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Abstract
It is well-known that a two-level orthogonal array of strength 2 is universally optimum

for the estimation of main effects for uncorrelated errors. In this paper, the property
of orthogonal arrays which are also optimum even for correlated errors is discussed and
a construction for such optimal designs is presented. Furthermore, in case when there
are correlations between observations which are caused by the closeness of the assemblies
(treatment combinations) of experiments, it is shown that if the design matrix is a linear
orthogonal array, then the OLSE and the GLSE of main effects are uncorrelated.
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1. Introduction

Optimal designs of experiments in the case of correlated observations have been
studied by many authors. Kiefer (1975) introduced a general notion of optimality.
Kiefer and Wynn (1981) discussed the optimality of balanced incomplete block designs
and Latin square (or Latin hypercube) designs for correlated observations, and gave
some constructions for the optimal designs (see also Cheng (1983)). Here, we consider
the optimality of orthogonal arrays of strength 2 for the case when errors are correlated
depending on the “closeness” between experiments.

Let A1, . . . , Am be the same kind of factors (treatments) with two levels and let
Γ = (γij) be an array of assemblies (treatment combinations), where γij ∈ {0, 1} is
the level of the j-th factor for the i-th experiment. We assume that there are no
interaction effects between these factors. For example, consider an experiment for
estimating the respective effect of a certain drug at each of seven periods. Suppose
that there are sufficient number of newborn rats to get a reliable result and that they
are randomly assigned to N groups. The experiment is done for seven consecutive
weeks after their birth. At each period (the first, the second, . . . and the seventh
week after birth, respectively), individual rats in the same group are received an
identical treatment, i.e., ‘dosing’ or ‘not dosing’ with the drug. After the last week,
we measure the mean of rats’ weight or some constituent of their blood, etc. for each
group. This experiment has m = 7 factors A1, . . . , A7 (treatments of seven periods)
with two levels (dosing and not dosing). Similar situation may occur in agricultural
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field experiments, the factors could be treatments of some periods after seeding, each
of which may be equally, say, two weeks (or maybe more), with two levels (say,
irrigation and no irrigation).

Treatments of seven periods

A1 A2 A3 A4 A5 A6 A7

Group i 0 1 0 0 1 1 1

Group j 0 1 1 0 1 1 1

0: not dosing

1: dosing

In the rat dosing experiment, as seen in the table, the groups i and j are received
the same treatments except for the treatment A3 of the third week after birth. The
experiments for these two groups are said to be close and expected to give corre-
lated observations. So it is rather natural to think that there exists some correlation
cov(εi, εj) between errors of the i-th and the j-th experiments depending on their
closeness, that is, the closer they are, the larger their correlation becomes. In this
paper, we will consider the following model of observations under such a kind of
correlated errors.

y = µ1N + Xα + ε, cov(ε) = Σ, (1.1)

where y = (y1, . . . , yN)t is an N -dimensional vector of observations, ε = (ε1, . . . , εN)t

is an N -dimensional vector of errors, 1N is the N -dimensional all-one column vector,
α = (α1

0, . . . , α
m
0 )t is an m-dimensional vector of main effects, and X = (xij) is an

N ×m matrix such that

xij =

{
−1 if γij = 0,

1 if γij = 1.

That is, X is the matrix obtained by rewriting the elements 0 and 1 of Γ to −1 and
1 respectively. X is called the design matrix corresponding to Γ.

Then the ordinary least squares estimator (OLSE) and the generalized least squares
estimator (GLSE) of α are given by solutions of normal equations such as

(
X tX − 1

N
X tJNX

)
α̂ =

(
X t − 1

N
X tJN

)
y (1.2)

and
(
X tΣ−1X − (1t

NΣ−11N)−1X tΣ−1JNΣ−1X
)
α̂ (1.3)

=
(
X tΣ−1 − (1t

NΣ−11N)−1X tΣ−1JNΣ−1
)
y,

respectively, where JN is the N × N all-one matrix. If the main effect α of (1.1) is
estimable, then the normal equation (1.2) (or (1.3)) has a unique solution.

There are many types of “optimality” criteria to evaluate the efficiency of α̂. Now
we review some optimality criteria for an array of assemblies Γ. Let

D(Γ) = cov(α̂) =





(X tX − 1
N

X tJNX)−1(X t − 1
N

X tJN)Σ

(X − 1
N

JNX)(X tX − 1
N

X tJNX)−1

for the OLSE α̂,

(X tΣ−1X − (1t
NΣ−11N)−1X tΣ−1JNΣ−1X)−1

for the GLSE α̂

(1.4)
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for the design matrix X corresponding to Γ, and let C(Γ) = D(Γ)−1. Since D(Γ) of
(1.4) is the covariance matrix for α̂, C(Γ) for the OLSE α̂ coincides with the so-called
C-matrix (information matrix) only when cov(ε) = σ2IN .

Suppose that Ξ is a set of N ×m arrays Γ of assemblies by which the main effect
α is estimable with respect to the OLSE (or the GLSE) and that M is the set of
C(Γ) for Γ ∈ Ξ. Let M be the convex hull of M and Φ be the set of functions φ on
M such that

(i) φ is convex,

(ii) φ(bC) ≤ φ(C) for C ∈M and for any b ≥ 1, and

(iii) for any orthogonal matrix P and for C ∈M, φ(P tCP) = φ(C) holds.

An array Γ∗ is said to be universally optimum relative to Ξ if

φ(C(Γ∗)) = min
Γ∈Ξ

φ(C(Γ))

holds for all functions φ ∈ Φ satisfying (i), (ii) and (iii). The concept of universally
optimum was introduced by Kiefer (1975). It is known that the criterion includes A-,
D- and E-optimality as its special cases.

