IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO. 3 MARCH 1993

Institute of Electronics, Infornmation, and Conmunication Engi neers

377

|PAPER Special Section on the 5th Karuizawa Workshop on Circuits and Systems

A Synthesis of an Optimal File Transfer on

a File Transmission Net
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SUMMARY A file transmission net N is a directed commu-
nication net with vertex set V" and arc set B such that each arc
e has positive cost ¢;(e) and each vertex u in V has two
parameters of positive cost ¢,(u#) and nonnegative integral
demand d (u). Some information to be distributed through N is
supposed to have been written in a file and the written file is
denoted by J, where the file means an abstract concept of infor-
mation carrier. In this paper, we define concepts of file transfer,
positive demand vertex set U and mother vertex set M, and we
consider a problem of distributing d (v) copies of J through a
file transfer on NV from a vertex v to every vertex vin V. Asa
result, for N such that M & U, we propose an O (nm+ n? log n)
algorithm, where n=|V| and m=|B|, for synthesizing a file
transfer whose total cost of transmitting and making copies of J
is minimum on N.

key words: minimum spanning tree, shortest path, vertex cost,
arc cost, vertex demand

1. Introduction

We consider a directed communication net, called
a file transmission net, which is a connected directed
graph N with vertex set V" and arc set B such that (1)
if (x, y) €B, then (y, x) €B, (2) with each vertex u&
V, a positive integral weight ¢, (u) as well as a non-
negative integral weight d (u) is associated, (3) with
each arc eEB a positive integral weight c,(e) is
associated, and (4) for each arc (x, y), there holds
ca((x,y))=ca((y, x)). It should be noted from (1)
and (4) that N is represented by an undirected commu-
nication net.

Suppose that some information to be distributed
through N has been written in a file and the written file
is denoted by J, where the file means an abstract
concept of information carrier. Then we consider a
problem of distributing copies of J through N from a
vertex v to every vertex. in this situation, ¢, (#) means
the cost of making a copy of J at a vertex u, and ¢, (e)
means the cost of transmitting a copy of J through an
arc e. The demand at u, denoted by d(u), is the
number of copies of J needed at u. On N, we define
a file transfer with which (1) J is first given to w from
the outside of N, (2) copies of J are transmitted
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through arcs, and (3) d(u) copies of J are taken out
of each vertex u to the outside of N. We introduce
concepts of positive demand vertex set U and mother
vertex set M, and for N such that M S U, we propose
an O(nm+n®log n) algorithm, where n=|V| and m
=|B]|, of synthesizing an optimal file transfer by which
we mean a file transfer whose total cost of transmitting
and making copies of J is minimum on N. The
definition of U and M will be made in the prelimi-
naries.

2. Preliminaries

For basic graph-theoretic terms and concepts used
in this paper, refer to those in Ref. (1). Let ¥ and B
be the sets of vertices and arcs of a file transmission net
N. Throughout this paper, any arc is directed but any
edge is undirected, and for any arc e=(x, y) and any
function f on B, f((x, y)) is simply denoted by f(x,
y). Let A(v)={weV|(v, w)EB or (w,v)EB} fora
vertex vin V. In this paper, every path is simple unless
otherwise stated. We simply say a u-w path instead of
a directed path from a vertex u to a vertex w in N. The
set of u-w paths in N is denoted by P, ,. For any path
Pin N, V(P) and B(P) denote the vertex set and the
arc set, respectively, on P. For a path P in N, an x-y
path P’ is called the x-y subpath of P if V(P') <
V (P) and B(P’) S B (P). The total cost of all arcs on
a path P is denoted by ¢(P). If a u-w path P in N
satisfies ¢ (P) < c(P’) for every other u-w path P’ in N,
then P is called a minimum cost u-w path in N. The
set of minimum cost u-w paths in N is denoted by
ﬁu,w. In the following, for any two vertices u and w,
we simply denote c,,, instead of ¢(P) for any path P
in Py,». For a directed or undirected graph G, B (G)
and E (G) denote the arc set and the edge set, respec-
tively, of G. If with all arcs on a path P a uniform
number k is associated, then P is called uniformly
weighted with k. For a set P of all uniformly weight-
ed paths on N, we superimpose all the paths in P to
form a net N (P) in such a way that (1) the vertex set
of N(P) is ¥ and (2) the weight of each arc (x, y) of
N (P) is the sum of the corresponding arc weights of
all the paths containing (x, y) in P. Then N (P) is
called the superimposition net of P. For a function f
on B, if every arc e on a path P satisfies f(e) >0, then
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P is said to be f-positive.

As is stated in the introduction, J is a file in which
some information to be distributed through N has
been written, ¢, (u) is the cost of making a copy of J
at a vertex u, ¢, (e) is the cost of transmitting a copy of
J through an arc e, and for every arc (x,y) in B,
ca((x, y)) is simply denoted by ¢, (x, y). Also, d (u)
is the number of copies of J needed at a vertex u,
called the demand at #. N is sometimes denoted by N
=(V,B, cy, d, ca).

