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SUMMARY A problem of obtaining an optimal file transfer
on a file transmission net N is to consider how to transmit, with
a minimum total cost, copies of a certain file of information from
some vertices to others on N by the respective vertices’ copy de-
mand numbers. This problem is NP-hard for a general file trans-
mission net. So far, some class of N on which polynomial time
algorithms for obtaining an optimal file transfer are designed has
been known. In addition, if we deal with restricted file transfers,
i.e., forest-type file transfers, we can obtain an optimal ‘forest-
type’ file transfer on more general class of N. This paper proves
that for such general nets it suffices to consider forest-type file
transfers in order to obtain an optimal file transfer.
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1. Introduction

As a model of file distribution of direct mail type, it
is useful for us to consider a problem of transmitting
copies of a certain file of information with a minimum
total cost. In this model, we assume that everywhere
we can duplicate copies of the file as well as we can
transmit and take out them. A file transmission net
N is such a file distribution model from some vertices
to others by the respective vertices’ copy demand num-
bers, where a cost of file duplication at vertex and a cost
of file transmission along arc are defined. The numbers
of file copies duplicated at vertices as well as the num-
bers of file copies transmitted along arcs which achieve
the minimum total cost file distribution are a solution
to the problem, which is called an optimal file trans-
fer on N. This problem is NP-hard for a general file
transmission net [1]. A polynomial time algorithm for
obtaining an optimal file transfer on N with a single
source vertex has been known so far [2]. In addition,
if we deal with restricted file transfers, i.e., forest-type
file transfers, we can obtain an optimal file transfer on
N with one or more source vertices [3].

This file transfer problem is quite different from
data transfer problem [4] and scheduling file transfer
problem (5] because the latter problems deal with time.
Some similar problems are known such as file allocation
problem [6] and file assignment problem [7]. However,
these problems are conceptually different from our file
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transfer problem, when making copies at any vertex is
considered so as to minimize the total cost.

This paper proves that for N with one or more
source vertices it suffices to consider forest-type file
transfers in order to obtain an optimal file transfer.
This implies from [3] that we can obtain an optimal file
transfer on such N in polynomial time.

In the rest of the paper, we proceed as follows. In
Sect. 2, we give preliminaries for this paper. In Sect. 3,
we define the superimposition net and show relationship
between such net and file transfer. In Sect.4, we show
the optimality of ‘forest-type’ file transfers. Finally, we
mention concluding remark and future tasks.

2. Preliminaries

In this section, we define some terms in order to for-
mulate a problem of obtaining an optimal file transfer
on a file transmission net. In relation to basic termi-
nologies such as vertex, arc, path, circuit, tree, forest,
underlying graph and so forth, on graph theory, refer
to those in [8]. Let Z and Z* denote the set of all inte-
gers and that of all positive integers, respectively, and
let Z¢ = Z* U {0}. In the following unless otherwise
stated, an arc, a path, a circuit and a graph indicate a
directed arc, a directed path, a directed circuit and a
directed graph, respectively. A graph G with a vertex
set V and an arc set B is denoted by G = (V, B). For
a vertex v, By(v) and B_(v) are the sets of all arcs
whose tail and head is v, respectively, and | By (v)| and
|B_(v)| is called the outdegree and indegree of v, re-
spectively. A vertex w is called a leaf if By (w) = ¢.
For two distinct vertices u and w, a path from u to w,
or we simply say a u-w path, is a path which begins at
u and ends at w. If G contains a u-w path, we say w
is reachable from u. If a vertex on a circuit L is reach-
able to a vertex v, we say L is reachable to v. The sets
of arcs and vertices on a path P is denoted by B(P)
and V(P), respectively and the vertex at which P be-
gins and ends is denoted by s(P) and t(P), respectively.
For two vertices u and w on a path P, if a u-w path P’
satisfies V(P') C V(P) and B(P’) C B(P), we say P’
is a u-w subpath of P.

We consider a model of directed communication
nets, called a file transmission net N, denoted by
N = (V, B, sy, ¢y, d, cg), where (V, B) is a finite con-
nected directed graph with neither selfloops nor paral-
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lel arcs such that (1) with each vertex v € V, three
parameters sy (v), cy(v) and d(v) are associated and
(2) with each arc e € B, one parameter cp(e) is asso-
ciated. These parameters sy (v), ey (v), d(v) and cp(e)
are called the original number, the copying cost and the
copy demand, respectively, of vertex v, and the trans-
mission cost of arc e. Let sy, cy, d and cp satisfy
sy: V= {0,1}, ev: V = Z+, d: V — Z and cp:
B — Z%. Suppose that N satisfies (w, u) € B and
cg((w, u)) = cp((u, w)) if (u,w) € B.