Proposition 1.1 (Kiefer (1975)) An array Γ∗ ∈ Ξ is universally optimum relative
to Ξ if

(a) C(Γ∗) = aIm and

(b) tr(C(Γ∗)) = maxΓ∈Ξ tr(C(Γ))

hold, where a is a constant, Im is the m ×m identity matrix and tr(C) denotes the
trace of a matrix C.

Suppose that M ′ is the set of the covariance matrices D(Γ) for any Γ ∈ Ξ, M′ is
the convex hull of M ′ and Ψ is the set of functions ψ on M′ such that

(i)′ ψ is convex,

(ii)′ ψ(bD) ≥ ψ(D) for D ∈M′ and for any b ≥ 1, and

(iii)′ for any orthogonal matrix P and for D ∈M′, ψ(P tDP) = ψ(D) holds.

An array Γ∗ is said to be weakly universally optimum relative to Ξ if

ψ(D(Γ∗)) = min
Γ∈Ξ

ψ(D(Γ))

holds for all functions ψ ∈ Ψ satisfying (i)′, (ii)′ and (iii)′. The concept of weakly
universally optimum was introduced by Kiefer and Wynn (1981). It is known that
the criterion includes A- and E-optimality and that Γ∗ is weakly universally optimum
relative to Ξ if it is universally optimum relative to Ξ.
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Proposition 1.2 (Kiefer and Wynn (1981)) An array Γ∗ ∈ Ξ is weakly univer-
sally optimum relative to Ξ if

(a)′ D(Γ∗) = aIm and

(b)′ tr(D(Γ∗)) = minΓ∈Ξ tr(D(Γ))

hold, where a is a constant.

In any two columns of an N×m array Γ, if the ordered pairs (0, 0), (0, 1), (1, 0) and
(1, 1) occur equally often, then Γ is called an orthogonal array of size N , m constraints,
two levels and strength 2, denoted by OA(N, m, 2, 2) (for more general definitions, see,
for example, Raghavarao (1971) and Beth, Jungnickel and Lenz (1985)). Without loss
of generality, we can assume that the first row of Γ is (0, . . . , 0). Noting that X t1N = 0
and X tX = NIm hold for the design matrix X corresponding to an orthogonal array
Γ, the covariance matrix (1.4) for the OLSE of α is reduced to

cov(α̂) =
1

N2
X tΣX.

In the case when cov(ε) = σ2IN , it is well-known that an OA(N, m, 2, 2) is uni-
versally optimum among arrays by which the main effect α is estimable (see Kiefer
(1975)). Our aim is to find an array Γ which is optimum not only for the case when
cov(ε) = σ2IN but also for a more general class of covariance structures given in the
next sections.

In Section 2, we shall show the property of orthogonal arrays when the true
covariance structure is correlated. In Section 3, when a linear orthogonal array is
utilized, the covariance matrices for the OLSE and the GLSE of α are given under
a covariance structure which depends only on the Hamming distance. In Sections
4 and 5, under certain covariance structures the optimum designs are provided by
using the result of Section 3. In Section 6, as a by-product, in the case of complete
factorial designs the covariance matrices for the OLSE and the GLSE of main effect
α are shown under some covariance structures.

2. Optimality of orthogonal designs for correlated errors

For the model (1.1), we usually assume cov(ε) = σ2IN , but the true covariance
structure may be different from this. Here, we consider the possibility of correlated
errors. That is, if two rows of Γ resemble (close) each other, then there may exist
correlation between errors of the experiments corresponding to these rows.

Let γi = (γi1, . . . , γim) and γk = (γk1, . . . , γkm) be the i-th and the k-th rows of
Γ. The number of j such that γij 6= γkj is called the Hamming distance between γi

and γk, denoted by d(γi, γk). And d(γi, (0, . . . , 0)) is called the Hamming weight of
γi, denoted by w(γi). In our settings, we measure the closeness of the i-th and the
k-th experiments by the Hamming distance d(γi,γk). For an array Γ, if

δ = min{d(γi, γk)| γi, γk are distinct two rows of Γ},
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then Γ is called an array with minimum distance δ.
First, we assume the following covariance structure:

Covariance structure I:

cov(εi, εk)





= σ2 if i = k,
≥ 0 if d(γi,γk) ≤ δ,
= 0 if d(γi,γk) > δ,

where δ ≤ bm/2c is a given constant (bac implies the greatest integer not exceeding
a).

If we do not know a covariance structure, we will use the OLSE to estimate the
main effect α. Now, we will present an array of assemblies which is weakly universally
optimum for such a case. Let Ξ be a set of OA(N, m, 2, 2).

Theorem 2.1 Under Covariance structure I, if an orthogonal array Γ∗ satisfies d(γ∗i , γ
∗
k) >

δ for any two rows γ∗i and γ∗k of Γ∗, then Γ∗ is weakly universally optimum relative to
Ξ. In this case, cov(α̂) = (σ2/N)Im holds, which does not depend on the correlations
of errors.

Remark. A special case of Theorem 2.1 was given without proof by Jimbo (1986).

Proof of Theorem 2.1. Let X be the design matrix corresponding to an orthogonal
array Γ ∈ Ξ. In this case, X tX = NIm and X tJN = 0. Then it is easy to show that

cov(α̂) = (X tX)−1X tΣX(X tX)−1 =
1

N2

∑

i,k

cov(εi, εk)x
t
ixk, (2.1)

where xi and xk are the i-th and the k-th rows of X. Thus we obtain

tr(cov(α̂)) = tr(D(Γ)) =
1

N2

∑

i,k

cov(εi, εk)tr(x
t
ixk)

=
m

N
σ2 +

1

N2

∑

i6=k

cov(εi, εk)(m− 2d(γi, γk))

≥ m

N
σ2,

since tr(xt
ixk) = tr(xkx

t
i) = m − 2d(γi, γk). We also obtain tr(D(Γ∗)) = (m/N)σ2,

since d(γ∗i ,γ
∗
k) > δ for any i and k. Hence the theorem is proved by Proposition 1.2.