Let U be the set of vertices where some copies of
J are practically needed, i.e., U={v&V|d(v) >0}.
We call U the positive demand vertex set of N.
Throughout this paper, U means the positive demand
vertex set of N and Z, denotes the set of nonnegative
integers. '

Suppose that the or1g1nal of J is first glven to
some vertex v of N from the outside of N. We take
out d(v) copies of J from each vertex v through a file
transfer defined below:

Definition 1: In N=(V,B, ¢y, d,c.), let ¢ be a
function from ¥V into Z, and let f be a function from
B into Z,. Then D= (¢, f) is called a file transfer on
N if ¢ and [ satisfy the following two conditions:
(Cl1) The conservation at vertex; there hold

2 flx,v)+¢(v)= Z f v, y)+d(v)

xX€A(v)
(veV\{(n}),

> lf(x, n) +¢(n) =yeAZ(‘.vl)f(vl, y)+d(wn).

x€A(vy)

(C2) The distribution of J; for any supply vertex v
with respect to D, there exists an f-positive »-v path in
D, where a vertex v is called a supply vertex with
respect to D if ¢ (v) >0. |
Note here that, in (Cl1), the original of J given to
v is regarded as one of d (») copies if d (») >0. Since
a file transfer D satisfies (C1), d (v) copies of J can be
taken out from a vertex v to the outside of N. Any file
transfer on N has the following property.
Lemma 1: A file transfer D= (¢, f) contains an
f-positive w-u path for any vertex u in U on N=(V,
B,c,, d, ca).
Proof: If u=, then clearly holds this lemma. Hence
we consider a vertex in U\{»}. For a vertex u in U\
{n}, let V'={v= V| there exists an f-positive v-u path
on D}. If wE V7, then clearly holds this lemma. Hence
we assume that v & V', Summing equations of (Cl)
over v& V', we get

xeg\}/'f(x’ y) +v§/’¢(v)
s

:xe;\V'f(x’ y) t vgv'd (V) )
@Hes

By the definition of ¥, the first term in left-hand side
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of the above equation is equal to 0. Since u V' N U,
there holds ZV d (v) 21, which implies that ZV ¢ (v)
vev’ veV’

=1. Suppose that a vertex v' in V" satisfies ¢ (v') >0.
Then from (C2) there exists an f-positive »-v path on
D. However, this means that D contains an f-positive
vi-u path via v' from v'€ V”’, which contradicts v & V.
Since u is arbitrary, we have this lemma. O

The cost of D, denoted by C (D), is defined to be
the sum of the cost of making copies of J at vertices
and the cost of transmitting copies of J through arcs.
Definition 2: For a file transfer D=(¢, ) on N=
(V,B,cy, d, ca), let

C (D) ZE.ch(u) ¢ (u)
2 calx,p)fx, ),

+
(x,y)EB

which is called the cost of D. A file transfer D on N
is said to be optimal if C (D) =< C (D’) for every other
file transfer D’ on N. O
The following concept of mother vertex is funda-
mental in order to synthesize an optimal file transfer on
a given file transmission net.
Definition 3: A vertex x in N=(V, B, ¢y, d, ¢ca) is
called a mother vertex in N if ¢, (x) < ¢y (p) + s,y for
any vertex y in V'\{x}. The set of all mother vertices
in N is called the mother vertex set in N and is denoted
by M. O
In the following, unless otherwise stated, we sim-
ply denote M instead of the mother vertex set, and we
only consider file transmission nets such that M S U.
In relation to each mother vertex in an optimal file
transfer, we have the following proposition, which is
an expansion of Proposition 1 of Ref. (5).
Proposition 1: Supposethat MES U in N=(V, B, ¢y,
d, ¢,). Then a necessary condition for a file transfer D
=(¢,f) to be optimal on N is that there holds
Z] f(x m) =1 for any vertex m in M\{vl} and that

xeA(m
if vleM there holds >} f(x, w)
x€A(v1)

Proof: By Lemma 1 and M S U, there exists an
f-positive w-v path for any vertex v in M, which
implies ;‘( )f(x, m) z 1 for every vertex m in M\{n}.

Let Mfz{veMle%_‘,(wf(x, v) 22}. In order to prove

this proposition, it suffices to show that if a file transfer

=(¢,f) satisfies M;= @, then there exists another
ﬁle transfer D= (¢, f) such that C (D)< C (D) and
M 7C My, where M/—{VEMlxeav)f(x v) =2}, Let S

be the supply vertex set with respect to D. Let mbe a
vertex in M, and let k— Z f x, m). Then, without

loss of generality, we assume that k’ copies of J are
made at some vertex s in S, are transmitted through an
s-m path P, and are sent to m, where 0< k'< k. Let j
=min {k’, k—1}. For D=(¢, f), we define a function

- ¢’ on V as well as a function f” on B to be
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g (s)=9¢(s)—j, ¢'(m)=¢(m)+j,

¢’ (v)=¢(v) (otherwise),
f(e)=f(e)—j (e€B(P)),
f'(e)=f(e) (otherwise).

For f" and P, let S’={v&€V(P)N S| % )f’(x, v) =

0}. Here two cases of (i) S'=¢, and (ii) S'=*¢ are
considered. In the case (i), D'=(¢’, f’) is a file
transfer on N, because ¢" and f” clearly satisfy (Cl)
and (C2). In the case (ii), let P; be the s-u subpath of
P such that u€S8" and V(P)NS=2S". For D'=(¢/,
f7), we define a function ¢” on V as well as a function
f” on B to be

g (s)=¢ (s)+1, ¢"(w)=¢'(u)—1,

¢”(v)=¢’(v) (otherwise),
f7(e)=f"(e)+1 (e€B(P)),
f7(e)=f"(e) (otherwise).

