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The theory of self-consistent effective interactions in nuclei is extended for a system with a velocity
dependent mean potential. By means of the field coupling method, we present a general prescription to derive
effective interactions which are consistent with the mean potential. For a deformed system with the conven-
tional pairing field, the velocity dependent effective interactions are derived as the multipole pairing interac-
tions in doubly stretched coordinates. They are applied to the microscopic analysis of the giant dipole reso-
nances �GDR’s� of 148,154Sm, the first excited 2� states of Sn isotopes and the first excited 3� states of Mo
isotopes. It is clarified that the interactions play crucial roles in describing the splitting and structure of GDR
peaks, in restoring the energy weighted sum rule, and in reducing the values of B(E�).
�S0556-2813�96�00511-0�

PACS number�s�: 21.30.Fe, 21.60.Ev, 24.30.Cz, 27.60.�j

I. INTRODUCTION

The understanding of nuclear collective excitations has
been one of the most important subjects in the nuclear many
body problem �1�. In microscopic analyses of such excita-
tions, separable multipole interactions have been introduced
and applied extensively for spherical, deformed, and rotating
nuclei. The separable multipole-multipole interactions origi-
nate from long-range correlations in particle-hole channels,
and the physical meaning of these interactions has been clari-
fied by Mottelson in terms of the core polarization phenom-
ena �2�. On the other hand, the multipole pairing interactions
originate from short-range correlations in particle-particle
channels, and there are many works concerning the physical
meaning of these interactions �1,3–7�. These interactions
have been widely used and have been playing crucial roles in
the study of nuclear structure, but theoretical foundations for
the origin of such effective interactions in both the particle-
hole and particle-particle channels have not been established
enough from a unified physical picture. In particular, we con-
sider that it is still an open and interesting problem to deter-
mine the proper form of the deformation dependence of the
pairing interaction. It is the main purpose of the present pa-
per to report a general prescription to derive effective inter-
actions which are consistent with the mean potential, and we
will present a unified derivation of the multipole-multipole
interactions in particle-hole channels and the multipole pair-

ing interactions in particle-particle channels on an equal
footing �preliminary reports on this subject can be seen in
Refs. �8,9��.
Since a nucleus can be regarded as a spatially and ener-

getically saturated self-sustained system with a relatively
sharp boundary, one can assume that the following condi-
tion, which will be called as nuclear self-consistency �10,11�,
is satisfied quite accurately: The shape of the mean potential
and that of the density are the same even when the system
undergoes collective motions. The concept of nuclear self-
consistency, which is much more stringent than the Hartree
self-consistency, has played important roles not only in de-
scribing an equilibrium nuclear shape �12,13� and in deriving
effective interactions for a spherical system �1,2�, but also in
deriving effective interactions for a deformed system
�10,11�, and higher order effective interactions �11,14,15�.
These interactions have been applied successfully to the cal-
culations of the properties of the low-lying vibrational states
and high-frequency giant resonances, etc. �10,11,16–23�. It
is found that the effective interactions derived by the rigor-
ous application of the nuclear self-consistency are much
more reliable than the conventional multipole-multipole in-
teractions �1,2,10,11�.
However, it has been pointed out that the spurious veloc-

ity dependence in a single-particle mean potential, which
violates the Galilean invariance of the system, should be re-
moved �1,3,5–7�. It is well recognized that the velocity de-
pendent terms affect the mass parameters of collective mo-
tions and thereby such quantities as the distribution of
transition strengths and the absolute value of the energy
weighted sum rule, etc., become unreliable �1,3,5–7,24,25�.
The realistic nuclear potential in fact contains velocity de-
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pendent terms such as the BCS pairing field, l�•s� and l�2
terms in the Nilsson model, etc. Some parts of them are
responsible for violating the Galilean invariance and the
classical sum rule, and therefore these symmetries have to be
restored properly. From this point of view, Pyatov et al. de-
veloped a simple and powerful method to introduce addi-
tional interactions which restore such broken symmetries in
RPA order �5,6�. Since then, symmetry restoring effective
interactions have been studied by several authors �5–7,26–
30�. In this paper, by investigating the coupling between col-
lective and single-particle degrees of freedom, and by using
the concept of nuclear self-consistency and local Galilean
invariance of the system as important guiding principles, we
will present a systematic method to derive self-consistent
effective interactions in nuclei.
In Sec. II, the field coupling method �1,11� is applied to a

spherical system with a velocity dependent potential. In this
framework, we derive self-consistent velocity dependent ef-
fective interactions by estimating the coupling between the
collective displacement of nucleons and the mean field. In
Sec. III, we extend the field coupling method to a deformed
system and present a simple derivation of the doubly
stretched multipole-multipole and multipole-pairing interac-
tions. In Sec. IV, we investigate some fundamental proper-
ties of these self-consistent effective interactions. It is shown
to be essential to express effective interactions in doubly
stretched coordinates for restoring some broken symmetries
and also for the natural description of GDR’s in deformed
nuclei. In Sec. V, we report the results of numerical calcula-
tions in RPA of the GDR’s of 148,154Sm, the first excited
2� states of Sn isotopes and the first excited 3� states of Mo
isotopes, by using the self-consistent velocity dependent ef-
fective interactions.