Suppose that (1) some information to be trans-
mitted through the inside of N has been written in a
file, (2) the written file is denoted by J, where the file
means an abstract concept of information carrier and
(3) vertices u such that sy(u) = 1, to each of which
one copy of J is first given from the outside of N, are
called source vertices. The set of all source vertices is
denoted by S, and let S # ¢. Suppose that at any
vertex in V, we can easily duplicate J and we do not
matter the difference from copies of J. In this situa-
tion, ¢y (v) means the duplication cost per one copy of
J at a vertex v, d(v) means the number of copies of J
needed at v, and cp(e) means the transmission cost per
one copy of J along an arc e. Suppose that these costs
cy and cp are all linear. Let U = {u € V|d(u) > 0}.
In the following, by N we mean such a file transmission
net N = (V, B, sy, cv, d, cB).

For a path P, let cg(P) = Z cg(e). For two

e€B(P)
distinct vertices u and w, if a u-w path P satisfies
cg(P) < cg(P’) among all u-w paths P’, then we say
P is a minimum cost u-w path, whose cost is denoted
by ¢y.w. For each vertex v in V, let ¢,, = 0. For a
mapping f on B, if every arc e on a path P satisfies
f(e) > 0, then we say P is f-connected. Those copies
of J given to every source vertex are duplicated, if nec-
essary, and distributed to vertices v in such a way that
d(v) copies of J are taken out from v to the outside of
N based on a file transfer defined below.
Definition 1: In N, let ¢ and f satisfy ¢: V — Z}
and f: B — Z¢. Then (¥, f) is called a file transfer
on N if ¢ and f satisfies the following two conditions:
(C1) The conservation of the number of J on vertex;
for any vertex v in V there holds

>, fle

e€B_(v)

Z fle) +d(v

8€B+ (’U)

+UU

(C2) The availability of J; for any vertex v such that
(v) > 0, there exists an f-connected path from some
source vertex to v.

For a file transfer D = (v, f) on N, let

C(D) = Z ev(v) - Y(v) + Z cg(e)

veEV e€B
which is called the cost of D. A file transfer with min-
imum cost is said to be optimal. O
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In a file transfer (v, f), ¥(v) means the number
of copies of J made at a vertex v and f(e) means the
number of copies of J transmitted along an arc e.

A subset M of V is defined by ¢y and cg, which
is very important to obtain an optimal file transfer.

Definition 2: In N, let M be the set of all vertices
m such that cy(m) < ey (x) + cz,m for any vertex z in
V\{m}. For each vertex v in V, let Hw)={weV|w

satisfies cy (w) + cyp < ey (T) + for any vertex T

inV.}. ]

In relation to H and M, the following proposition
holds.

Proposition 1[2]: In N, each vertex v € V satisfies
H(v) N M # 1. Besides there holds H(m) = {m} if
and only if m € M. O

In the following unless otherwise stated, let the
function h on V satisfy h(v) € H(v) N M for a vertex
v. That is, h(v) is one of the best vertices at which we
make and transmit copies for v.

Since, in general, the problem of obtaining an opti-
mal file transfer has been proven NP-hard (1], some con-
ditions might be necessary in order to solve the problem
in polynomial time [9]. Thus, in this paper let N satisfy
M U S C U, which is a sufficient condition to solve the
problem in polynomial time for N with S = {u} and
sy(u)=1[2].

3. A File Transfer and Its Identical Superim-
position Net

3.1 Properties of File Transfer

In this subsection, we show some properties of a file
transfer.

Lemma 1: For any vertex y satisfying Z fle) >
e€B_(y)

1, every file transfer (¢, f) on N contains an f-

connected path to such y from a vertex m satisfying

P(m) > 0.
Proof: Bysy: V — {0, 1}, S CU and (C1), we have

Yo fe= Y fle)

e€B_(v) e€By (v)

(veV).