Clearly ¢” and f” satisfy (Cl). For any vertex vin S’,
there exists an f”-positive v;-v path because there exists
an f”-positive s-v path. Then ¢” and f” satisfy (C2),
which means that D”=(¢”, f”) is a file transfer on N.
In the case (i), we have C(D)—C (D) ={cy(s)
+c¢(P)—cy(m)}+j>0 by Definition 3. In the case
(ii), we have C (D) —~C(D")=(j—1) +{c,(s) +c(P)
—cy(m)}+cy (1) +¢(Py) — ¢y (m) >0, where P, is the
u-m subpath of P. As a result, if k—j= 1, repeating
the above operation, we get a file transfer D= (¢, f)
such that C (D) >C (D) and M j=M\{m}CM;. In
the similar way, we can prove xeAZ()vl)f(x, nw) =0if ne

M. O]

As an example, let us consider a file transmission

AN
V1
PN
V2
Z

Fig. 1

An example of a file transmission net N.

vvid)=4, wv2)=0, Y(v3)=6

Y(va)=1, ¥ (vs) =2, ¥ (ve)=0

Fig.2 A file transfer D= (¢, f) on N.
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net N shown in Fig. 1, where N is represented by the
corresponding undirected graph for simplicity and the
symbol A denotes the cost of vertex or arc and the
symbol [] denotes the demand of vertex. In this
example, N satisfies U=V, and a file transfer D= (¢,
f) is shown in Fig. 2, where a number beside an arc e
denotes f(e). Throughout this paper, arcs with zero
weights are omitted in all figures but those of illustrat-
ing file transmission nets. The set of supply vertices
with respect to D is {w, 1, », ¥5}. The cost C (D) of D
is

C(D)=14+56+4-1 +2:2 +3 +2 +6 +1
+2 +2=58.

3. Delivery Transfer

In this section, we show that it suffices to consider
a file transfer D such that the supply vertex set with
respect to D is a subset of M in N in order to synthe-
size an optimal file transfer on N.
Definition 4: For a vertex # in V in N=(V, B, c,,
d,ca), let H(u)={weE V|cy,(w)<+o0 and c,(w)
+ cw,u= (W) +cury for any vertex w’ in V}. [

In the following, a function H on V indicates the
function H in Definition 4, unless otherwise stated.
Let w be a vertex in H (u) for a vertex u. Then the
total cost of making copies of J at w and sending the
copies to u through a minimum cost u-w path is not
more than the total cost of making copies of J at a
vertex w’ and sending the copies to # through some
w’-u path. It turns out from Definitions 3 and 4 that
a vertex v is a mother vertex if and only if H (v) ={v}.
In relation to H and M, the following lemmas hold.
Lemma 2: For a vertex x in V\M, suppose that
H(x)NM=¢ in N=(V,B,c,,d,c;). Then H(y)
N M =+ ¢ for a vertex y such that x& H (y).
Proof: Let z be a vertex in H (x) N M. Then we have
e (2) T czx=cy(x), because z&H (x). Clearly we
have ¢;y< czx+cxy. From these equalities, we get
v (z) +czy= ¢y (x) + cx,y, which implies that zE H (y)
because x& H (y). Hence this lemma. ]
Lemma 3: In N=(V, B, ¢y, d, c,), for a vertex x in
VAM, H (x) contains a vertex y such that c,(x)>
Cy (y) .
Proof: By x&M and Definition 3, N contains a
vertex z but x such that ¢,(z) +c;x=c,(x), which
implies that if x&H (x) then z&E H (x) because of
Definition 4. Then H (x)\{x}=#¢. It is clear that
o (¥) +epx=cy(x) for a vertex y in H (x)\{x}. Then
co(x) >¢y(y) because y=+x and c¢y,»>0. Hence this
lemma. O
Lemma 4 In N=(V, B, ¢, d, ¢;), we have H (1) N
M =+ ¢ for any vertex u in V.
Proof: It is clear that H (m) N M =+ ¢ for any vertex
m in M because H (m)={m}. Then we should prove
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that for any vertex u in ¥\ M, there holds H (1) N M
+¢. Let w be a vertex in V\M. By Lemma 3, we
have a vertex u, in H (u;) such that ¢, (1) > ¢, (1), If
€6 M, then we can repeat using Lemma 3, and we get
¢ (1) > ¢y () >+ >y (u;) for an integer j more than
2 such that w; € H (u;) with i=1,2,+--,j—1. Since
| V\M|< co, there exists an integer k£ such that u,E
H (uz-1) N M. Then we apply Lemma 2 in order of uy,
Up—1, +t1, and we get H () NM=*=¢. Hence this
lemma. U
Using this lemma, we have proven the following
proposition.
Proposition 2: If, in a file transfer D=(¢, f) on N
such that M S U, there hold
(1) JCE%,"(m)f(x, m) =1 for any vertex m in M \{»}, and

if wEM, then AZ(‘, )f(x, n) =0, and
X€A(U1

2) S\M = ¢ for the supply vertex set S with respect
to D, then N contains a file transfer D= (¢, ) such
that
(1) Z_.: )f(x, m) =1 for any vertex m in M \{w}, and

if neM, then 32} f(x, ) =0,
x€A(vy)

(2) S S M for the supply vertex set S with respect to
D, and _

(3) C(D)=C(D).

Proof: Lemma 4 says that H(v) "M =*=¢ for each
vertex v in V. Let s be a vertex in S\M and let m be
a'vertex in H (s) NM. Let P be a minimum cost m-s
path in N. Note that V' (P) N M ={m}. Then for D=
(¢, f), we define a function ¢’ on V as well as a
function f" on B to be

¢'(m)=¢(m)+¢(s), ¢'(s)=0,
¢ (v)=¢(v) (otherwise),
fe)=f(e)+¢(s) (esB(P)),
f'(e)=f(e) (otherwise).