II. GENERAL FRAMEWORK
OF FIELD COUPLING METHOD

A. Field coupling between collective distortion
and mean potential

The method to study collective motion that arises from
the action of the field coupling in a system with a degenerate
one-particle excitation has been well developed by Bohr and
Mottelson �1�. It provides a self-consistent method to con-
struct the relevant effective interaction by identifying the
field coupling as the Hartree field of the interaction. Based
on the method, which will be referred to as the field coupling
method, the theory of self-consistent effective interactions in
nuclei has been developed �10,11,14�. As a result, it has been
shown, for example, that the conventional multipole interac-
tion model must be improved to satisfy the nuclear self-
consistency in deformed nuclei, resulting in the doubly
stretched multipole interaction model. Here we will exten-
sively apply the method to a system with the velocity depen-
dent mean potential. Some examples of the velocity depen-
dent field coupling were discussed in Ref. �1� in connection
with the analysis of the high-frequency quadrupole modes
and of the center-of-mass mode.
In a nuclear system, particle motions and collective mo-

tions are essentially coupled with each other in order to
achieve self-consistency between the potential and the den-
sity distribution. If a collective mode excites in a nucleus, the

positions and momenta of nucleons in the system are dis-
placed by the mode accordingly. Then the corresponding
change in the nuclear density distribution gives rise to a vio-
lation of the self-consistency settled before the displacements
are switched on. In this way additional field couplings are
induced in the system in order to restore the nuclear self-
consistency.
Let us start by considering a 2�-pole collective shape os-

cillation mode of a spherical nucleus. We assume that this
mode is characterized by the collective displacement of the
nucleonic field variable as

r�→r���r� , �r����
	


�	* �� Q�	 ���1 �, �1�

where 
�	 are the collective amplitudes. The collective ve-
locity field associated with this mode is expressed as

v� �r� ����
	


̇�	* �� Q�	 , �2�

which is irrotational and incompressible. We will require that
nucleonic velocities entering into the velocity dependent
single-particle potential are to be measured relative to the
collective velocity v� (r�) �1� so that the potential is to be
invariant under the local Galilean transformation

p�→p� ��p� , �p� �Mv� �r� �. �3�

Then the variation of the average one body potential �V and
that of the density distribution � produced by the oscillation
are determined from the conditions

V�r���r� ,p� ��p� ��V0�r� ,p� �,

�r���r� ,p� ��p� ��0�r� ,p� �, �4�

where V0(r� ,p� ) and 0(r� ,p� ) are the potential and the density
at the original equilibrium point in the phase space and are
assumed to be spherical, while V(r� ,p� ) and (r� ,p� ) include
the effect of the oscillation. In this paper we assume that
these quantities expressed in the phase space are well defined
by using some appropriate semiclassical method such as the
Wigner transformation �31–34�.
The conditions of Eq. �4� provide relations between �V

and � through the displacement vectors �r� and �p� as

V�r� ,p� ��V0�r� ,p� ���V�r� ,p� �,

�r� ,p� ��0�r� ,p� ����r� ,p� �, �5�

with

�V�r� ,p� ���Vr��Vp���r�•�� V0��p� •�� pV0 ,

��r� ,p� ���r��p���r�•�� 0��p� •�� p0 , �6�

where notations are defined by

�� �� �

�x ,
�

�y ,
�

�z � , �� p�� �

�px
,
�

�py
,

�

�pz
� . �7�
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In Eq. �6�, for simplicity, only the leading order terms in

�	 and 
̇�	 are retained assuming that the vibrational am-
plitudes are small. Inclusion of the nonlinear field coupling
coming from higher order terms in 
�	 has been performed
in Ref. �11� resulting in higher order �many body� effective
interactions. The �Vr and �Vp can be expressed in the stan-
dard form of the field coupling �1� as

�Vr����
	


�	* F�	 , F�	�
1
��

�� Q�	•�� V0 , �8�

�Vp��̃��
	


̇�	* F̃�	 , F̃�	�
M
�̃�

�� Q�	•�� pV0 . �9�

Now we consider that the field couplings �Vr and �Vp are
produced as the Hartree field of two-body interactions

H int�
��

2 �	 F�	
† F�	�

�̃�

2 �	 F̃�	
† F̃�	�H�

�r ��H�
�p � , �10�

and introduce self-consistency conditions as


�	* �A�F�	
† �, 
̇�	* �A�F̃�	

† �. �11�

Here the average of a one body operator with respect to the
modified ground state � � corresponding to the density  is
calculated as

A�F����
i�1

A

F� i �� �� F�r� ,p� �d3rd3p , �12�

while that with respect to the original ground state �0� cor-
responding to the density 0 is given by

A�F�0���
i�1

A

F� i ��
0

�� F0�r� ,p� �d3rd3p . �13�

Equation �11� can be calculated as


�	* �� F�	
† �rd3rd3p

�
�	* � F�	
† �� Q�	•�� 0d3rd3p

��
�	* A���� F�	
† •�� Q�	��0 , �14�


̇�	* �� F̃�	
† �pd3rd3p

�M 
̇�	* � F̃�	
† �� Q�	•�� p0d3rd3p

��M 
̇�	* A���� pF̃�	
† •�� Q�	��0 , �15�

where we have assumed the time reversal invariance of the
density 0 which guarantees

� F�	
† �pd3rd3p�A��� pF�	

† •�� Q�	�0�0, �16�

� F̃�	
† �rd3rd3p�A��� F̃�	

† •�� Q�	�0�0. �17�

We thus obtain

����A��� ��� Q�	
† •�� V0�•�� Q�	�0 , �18�

�̃���M 2A��� p��� Q�	
† •�� pV0�•�� Q�	�0 . �19�

Since Q�	 does not depend on the momentum p� , F̃�	 of Eq.
�9� and �̃� of Eq. �19� can be expressed in terms of the
Poisson bracket as

F̃�	�
M
�̃�

�Q�	 ,V0�, �20�

�̃���M 2�ˆQ�	 ,�Q�	
† ,V0�‰�0 . �21�

In the above treatment, we have assumed the potential
V0 can be expressed as a sum over individual particles:
V0�� i�1

AV0(r� i ,p� i). However the monopole pairing poten-
tial

Vpair��
�

2 �P0
†�P0�, P0

†��
�
c�
†c �̃
†�2�

��0
c�
†c �̃
†

�22�

is not expressed in this form. Here c�
† creates a nucleon in the

state � , �̃ is a time reversed state of � , and � is a gap
parameter. For such a potential we will replace the Poisson
brackets in Eqs. �20� and �21� by the corresponding commu-
tation relations as

F̃�	�
M
i��̃�

�Q�	 ,V0� , �23�

�̃����M� � 2��Q�	 ,†V0 ,Q�	
† �‡�0 . �24�

Then the corresponding part of the effective interaction be-
comes

H�
�p ���

1
2�	

1
�†Q�	 ,�V0 ,Q�	

† �‡�0
�Q�	 ,V0�†�Q�	 ,V0� .