Clearly, for the above y, there exists an arc e = (z, y)
satisfying f(e) > 0. If ¢(x) > 0, then the lemma holds.
Otherwise, by > .cp, (,) f(e) = 1 and the above in-
equality, we have another arc ¢ = (2, x) satisfying
f(€’) > 0. Since N is finite, we have this lemma. O

The next lemma is an expansion of Lemmal of [2].

Lemma 2: For any vertex u in U\S, every file trans-
fer (¢, f) on N contains an f-connected path from
some source vertex to u.
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Proof: If a vertex u in U\S satisfies ¢(u) > 0, we
have this lemma, from (C2). Otherwise we can see from

(C1) and f: B — Z that

Yo fler= Y fle)+duw)>d(u) >1,

e€B_(u) e€By (u)

which implies from Lemma 1 that (¢, f) contains an f-
connected path to u from a vertex m satisfying ¥(m) >
0. Therefore, we can see from (C2) that (¢, f) contains
an f-connected path from some source vertex to u via
m. Hence, we have this lemma. O

The following proposition is very useful to obtain
an optimal file transfer.

Proposition 2: Let a file transfer D = (¢, f) on N
satisfy ¥ (u) > 0 for a vertex u in V\M. Then, there
exists on N another file transfer D" = (¢”, f”) such
that C(D) > C(D") and ¢ (v) = 0 for any vertex v in
VA\M.

Proof: In this proof, let V(D) = {v € V\M|¢(v) >
0} for any file transfer D = (¢, f). In order to prove
this proposition, we have only to show that for a file
transfer D such that V(D) # 1, there exists another
file transfer D' such that (1) C(D) > C(D'), and (2)
V(D) > V(D).

Let u € V(D). We have h(u) # u from u ¢ M and
h(u) € M. Let P be a minimum cost h(u)-u path. For
¥ and f, functions ¢’ on V and f’ on B are defined to
be

V' (h(w)) = Y(h(u) + ¥(u), ¢'(u) =0,

Y(v) =2(v) (ve V\{h(u) u}), (1)
f'(e) = f(e) +¥(u) (e € B(P)),

f'(e) = f(e) (e€ B\B(P)).

Then, obviously, 1/ and f’ satisfies (C1) as well as
¢ V — ZF and f: B — Z§. We can see from
h(u) € M C U and Lemma 2 that (¥, f) contains an
f-connected path from some source vertex to h(u).

Therefore, ¢ and f’ satisfies (C2) because f'(e) >
f(e) for any arc e € B. Thus, D' = (¢/, f') is a file
transfer on N. Moreover, it follows from Eq. (1) that
V(D) = V(D)\{u} C V(D). Finally, from ¢(u) > 0
and h(u) € H(u) we have

c(D) — (D)
= {cv(h(u)) + chiuyu — cv(u)} - P(u) <O0.

Hence we have this proposition. a
It turns out from Proposition 2 that, in order to

obtain an optimal file transfer, we have only to consider

file transfers such that all vertices where copies of J are

made belong to M. Therefore, in the following we deal

with a file transfer (¢, f) satisfying

Property (¢1): If ¢(v) > 0, then v € M.
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3.2 The Superimposition Net of Paths

In the following, a net of N, denoted by N(«, 3), means
a network whose structure is identical to that of N and
with each vertex v and each arc e, a(v) and G(e) as-
sociated, respectively. Note that file transfer itself is a
net of N. In the following, every path set (or circuit
set) may contain some paths (or circuits) more than
once. The superimposition net is obtained from such
path and/or circuit sets as follows.

Definition 3: For a path set P and a circuit set L
on N, the superimposition net N(«, 8), denoted by
N(PUL), is defined to be

(N1) The vertex set and the arc set is V and B, re-
spectively.

(N2) The weight a(v) of each vertex v is the number of
paths on P which begins at v minus that of paths
on P which ends at v. If P has no path which begins
or ends at v, then let a(v) = 0.

(N3) The weight ((e) of each arc e is the total number
of paths and circuits on P U L that contains e. If
P UL has no path or circuit containing e, then let
B(e) = 0. ]

Note that in Definition 3, we can have the superimpo-

sition nets N(P) and N(L) if we let L = ¢ and P = ¢,

respectively. Thus, in the following, when we deal with

N(PUL), it may happen that P = ¢ or L = ¢.

Note that N(PUL) = N(a, 3) satisfies a: V — Z

and g: B — ZSL from Definition 3.