2

Here, we consider a construction for orthogonal arrays which satisfy the condition
of Theorem 2.1. If all the row vectors of Γ form an n-dimensional linear subspace of
GF (2)m, Γ is called a linear orthogonal array. In this case, N = 2n for some integer
n ≤ m. Usually, the following method is used to construct linear orthogonal arrays.

Let g1, . . . , gm be distinct n-dimensional non-zero column vectors in the vector
space GF (2)n and let G = [g1, . . . , gm]. By arranging N (= 2n) m-dimensional row
vectors θG (θ ∈ GF (2)n) into an N ×m matrix we obtain an OA(N, m, 2, 2). In this
case, the OA(N,m, 2, 2) is called a linear orthogonal array generated from G.
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Theorem 2.2 Let G = [In
...K] be an n×m matrix over GF (2) and let Γ be a linear

OA(2n,m, 2, 2) generated from G. If every δ column vectors of the (m−n)×m matrix

H = [Im−n
...Kt] are linearly independent, then Γ has minimum distance at least δ + 1

and under Covariance structure I, Γ is weakly universally optimum with respect to
the set Ξ of orthogonal arrays.

Proof. This is a direct consequence of the well-known result of coding theory that a
linear code with a parity check matrix H has minimum distance at least δ+1 if any δ
distinct column vectors of H are linearly independent (see, for example, MacWilliams
and Sloane (1977)). 2

3. Covariance structure depending only on the Hamming distance

In this section, we assume that the correlation between errors depends only on
the Hamming distance and discuss some properties of covariance matrices for the
OLSE and the GLSE of α when a linear orthogonal array is utilized. Furthermore,
a sufficient condition for the covariance matrices for the OLSE and the GLSE to
coincide is provided. The results obtained in this section will be used in the next two
sections to show the optimality of a certain type of linear orthogonal arrays.

cov(εi, εk) =

{
σ2 if i = k,
σ2ρd(‚i,‚k) if i 6= k.

(3.1)

This type of covariance structure was first introduced by Kiefer and Wynn (1981)
just in the case when ρ1 6= 0 and ρ2 = · · · = ρm = 0 as a “nearest neighbor”(NN)
correlation structure of an “m-way layout with m factors (treatments)”.

For an array Γ of assemblies, define N ×N matrices D` = (d
(`)
ik ) (` = 0, 1, . . . , m)

as follows:

d
(`)
ik =

{
1 if d(γi,γk) = `,
0 otherwise.

D` is called the `-th adjacency matrix of Γ. Then by using the adjacency matrices
D`, the covariance matrix (3.1) of errors can be written as

cov(ε) = Σ = σ2(IN + ρ0(D0 − IN) +
m∑

`=1

ρ`D`), (3.2)

where ρ` (` = 0, 1, . . . , m) is the correlation coefficient for two experiments whose
Hamming distance is `. In usual cases, it is natural to be assumed that ρ0 ≥ ρ1 ≥
· · · ≥ ρm ≥ 0.

If the number m of constraints (factors) is large, constructions for non-linear
orthogonal arrays are so complicated that we will focus our attention on linear or-
thogonal arrays in the sequel of this paper. Since there are no repeated rows in a
linear orthogonal array Γ, the 0-th adjacency matrix of Γ is represented as D0 = IN ,
that is, if d(γi, γk) = 0, then i = k. For convenience, let ρ0 = 1. Then the covariance
matrix (3.2) is rewritten as

cov(ε) = Σ = σ2

(
IN +

m∑

`=1

ρ`D`

)
= σ2

m∑

`=0

ρ`D`. (3.3)
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For a linear orthogonal array Γ, the number of rows γj which is at distance `
from a given row γi is constant not depending on the choice of γi because d(γi,γj) =
w(γi + γj). Thus D`1N = c`1N , where c` is the number of rows in Γ with Hamming
weight `. Hence Σ1N = c1N for a constant c, which implies that Σ−11N = c−11N

since 1N = Σ−1Σ1N = cΣ−11N . Noting this fact and X t1N = 0, the covariance
matrix (1.4) for the GLSE of α is reduced to

cov(α̂) = (X tΣ−1X)−1.

Before stating the next theorem, we will provide two lemmas. For any given m×m
permutation matrix Q if there exists an N ×N permutation matrix P such that

ΓQ = PΓ,

then Γ is said to be invariant with respect to any column permutations.

Lemma 3.1 Let Γ be an N×m linear orthogonal array which is invariant with respect
to any column permutations and let A be an N × N matrix whose (i, j)-th element
depends only on the Hamming distance between the i-th and the j-th row vectors of Γ.
If A is not singular, the elements of A−1 also depend only on the Hamming distance
between the row vectors of Γ.

Proof. Let γi be the i-th row of Γ. Transform every row vector γi by adding a
given vector γh of Γ. Since the set of all the row vectors of Γ forms a linear subspace
of GF (2)m, there exists exactly one k such that γi + γh = γk for any i. Thus the
transformation induces a permutation on the subspace. Let P1 be a permutation
matrix corresponding to the transformation. Then P1 exchanges every two rows γi

and γk of Γ such that γi + γh = γk. It is easy to show that

P1AP t
1 = A, (3.4)

since d(γi + γh,γj + γh) = d(γi,γj) and the (i, j)-th element aij of A depends only
on the Hamming distance between the i-th and the j-th rows of Γ. On the other
hand, let P2 be an N ×N permutation matrix induced by a column permutation of
Γ. Then this type of permutation also satisfies (3.4).