Clearly, ¢’ and f” satisfy (Cl). Let S'={v&V|¢ ()
>0}. Since D=(¢, f') is a file transfer, D contains an
f-positive »-v path for every vertex v in S by (C2).
There also exists an f-positive w-m path by M& U
and Lemma 1. Hence for every vertex v in S’ there
exists an f’-positive n-v path, which implies that ¢’
and [’ satisfy (C2). Then, we can say that D'= (¢,
f7) is a file transfer on N. Since V (P) NM={m}, P
EPp,s and s&EM, we can say that B(P) has no arc
whose end vertex is a mother vertex. ‘Then from the
above condition (1) of D, we can say that Xe%m)f (x,

m) =1 for any vertex m in M\{n}, and that if weM
then Z} f(x n) =0. We also have S'=SU{m}\

{s}. Moreover it follows from Definition 2, ¢ (s) >0,
and m&H (s) that C(D)—C(D)=¢(s){c,(m

+c(P)—c,(5)}<0. If S\M = ¢, then for every vertex
in S\M we can repeat this operation and we get a file
transfer D satisfying the above three conditions. Hence
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this proposition. [
In order to synthesize an optimal file transfer, it
turns out from Proposition 2 that we should consider
a file transfer D such that the supply vertex set S with
respect to D satisfies SS M. Using this property, we
define the following net.
Definition 5: For each vertex u in U in N=(V, B,
¢y, d, Ca), select a vertex w in H (u) N M and let A (u)
=w, where A is a function from U into M. Select a
minimum cost 4(u)-u path P and associate with P a
number d (u). Let P be the set of such |U| uniformly
weighted paths and let N, be the superimposition net
of P and let w(e) be the weight of each arc e in
B(Ni). Dy={(¢n, fr) is called a delivery transfer on
N, if a function ¢, from V into Z. as well as a
function f, from B into Z, satisfies

¢h(V)=ue§v)d(u) (veM),
¢n(v) =0 (otherwise),
fu(e)=w(e) (e€B(Ny)),
fn(e)=0 (otherwise),
where S(v)={ucU |h(u)—v} Moreover, the cost,

denoted by C (Dy), of D, is defined as
C (D)= 2 co(u) ¢n(u) + X cale) fule). 1

On a file transmission net N in Fig. 1, we have M
={w, w, %, v%}. Since U=V, we have U\M ={w, vy}.
There hold H (w) "M ={w} and H (vy) N M ={w},
which imply 4 (w)=1vs and A(v)=mw. Then we get a
delivery transfer shown in Fig. 3, where a number
beside an arc e denotes f,(e). Any delivery transfer
has the following properties.

Lemma 5: For any delivery transfer D,= (¢s, f») on
N=(V,B,cy, d, c.), there hold

2y f;,(x v) = %v)ﬁ,(v,y)—i—d(v) (rev\M),

(1)

xe;(v)fh(x, =0 (vEM), (2)
Proof: It is clear that we have Eq. (1) from

Definition 5. Suppose that a vertex m in M does not
satisfy Eq. (2), which implies that for two vertices m’

& (ac——3)
——

Yaulvy)=4, Yal(va) =3, Palvay) =0

Walve)=0, wnlvs) =5, Yaulve) =2

Fig. 3 A delivery transfer D,= (¢, f1).
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in M and v in U\M, there exists an arc (x, m) in B
such that f (x, m) =d (v) in D,. Since (x, m) EB(P)
for a path P in P,,, we have Cmrv=Cm,m+ Cm,». From
m’'E H (v) and Definition 4, we have ¢, (m’) + cn o <

¢y (m) +cmyp. Then from these inequalities, we get
co(m’) +emwm=cy,(m), which contradicts meEM.
Hence Eq. (2) holds. O

Lemma 6: The cost C (D,) of any delivery transfer

D,=(¢n, fr) on N=(V,B, ¢y, d, c,) is constant in-

dependently of the choice of both a vertex 4 (u) and a

path in Py, for each vertex « in U.

Proof: In order to get a delivery transfer D,= (¢,

f»), we superimpose a path P in Py, with which an

integer d (u) is associated for each vertex u in U. It

takes {c, (4 (%)) + chw,u}* d(u) for superimposing P

to get D,, which is constant independently of the

choice of both 4(u) and P from Definitions 4 and 5.

Hence this lemma. ]
We show some relation between a file transfer and

a delivery transfer.

Proposition 3: For any file transfer D and any deliv-

ery transfer D,= (¢, fn) on N=(V, B, ¢y, d, ¢,) such

that M S U, there exists on N a file transfer D= (¢, f)

such that R

(1) C(D)=C(D) and

(2) each arc e in B satisfies f(e) =1, (e).

Proof: From Propositions 1 and 2, it suffices to con-

sider a file transfer D= (¢, ) such that

(1) xe%m)f(x, m)=1 (meM\{n}), and if nEM,

> f(x,w)=0, and

x€A(v1)
(2) {(revlg(yv)>0cM.
For a vertex u in U\M, let w be a vertex in H (u) N
M. Select a path P in P,,. Note that V(P)NM=
{w}. Unless d(u) copies are made at w, are transmit-
ted through P and are sent to u, then by the above
property of D, we can say that (1) k(1=k=<d(u))
copies of J are made at a vertex m in M\{w}, and (2)
k copies of J are transmitted through a path P’ in
P, .\{P} such that ¥V (P’) "M ={m}. Using ¢ and f,
we define a function ¢” on ¥V as well as a function f’
on B to be

¢ (m)=¢(m)—k, ¢ (w)=¢(w)+k,

then

¢ (v)=¢(v) (otherwise),
fle)=f(e)—k (eB(P)\B(P)),
fe)=f(e)+k (e€B(P)\B(P)),
f'(e)=f(e) (otherwise).