Definition 4: Let N(aq, 81) and N(az, 2) be nets
of N. Another net of N, denoted by N(as, 03), is a
network whose structure is (V, B) and functions az on
V and (3 on B are defined to be

az(v) = a1(v) + ae(v) (v e V),

B3(e) = Pi(e) + Pa(e) (e € B),

which is called the sum of N(ay, 6;1) and N(ag, B2).
O

Also, for the above superimposition nets, we can
define their sum.

For a path set P and a circuit set L, P and L is
called disjoint if any path P € P and any circuit L € L
satisfies V(P)NV(L) = ¢. Let x € V(P)NV(L) for P
in a path set P and L in a circuit set L. Let an s(P)-
t(P) path P’ consist of P and L via z, i.e., the s(P)-z
subpath of P, L, and the z-t(P) subpath of P. Then,
for P and L, let a path set P’ and a circuit set I be
P =P\{P}U{P'} and L' = L\{L}. After repeating
this operation of getting P’ and L' from such P and
L, we have a path set P’ and a circuit set L such
that P and 1" is disjoint or L = ¢. By Definition 4,
NP UL") is identical to N(PUL). In the following,
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W

Fig.1 An example of nets Ni(oa, B1).

when we deal with N(P UL), we assume that the path
set PP and the circuit set L is disjoint or L = ¢.

In relation to the above definition, we have the
next trivial lemma.

Lemma 3: For a path set P and a circuit set L on N,
let N(a, 8) = N(PUL). Then, we have

S ev(®)-al) + Y eale) fle)

veV ecB

= Y {ev(s(P) + cn(P) = ev ((P)))

PeP

+> ca(L). (2)
LeL
d
Note that the above N(a, 3) is just a net of N,
not always a file transfer.

Here is an example. A net Ni(a1, £1) is shown in
Fig. 1, where the value near vertex v and arc e denotes
a1(v) and B (e), respectively. Let Py be the vi-vz path
and let P, be the vo-v3 path. Clearly, Ni(ai, f1) is

identical to N1 ({Py, P1, P»}). In addition, we have

Y v @) aa(v) + ) crle) - Bule)

VeV
= 2cy (v1) — ey (va) — ey (vs) + 2¢p(v1, v2)
+ cp(v2,v3)
= 2{cv(v1) + cB(v1,v2) — ev (v2)}
+ {ev (v2) + cp(v2, v3) — cv(v3)}
= Y A{ev(s(P) +cB(P) —ev(t(P))}.

Pe{P,Py,Py}

A function whose image has other than zero is
called a nonnull function. In relation to the superim-
position net of circuit sets, we have the next trivial
lemma.

Lemma 4: If a nonnull function 3: B — Z{ satisfies

S )= Y Ble) wev),

e€B_(v) e€B (v)

then there exists a circuit set L such that N(L) is iden-
tical to N (o, ) with a: V — {0}. |

In relation to the above, we have the following
lemma.

Lemma 5: Suppose that nonnull functions a: V — Z
and 3: B — ZJ on N satisfy

IEICE TRANS. FUNDAMENTALS, VOL.E83-A, NO.7 JULY 2000

(C3) a()+). Ble)=)_ Ble) weV).

e€B_(v) e€B(v)

Let Vi = {v e V]a(v) >0} and V, = {v e V]a(v) <
0}. Then, we have a path set P satisfying.

(P0) For a circuit set L, N(PUL) is identical to N (a, 3)

and each path P in P satisfies s(P) € V; and t(P) €
Va.

Proof: Let u; € V. It follows from (C3) that
N(a, B) contains a (-connected path which begins at
u; as well as ends at a vertex in V because N (e, §) is
finite. Let P be such a path and let us = t(P). For a,
B and P, functions o/ on V and 8’ on B are defined to

v) =afv) (ve V\{ui,uz}),
e)=p(e)—1 (e€ B(P)),
3'(e) =Ble) (e € B\B(P)). (3)

Then, it is clear that o’ and 3’ satisfies

W)+ Y Ble= Y Fl) weV).

e€B_(v) e€B4 (v)

Here, let V{ = {v € V|&/(v) > 0} and Vj =
{v e V]d/(v) < 0}. Then, it follows from Eq.(3) that
V/ CVyand V§ C Vo, If V] = ¢, then o: V — {0} and
Y eeB_(v) B'(e) = Y cen, (v) B'(€), which implies from
Lemma 4 that this lemma holds as P = {P} and L = ¢.
Otherwise, for N(o/, 3'), we repeat the operation of
getting P from N(a, (). Since it follows from Eg. (3)

Zo/(v):Za(v) -1< Z a(v),

veV/ vEVY veV]

we finally have a path set P and a circuit set L satisfying
(P0O) from Lemma 4, after repeating such operations

Y vey, @(v) times. O

3.3 A File Transfer Based on Superimposing Path Sets
Here, we show that any file transfer is identical to the
superimposition net of path and/or circuit sets.