�25�

This type of separable effective interactions have been dis-
cussed by several authors in connection with the symmetry-
restoring treatment of the nuclear Hamiltonian �5–7,26–30�.

B. Two simple examples of self-consistent effective interactions

It is worthwhile to briefly review the derivation of the
self-consistent effective interactions in the case of a simple
mean potential such as a harmonic oscillator potential �11� or
a pairing potential �7�.

1. Spherical harmonic oscillator potential

Let us consider a simple situation that the equilibrium
potential V0 is given by the spherical harmonic oscillator
potential
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V0�VHO�r ��
1
2M�0

2r2. �26�

In this case, we do not have to consider the velocity depen-
dent field coupling since the potential does not have any
velocity dependence. From Eqs. �8� and �18� we obtain

F�	�
1
��
M�0

2r�•�� Q�	�
1
��

�M�0
2Q�	 , �27�

�����M�0
2A��� Q�	

† •�� Q�	�0

��M�0
2 �

2�2��1 �
4� A�r2��2�0 , �28�

where we used the relations

r�•�� Q�	��Q�	 , �Q�	�0,

��Q�	
† Q�	��

2��2��1 �
4� r2��2. �29�

Thus the self-consistent effective interaction coincides with
the conventional multipole-multipole interaction

H�
�r ���

1
2 ��

self�
	
Q�	
† Q�	 �30�

with the self-consistent strength

��
self�

4�
2��1

M�0
2

A�r2��2�0
. �31�

2. Pairing potential

Let us introduce a one body operator

O��

�

�
�O���c

† c� , �32�

whose time reversal property is assumed to be

T̂OT̂�1��� �TO† �33�

or equivalently

�
̃�O��̃���T̂
�O�T̂����� �T���O�
�, �34�

where T̂ denotes the time reversal operator, and (�)T is a
shorthand notation for the time reversal phase and is either
�1 or �1. The commutation relation between the operator
O and the pairing field Vpair is given by

�O ,Vpair��
1��� �T

2 ��

�

�
�O��̃��c

† c�
†�c �̃c 
̃ �.

�35�

From this relation, it is easily recognized that the pairing
field satisfies the translational invariance but violates the
Galilean invariance:

�P� ,Vpair��0, �36�

�R� ,Vpair����

�

�
�R� ��̃��c

† c�
†�c �̃c 
̃ � �37�

with

P� ��
j�1

A

p� j��
j�1

A

��i��� j�, R� �
1
A�j�1

A

r� j . �38�

More generally, if O is an operator depending on coordinate
variables, then Eq. �35� means that the monopole pairing
field is not invariant under a local Galilean transformation. In
this sense the pairing field is considered to be a velocity
dependent mean potential �1�. For a system with such a ve-
locity dependent potential, there arises a velocity dependent
field coupling as is discussed in Sec. II A.
Let us investigate the interaction of Eq. �25� in more de-

tail. By substituting Vpair into V0 and by identifying the origi-
nal ground state �0� with the BCS vacuum state, the basic
quantities in Eqs. �23� and �24� are expressed as

�Q�	 ,Vpair�����P�	
† �P �̃	�, �39�

�†Q�	 ,�Vpair ,Q�	
† �‡�0��2�


�
� 1E


�
1
E�

� ��
�Q�	����2,

�40�

where

P�	
† ��


�
�
�Q�	���c


† c �̃
† , �41�

and we have used the familiar relation between the coeffi-
cients of Bogoliubov-Valatin transformation and the quasi-
particle energy: u
v
��/2E
 . Thus the velocity dependent
effective interaction of Eq. �25� can be obtained as

H�
�p ���

1
8 G�

self�
	

�P�	
† �P �̃	��P�	�P

�̃	
†

� �42�

with

G�
self�1� �


�

1
4 � 1E


�
1
E�

� ��
�Q�	����2. �43�

This interaction is a natural extension of the dipole-pairing
interaction obtained by Bohr and Mottelson �1� and Pyatov
and Salamov �5� to a general 2�-pole mode. Equation �43�
has the same structure as that of the Belyaev identity �3,4�.
Further discussions for this interaction can be found in Refs.
�7,20�.

III. SELF-CONSISTENT EFFECTIVE INTERACTIONS
IN DEFORMED NUCLEI

Now, let us apply the procedure of Sec. II to a deformed
system. For simplicity, we assume that the main part of the
equilibrium potential is described as a deformed harmonic
oscillator with frequencies �x , �y , and �z . In terms of the
doubly stretched coordinates �10,11� defined by
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x��
�x
�0
x , y��

�y
�0
y , z��

�z
�0
z , �44�

the deformed harmonic oscillator potential can be expressed
in a spherical form as

VHO�r� ��
1
2M ��x

2x2��y
2y2��z

2z2�

�
1
2M�0

2�r��2�VHO�r��. �45�

As one of the possible and plausible collective shape os-
cillation modes in the deformed system, we will introduce a
doubly stretched 2�-pole mode characterized by

r��→r����r��,

�r�����
	


�	* �� �Q�	� ���1 �, �46�

with

�� ��� �

�x�
,
�

�y�
,

�

�z�� , Q�	� �Q�	�r���, �47�

rather than the conventional 2�-pole mode characterized by
Eq. �1�. In fact, as discussed in Ref. �11� based on the
Thomas-Fermi theory, the doubly stretched mode represents
great improvements over the conventional mode in the sense
that it satisfies �i� the constancy of the Fermi energy �which
is equivalent to the saturation condition�, �ii� the separation
of the center-of-mass motion, �iii� the condition for a fluc-
tuation around the deformed equilibrium shape, and �iv� the
self-consistency between the nucleonic density and the po-
tential, etc. The collective velocity field associated with this
mode is expressed as

v� ��r������
	


̇�	* �� �Q�	� , �48�

which is a natural extension of the irrotational and incom-
pressible flow of Eq. �2�.
Now we will extensively apply the requirement of the

local Galilean invariance to the deformed system. Namely,
we will require that in terms of the doubly stretched coordi-
nates nucleonic velocities entering into the velocity depen-
dent single-particle potential are to be measured relative to
the collective velocity v� �(r��) so that the potential is to be
invariant under the transformation

p� �→p� ���p� �, �p� ��Mv� ��r���, �49�

where the doubly stretched momentums are introduced as

px��
�0
�x
px , py��

�0
�y
py , pz��

�0
�z
pz . �50�

Then by use of the relations d3r�d3r� and d3p�d3p�,
which are equivalent to the volume conservation condition
�x�y�z��0