Clearly ¢ and f” satisfy (C1). By Lemma 1 and M <
U, there exists an f-positive »-v path for every vertex
v in M. Then, since V (P) N M={m}, there also
exists an f’-positive »-v path for every vertex v in M,
which implies that ¢ and f’ satisfy (C2). Hence D'=
(¢, f7) is a file transfer on N. Since V (P) N M ={w},
PSP, V(P)NM={m)}, and P’EP,,,, we can say

Institute of Electronics, Infornmation, and Conmunication Engi neers

381

that B (P) U B (P’) contains no arc whose end vertex is

a mother vertex. Then from the above property (1) of

D, we have % )f’(x, m) =1 for every vertex m in
XE m

M\{»} and if wEM, then ;(} )f’(x, n)=0. From
XEA(V1

w& M and the above property (2) of D, we have {v&
V|¢'(v) >0}SM. Moreover by wEH (u) and
Definition 5, we have C(D)—C(D")={c,(m)
+c(P)—cy(w)—c(P)}-k=0. Note that we have [’
(e) =f(e) +k for every arc e in B(P). If necessary,
we repeat the above operation and we get a file transfer
D”"=(¢”,f”) where d (u) copies are made at w, are
transmitted through P and are sent to u, where " (e)
=f(e)+d(u) for every arc e in B(P). Similarly in
the case of u, repeating the above operation for each
vertex in U\M, we finally get a file transfer D satisfy-
ing the proposition. O

Lemma 7: Suppose that for any file transfer D= (¢,
f) and any delivery transfer D,= (¢s, f») on N=(V,
B, cy, d, c;), there holds (1) {(v&EV]|¢(v) >0lEM,
and (2) every arc e in B satisfies f(e) =f,(e). Let

fi(e)=f(e)—fu(e) (e€B). (3)

Then, we have

> filx,v) =ye§wf+(v, ) (EV\M),

X€EA(V)

where M'=M U{w}. If we&EM, we have
I+ 2 filx,m)= 2 filn,p).
) yeA(v1)

xeA(v,

Proof: From the condition (1) of D, there holds
¢ (v) =0 for every vertex v in ¥V\M. Then we get the
first equation from (Cl), Eq. (1), and Eq. (3). Simi-
larly, we get the other equation from (Cl), Eq. (2),
and Eq. (3). O

4. Supply Transfer

Definition 6: In N=(V, B, ¢,, d, ¢,) and let T be an
arborescence with root w and vertex set M’'=M U {n}.
Then for each arc e= (x, y) in B(T), select a path P
in P, and associate with P a number 1. Let P be the
set of such |M’|—1 uniformly weighted paths and let
Nr be the superimposition net of P, where a number
w(e) is associated with each arc e. Dr=(¢r, fr) is
called a supply transfer on N if a function ¢r from V'
into Z, as well as a function fr from B into Z, satisfies

gr(»=0.(nT)—1 (veM),
¢r(v)=0 (otherwise),
fr(e)=w(e) (e€B(Nr7)),
fr(e)=0 (otherwise),

where 0+ (v;T) denotes the out-degree of a vertex v in
T. Moreover, the cost, denoted by C(D;), of Dy is
defined as
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C (Dy) =u§ch(u) ~¢r(u) +e§Bca(e) fr(e). [J

Any supply transfer has the following property.
Lemma 8: Let Dr=(¢r, fr) be a supply transfer on
N=(V,B, ¢, d,c,), where T is an arborescence with
root 1 and vertex set M'=M U{w}. Then there hold

0+ (m;T)= 2 Sfr(v, y) and xEAE(m)fT(x’ n) =0,

EA(v1)
2 )fr(v y)
and Z fT(x, v)=1

2 frix, )— 2 fr(vy

x€A(v)

S:(nT)=
(VEM\{VI})a
(veVv\M’'), 4)

where 0+ (v;T) denotes the out-degree of a vertex v in
T. Moreover, let P, be a path in P,,, with which we
get Dr for an arc e=(x, y) in B(T). Then we have

C(Dr)=—cy(m) + {co(x) +c(Pe)

e= (xy) B(T)

_cv(y)}' (5)

Proof: Since we superimpose a path P, with which an
integer 1 is associated for each arc e in B(T) and both
the start vertex and end vertex of P, are in M’, it is
clear that we have Eq. (4). Let P be the set of such
|M’|—1 paths. Then there holds

EBca(e) -fr(e) =P§P c(P).

Since T is an arborescence with root v, we have

2 10:(nT) =1} -0 (u)
=—cn)+ 2 {Cv

(x,9)E€B(T)

(x) —co(p)}.

From these two equations and Definition 6, we easily
get Eq. (5). Hence this lemma. O

DD

Fig.4 An arborescence T with root .

wr(vi)=0,

Yrlve)=~1, wr(vs)=0

Yr(ve)=0, Prlve) =1, Yr(vg)=—~1

Fig.5 A supply transfer Dr=(¢r, fr).
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As an example, for M ={w,, 1, v, %} on N in Fig.
1, we choose an arborescence T with root v shown in
Fig. 4. Then we have a supply transfer D; shown in
Fig. 5, where a number beside an arc e denotes f7(e).
In relation to a supply transfer and a delivery transfer,
the following lemma holds.
Lemma 9: For any delivery transfer D,= (¢,, f,) and
any supply transfer Dr=(¢r, fr) on N=(V, B, ¢, d,
Ca), if a function ¢ on V as well as a function f on B
satisfies

V) =¢r(V) +¢u(v) (veV),
fle)=fr(e)+fi(e) (e€B),

then D= (¢, 1) is a file transfer on N. Moreover, there
holds

C(D)=C(Dy)+C(Dr). (7)

