Analysis and numerical computation of diffraction of an
optical field by a subwavelength-size aperture in a thick
metallic screen by use of a volume integral equation

Kazuo Tanaka and Masahiro Tanaka

Diffraction of an optical field by an aperture in a thick metallic screen is analyzed numerically by use of
a three-dimensional volume integral equation together with a generalized conjugate residual method and
fast Fourier transformation. Numerical results were validated by reciprocity and the independence of
the results of the truncated discretized volume size used in numerical calculations. Near and far fields
of square, circular, and triangular apertures in a thick screen are obtained numerically. Some of the
numerical results obtained in the present study agree with previously reported experimental results.
The surface plasmon polaritons excited on the sidewalls of the aperture can explain the basic charac-
teristics of near-field distribution of apertures. The Bethe-Bouwkamp theory was found to be insuffi-
cient to explain the basic characteristics of the near field around the subwavelength aperture in a

practical metallic screen.
OCIS codes:

1. Introduction

The interaction between an object and the optical
near field of an aperture in a metallic screen is one of
the fundamental physical processes in near-field op-
tics (NFO) technology,-* and investigation of electro-
magnetic near fields around a subwavelength-size
aperture in a metallic screen is important. The dif-
fraction of electromagnetic waves by an aperture in
an infinite metallic screen is one of the fundamental
problems in electromagnetic theory and has been
treated in many papers, including the papers of Be-
the’ and Bouwkamp® (BB). A number of authors
have examined the case in which a screen, either
infinitely thin or of finite thickness, is a perfect
conductor.7-13

Several studies have analyzed by means of numer-
ical and experimental methods the optical near fields
and far fields of an aperture at the probe tip in a
practical NFO system.'4-2! In these studies, the
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metal coating on the probe was treated as a dielectric
of complex-valued permittivity of finite thickness.
However, the physical characteristics of the optical
field scattered by the aperture have not been inves-
tigated in detail. Recently, simulation of near-field
scanning optical microscopy (NSOM) images of small
particles in the illumination mode has revealed sev-
eral interesting characteristics.?2! This previous
study reported that the NSOM image characteristics
cannot be accounted for with the BB model. Unfor-
tunately, the small-aperture model of the previous
investigation does not correspond to the practical
structure of NSOM.

Analysis of the optical field scattered by the
subwavelength-size aperture in a metallic screen is
one of the important fundamental problems in NFO
technology. In NFO, we must consider that the me-
tallic screen has a finite thickness and the metal must
be regarded as a dielectric media having complex-
valued permittivity. In this paper we perform three-
dimensional numerical simulations of the optical
fields scattered by an aperture in a complex-valued
dielectric screen of finite thickness using the volume
integral equation (VIE) (dyadic Green’s function) to-
gether with current numerical techniques.22-30

We first derive the VIE of the problem, solve the
VIE numerically using current numerical techniques
for large-scale matrix equations, and check the valid-
ity of the obtained numerical results. We then nu-



merically simulate the near-field distribution for
square, circular, and triangular apertures. The sur-
face plasmon polaritons (SPPs) excited on the side-
walls of the aperture can be used to explain the basic
characteristics of near-field distribution of apertures.
In addition, we investigate the dependence of the
scattering cross section of the square aperture on the
screen thickness and on the aperture area. The sim-
ulation results obtained in this study provide impor-
tant information with regard to basic characteristics
of NFO technology.

2. Volume Integral Equations

Here we consider the scattering problem of optical
waves by an aperture in a thick metallic screen placed
in a vacuum, as shown in Fig. 1. A small square
aperture (SA) whose area is given by a, X a, was
formed in a metallic screen (slab) of thickness w. The
area of the metallic screen is infinite, and its relative
complex-valued permittivity is given by €;.  We adopt
rectangular coordinates (x, y, z) and spherical coordi-
nates (r, 0, ¢), the origins of which are located at the
geometric center of the SA on the upper screen surface,
as shown in Fig. 1. A plane wave is assumed to be
incident with the incident angle (0;, ¢,) from region (I)
below the metallic screen, as shown in Fig. 1.