Lemma 6: For a file transfer (¢, f) on N such that
M US CU and M\S # ¢, let a function a on V satisfy

a(v) = sy(v) + ¢(v) —d(v) (veV). (4)

Then, we have a path set P satisfying
(P1) For a circuit set L, N(PUL) is identical

to N(a, f), and each path P in P satisfies
s(P)e SUM and t(P) € U.
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2 1 0
Fig.2 A file transfer (¢2, f2) on Na.

(P2) For each m in M\S, P has at least one path which
ends at m.

Proof: By (Cl) and Eq. (4) we have

o)+ Y fle)= > fle) (weV).

e€B_(v) e€B4 (v)

Let Vi={veV]|sy(v)+¢(v)>dv)} and V, =
{veV|sy(v) +9(v) <d(v)}. Then, it follows from
(¢1) that V3 € S U M. Obviously, there holds Vo C U.
Therefore, it follows from (P0) of Lemma 5 that
there exists a path set P such that N(PUL) is iden-
tical to N(a, f) for a circuit set L and each path
P € P satisfies s(P) € SUM and t(P) € U. Since P
and L is disjoint, if P contains no path which ends
at m € M\S, then from Lemma 2 we have a path
P in P passing m because N(P U L) is identical to
N(a, f). Let P, and P, be s(P)-m and m-t(P)
subpaths, respectively, of this P and let PP = P U
{P1, L}\{P}. Then, N(P’UL) is identical to N(PUL).
In addition, we have s(Py) =m € M\SC M US and
t(P1) =m € M\S CU, which implies that s(P’) €
MU S and ¢(P") € U for each path P’ € . As far
as the obtained P has no path which ends at a vertex
in M\ S, repeat the above operation. Consequently, we
obtain a path set satisfying (P1) and (P2). Hence we
have this lemma. O

A file transfer (o, fo) is shown in Fig.2, on Nj
such that S = {v1}, sy(vn1) = 1, d(v1) =1, d(v2) =2,
d(vs) =1 and M = {v1,vq,v3}. The value near vertex
v and arc e denotes ¥z (v) and fy(e), respectively. From
Eq. (4), we have a(v1) = 2, a(ve) = -1, and a(vs) =
—1, which is identical to the net of Fig. 1. Therefore, for
v1-v9 path P and vg-vsz path Ps, it turns out that the
path set {Py, Py, P>} satisfies (P1) and (P2) for L = ¢.

Note that it may happen that a path set satisfying
(P1) has no path which begins at some source vertex
u, e.g. if a(u) < 0.

Definition 5: Let s ¢ V. For a path set P,
let G(P) denote a directed graph with vertex set
{so} U {s(P),t(P)| P € P} and arc set {(so,u)| u €
S} U {(s(P),t(P))] P €P}. In addition, let R(P) =
{v € V| G(P) contains an so-v path }. O

Note that {so} US C R(P) for any path set P.
The next definition, used in the following lemma,
deals with relationship between two paths.

Definition 6: For a path P, and a path P,, let
reV(P)NV(P,). Let P\’ consist of s(P;)-z sub-
path of P; and z-t(P.) subpath of P, and let
P, consist of s(P,)-z subpath of P, and z-t(P))

and Conmuni cati on Engi neers
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subpath of P;.  We call P’ and P, exchange
paths of P, and P, by =z. In addition, if a
path P3 denoted by V(Ps)={uj,ug,--+,u,} and
B(P3) = {(ui,uit1)| 1 <i < p— 1} satisfies for a path
Py

Ug, Up € V(Pg) n V(P4) ((l < b),

uiEV(P4) (1§i<a,b<i§p),
then P; and Py is said to be maximally adjacent be-
tween u, and up. ]

Lemma 7: For a file transfer (¢, f) on N such that
MUS CU and M\S # ¢, let a function « on V satisfy
Eq. (4). For a path set P satisfying (P1), let its subset
P; satisfy (P2) and M\R(P,) # ¢. Then, we have a
path set I satisfying (P1), whose subset P satisfies
(P2) and R(Py) C R(P”).