Proof: It turns out from Definitions 5, 6 and Eq. (6),
that ¢ and f satisfy (Cl1). From Definitions 5, 6 and
Eq. (6), we have {v& V|¢ (v) >0}\{n} S M, and from
Definition 6 we have an fr-positive w-m path for each
vertex m in M. Then clearly this implies that ¢ and f
satisfies (C2). Therefore we can say that D= (¢, f) is
a file transfer on N. We can easily get Eq. (7) from
Definitions 5, 6 and Eq. (6). ]
In the following, if a file transfer D satisfies Eq.
(6) for a supply transfer Dr and a delivery transfer D;,
then we simply write D= Ds+ D,,.
Lemma 10: Suppose that a file transfer D= (¢, f) on
=(V, B, ¢y, d, cz) such that M S U satisfies Propo-
smons 1, 2, and 3. Namely, there hold
(1) f(x v) =1 for any vertex v in M\{»},
(2) XE;(‘,vl)f(x, n) =0, if neM,
(3) S\{m}E M for the supply vertex set S with respect
to D, and
(4) each arc e in B satisfies f(e)
delivery transfer Dy, = (¢n, fn).
For a function f; on B defined as Eq. (3), let G be a
directed multiple graph where vertex set is ¥ and
fi+((x,p)) arcs exist from a vertex x to a vertex y.
Then if G contains no path from » to a mother vertex,
then there exists in N a file transfer D= (, f ) which
satisfies the above four conditions, C (D) = C (D), and
G contains a path from ¥ to any mother vertex, where
G is obtained from f in the same way that G is
obtained from f.
Proof: Let M'=M U{w} and let R={mEM’|G con-
tains a w-m path} for the above directed multiple
graph G. In order to prove this lemma, it suffices to
show that if RCM’, then there exists a directed
multiple graph G’ such that RC R’ where R'={m€E
M’|G’ contains a w-m path} and G’ is obtained from
f~’ in the same way that G is obtained from f such that
a file transfer D'= (¢’, f’) satisfies the above 4 condi-
tions and C (D)= C(D’). From the above (1) and

(6)

=f,(e) for some
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Fig. 6 An illustration for Lemma 10.

Eq. (3), we have ;( )f+(x, m) =1 for every mother

vertex m, which implies that G contains at least |M’|
— 1 paths where end vertex is m, the start vertex is in
M’, and every vertex but the start and end vertex is in
VA\M by Lemma 7. Although RC M’, there exists in
D an f-positive m;-m, path P such that V' (P) N\ M'=
{my, my} for a vertex my; in R and a vertex m; in M’\R.
Let ms be the start vertex of P’ where m; is the end
vertex of P" and V (P’) N M’={ms, my}. Since G has
no my-me path, we can say that D contains an f-
positive m-u subpath P, of P for a vertex u in V (P)
NV (P). Let P; be the ms-u subpath of P’. (See Fig.
6) For D=(¢, f), we define a function ¢’ on V as
well as a function f” on B as

(
P (mg) =¢ (ms) — 1,

¢ (v)=¢(v) (otherwise),

fle)=f(e)+1 (e€B(P,)\B(P)),
fle)=f(e)—=1 (e€B(P)\B(Py)),
f’(e)=f(e) (otherwise). (8)

Clearly ¢’ and f” satisfy (Cl). Since ¢ and f satisfy
(C2), V(P) N M’'={ms} and mj is the start vertex of
P/, we can say that ¢ and [’ satisfy (C2). Then D'=
(¢, f") is a file transfer on N. It is clear that D’
satisfies the above conditions (1), (2), and (3).
Moreover every arc e in B(P]) exists in G, which
implies f(e) > f,(e). Then from Eq. (8), f’ satisfies
the above Eq. (4). Let G’ be a directed multiple graph
obtained from f’ in the same way that G is obtained
from f. Let R"'={m& M’|G’ contains a v-m path}.
We can say a relation between G and G’ as follows; G’
is obtained from G by deleting an ms-u path and
adding an my-u path. This means that RS R’ because
m&ER. It turns out from m,& R” and m€E R that R'2
RU{m;} DR, which implies RDR. By mi€ H (u),
P,E Py, and Definition 5, we get

C(D)—C (D)
=cy, (my) +c (P)) —{co (m) +c(Py)}
= ¢y (mg) +¢(P;) —{co (my) + my,u} ZO0.

Hence this lemma. O
The following proposition shows the relation
between a file transfer written in Definition 6 and any
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file transfer.

Proposition 4 For any file transfer D and any deliv-
ery transfer D, on N=(V, B, ¢y, d, ¢s) such that M S
U, there exists on N a supply transfer Dr such that (1)
C(D)=C(D’) and (2) D’=Dr+ D,

Proof: By Lemma 10, it is no problem that we assume
that a file transfer D= (¢, f) on N satisfies the four
conditions of Lemma 10, and assume that G contains
a n-v path for every mother vertex v where G is a
directed multiple graph obtained as in Lemma 10. In
this proof, let M’=M U{v:} and let &+ (u;G,) and
d_(u;G,) denote the out-degree and the in-degree of a
vertex u in a directed graph G, respectively. Then
from the above assumption and Lemma 7, we have

5-(1,G) =1 (veM\{n}),

8:(1,G)=0-(»G) (EV\M"). 9
If weE M, then

14 6-(v;G) =6+ (m;G), (10)

Otherwise, d-(»;G) =0. By the above assumption, G
contains a v-m path P, such that V (P)) N M ={my}.
Let Gy be a directed graph which is obtained from G
by deleting Pi. In the following, we consider the case
of we&E M, because we can similarly prove the case of
nweM. If wéE M, then from Egs. (9) and (10), we have

3—(m1;G1) =0
0-(v;G1) =1 (veM\{my}),
8+ (%G) =6-(1,G1) (vEV\M). (11)

It turns out from Eq.(11) that for some vertex my Gi
contains an elementary m;-m, path P, such that V (P,)
NM={ms, my} and msM. Let G, be a directed
graph which is obtained from G, by deleting P.. Then
repeating the similar way that we get G; from G,
finally we have a directed graph G’ such that

o-(v;G") =0 (veM),
5. (v,G)=6_(»;G") (veV\M), (12)

with |M| paths set P such that P satisfies

(P1) every path P in P satisfies the end vertex of P is
each vertex in M, the start vertex of P is in M’, and
every vertex but the start and the end vertex in V (P)
isin V\M.