3, we can follow the similar procedure as given
in Sec. II to derive self-consistent effective interactions in

deformed nuclei. To do this, in the present case, we should
understand that all the r� , p� , �� , and �� p appearing in Sec. II
are to be replaced by the corresponding r��, p� �, �� �, and �� p�
with

�� p��� �

�px�
,

�

�py�
,

�

�pz�
� . �51�

For example, the field coupling induced by the collective
displacements of Eqs. �46� and �49� becomes

V�r��,p� ���V0�r��,p� ����V�r��,p� ��

�V0���V� �52�

with

�V���Vr���Vp�

����
	


�	* F�	� ,��̃��
	


̇�	* F̃�	� , �53�

F�	� �
1
��

�� �Q�	� •�� �V0� , �54�

F̃�	� �
M
�̃�

�� �Q�	� •�� p�V0��
M
�̃�

�Q�	� ,V0��. �55�

From the self-consistency conditions


�	�A�F�	� �, 
̇�	�A�F̃�	� �, �56�

the coupling strengths are determined as

����A��� ���� �Q�	�
†•�� �V0��•�� �Q�	� �0 , �57�

�̃���M 2A��� p���� �Q�	�
†•�� p�V0��•�� �Q�	� �0

��M 2��Q�	� ,�Q�	�
†,V0����0 , �58�

and the self-consistent effective interaction to be used in the
deformed nucleus is given as

H int�
��

2 �	 F�	�
†F�	� �

�̃�

2 �	 F̃�	�
†F̃�	�

�H�
�r ��H�

�p � . �59�

For the case of V0��VHO(r�), the effective interaction be-
comes

H�
�r ���

1
2 ��

self�
	
Q�	�

†Q�	� �60�

with

��
self�

4�
2��1

M�0
2

A��r��2��2�0
, �61�

and in the presence of the pairing field an additional effective
interaction is derived as
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H�
�p ���

1
8 G�

self�
	

�P�	�
†�P

�̃	
� ��P�	� �P

�̃	
� †� �62�

with

G�
self�1� �


�

1
4 � 1E


�
1
E�

� ��
�Q�	� ����2. �63�

These interactions play crucial roles in restoring broken sym-
metries of the system in RPA order, the detail of which will
be discussed in the next section.

IV. FUNDAMENTAL PROPERTIES
OF SELF-CONSISTENT EFFECTIVE INTERACTIONS

A. Translational invariance of a deformed system

The consistency of the residual interaction with the shell
model potential and the method to restore the translational
invariance of a nuclear many body system was discussed by
Pyatov and Salamov �5� for the case of the spherical oscilla-
tor potential. Here we will briefly examine this problem in a
deformed system.
Let us consider the oscillator Hamiltonian for the de-

formed nucleus

H0��
i�1

A 	 pi22M�VHO�ri��
 . �64�

Since H0 is a local one body Hamiltonian, it breaks the trans-
lational invariance of the system. In fact, we have

�H0 ,P� ���i�AM�0
2R� � �65�

with

P� ���
j�1

A

p� j���
j�1

A

��i��� j��,

R� ��
1
A�j�1

A

r� j�. �66�

To recover the translational invariance, we need a counter-
term which cancels the above commutation relation. For a
spherical nucleus, as is well known, such a counterterm
comes from the conventional dipole interaction. Now we will
show that for the deformed nucleus, the doubly stretched
dipole interaction plays the role to recover the translational
invariance of the system.
First of all, for the doubly stretched dipole interaction

V��1��
�1
2 �i j �Q1�� i �•Q1�� j �� , �67�

we can verify

�V��1 ,P� ����i�AM�0
2 �1
�1
self R� �. �68�

Then the total Hamiltonian H�H0�V��1 satisfies

�H ,P� ���i�AM�0
2� 1�

�1
�1
self�R� �. �69�

Therefore if the strength �1 of the doubly stretched dipole
interaction is set equal to its self-consistent value
�1
self�4�M�0

2/3A , we obtain �H ,P� ���0 exactly. In this
case, the total Hamiltonian can be expressed as

H��
i�1

A pi
2

2M �
M�0

2

4A �
i , j�1

A

�r� i��r� j��2, �70�

which explicitly guarantees the translational invariance of
the deformed system.

B. Restoration of the local Galilean invariance

As is discussed in the previous sections, generally a phe-
nomenological potential, comprising velocity dependent
terms such as the l�2 term, the l�•s� terms and the pairing field,
etc., does not commute with arbitrary coordinate operators. If
we chose the operator to be the multipole operator, such a
situation is expressed from Eq. �23� as

�Q�	� ,V0�r� ,p� ���
i��̃�

M F̃�	� �0, �71�

which means that the potential V0 violates the local Galilean
invariance under the collective multipole oscillation. Here
the doubly stretched operators are used for deformed nuclei.
For spherical nuclei, of course we can omit the double
primes.
Now along the line of the general method of restoring the

broken symmetry �5,26�, we will show that the self-
consistent velocity dependent effective interaction, i.e.,
H�
(p) of Eq. �59�, plays the role to restore the local Galilean

invariance of the system under the random phase approxima-
tion �RPA�. In the RPA order we can verify