Proof: At first, we consider the above P and P;. Note
that Lemma 6 says there exist such path sets P and P;.
Let m € M\R(P;) and let P be a path of P; which ends
at m. Then, by (P1) we have s(P) € SUM. Since
m ¢ R(P;) and P € Py, there holds s(P) € M\R(P;).
Similarly, the path in P; which ends at s(P) begins at
a vertex in M\R(P;). Therefore, since G(IPy) is finite,
we have

(P2') For each vertex m’ € M\R(P;), G(P,) contains
a circuit with vertices only in M\R(P;) which is
reachable to m’.

Each vertex r € R(P1)\({so} US) satisfies r € M\S.
Since P; satisfies (P2), the path in P; which ends at
r begins at a vertex in R(Py). Therefore, since G(P;)
is finite, we have

(P2") G(IP1) has no path from a vertex in M\R(P;) to
a vertex in R(Py).

In the following let P! = P. For a vertex m € M\S,
we can see from M C U and Lemma 2 that N{(a, f)
contains an f-connected path from some source ver-
tex to m. Therefore, by (P2') N(«, f) contains a
path P! from a vertex m} € R(P;)\{so} to a vertex
my € M\R(Py) on a circuit L; in G(P;). With P! and
L, we change P! and P; as follows.

Let P! € P; be a path maximally adjacent to P*
with two vertices x;_; and x; with 1 <14 <k, where
o =m) and zx = my. Let P; be a path in P; which
ends at m;. If Py is not identical to P}, let P’ and
P"” be exchange paths of P; and P! by zj, where
s(P') = s(P}) and s(P") = s(P;). Otherwise, let P’
and P” be exchange paths of P; and Pklf1 by xp_1,
where s(P’) = s(P!_,) and s(P") = s(P;). In the fol-
lowing, we consider the former case, because we have
only to replace P} by P}_, for the case that P is iden-
tical to P}.

Let P2 = P'\{P, P} U{P P"}. Then, obvi-
ously, P? also satisfies (P1). For simplicity, only in this
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proof, let s; = s(P}). We classify P}.

(Case 1) The case of P} € P'\P;. Let P, = P1\{P 1} U
{P’'}. Then, P, satisfies (P2). It follows from
S(P1) ¢ R(Pl) and (PQ”) that R(Pl) Q R(Pg) There-
fore, we consider the case R(IP;) = R(P;), which implies
s(P") = s; ¢ R(Py). Furthermore, we consider two pos-
sible cases as follows.

(Case 1-1) G(Py) contains a path from m; to s;. In
this case, G(P>) contains a circuit including s; and m;.
Let Ly be such a circuit. By replacing P* and P; by P?
and P, respectively, we repeat the similar operation to
P! | and Ly instead of P} and L;.

(Case 1-2) G(IPy) contains no path from m; to s;.
In this case, note that the number of connected compo-
nents of G(Py) is less than that of G(PP; ), which is used
below. Moreover, it follows from (P2) that G(P;) con-
tains a circuit reachable to s and m. Let Lo be such a
circuit. Then, N(a, f) contains a path P? from a ver-
tex mhy € R(Py) to a vertex mg € M\R(P2) on Lo. Let
P, € P, be a path which ends at my. By replacing P*,
Py, m} and m; by P2, Py, m} and ma, respectively, we
repeat the similar operation to P?, P, and Ly instead
of P!, P, and L;.