Assume that d(γi, γj) = d(γk,γ`), then aij = ak`. By combining two types of
permutations P1 and P2 we can obtain a permutation P which exchanges the (i, j)-th
and the (k, `)-th elements of A each other. Needless to say, PAP t = A holds. Since
P tP = PP t = IN , we have

A(PA−1P t) = (PAP t)(PA−1P t) = PAA−1P t = IN .

Hence
PA−1P t = A−1.

Thus the (i, j)-th element and the (k, `)-th element of A−1 should coincide, which
means that A−1 is also a matrix whose (i, j)-th element depends only on the Hamming
distance between the i-th and the j-th rows of Γ. 2
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Lemma 3.2 Let Γ be an N × m linear orthogonal array and let A = (aij) be an
N ×N matrix, where aij depends only on the Hamming distance between the i-th and
the j-th rows of Γ, defined by aij = υd(‚i,‚j). Suppose that X is the design matrix
corresponding to Γ. Then

AX = X
N∑

i=1

υw(‚i)Zxi

holds, where Zxi
= −diag(xi1, . . . , xim) for the i-th row xi = (xi1, . . . , xim) of X.

Proof. Define N ×N matrices Ri = (ri
jk) as follows:

ri
jk =

{
1 if γj + γk = γi,
0 otherwise.

Since the set of row vectors of Γ is a linear subspace of GF (2)m, for a given γi, there
exists a unique γk such that γj + γk = γi for any γj. Thus Ri is a permutation
matrix which exchanges every two rows xj and xk of X such that γj + γk = γi.
Accordingly the matrix A can be represented as

A =
N∑

i=1

υw(‚i)Ri,

and then

AX =
N∑

i=1

υw(‚i)RiX.

Furthermore, by noting that RiX can be obtained by adding γi to every row of Γ
and rewriting 0 and 1 to −1 and 1, respectively, RiX = XZxi

is observed. Thus

AX = X
N∑

i=1

υw(‚i)Zxi
.

We have just completed the proof of Lemma 3.2. 2

As an immediate consequence, we have the following theorem.

Theorem 3.1 Let Γ be an N × m linear orthogonal array and let X be the design
matrix corresponding to Γ. Under the covariance structure (3.3), for the OLSE α̂O,

cov(α̂O) =
1

N2
X tΣX =

σ2

N

N∑

i=1

ρw(‚i)Zxi
(3.5)

holds.

Now we can show the following result for the GLSE of α.

Theorem 3.2 Besides the assumption of Theorem 3.1, assume that the (i, j)-th el-
ement of Σ−1 depends only on the Hamming distance between the i-th and the j-th
row vectors of Γ. Then the covariance matrix for the GLSE α̂G coincides with that
for the OLSE α̂O of the form (3.5).
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Remark. For example, if Γ is a linear orthogonal array which is invariant with
respect to any column permutations, then Σ−1 satisfies the condition of Theorem 3.2
by virtue of Lemma 3.1.

Proof of Theorem 3.2. Since Σ = σ2 ∑m
`=0 ρ`D` for the adjacency matrices D`

(` = 0, 1, . . . , m) of Γ, under the covariance structure (3.3)

ΣX = σ2X
N∑

i=1

ρw(‚i)Zxi

follows from Lemma 3.2. Similarly, by using Lemma 3.2 with the assumption on Σ−1,

Σ−1X =
1

σ2
X

N∑

i=1

νw(‚i)Zxi

is obtained, where ν` (` = 1, 2, . . . ,m) is a certain series of constants satisfying Σ−1 =
(1/σ2)

∑m
`=0 ν`D`. Since X tX = NIm, we have

cov(α̂G) = (X tΣ−1X)−1 =

(
N

σ2

N∑

i=1

νw(‚i)Zxi

)−1

. (3.6)

Furthermore, by noting (ΣX)t(Σ−1X) = X tΣΣ−1X = NIm,

N∑

i=1

νw(‚i)Zxi
=

(
N∑

i=1

ρw(‚i)Zxi

)−1

(3.7)

holds. Hence the theorem is proved by (3.5), (3.6) and (3.7). 2

4. Optimum factorial designs for the nearest neighbor covariance struc-
ture

In this section, we consider the same covariance structure that Kiefer and Wynn
(1981) treated as a “nearest neighbor” (NN) correlation structure, i.e., ρ1 = ρ (≥ 0)
and ρ2 = · · · = ρm = 0 in (3.3), which is a kind of the “moving-average” model of
order 1.

Covariance structure II:

cov(ε) = Σ = σ2(IN + ρD1).

Let Γ be a 2n×m linear orthogonal array and s be the number of row vectors with
Hamming weight 1 in Γ. Without loss of generality, we may assume that in Γ there
exists exactly one row vector with Hamming weight 1 such that the i-th coordinate is
1 for i = 1, . . . , s. Then the subspace W consisting of the rows of Γ is expressed as a
direct sum of the s-dimensional linear space W1 = GF (2)s and an (n−s)-dimensional
linear subspace W2 of the linear space GF (2)m−s, that is,

W = W1 ⊕W2. (4.1)
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Obviously the Hamming weight of each row vector in W2 is 0 or greater than 1. Let
Xs be the 2s×s matrix obtained by arranging the row vectors of W1 and by rewriting
the elements 0 and 1 to −1 and 1, respectively. Similarly, let U be the 2n−s× (m− s)
matrix obtained by arranging the vectors of W2 and by rewriting the elements 0 and
1 to −1 and 1, respectively. For the design matrix X corresponding to Γ, without
loss of generality, we assume that the first row of X is (−1, . . . ,−1) and write

X =
[
12n−s ⊗Xs

...U ⊗ 12s

]
, (4.2)

where 1` is the `-dimensional all-one column vector and ⊗ indicates a direct product.
Let D′

0(= I2s), D′
1, . . . , D

′
s be the adjacency matrices of W1 and let V = D′

0 +ρD′
1.