�Q�	� ,H�
�p ��RPA�

�̃�

2 ��Q�	� ,F̃�	�
†�RPA ,F̃�	� �� , �72�

with

�Q�	� ,F̃�	�
†�RPA�

M
i��̃�

�†Q�	� ,�Q�	�
†,V0�‡�0

��
i�
M . �73�

Thus we obtain

�Q�	� ,V0�H�
�p ��RPA�0. �74�

C. Simple model analysis of GDR of normal nuclei

It is worthwhile to point out that the doubly stretched
interaction model is powerful and plausible also for the de-
scription of some isovector modes. In confirmation of it, let
us briefly review the simple model analysis of the splitting of
GDR in an axially symmetric deformed nucleus �11�. The
model Hamiltonian is assumed to be

2336 54T. KUBO, H. SAKAMOTO, T. KAMMURI, AND T. KISHIMOTO



H�H0�V��1
�T�1 � , �75�

where H0 is the deformed oscillator Hamiltonian of Eq. �64�
while V��1

(T�1) is a residual isovector dipole interaction. Here
we will parametrize the shape of the nuclear potential as

����x��y��0����1��/3�,

�z��0����1�2�/3 � �76�

with

�0�����̊0�1��2/9�O��3�� , ��̊0�41A�1/3 �MeV�.
�77�

For comparison we will introduce two types of isovector
dipole interaction, one is an ordinary type and the other is a
doubly stretched type. The interaction in the latter case is
given by

V��1
�T�1 ���

1
2�K �1K

�T�1 ��Q1K�  z�
†�Q1K�  z� �78�

and we will parametrize the force strength as
�1K
(T�1)��!�1

self where �1
self is the self-consistent strength of

the isoscalar dipole interaction. The typical value of ! esti-
mated from the symmetry energy term in the mass formula
under the Fermi gas approximation is about 3 �1�.
Under the RPA, the excitation energy of each K compo-

nent of the GDR is obtained analytically as

"11�"GDR� 1�
�

3�1�!� � ,
"10�"GDR� 1�

2�
3�1�!� � , �79�

for the ordinary interaction, while

"11�"GDR�1��/3�, "10�"GDR�1�2�/3�, �80�

for the doubly stretched interaction. Here "GDR is the reso-
nance energy of a spherical nucleus given by

"GDR��1�!�0 , �81�

which, in both cases, is compatible with the experimental
systematics of "GDR�80A�1/3 �MeV� if we put !�3. For
the doubly stretched interaction, the total energy splitting
between the K�0 and K�1 components of the GDR is � in
units of "GDR and is independent of ! , which is consistent
with the simple classical geometrical relation of
(����z)/�0�� . This is in good agreement with the sys-
tematics of the experimental observation �35–37�. On the
other hand, for the ordinary interaction, the splitting is too
small by a factor of 4 for !�3. Thus the doubly stretched
interaction model seems much more improved than the ordi-
nary one also for the isovector dipole mode.

D. Simple model analysis of GDR of superconductive nuclei

Effects of the inclusion of the pairing correlation on the
properties of giant resonances of superconductive nuclei

have been studied by several authors �5,24,25�, and the shifts
in excitation energies, the changes in energy weighted sum
rule �EWSR�, etc., have been observed. However as indi-
cated in Refs. �24,25�, some of them seem to be spurious due
to the violation of the Galilean invariance of the system.
Here, by use of a simple schematic model, we will verify the
effects of the pairing correlations on the structure of GDR,
and will show that such spurious effects can be remedied by
including the dipole pairing interaction.
The model Hamiltonian is assumed to be

H�H0�V��1
�T�1 ���

 
�Vpair��N̂�H��1

�p � � , �82�

where H0 is the oscillator Hamiltonian of Eq. �64�, V��1
(T�1) is

the isovector dipole interaction of Eq. �78�, Vpair is the mono-
pole pairing potential of Eq. �22�, and H��1

(p) is the dipole
pairing interaction of Eq. �62�. Here and in the following, the
summation index  is to be taken over the proton and the
neutron. The force strength of the isovector dipole interac-
tion is fixed as !�3, while that of the dipole pairing inter-
action is set to be its self-consistent value when it is in-
cluded. We perform quasiparticle RPA calculations for a
schematic model system with N�Z�20. It must be noticed
that the purpose here is not to compare with the experimental
data of 40Ca but to investigate the fundamental properties of
the dipole pairing interaction from the purely theoretical
point of view.
Table I shows our results on the electric dipole strength

distributions calculated by assuming the system to be spheri-
cal. To study the effect of the pairing correlation, we artifi-
cially change the value of � . For the simplest case of
��0 (a), the GDR is located at 24.0 MeV, and the energy
weighted E1 transition strength of this state exhausts its clas-
sical sum rule value of

S�E1 �class�
9
4�

�2

2M
NZ
A e2. �83�

TABLE I. E1 transition strength distribution for a schematic
spherical system with N�Z�20. Energies and fractions of the
EWSR are shown for some dominant states calculated in the RPA.
The dipole-pairing interaction is included for c and e , but not for
a , b , and d .

�p��n �MeV� E �MeV� EWSR �%�

a 0.0 24.0 100

b 1.0 21.4 8
23.6 52
27.5 41

c 1.0 24.0 100

d 2.0 20.8 16
23.6 24
30.0 78
51.3 13

e 2.0 23.9 99
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When the pairing gap is set to be ��1.0 MeV (b), reflecting
the situation that the quasiparticle states are no more degen-
erate, the GDR splits in spite of the assumption that the
system is spherical. There are mainly three components of
the GDR �21.4, 23.6, and 27.5 MeV�. The center of the GDR
shifts upward about 1 MeV compared to the case of ��0,
and the EWSR is overestimated by about 10% relative to the
classical one. In order to remedy this situation, we switch on
the dipole pairing interaction (c). In this case, the E1 tran-
sition strength concentrates again on a single state at about
24.0 MeV, and the EWSR recovers to its classical value. The
fact that the pairing correlation destroys the order in the
structure of the GDR can further be emphasized by increas-
ing � to 2.0 MeV, though the value is not realistic. In this
hypothetical situation (d), the transition strength splits into
mainly four components at 20.8, 23.6, 30.0, and 51.3 MeV,
and the EWSR is overestimated by about 36%. Even in such
an extreme situation, if we additionally include the dipole
pairing interaction (e), the spurious effect of the pairing in-
teraction can be removed and the E1 strength is concentrated
on a single state at 23.9 MeV to recover the EWSR.
Figure 1 shows the corresponding results obtained by as-

suming that the model system is deformed to be axially sym-
metric shape of ��0.4. The continuous strength function,
representing the transition strength per unit energy, is con-
structed by using the Lorentzian weight function