(Case 2) The case of P! € P;. Let By =
P\{P,PL}U{P,P"}. Then, P, satisfies (P2).
If s; € R(Py), then by (P2") we have s; € R(P;).
This means that G(P2) contains a path such as
s1 —my — - — s(P) = t(P}) including all ver-
tices on Lj. Since t(P!) € R(Py), we have
R(P;) C R(Py), which implies from m; € R(P;) that
R(Pl) C R(P2) If s1 ¢ R(Pl), then R(Pl) - R(PQ)
because of s(P;) ¢ R(P;) and (P2”). In addition,
if R(P;)= R(P;), then there holds s; € M\R(P;).
Therefore, G(P2) contains a circuit Lo including or
reachable to s; and m;. Now we can reduce this case
to the case before classifying P}.
Consequently, repeat the above operation as far
as R(P;y1) = R(P;) (i € ZT). We have m} € R(P;).
Since the number of connected components of G(P;1)
never decreases to 0, we have Case 1-1 at some
stage. As a result, we have a positive integer z
such that P, (C P*) contains a path P, with a vertex
m/, € R(P,) and m, = t(P,) € M\R(P,). For s(P,)-
m/, and m/,-m, subpaths of P, € P*, denoted by P, and
P;’ respectively, let P**! = P*\{P,} U{P., P!} and
P,y1 =P, \{P.} U{P"}. Then, P**! satisfies (P1) and
P, satisfies (P2). It follows from s(P,) € M\R(P,)
and (P2”) that R(P,) C R(P,41), which implies from
m/, and P} that m, € R(P,41). Thus, we obtain
R(P.) C R(P,.). Hence, we have completed the proof.
O
An arborescence is a directed tree where each ver-
tex indegree is at most 1. It should be noted that any
arborescence has exactly one vertex called a root with
indegree 0.
The above lemma gives us the following proposi-
tion.
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Fig.3 A file transfer (y3, f3) on N3.

Fig.4 Arborescences satisfying (P3).

Proposition 3: For a file transfer (¢, f) on N such
that M US C U and M\S # ¢, let a function a on V
satisfy Eq.(4). Then, we have a path set P satisfying
(P1) as well as

(P3) P has a subset P’ such that G(P') is an arbores-
cence with a vertex set {so} USU M and root so.

Proof: For a path set satisfying (P1), let P; be its
subset satisfying (P2). Then, R(P;) C soUSUM.
If R(IP1) ={so}USUM, then the proposition holds
as P = P;. Otherwise, by Lemma 7 we have an-
other path set satisfying (P1) whose subset P satisfies
R(Py) C R(IP;) as well as (P2). Since M is finite, we
have the proposition. O

Note from (P1) that the outdegree of sq in G(P)
is |S| and the total arc number of G(P) is |S U M]|.

Here is an example of this proposition. A file trans-
fer (13, f3) is shown in Fig.3, on N3 such that S =
{v1, va}, sv(v1) = sv(ve) =1, M = {v1,v3,v4, 06} and
all copy demands are 2. The value near vertex v and
arc e denotes ¥3(v) and f3(e), respectively, in Fig. 3,
where an arc e with f3(e) =0 is omitted. From (¢3,
f3), more accurately, from its identical superimposition
net, we can obtain some arborescences in (P3), two of
which are shown in Fig. 4.

4. The Optimality of Forest-Type File Trans-
fers

In the following, a directed forest is a directed graph
whose underlying graph is a forest, where each vertex
indegree is at most 1. In a directed forest, a vertex with
indegree 0 is called a root. Note that an isolated vertex
in a directed forest is also a root. If a directed forest
contains an arc (z, y), then x is called the predecessor
of y. We know that an arborescence is a directed forest
with one root.

Here, we quote from [3] definitions relevant to a
forest-type file transfer.
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Definition 7[3]: If N satisfies S C M, then let U’ =
U. Otherwise, let U’ be a set with each vertex in S\ M
twice and each vertex in U\(S\M) once. Then, let a
directed forest T satisfy

(CF) The vertex set is U’ with root set S and each
vertex in U\M is a leaf whose predecessor belongs
to M.

In addition, for each arc (z, y) in T, let Py be a path
set with one minimum cost z-y path if y € M and
otherwise d(y)-sy(y) minimum cost z-y paths. For

N(a, ) = N(Py), a function o on V is defined to
be
iy oa(u)+du)—1 (ue M),
o (u) = { 0 (ueV\M).

Moreover, let Ps be a path set with a(u) minimum
cost h(u)-u paths for each vertex u in S\ M satisfying
a(u) > 0. Finally, let N(ar, 8r) be the sum of N(o/, 3)
and N(Pg). 0

Note that if S\M # ¢, then each vertex in S\M
appears twice, that is, one as a root and another
as a leaf in a directed forest satisfying (CF). In
addition, a directed graph induced by an arc set
{(s0,u)| u € S} U B(T) for such directed forest T is an
arborescence with root sg.

We can derive the following propositions from
Proposition 2, Lemmas 3 and 4 of [3].