Since (4.2) implies that X can be divided into 2n−s subblocks with 2s rows each and
the covariance of every two rows contained in distinct subblocks is 0, cov(ε) is a block
diagonal matrix as follows:

cov(ε) = Σ = σ2diag(V, . . . , V︸ ︷︷ ︸
2n−s

). (4.3)

A preliminary result is needed for further discussion.

Lemma 4.1 Let X be the design matrix of the form (4.2) corresponding to a linear
orthogonal array Γ. Let B = (bij) be a 2s × 2s matrix, where bij depends only on the
Hamming distance between the i-th and the j-th row vectors γi and γj of W1, defined
by bij = υd(‚i,‚j). Suppose that A = diag(B, . . . , B︸ ︷︷ ︸

2n−s

) is an N×N block diagonal matrix

(N = 2n). Then
AX = X · diag(λ, . . . , λ︸ ︷︷ ︸

s

, κ, . . . , κ︸ ︷︷ ︸
m−s

),

holds, where

κ =
s∑

`=0

υ`

(
s

`

)
and λ = κ− 2

s∑

`=1

υ`

(
s− 1

`− 1

)
.

Proof. Let uj = (uj1, . . . , uj,m−s) be the j-th row of U in (4.2). Assume that X is
divided into 2n−s subblocks as follows:

X =




X(1)

X(2)
...

X(2n−s)




,

where X(j) = [Xs
...uj ⊗ 12s ]. Then,

AX = diag(B, . . . , B) ·X =




BX(1)

BX(2)
...

BX(2n−s)




.
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Now, let Uj = diag(1, . . . , 1︸ ︷︷ ︸
s

, uj1, . . . , uj,m−s). In this case,

BX(j) = B [Xs
...uj ⊗ 12s ] = B [Xs

...− J ] Uj,

where J is the 2s×(m−s) all-one matrix. Let x̄i be the i-th row of [Xs
...−J ] and γ̄i be

the vector obtained by rewriting the elements −1 and 1 of x̄i to 0 and 1, respectively.
By using Lemma 3.2 we obtain

BX(j) = B [Xs
...− J ] Uj = [Xs

...− J ]
2s∑

i=1

υw(‚̄i)Zx̄i
Uj

= [Xs
...− J ] Uj

2s∑

i=1

υw(‚̄i)Zx̄i
= X(j)

2s∑

i=1

υw(‚̄i)Zx̄i
,

where Zx̄i
is defined also in Lemma 3.2. Therefore, it follows that

AX = X
2s∑

i=1

υw(‚̄i)Zx̄i
.

Since the rows of Xs consist of all the s-dimensional vectors with elements ±1, in Xs

there are
(

s
`

)
row vectors with Hamming weight ` and among them there are

(
s−1
`−1

)

row vectors such that each of them has 1 at the i-th coordinate. By taking account
of this fact, we obtain

2s∑

i=0

υw(‚̄i)Zx̄i
= diag(λ, . . . , λ︸ ︷︷ ︸

s

, κ, . . . , κ︸ ︷︷ ︸
m−s

),

where

κ =
s∑

`=0

υ`

(
s

`

)
and λ = κ− 2

s∑

`=1

υ`

(
s− 1

`− 1

)
.

Thus the lemma is proved. 2

The following is a direct consequence of Lemma 4.1.

Theorem 4.1 Under Covariance structure II, if Γ is an N × m linear orthogonal
array, then C(Γ) for the GLSE α̂G coincides with that for the OLSE α̂O. Further
C(Γ) is a diagonal matrix which consists of s and m−s diagonal elements with values

N

σ2
· 1

1 + (s− 2)ρ
and

N

σ2
· 1

1 + sρ
,

respectively, where s is the number of vectors with Hamming weight 1 among the row
vectors of Γ.

Proof. Let X be the design matrix of the form (4.2) corresponding to Γ. Then Σ is
represented by (4.3) under Covariance structure II and

Σ−1 =
1

σ2
diag(V −1, . . . , V −1)

11



holds. Suppose that the row vectors in W1 of (4.1) are numbered arbitrarily. It is
obvious that the (i, j)-th element of V depends only on the Hamming distance between
the i-th and the j-th row vectors of W1. Since W1 is the linear space GF (2)s, it is
invariant with respect to any column permutations of coordinates. Hence we can
claim that the (i, j)-th element of V −1 also depends only on the Hamming distance
between the i-th and the j-th row vectors of W1 (see Lemma 3.1). Since

ΣX = σ2X · diag(λ, . . . , λ︸ ︷︷ ︸
s

, κ, . . . , κ︸ ︷︷ ︸
m−s

)

follows from Lemma 4.1, where κ =
(

s
0

)
+ρ

(
s
1

)
and λ = κ−2ρ

(
s−1
0

)
, by using Lemma

4.1 again and by noting (ΣX)t(Σ−1X) = NIm, we have

Σ−1X =
N

σ2
X · diag(λ−1, . . . , λ−1, κ−1, . . . , κ−1).

Thus it follows that

cov(α̂G) = (X tΣ−1X)−1 =
σ2

N
diag(λ, . . . , λ, κ, . . . , κ)

=
1

N2
X tΣX = cov(α̂O),

which proves the theorem. 2

Theorem 4.1 allows us to state the following theorem. Let ΞL be the set of N ×m
linear orthogonal arrays by which the main effect α is estimable.

Theorem 4.2 Let m ≥ 3 and let Γ∗ be an N × m linear orthogonal array with
minimum distance at least 2. Then under Covariance structure II, Γ∗ is

(i) universally optimum relative to ΞL for 0 ≤ ρ < 1− 2/m, and

(ii) weakly universally optimum relative to ΞL for 0 ≤ ρ (< 1)

with respect to the OLSE and the GLSE of α.

Remark. Theorem 2.1 shows (ii) only for the OLSE α̂ but under a more general
covariance structure.

