arrows indicate p-CREB positive-cells merged with 
NeuN. (B) Rate of p-CREB positive-cells meiged with NeuN. Data are represented as (p-
CREB positive-cells positive for NeuN/total of p-CREB positive-cells) 100. There were no 
significance among. Data are mean SD; n = 5 - 6. 
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Fig. 21 Analysis of the neuronal inputs to MRN from SNpc.
Immunohistochemistry for fluorogold (blue) and TPH (red) in MRN where is injection site 

of 2%fluorogold. (B) Immunohistochemistry for fluorogold (blue) and TH (red) (upper), and 
for fluorogold (blue) and GAD67 (red) (lower) in SNpc. Arrow heads indicate GAD67-
positive cells. Arrows indicate fluorogold merged with GAD67-positive cells. Scale bar = 100 
μm. 
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Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of 

dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc) and DA content in the 

striatum. Although PD exhibits movement-related behavioral deficits such as tremor, rigidity and 

akinesia as the most obvious symptom, thinking and retrieval deficits often arise from cognitive 

impairment. However the mechanism of cognitive deficits in PD remains largely unknown, and there 

are no effective therapies and drugs for cognitive deficits in PD. In the present study, I investigated 

the mechanism of cognitive deficits in PD mice resulting from loss of the nigrostriatal DAergic 

neurons and explored the novel drug for cognitive impairment for PD. 

 In the first chapter, I produced PD model mice (PD mice) by administration of 

1-methyl-4-phenyl-1,2,3,6,tetrahydropyridine (MPTP) (four intraperitoneal injections of a single 

dose of 20 mg/kg every 2 hours), which results in loss of nigrostriatal DAergic neurons and causes 

PD like symptoms in the primates and rodents, and evaluated the loss of nigrostriatal DAergic 

neurons and movement-related behavioral deficits. Immunohistochemical analysis showed that 

tyrosine hydroxylase (TH)-positive cells in the SNpc of PD mice, which is the marker of DA 

neuronal cell, were significantly decreased than control mice. Moreover, the low intensity of 

positively staining with anti-TH antibody and a decrease in TH-positive cells were observed in the 

striatum of PD mice. Next, I evaluated the motor coordination in PD mice by the rotarod test. PD 

mice showed a significant reduction of latency fall from the rod compared with control mice. On the 

other hands, in the hole board test that assess the general behavior and emotional behavior, there 

were no significant differences in locomotion, rearing behavior and head-dipping behavior between 

control and PD mice. These results suggested that MPTP administration using my methods causes 

both PD-like symptom such as deficit of the motor coordination and pathology such as loss of 
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nigrostriatal DAergic neurons in mice.  

In the second chapter, I evaluated the cognitive function, including memory consolidation, 

reconsolidation and extinction, by the contextual fear conditioning test in the PD mice. In this test, 

mice were placed in the conditioning box (context) as a conditioned stimulus (CS) and applied an 

un-signaled foot shock as an unconditioned stimulus (US). As the results, mice learn the fear to the 

CS.The consolidated memory after fear conditioning becomes an unstable state by re-exposure to CS 

and/or memory retrieval. If mice are re-exposed to CS for a short term, unstable memory become 

stable state again via the reconsolidation process. On the other hands, in the case of prolonged 

re-exposure to CS, consolidated memory is attenuated via an extinction process. In this study, I 

conducted the test using weak US (1 mA/2 s, single) or intense US (2 mA/2 s, twice) and evaluated 

memory consolidation, reconsolidation and extinction using short re-exposure to CS (3 min: 

reconsolidation training) or long re-exposure (30 min: extinction training) without US 24 h after fear 

conditioning. These memories were assessed by evaluation of freezing behavior that is fear behavior 

of mice. When I conducted the test using a weak US, there were no significant differences between 

control and PD mice in all memory tests. Similarly, memory consolidation and reconsolidation in PD 

mice normally occurred under an intense US. When I conducted the extinction test using an intense 

US, however, PD mice showed a significant reduction in freezing rate earlier than control mice. 

Furthermore, fear memory in PD mice was also attenuated earlier than control mice in the memory 

retention test conducted by repeated short re-exposures to CS (3 min) every 24h. These results 

suggests that MPTP-induced PD mice facilitate the memory extinction and attenuate the memory 

retention, whereas consolidation and reconsolidation are normally occurred. 

 In the third chapter, I analyzed the molecular mechanism of facilitation of extinction in PD mice. In 

the hippocampal neurons, the intracellular cascade involving cAMP/CREB signaling pathway plays 

a critical role in memory extinction and memory retrieval. I examined whether the cAMP-CREB 
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cascade in the hippocampus is involved in facilitation of fear extinction in PD mice. The 

enzyme-linked immunosorbent assay showed that the hippocampal cAMP levels in PD mice were 

significantly decreased before and after extinction training compared to control mice. Moreover, 

p-CREB-positive cells were significantly decreased in the hippocampal DG in PD mice compared to 

control mice 30 min after the second extinction training. The p-CREB-positive cells partly expressed 

in the mature cells and mostly expressed in the immature cells but not the astrocyte. Therefore, I 

examined whether rolipram, the phosphodiesterase IV inhibitor, can improve facilitation of fear 

extinction in PD mice via increasing in hippocampal cAMP levels. Intraperitoneal administration of 

rolipram (a single injection at 1, 2, or 3 mg/kg) 2 h before both extinction training prevented 

facilitation of the contextual fear extinction in PD mice in a dose-dependent manner, whereas there 

were no effect on the fear extinction in control mice. Moreover, administration of higher dosage of 

rolipram (3 mg/kg) to PD mice significantly restored the number of p-CREB-positive cells in the 

hippocampal DG to the level in control mice. These results suggest that facilitation of memory 

extinction in PD mice may be due to the attenuation of cAMP-CREB signaling in hippocampal DG, 

and rolipram improve the facilitation of extinction in PD mice by restoring the cAMP-CREB 

signaling pathway. 

The present study revealed that loss of the nigrostriatal DA neurons causes attenuation of the 

cAMP-CREB signaling pathway in the hippocampal DG, resulting in the facilitation of memory 

extinction. Moreover, I strongly suggest that rolipram may be potentially useful as a therapeutic drug 

to treat cognitive deficits in PD by improving the cAMP-CREB signaling pathway in the 

hippocampal DG.  

 