����#��
2
�

$�2

��2��#
2�2�$2�2

. �84�

In the present model calculations, we choose the width to be
$�1.0 MeV only for the sake of not wiping out the fine
structure of the resonance. Because of the deformation of the
system, the GDR splits into K�0 and K�1 components. For
the case of Fig. 1�a�, the GDR shows rather complicated
structure. The reason for it can be traced to the violation of
the Galilean invariance for the pairing field and we can

eliminate such a spurious effect by restoring the broken in-
variance. In fact, if we additionally include the dipole pairing
interaction, the structure of the resonance becomes simpler
both for K�0 and K�1 modes �Fig. 1�b��. Furthermore, the
total energy splitting between the K�0 and K�1 modes,
relative to the average energy of these modes, becomes ap-
proximately equal to � which is consistent to the simple
classical geometrical relation explained before.

V. NUMERICAL RESULTS

In this section, we report some characteristic results of
numerical calculations in RPA of the GDR’s of 148,154Sm,
the first excited 2� states of Sn isotopes and the first excited
3� states of Mo isotopes. It should be noted here that our
present calculations contain essentially only one free param-
eter in the following sense; the single-particle bases are con-
structed from the Nilsson � BCS model with standard pa-
rameters; the strengths of the velocity dependent effective
interactions such as the multipole pairing interactions are
fixed to be their self-consistent values when they are in-
cluded; only the strengths of the multipole-multipole interac-
tions are adjusted under the condition that a common value
of ! , �2, and �3 is to be adopted for all the isotopes of Sm,
Sn, and Mo, respectively.
Since the positions of bandhead states are very sensitive

to the choice of the single-particle energies as are generally
observed in the RPA calculation of vibrational states in de-
formed nuclei, one can improve the fit to experiments by
adjusting the single-particle energies, and further improve-
ment can be obtained by slightly varying the strengths of the
effective interactions around the vicinity of the predicted
self-consistent values for each isotope. The fit to experiment
we obtained is insufficient and an improved fit could have
been obtained if these parameters were treated as adjustable
as well. We have not done so in the present work, because
the purpose of the present numerical investigation is to see

FIG. 1. E1 transition strength distribution for a schematic model system of N�Z�20 with axially symmetric deformation of ��0.4
calculated in RPA. The continuous strength function, representing the strength per unit energy, is given in units of MeV�1 relative to the
classical sum rule value �CSR�. In the model Hamiltonian of Eq. �82�, the pairing gap is fixed as ��2.0 MeV both for protons and for
neutrons. K�0 and K�1 modes are shown by the solid and the dashed curves, respectively. �a� and �b� correspond to the results obtained
with and without the inclusion of the dipole-pairing interaction, respectively.
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first to what extent our theory works without much playing
around with parameters and to provide understandings rather
than precision tools for the fitting of experimental data.

A. E1 strength distributions of 148,154Sm

We here present the results of realistic calculations on the
E1 strength distributions of 148,154Sm in the quasiparticle
RPA. The model Hamiltonian is assumed to be

H�H0�VNil�V��1
�T�1 ���

 
�Vpair��N̂�H��1

�p � � ,

�85�

VNil��
i�1

A

�����̊0�2� l�•s� ��	� l�2�� l�2���� i , �86�

which is essentially same as Eq. �82� except that the Nilsson
potential VNil is additionally included.
We will study the effects of two kinds of velocity depen-

dent interactions to restore the Galilean invariance of the
system; the one arising from Vpair and the other from the
velocity dependent part of VNil . The former, the dipole pair-
ing interaction H��1

(p) , is given by Eq. �62�, while the latter,
H��1
(Nil) , is given by

H��1
�Nil��

1
2�	 �1%1	

† %1	 �87�

with

%1	��Q1	� ,VNil� , �88�

�1��1/�†Q1	� ,�VNil ,Q1	� †�‡�0 . �89�

Although it is known that there exists a term associated with
the coordinate distortion of the spin-orbit potential given by
Eq. �6-70� of Ref. �1�, we will not consider its effects in
order to concentrate our present analysis on the effects of the
self-consistent velocity dependent interactions. We will also

neglect isovector corrections coming from the Nilsson poten-
tial to the isovector dipole-dipole interaction because of the
same reason.
To fix the parameter ! for the strength of the isovector

dipole-dipole interaction in this mass region, we first calcu-
late the case of 148Sm by assuming its shape to be spherical.
The resultant value of !�2.7 is adopted also for 154Sm
whose quadrupole deformation parameter is assumed and
fixed as ��0.35 in the following calculations. All other
strengths of the interactions are fixed just as the self-
consistent values which restore the Galilean invariance of the
system. It should be noticed here that the doubly stretched
interactions are used for the deformed nucleus of 154Sm. For
the model space, we retain all the Nilsson single-particle
states with 2&Nosc&7 for protons and 3&Nosc&8 for neu-
trons. The Nilsson parameters are taken from Ref. �13�. By
using experimental binding energies of Ref. �38�, the pairing
gap parameters are determined from the even-odd mass dif-
ferences as �n�1.01 MeV, �p�1.36 MeV for 148Sm and
�n�1.07 MeV, �p�0.86 MeV for 154Sm. We use the
Lorentzian distribution of Eq. �84� to reproduce the reso-
nance width. We choose $ �in units of MeV� as 5.10 for
148Sm, and 3.25, 5.25 for the K�0, 1 modes of 154Sm, re-
spectively.
Figures 2�a� and 2�b� show the E1 strength functions for

FIG. 2. E1 transition strength functions of �a� 148Sm and �b� 154Sm are given in units of MeV�1 relative to the classical sum rule value
�CSR�. The model Hamiltonian is same as that of Eq. �85� except that the dipole-pairing interaction is not included here. In �b�, solid and
dashed curves correspond to the K�0 and K�1 modes, respectively.