Proof of Theorem 4.2. Let Γ ∈ ΞL. Assume that s ≥ 1 for Γ, where s is the
number of vectors with Hamming weight 1 among the row vectors of Γ.

(i) Since the minimum distance of Γ∗ is at least 2, the case when s = 0 in Theorem
4.1 gives C(Γ∗) = (N/σ2)Im. Thus if we can show tr(C(Γ)) < tr(C(Γ∗)) for 0 ≤ ρ <
1− 2/m and for s ≥ 1, then (i) is proved by Proposition 1.1.

Let X be the design matrix corresponding to Γ. Theorem 4.1 yields

tr(C(Γ)) =
N

σ2

{
s

1 + (s− 2)ρ
+

m− s

1 + sρ

}

12



and especially,

tr(C(Γ∗)) =
N

σ2
m

for Γ∗. Since
s

1 + (s− 2)ρ
+

m− s

1 + sρ
< m

for any s ≥ 1 and for any 0 ≤ ρ < 1−2/m, tr(C(Γ)) < tr(C(Γ∗)). Thus the assertion
of (i) follows.

(ii) In a manner similar to (i), we obtain

tr(D(Γ)) =
σ2

N
{s(1 + (s− 2)ρ) + (m− s)(1 + sρ)}

for any Γ ∈ ΞL. In case of Γ∗,

tr(D(Γ∗)) = tr
(
C(Γ∗)−1

)
=

σ2

N
m

holds. Then it is readily checked that tr(D(Γ)) − tr(D(Γ∗)) > 0 for s ≥ 1, 0 ≤ ρ
(< 1) and m ≥ 3. Hence (ii) is proved by Proposition 1.2. 2

5. Further results in the case of large experiments for the OLSE

In this section, we assume two types of covariance structures of errors, like the
“moving-average” model of order 2 and the “autoregressive” model of order 1, and
consider the optimality only for the OLSE of α, simply denoted by α̂, unless otherwise
specified.

Covariance structure III:

cov(ε) = Σ = σ2(IN + ρ1D1 + ρ2D2).

Covariance structure IV:

cov(ε) = Σ = σ2
m∑

`=0

ρ`D`.

From Theorem 2.1 we know that under Covariance structure III, an orthogonal
array with minimum distance 3 is weakly universally optimum for the OLSE, if it
exists. Here we discuss the optimality of linear orthogonal arrays for the OLSE under
Covariance structure III in the case when a linear orthogonal array with minimum
distance 3 does not exist. Similar discussion will be developed under Covariance
structure IV.

In order to show the following theorems, we need to present three lemmas be-
forehand, which are also closely related to coding theory. The first one follows from
Theorem 3.1.

13



Lemma 5.1 Let Γ be an N ×m linear orthogonal array and let α̂ be the OLSE of
α. Under Covariance structure IV, cov(α̂) is a diagonal matrix and

N

σ2
tr(cov(α̂)) = mf(ρ)− 2ρf ′(ρ)

holds, where f(ρ) =
∑N

i=1 ρw(‚i) and γi is the i-th row vector of Γ.

Remark. f(ρ) is called the weight enumerator of the linear subspace consisting of
the rows of Γ.

The following lemmas on the weight enumerator are obtained by counting directly
the number of 1 in each row of the linear code generated from G, or by applying
the MacWilliams theorem concerned with a linear code and its dual code (see, for
example, MacWilliams and Sloane (1977)).

Lemma 5.2 Let K = [0, . . . , 0︸ ︷︷ ︸
s

, 1, . . . , 1︸ ︷︷ ︸
m−s−1

]t and G = [Im−1
...K], then the weight enu-

merator of the linear code generated from G is

f(x) =
(1 + x)m

2

{
1 +

(
1− x

1 + x

)m−s
}

.

Lemma 5.3 Let

K =




0 · · · 0 1 · · · 1 1 · · · 1 0 · · · 0
0 · · · 0︸ ︷︷ ︸

s

0 · · · 0︸ ︷︷ ︸
a−1

1 · · · 1︸ ︷︷ ︸
b

1 · · · 1︸ ︷︷ ︸
c−1




t

and G = [Im−2
...K], then the weight enumerator of the linear code generated from G

is given by

f(x) =
(1 + x)m

4
{1 + (δa+b + δb+c + δc+a)},

where s + a + b + c = m and δ = (1− x)/(1 + x).

Now, we can show the following two theorems.

Theorem 5.1 Let K∗ = [1, . . . , 1︸ ︷︷ ︸
m−1

]t and let Γ∗ be the 2m−1×m linear orthogonal array

generated from G∗ = [Im−1
...K∗] for m ≥ 4.

(i) Under Covariance structure III, Γ∗ is weakly universally optimum relative to the
set ΞL of 2m−1 ×m linear orthogonal arrays for 0 ≤ ρ2 < m−2

(m−1)(m−4)
ρ1 (< 1),

and then

cov(α̂) =
σ2

2m−1

{
1 +

(m− 1)(m− 4)

2
ρ2

}
Im. (5.1)
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(ii) Under Covariance structure IV, Γ∗ is weakly universally optimum relative to ΞL

for 0 ≤ ρ (< 1), and then

cov(α̂) =
σ2

2m
(1− ρ2)

{
(1 + ρ)m−2 + (1− ρ)m−2

}
Im. (5.2)

Proof. It is easy to see that the Hamming weight of every row of Γ∗ is even. Therefore
Γ∗ is invariant for any column permutations. In this case, (3.5) in Theorem 3.1
is reduced to cov(α̂) = aI2m−1 for some constant a under each of the covariance
structures III and IV. Hence, in order to prove the theorem, we have only to show
that tr(cov(α̂)) attains the minimum at s = 0. Let K = [0, . . . , 0︸ ︷︷ ︸

s

, 1, . . . , 1︸ ︷︷ ︸
m−s−1

]t and let Γ

be the 2m−1 ×m linear orthogonal array generated from G = [Im−1
...K].