Note that we obtain G from G’ by adding all paths in
P. From Eq. (12), we have 0+(m;G") =0 for every
mother vertex m, which implies that 81 (v;G") =J-(v;
G’) for any vertex v in G’. Then there exists a circuit
set L such that G’ is identical with the superimposition
net N (L) of L and that every circuit L in L satisfies
V(L)S V\M. As aresult, G is identical with N (P U
L). For aset P let s(P) and e(P) be the start and end
vertex of P in P, respectively, and for P which satisfies
(P1) we define a directed graph T as

(P2) V(T)=M’ and B(T)={(s(P), e(P))|P=P}.
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In order to prove this proposition it suffices to show
that there exists a path set P and a circuit set L such
that

(1) G is identical with N(PUL),

(2) P satisfies (P1), and

(3) A directed graph defined as (P2) is connected and
an arborescence whose root is v,

because it turns out from the above (2), (3), and
Definition 6 that N (P) is a supply transfer on N,
denoted by Dy, which implies from Lemma 9 and the
above (1) that we can say D’=Dr+ D, is a file transfer
on N and

C(D)=C(Dr)+ C(Dy) +L§L c(L)y=C (D).

For a directed graph T defined as (P2), let R={ve
M’|T contains a w-v path}. Unless T satisfies the
above (3), then a connected component including ¥, of
T is an arborescence whose root is w, every other
connected component is a circuit, and there holds RC
M’. In order to prove the existence of a path set P and
a circuit set L which satisfy the above 3 conditions, it
suffices to show that for such T there exists a directed
graph T” such that RCR” where R"={y&eM’|T”
contains a »-v path} and T” is defined as (P2) from a
path set P” satisfying the above (1) and (2) for a
circuit set L”. From the above assumption, G contains
an m’-m path P; such that m'& R, m& M’\R, and
V(P)NM ={m', m}. Let P, be a path in P whose
end vertex is m and let s be the start vertex of P,. Note
here that an arc (v, m) € B (P;) is in B (P,) because P
satisfies (P1). Then the following two cases are consid-
ered if an arc e=(x, y) is not contained in B (P,).
(Case 1) eeB (L) for a circuit in L, and

(Case 2) e=B(Ps) for a path P; but P, in P.

For each case we consider the following operations. In
the Case 1, let P; be an s-m path whose s-y subpath is
identical with that of P, whose y-y path is identical
with L, and whose y-m subpath is identical with that
of P, let P’=P\{P}U{P}, and let L’=L\{L}. Then
P’ and L’ satisfy the above (1) and (2).

In the Case 2, let ¢ and w be the start and end
vertex of P;. Let P; be a t-m path whose t-y subpath
is identical with that of Ps and whose y-m subpath is
identical with that of P, and let P5 be an s-w path
whose s-y subpath is identical with that of P; and
whose y-w subpath is identical with that of P;, and let
P'=P\{P, P}U{P{, P{}. Then P’ and L satisfy the
above (1) and (2).

Note that in both cases, we have (x, y) EB (F;).
Clearly, we can repeat the above operation for P;
instead of P, unless e B (P;) is contained in B (P)).
Suppose that vertices on P; appear in order of m’ =1,
u, -+, ux=m. We repeat the above operation in order
of i=k,k—1,:-,2, for every arc (u;—;, u;) in B (Ps),
and finally get a path set P” which satisfies (P1).
Clearly, there exists a circuit set L” which satisfies the
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above (1) and (2) for this P”. We get a directed graph
T” defined as (P2) from this P”, and let R"={y&M’|
T” contains a »-v path}. Since every connected com-
ponent but one including » in T is a circuit and mE
R”’\R, we have RC R”. Hence this proposition. []
It turns out from Lemma 6 and Eq. (7) that we
should consider to minimize the cost of a supply
transfer in order to synthesize an optimal file transfer.

5. Minimum Cost Supply Transfer

A supply transfer whose cost is minimum among
all supply transfers is called a minimum cost supply
transfer, which we aim to construct in this section. The
following associated net is very useful for our purpose.
Definition 7: Let M'=M U{w} in N=(V, B, ¢, d,
¢z). Then the associated net AN is defined to be an
undirected complete graph with vertex set M’, in which
to each edge (x, y) a value of ¢, (x) +¢p(y) +cxy is
assigned. ]

In relation to AN, we have the following lemma.

Lemma 11: Let G be a spanning tree on AN. Then
there holds
wle)= 2 cxyt 23 8(1;G) co(u),
ecE(G) (X,Y)EE(G) ueM’

(13)

where §(u;G) denotes the degree of a vertex u in G.
Proof: From Definition 7, for each vertex u in M’,
¢y (u) appears 6 (u;G) times in left-hand side of Eq.
(13). Hence it is clear that Eq. (13) holds. dJ
Proposition 5: In N=(V, B, ¢y, d, ¢q), let T be an
arborescence with root v and vertex set M U {»}. Then
the cost of a supply transfer Dy is minimum if and only
if there hold

(A1) For each arc (x,y) in B(T), a path in P, is
selected to form Dy, and

(A2) the structure of T is identical with that of a
minimum spanning tree on the associated net AN.
Proof: Clearly holds (Al). Then we should prove
(A2). Let G be the underlying graph of T. Note that

y= 21 Cxy. From Definition 7, it is

PN Cx,

(x,9)€E(G) (x,y)EB(T)

clear that AN contains a spanning tree whose structure
is identical with G. Let 8+ (u;T) and §-(u;T) denote
the out-degree and the in-degree of a vertex u in T,
respectively, and let 6 (#;G) denote the degree of a
vertex # in G and let M'=M U{»n}. With the use of
T and (Al), we make a supply transfer Dr. Since T
is an arborescence with root v. then every vertex u in
M\{»} satisfies 6_(u;T)=1 and 6(u;G)=20+(w;T)

+1. Then, we see from 2] Cxy= 21 Cxyand
(x,)EE(G) (x,)€B(T)

Lemma 11 that

CDr)= 2 {ecv(u)+cuw—co(w)}
(u,w)eB(T)
= 3 eyt 2 () {6+ (w;T)
(u,w)eB(T) ueM’
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Fig. 7 The associated net AN of N.