TABLE II. Calculated E1 EWSR values of 148,154Sm. Strengths
integrated over the excitation energies from 5.5 MeV to 30.0 MeV
are given in units of % relative to the classical sum rule value. The
model Hamiltonian is given by Eq. �85�. The columns a and b
correspond to the results obtained without and with the inclusion of
the dipole-pairing interaction H��1

(p) , respectively, while in c the
interaction H��1

(Nil) is also included in addition to H��1
(p) .

Nucleus a b c

148Sm 116.8 85.9 86.2
154Sm (K�0� 41.1 31.3 30.2
154Sm (K�1� 64.7 56.0 56.9
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148Sm and 154Sm, respectively, taking the model Hamil-
tonian of Eq. �85� but switching off the dipole-pairing inter-
action. Here we see that even if we use the doubly stretched
interaction, the calculated splitting between K�0 and K�1
resonances of 154Sm is too small. Furthermore, as can be
seen from column a of Table II, the EWSR values exceed
the classical values for both nuclei. As stated repeatedly,
these difficulties stem from the mixture of spurious states
arising from the broken Galilean invariance of Vpair and
VNil . In the following we show the results obtained by re-
storing the broken symmetry in two steps.
First, we study the effect of H��1

(p) . The column b of
Table II shows that the sum rule values approach the classi-
cal values. However, from Fig. 3, we see that the centers of
the resonances shift to lower excitation energies and the
structure in the lower peak region reveal unnatural shape.
Finally we take into account H��1

(Nil) so that the Galilean in-
variance of the Hamiltonian is restored. As can be seen from
Fig. 4 and column c of Table II, the unnatural resonance
structure disappears and the EWSR values keep close to the
classical limit. We note that the final results of Figs.4�a� and

4�b� agree quite well with the Lorentzian distribution of
Figs.4�c� and 4�d� which fit the experimental data of photo-
neutron cross section �35�.

B. The first excited 2� states in Sn isotopes

We now consider the effects of the self-consistent quad-
rupole pairing interaction on the excitation energies E(21

�)
and the E2 transition probabilities B(E2) of Sn isotopes
within the quasiparticle RPA. The model Hamiltonian is as-
sumed to be

H�H0�VNil�V��2��
 

�Vpair��N̂�H��2
�p � � , �90�

where V��2 and H��2
(p) are the quadrupole-quadrupole inter-

action and the quadrupole pairing interaction, respectively.
The single-particle model space is spanned by all the

Nilsson states with 2&Nosc&6 for protons and 2&Nosc&7
for neutrons. The Nilsson parameters are taken from Ref.
�13�, and the deformation is set to be zero. To investigate the

FIG. 3. Same as Fig. 2, except that the dipole-pairing interaction is included.

TABLE III. Energies of the first excited 2� states and E2 transition probabilities in Sn isotopes are given
in units of MeV and B(E2)sp , respectively. Results of calculations obtained without and with the inclusion
of the quadrupole-pairing interaction H��2

(p) are compared with experimental data. The pairing gaps adopted
in the calculations are taken from the experimental even-odd mass differences for a , while those for protons
are set to be zero for b .

a b

Without H��2
(p) With H��2

(p) Without H��2
(p) With H��2

(p) Expt.

N E(2�) B(E2) E(2�) B(E2) E(2�) B(E2) E(2�) B(E2) E(2�) B(E2)

62 1.72 18.7 1.57 13.3 1.66 15.7 1.57 10.7 1.26 16.2
64 1.72 19.6 1.57 14.1 1.68 15.9 1.58 10.8 1.30 15.3
66 1.41 19.8 1.19 17.1 1.37 15.7 1.34 10.6 1.29 12.9
68 1.23 23.9 1.03 20.4 1.20 19.0 1.21 12.2 1.23 12.7
70 1.20 24.8 1.00 21.2 1.16 20.0 1.18 12.7 1.17 11.6
72 1.22 22.7 1.13 15.0 1.17 18.5 1.18 11.9 1.14 10.9
74 1.35 18.0 1.27 12.9 1.31 14.9 1.27 10.0 1.13 9.3
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effect of the quadrupole pairing force on the
B(E2;0g→21�) value, the strength of the quadrupole pairing
force, G2, is fixed to be its self-consistent value when it is
included, while that of the quadrupole interaction, �2, is used
as an adjustable parameter to reproduce experimental
E(21

�) of 116,118,120Sn �39�.
First, we adopt the pairing gaps determined from the

even-odd mass differences. The adopted value of �2 for the
best fit obtained without �with� the inclusion of the
quadrupole-pairing interaction, H��2

(p) , is 0.92 �0.90� in units
of �2

self . The calculated E(21
�) and B(E2) are plotted in

Figs. 5�a� and 5�b�, respectively, and corresponding numeri-
cal values are given in column �a� of Table III. These results
show that H��2

(p) is necessary and important in reproducing
experimental E(21

�) and B(E2) values simultaneously.
Second, we have also performed numerical calculations

by fixing the proton energy gap to be zero. This is because
the proton shell is closed in Sn. In this case, the adopted
value of �2 for the best fit obtained without �with� the inclu-
sion of H��2

(p) is 0.940 �0.965� in units of �2
self . The calcu-

lated values of E(21
�) and B(E2) are plotted in Figs. 6�a�

and 6�b�, respectively, and corresponding numerical values
are given in column b of Table III, where we see better
agreements with experimental data compared to the case
with �p�0.

C. The first excited 3� states in Mo isotopes

Here we will study the effects of the self-consistent octu-
pole pairing interaction, H��3

(p) , in the quasiparticle RPA cal-
culations of the excitation energies E(31

�) and the E3 tran-
sition probabilities of the first excited 3� states in Mo
isotopes. The model Hamiltonian is assumed to be

H�H0�VNil�V��3��
 

�Vpair��N̂�H��3
�p � � , �91�

where V��3 and H��3
(p) are the octupole-octupole interaction

and the octupole pairing interaction, respectively.