(i) By counting the right-hand side of (3.5),

cov(α̂) =
σ2

2m−1
diag(a, . . . , a︸ ︷︷ ︸

s

, b, . . . , b︸ ︷︷ ︸
m−s

)

can be obtained, where

a = 1 +

{(
s

1

)
− 2

}
ρ1 +

{(
s

2

)
− 2

(
s− 1

1

)
+

(
m− s

2

)}
ρ2

and

b = 1 +

(
s

1

)
ρ1 +

{(
s

2

)
+

(
m− s

2

)
− 2

(
m− s− 1

1

)}
ρ2.

Hence we have

tr(cov(α̂)) =
σ2

2m−1
{sa + (m− s)b}

=
σ2

2m−1
ρ2(m− 4)

(
s +

(m− 2)ρ1 −m(m− 4)ρ2

2(m− 4)ρ2

)2

+ ∆,

where ∆ is a term which does not contain s. When

−(m− 2)ρ1 −m(m− 4)ρ2

2(m− 4)ρ2

<
1

2
,

that is, when 0 ≤ ρ2 < m−2
(m−1)(m−4)

ρ1 (< 1), it is readily checked that the value of

tr(cov(α̂)) attains the minimum at s = 0. Thus Γ∗ is weakly universally optimum
relative to ΞL and we obtain (5.1). Hence (i) is proved.

(ii) By Lemmas 5.1 and 5.2 we have

tr(cov(α̂)) =
σ2

2m−1
{mf(ρ)− 2ρf ′(ρ)}

=
σ2

2m−1

{
m(1 + ρ)m

2
−mρ(1 + ρ)m−1 +

(1 + ρ)m−1

2(1− ρ)
Q(s)

}
,
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where Q(s) = {(1−ρ)/(1+ρ)}m−s{m(1+ρ)2−4ρs}. If Q(s) ≤ Q(s+1) for any s ≥ 0,
we can conclude that Γ∗ is weakly universally optimum relative to ΞL by Proposition
1.2. Here, the inequality Q(s) ≤ Q(s + 1) can be reduced to

s ≤ (1 + ρ){m(1 + ρ)− 2}
4ρ

. (5.3)

Since the dimension of the linear subspace generated from G∗ is m− 1, the left-hand
side of (5.3) is not less than m− 2, that is, 0 ≤ s ≤ m− 2. Therefore, (5.3) holds for
any 0 ≤ ρ < 1 and we have (5.2) for s = 0. Hence (ii) is proved. 2

Remark. (a) Γ∗ is a linear orthogonal array of strength m − 1 and it is the even
parity code if it is regarded as a linear code.
(b) Let α̂O and α̂G be the OLSE and the GLSE of the main effect α, respectively.
Since Γ∗ is invariant with respect to any column permutations, cov(α̂O) = cov(α̂G)
can be shown for Γ∗ by using Lemma 3.1 and Theorem 3.2.

Theorem 5.2 For m = 3p and p ≥ 2, let

K∗ =




1 · · · 1 1 · · · 1 0 · · · 0
0 · · · 0︸ ︷︷ ︸

p−1

1 · · · 1︸ ︷︷ ︸
p

1 · · · 1︸ ︷︷ ︸
p−1




t

and let Γ∗ be the 2m−2 ×m linear orthogonal array generated from G∗ = [Im−2
...K∗].

(i) Under Covariance structure III, Γ∗ is weakly universally optimum relative to
the set ΞL of 2m−2 ×m linear orthogonal arrays for 0 ≤ ρ2 < 3

m−4
ρ1, and then

cov(α̂) =
σ2

2m−2

{
1 +

(m− 3)(m− 4)

6
ρ2

}
Im. (5.4)

(ii) Under Covariance structure IV, Γ∗ is weakly universally optimum relative to ΞL

for 0 ≤ ρ (< 1), and then

cov(α̂) =
σ2

2m
· (1 + ρ)m−1

1− ρ



(1− ρ)2 + (3 + 2ρ + 3ρ2)

(
1− ρ

1 + ρ

) 2
3
m



 Im. (5.5)

Remark. In this case, Γ∗ is a linear orthogonal array of strength 2p − 1, which
implies that Γ∗ has the maximum strength among 23p−2×3p linear orthogonal arrays
since the minimum distance of Γ∗ is 2. In other words, if Γ∗ is regarded as a linear
code, the probability of detecting errors is maximum among all (3p− 2)-dimensional
linear codes with length 3p.

Proof of Theorem 5.2. Let

H = [I2
...K∗t] =




1 0 1 · · · 1 1 · · · 1 0 · · · 0
0 1 0 · · · 0︸ ︷︷ ︸

p−1

1 · · · 1︸ ︷︷ ︸
p

1 · · · 1︸ ︷︷ ︸
p−1


 .
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Then H is a parity check matrix of Γ∗ when Γ∗ is regarded as a linear code.
Let E1 = {1, 3, 4, . . . , p+1}, E2 = {p+2, . . . , 2p+1} and E3 = {2, 2p+2, . . . , 3p}.

Then γi = (γi1, . . . , γim) is a row (codeword) of Γ∗ if and only if
∑

j∈E1∪E2

γij = 0 and
∑

j∈E2∪E3

γij = 0 (5.6)

over GF (2). The condition (5.6) is equivalent to
∑

j∈E1

γij =
∑

j∈E2

γij =
∑

j∈E3

γij.