Fig. 8 A minimum spanning tree T, on AN.

DD

1 1
()5 )——9
Y1, vi)=1, Y1,(v2)=0, Y1,(vs)=0
Wr,(ve)=10, V1 vs)=—1, Wt (ve)=0

Fig. 9 A minimum cost supply transfer Dr,= (¢rm: frm) -

—0-(w;T)}
= 3 cuwt 2 () {8(1:6) 2

o (u,w)EB(T)

+2cy (1) »
= 5 wle) =2 3 colu) T4e(n),

ecE(G)
where —2 Z}l ¢y (1) +4c, (v) is constant independent-
ueM’

ly of the structure of 7. Thus, Dr is a minimum cost
supply transfer if and only if G is a minimum spanning
tree on AN. Hence this proposition. ]

For a file transmission net N in Fig. 1, we get the
associated net AN in Fig. 7 from Definition 7. For a
minimum spanning tree on AN shown in Fig. 8, we
have a minimum cost supply transfer shown in Fig. 9
from Proposition 5. Note that a number beside an arc
e denotes fr,(e).

6. Algorithm to Synthesize an Optimal File Trans-
fer

From Proposition 4 as well as Proposition 5, we

get the following theorem.
Theorem: In N=(V, B, ¢,, d, ¢;) such that M U,
let D, be a delivery transfer. Let T be an arborescence
with root » and vertex set M U{w}. If the structure of
- T is identical with that of a minimum spanning tree on
the associated net AN, then a file transfer D= Dr+ D,
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oo d
(2> )——9

Yalv)=4, Yn(ve) =3, Yalvs)=0

Ynlva)= 0, Yalvs)=4, Yulve) =2

Fig. 10 An optimal file transfer Dn= (¢, fu) on N.

is optimal on N, where Dr is a supply transfer. []
Based on this theorem, an algorithm for synthesiz-
ing an optimal file transfer on N is given as follows.
Algorithm
Stepl: In a given file transmission net N=(V, B, ¢y,
d, cz), search a minimum cost path and its cost
between two vertices in U. Let f(e) <0 for each arc
e in B.
Step2: Sort vertices in U with a nondecreasing order
of their costs, i.e., ¢, (1th) Lco(t) S =co(up) (k=
|U).

Step3: i<—2, M — {w}.
Step4: If i=k-+1, then go to Step 6.
Step5: For j=1,2, -, i—1, if ¢y (u:) <ep(u5) + Cusuir

then M «— M U{u;}. Otherwise let i —i+1 and go to
Step 4.

Step6: U «— U\M. Let ¢ (v) < d (v) for each vertex
v in M and let ¢ (v) « 0 for each vertex v in V\M.
Step7: If U=¢, then go to Step 9.

Step8: Select a vertex u from U. For u, search a
vertex m’ in M such that

co(m') + cwy=min {co(m) +cmu),s

for every other vertex m in M. Then ¢ (m’) « ¢ (m’)
+d(u), and for every arc e on path P in Py, let
fe) —f(e)+d(u). U« U\{u} and go to Step 7.
Step9: M’ <— M U{w}. Construct the associated net
AN whose edge (mi, mz) is weighted with ¢, (m,)
+ ¢y (m2) + Cmy,m, for any two distinct vertices m, and
1 in M’
Stepl0: Find a minimum spanning tree G of AN.
Let T be an arborescence with root » whose structure
is identical with that of G.
Stepl1: Forevery arc (x, y) in B(T),let (1) ¢(x) <«
¢(x)+1, ¢(py) — ¢(y)—1, and (2) for every arc e on
a path in Py, let f(e) «— f(e) +1.
Stepl2: ¢ (w) — ¢(w)—1. Then we get D= (¢, f),
which is an optimal file transfer on N.
Stepl13: Terminate. O
We can get an optimal file transfer from the above
proposed algorithm, which needs an algorithm for
finding a shortest path such as Dijkstra’s®”? and an
algorithm for finding a minimum spanning tree such as
Prim’s.® Our algorithm takes O (nm+ n® log n) time-
complexity if we use Fibonacci heap® in searching a
shortest path from one vertex to every other vertex in V'
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with O (m+nlog n) time-complexity, where n=| V|
and m=|B|.

On a file transmission net N in Fig. 1, by our
algorithm, we get an optimal file transfer Dp= (¢, fn)
shown in Fig. 10, where a number beside an arc e
denotes f,(e). The cost of D, is

C(Dp)=1-4+2-3+2+44+2:24+24+2+2+142
=31.

7. Conclusions

In this paper, we have proposed a problem of
distributing copies of some information J through a
file transfer from a vertex » to every vertex on a file
transmission net N. As a result, for the special situa-
tion where the mother vertex set M and the positive
demand vertex set U satisfy MS U on N, we have
shown a method of synthesizing an optimal file transfer
whose total cost of transmitting and making copies of
J is minimum on N.
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