Proposition 4[3]: Suppose that a directed forest T
satisfy (CF) in N. Then, the net N(ar, A1) is a file
transfer on N. In addition, let two disjoint subsets T}
and T, of B(T') be

T = {(z,y) € B(T)| y € U\M},

T; = B(T)\Tx, (5)
Then, Dr = N(ar, BT) satisfies

Z {CV + Ch(u u{d( ) - SV(U)}}
u€V\M
+) evlu)-du) = Y ev(m)
weM meSNM
+ Z {CV )+ Ch(z),x T Cay —CV (y)}
(x,y)ET2
(6)
0

Based on Proposition 4, the net obtained from a
directed forest T satisfying (CF) is called a forest-type
file transfer by T [3].

It follows from Eq. (5) and (CF) that each arc (z,
y) of Ty satisfies y € M\S. Therefore, a directed graph
with arc set {(sp,u)| v € S}UT, is an arborescence
with vertex set {so} US UM and root sp. Thus, we
have a path set P satisfying (P3) such that G(P) is
identical to such an arborescence.

We finally have the next conclusive proposition.
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Proposition 5: For any file transfer D on N such
that M US C U, there exists a forest-type file transfer
Dy satisfying C(D) > C(Dr), where T is a directed
forest satisfying (CF).

Proof: In order to prove the proposition, we sup-
pose that the above D = (v, f) satisfies (11). We con-
sider the case M\S # ¢ in the following, because oth-
erwise we can prove in a similar way as M NS =M
and Ty = ¢. For a defined as Eq. (4), by (P1) we have
a path set P and a circuit set L such that N(PUL) is
identical to N(a, f). Therefore, it follows from Egs. (2)
and (4) that

D)= {ev(s(P))

+ep(P) —cy(t(P))}

PcP

+ Y en(L) =Y ev(v) sy (v)
LEL VeV

+ Z ey (v) - d(v). (7)
veV

In addition, Proposition 3 says that there exists a path
set (C P) satisfying (P3). As we can see through
the above comment, we have such P’ where G(I) is
identical to an arborescence induced by a directed for-
est satisfying (CF). Let T" be the arc set of such an
arborescence and let

T" = {(z,y) € T'| y € M\S}.

Note here that there exists an arc set Ty of Eq.(5)
which is identical to T”. Then, there holds
T" = {(s(P),t(P))| PP} from the definition of
G(P'). Hence, we have

> Aev(s(P))

+cB(P) — cv(t(P))}

PeP’
> Z {CV +('a:y_CV(y)}
(Z y ET(/
Z {cv(h(z)) + chia)z + oy — cv(y)}-
(:C y ET"
(8)

We know that each path P in PP satisfies t(P) € U.
Besides, if ¢(P) € M, then we can see from Definition
2 that

> {ev(s(P) +ep(P) = ey (t(P)} 2 0. (9)

PeP\P/

t(PyeM

Note here that the equation holds for the case that
P\P’ has no path which ends at a vertex in M.

In addition, if a path P in P\ satisfies
t(P) € U\M, then 9 (t(P)) =0 from (¥1). Thus, we
can see from Eq. (4) that «(t(P)) < 0, which implies
that P has |a(t(P))| = d(t(P)) — sy (t(P)) paths. Con-
versely, if t{(P) € U\M, then P ¢ . Hence, we have
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Y {ev(s(P)) + ca(P) — ey (H(P)}
(et

> Z {C\/<h(v)) + Chiv),v — CV((U)d(/U) - SV(U)}

veV\M
(10)

Note here that a(v) = 0 for v € VA\U. Hence, after
we rearrange Eq. (6) by substituting Egs. (8) (10) into
Eq. (7), we obtain C(D) > C(Dr). O

The proposition says that we have only to consider
forest-type file transfers by T satisfying (CF) in order
to obtain an optimal file transfer. In [3], we mention
how to obtain a forest-type file transfer with minimum
cost, i.e., an optimal file transfer.

5. Conclusion

This paper has shown that, on a file transmission net
N where to each source vertex one copy of J is given,
it suffices to consider forest-type file transfers in order
to obtain an optimal file transfer.

The future task is to deal with more general class
of N, e.g., to source vertex more than one copy of J
is given or with source vertex whose copy demand is
0 and so forth. In such a situation, we might modify
the definition of forest-type file transfer so as to obtain
an optimal file transfer. Another interesting problem
is to classify NV based on graph structures such as tree,
bipartite graph, planar graph and so forth.
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