Therefore the Hamming weights for the respective sets E1, E2 and E3 of coordinates
in each row of Γ∗ are odd or even simultaneously. By this symmetry, it is easy to
show that

cov(α̂) = D(Γ∗) = aI2m−2

for some constant a under each of Covariance structures III and IV. In the rest of the
proof, we shall show that tr(cov(α̂)) = tr(D(Γ∗)) attains the minimum at s = 0 for
each case of (i) and (ii). Let

K =




0 · · · 0 1 · · · 1 1 · · · 1 0 · · · 0
0 · · · 0︸ ︷︷ ︸

s

0 · · · 0︸ ︷︷ ︸
a−1

1 · · · 1︸ ︷︷ ︸
b

1 · · · 1︸ ︷︷ ︸
c−1




t

,

where s+a+ b+ c = m, and let Γ be the 2m−2×m linear orthogonal array generated

from G = [Im−2
...K].

(i) By virtue of Theorem 3.1,

cov(α̂) =
σ2

2m−2
diag(t, . . . , t︸ ︷︷ ︸

s

, u, . . . , u︸ ︷︷ ︸
a

, v, . . . , v︸ ︷︷ ︸
b

, w, . . . , w︸ ︷︷ ︸
c

)

is obtained, where

t = 1 +

{(
s

1

)
− 2

}
ρ1 +

{(
s

2

)
− 2

(
s− 1

1

)
+

(
a

2

)
+

(
b

2

)
+

(
c

2

)}
ρ2,

u = 1 +

(
s

1

)
ρ1 +

{(
s

2

)
+

(
a

2

)
− 2

(
a− 1

1

)
+

(
b

2

)
+

(
c

2

)}
ρ2,

v = 1 +

(
s

1

)
ρ1 +

{(
s

2

)
+

(
a

2

)
+

(
b

2

)
− 2

(
b− 1

1

)
+

(
c

2

)}
ρ2,

w = 1 +

(
s

1

)
ρ1 +

{(
s

2

)
+

(
a

2

)
+

(
b

2

)
+

(
c

2

)
− 2

(
c− 1

1

)}
ρ2.

Immediately,

tr(cov(α̂)) =
σ2

2m−2
(st + au + bv + cw)

=
σ2

2m−2

{
m + s(m− 2)ρ1 +

m− 4

2
(s2 + a2 + b2 + c2 −m)ρ2

}
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is shown. By noting that a2 + b2 + c2 ≥ (a + b + c)2/3 holds with the equality if and
only if a = b = c(= (m− s)/3), we have

tr(cov(α̂)) ≥ σ2

2m−2
· 2(m− 4)

3
ρ2

(
s +

3(m− 2)ρ1 −m(m− 4)ρ2

4(m− 4)ρ2

)2

+ ∆,

where ∆ is the term not containing s. If

−3(m− 2)ρ1 −m(m− 4)ρ2

4(m− 4)ρ2

<
1

2
,

then the value of tr(cov(α̂)) attains the minimum at s = 0, that is, Γ∗ is weakly
universally optimum relative to ΞL for 0 ≤ ρ2 < 3

m−4
ρ1, and then we obtain (5.4).

Hence (i) is proved.

(ii) From Lemmas 5.1 and 5.3,

tr(cov(α̂)) =
σ2

2m−2
{mf(ρ)− 2ρf ′(ρ)}

=
σ2

2m−2

{
m(1 + ρ)m−1

4
(1− ρ)(1 + δa+b + δb+c + δc+a)

+
(1 + ρ)m−1

1− ρ
ρ

(
(a + b)δa+b + (b + c)δb+c + (c + a)δc+a

)}

follows. It is easy to see that

δa+b + δb+c + δc+a ≥ 3(δa+b+c)
2
3 (= 3δ

2
3
(m−s)) (5.7)

and

(a + b)δa+b + (b + c)δb+c + (c + a)δc+a (5.8)

≥ 2
√

ab · δa+b + 2
√

bc · δb+c + 2
√

ca · δc+a

≥ 6(abcδ2(m−s))
1
3

for 0 ≤ s ≤ m − 2. The equalities in (5.7) and (5.8) hold if and only if a = b = c =
(m− s)/3. Furthermore, the right-hand sides of (5.7) and (5.8) attain the minimum
simultaneously at s = 0. In the case when s = 0,

tr(cov(α̂)) =
σ2

2m
· m(1 + ρ)m−1

1− ρ



(1− ρ)2 + (3 + 2ρ + 3ρ2)

(
1− ρ

1 + ρ

) 2
3
m





holds and then (5.5) is obtained immediately. Hence (ii) is proved. 2

6. Complete factorial designs

In this section, as a by-product, we provide the covariance matrices for the OLSE
and the GLSE of α in the case of complete factorial designs under some covariance
structures. In the case of complete factorial designs with m factors, the rows of Γ form
the linear space GF (2)m, thus Γ is invariant with respect to any column permutations.
Hence by applying Lemma 3.1, Theorem 3.2 and Lemma 4.1 for s = m = n, we have
the following theorem and its corollary.
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Theorem 6.1 For the complete factorial design with m factors, under the covariance
structure (3.1), the covariance matrices for the OLSE α̂O and for the GLSE α̂G

coincide, and then

cov(α̂O) = cov(α̂G) =
σ2

N

{
m∑

`=0

ρ`

(
m

`

)
− 2

m∑

`=1

ρ`

(
m− 1

`− 1

)}
Im

holds.

Corollary 6.1 For the complete factorial design with m factors, under the covariance
structures II, III and IV, the covariance matrices for the OLSE α̂O and for the GLSE
α̂G are given as follows:

II: cov(α̂O) = cov(α̂G) =
σ2

2m
{1 + (m− 2)ρ}Im,

III: cov(α̂O) = cov(α̂G) =
σ2

2m

{
1 + (m− 2)ρ1 +

(m− 1)(m− 4)

2
ρ2

}
Im,

IV: cov(α̂O) = cov(α̂G) =
σ2

2m
(1 + ρ)m−1(1− ρ)Im.
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