FIG. 4. Same as Fig.3 for �a� and �b�, except that the additional interaction H��1
(Nil) is included. For comparison, Lorentzian distributions

which fit the experimental data of the photoneutron cross section �35� are given in �c� and �d� for 148Sm and 154Sm, respectively. The
experimental Lorentz line parameters for the mathematical expression 'L(E)�� i' i(E$ i)2/�E2�Ei

2)2�(E$ i)2] are taken from Ref. �35� as
E1�14.8�0.1, $1�5.1�0.2, '1�339�12 for the best single line fit of 148Sm and E1�12.35�0.10, $1�3.35�0.15, '1�192�10,
E2�16.1�0.1, $2�5.25�0.20, '2�204�10 for the best two-line fit of 154Sm, respectively. Here E’s and $’s are given in units of MeV
while '’s are given in units of mb.
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The single-particle model space is spanned by all the
Nilsson states with 0&Nosc&7 for protons and 0&Nosc&9
for neutrons. Energy gaps are determined from the experi-
mental even-odd mass differences. To investigate the effect
of the octupole pairing force on the B(E3;0g→31�) value,
the strength of the octupole pairing force, G3, is fixed to be
its self-consistent value when it is included, while that of the
octupole interaction, �3, is used as an adjustable parameter
to reproduce the experimental data of E(31

�) in
94,96,98,100Mo �40�. The adopted value of �3 for the best fit
obtained without �with� the inclusion of the octupole-pairing
interaction, H��3

(p) , is 0.95 �0.97� in units of �3
self .

The calculated E(31
�) and B(E3) from the ground state

to the 31
� state are plotted in Figs. 7�a� and 7�b�, respectively,

and corresponding numerical values are given in Table IV.
Here we see that the calculated B(E3) values are reduced
and improved systematically by the effects of H��3

(p) , al-
though the fit to experimental data is insufficient.

VI. SUMMARY

We have extensively applied the prescription to derive
self-consistent effective interactions, needed for the unified

description of the collective motions of atomic nuclei, espe-
cially to the system with velocity dependent mean potentials.
As the guiding principles for this purpose we have imposed
the conditions of nuclear self-consistency �10,11� and local
Galilean invariance �1,3,5–7� of the system, implemented
with the simple and transparent field coupling method devel-
oped by Bohr and Mottelson �1�.
The nuclear self-consistency requires that the shape of the

mean potential and that of the density are the same even
when the system undergoes collective motions, while the lo-

FIG. 5. �a� Excitation energies of the first 2� states and �b�
E2 transition probabilities in Sn isotopes. Results of calculations
with and without the inclusion of the quadrupole pairing interaction
are shown by dot-dashed and dashed lines, respectively. Solid lines
correspond to the experimental data. In the calculations, pairing
gaps are determined from the odd-even mass differences both for
protons and for neutrons.

FIG. 6. Same as Fig. 5, except that the pairing gaps for protons
are set to be �p�0 in the calculations.

TABLE IV. Energies of the first excited 3� states and E3 tran-
sition probabilities in Mo isotopes are given in units of MeV and
B(E3)sp , respectively. Results of calculations obtained without and
with the inclusion of the octupole-pairing interaction H��3

(p) are
compared with experimental data. The pairing gaps adopted in the
calculations are taken from the experimental even-odd mass differ-
ences.

Without H��3
(p) With H��3

(p) Expt.

N E(3�) B(E3) E(3�) B(E3) E(3�) B(E3)

52 2.74 51.2 2.66 44.3 2.53 17
54 2.36 53.4 2.32 44.6 2.23 24
56 1.93 58.6 1.97 47.3 2.02 33
58 1.91 60.2 1.92 47.8 1.91 32
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cal Galilean invariance requires that the nucleonic velocities
entering into the velocity dependent single-particle potential
should be expressed relative to the local collective flow. In
the field coupling method, the coupling between the particle
motion and the collective field is identified, within the Har-
tree approximation, as the averaged one body field of the
effective interaction which we look for, and the coupling
strength of it can be fixed by the above conditions.
For the multipole collective shape oscillation modes in the

harmonic oscillator potential with the monopole pairing cor-
relation, we have derived the multipole-multipole interac-
tions for particle-hole channel and the multipole-pairing in-

teractions for particle-particle channel from the unified
physical picture. In the case of deformed nuclei, it is shown
that these interactions must be expressed in terms of the dou-
bly stretched coordinates so as to guarantee the conditions of
nuclear self-consistency and local Galilean invariance of the
system.
The origin of the doubly stretched multipole-multipole in-

teractions have already been clarified and they have found
many successful applications �10,11,16–23�, while the origin
of the doubly stretched multipole pairing interactions are
clarified in this paper on the same footing. We have applied
the doubly stretched multipole pairing interactions to the
analyses of some collective states in Sm, Sn, and Mo iso-
topes by means of RPA, and for the dipole mode we have
also tested the velocity dependent effective interaction aris-
ing from the Nilsson potential. We have seen the effects of
such velocity dependent effective interactions in the recovery
of the classical E1 sum rule for GDR’s of 148,154Sm, in the
systematic reduction of the E2 transition probabilities for the
first excited 2� states of Sn isotopes, and also in the system-
atic reduction of E3 transition probabilities for the first ex-
cited 3� states of Mo isotopes. It should be noted here that
recently the doubly stretched quadrupole pairing interaction
was successfully applied also to the microscopic analysis of
identical bands in superdeformed nuclei, and it was shown
that the doubly stretched quadrupole pairing interaction has
several advantages compared to the nonstretched and
stretched ones �41�.
In summary, it is clarified that the self-consistent velocity

dependent effective interactions play crucial roles to recover
the local Galilean invariance and eliminate various unphysi-
cal effects arising from the spurious velocity dependence of
the mean potential. For rotating nuclei, we can apply similar
prescription in order to find the proper effective interactions
which faithfully take into account the effects of the collective
rotation. Results of it will be reported in a separate paper.
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