Here we solve the scattering problem using a VIE
(Lippman-Schwinger equation in quantum physics).
The VIE for the problem shown in Fig. 1 can be
written as31.32

E(x) = k,’ fff [e(x") — 1]G(x[x") - E(x)dv’
v

+ E(x), (1)

where E(x) is the total electric field, Ei{(x) is the
incident electric field, and G(x|x') is an electric-type
free-space dyadic Green’s function (tensor). The
volume integral region V represents the entire
space and g,.(x) represents the distribution of the rel-
ative permittivity, where ¢,.(x) = €, inside the metal-
lic screen and ¢.(x) = 1 in the aperture and
surrounding vacuum, as shown in Fig. 1. Since g,(x)
— 1 = 0in exterior region (I) and region (II) in Fig. 1,
region V in Eq. (1) can be regarded as the volume of
the screen without an aperture. So we consider that
V represents the infinite space defined by —o < x <
w, —w <y < @and —w < z < 0 hereafter in this
paper. The VIE [Eq. (1)] has been applied to a num-
ber of NFO problems, revealing numerous interesting
findings.?2-3%  For the problem shown in Fig. 1, vol-
ume integral region V has an infinite volume. So,
application of Eq. (1) to the problem directly is im-
possible. To overcome this difficulty, we consider
the total electric field E(x) inside the metallic screen
to be approximated by the field inside a dielectric slab
without aperture at points far from the aperture,
because the screen is a dissipative dielectric. The
field inside the dielectric slab without aperture can be
expressed analytically and rigorously by solving well-
known problems of reflection and transmission with a

Region (IT)

Region (I) =
. E'(x
&E(x) ﬂ“( )

Fig. 1. Geometry of the problem. The optical plane wave is scat-
tered by an aperture in the infinite metallic screen placed in the
coordinate systems (x, y, z) and (r, ¢, 8). Screens are of metal 1
(e, = —1.68 — j4.46) and metal 2 (¢, = —7.38 — j7.18).

two-dimensional dielectric slab. We denote this
field as E*'“"(x) and hereafter refer to this field as the
slab field. Namely, we make the following assump-
tion for the electric field inside the metallic screen
with an aperture:

E(x) = E‘(x) + E¥(x), (x€V). (2)

The field denoted by E°(x) in Eq. (2) is expected to be
confined within the vicinity of the aperture. Substi-
tuting Eq. (2) into Eq. (1), we obtain

E‘(x) + E"(x) = k,* ij [e(x') — 1]G(x|x")
14

CEf(x)dv’ + ky? ”J. [e(x") — 1]
v

G(xlxr) . Eslub(xr)dur
+ E(x), (xe V). (3)

Note that slab field E*'?P(x) must satisfy the following
VIE:

E(x) + E'(x):[x € (I)])

E'*(x):[x € V]

= knz fff [Eslnh(x’) - 1]
> v

G(xlxr) . Eslnh(xr)dv ’

+ E'(x),
E(x):[x e (ID] J (4)

where €,,,(x) represents the distribution of the rela-
tive permittivity of the infinite metallic screen (slab)
without an aperture. Fields E'(x) and E’(x) repre-
sent the reflected plane wave in region (I) below the
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metallic screen and the transmitted plane wave in
region (II) above the screen, respectively, as shown in
Fig. 1. Fields E'(x), E/(x), and E**"(x) can be ex-
pressed analytically. Substituting Eq. (4) into Eq.
(3) we can derive the VIE for field E°(x) as

E(x) = k,* jJJ [e(x") — 1]G(x|x) - B°(x')dv’
|

+ klﬁz jfj [Er(x’} - Eslnh(x’)]G(x'x’) ) Eslnh(xr)dU'~
Vv

(5)

Comparing Eq. (5) with the original VIE Eq. (1), we can
see that the unknown function E(x) in Eq. (1) is re-
placed by the field denoted by E°(x) in Eq. (5) and that
the incident wave E'(x) in Eq. (1) is replaced by volume
integration of the slab field over the aperture region,
i.e., volume region V, where [g(x) — €,,,(x)] # 0 is
satisfied in Eq. (5). The basic structure of Eq. (5) is
the same as that of Eq. (1), and Eq. (5) can be solved by
the conventional method for solving a VIE. When no
aperture is present in the metallic screen, the last term
on the right-hand side (RHS) of Eq. (5) disappears and
the solution for Eq. (5) is given by E°(x) = 0. So, slab
field E*'“P(x) becomes the rigorous solution of the prob-
lem of Eq. (1). Since we can consider that the field
denoted by E°(x) in the screen becomes negligibly
small at points far from the aperture, we can regard
the infinite volume integral region V as a finite region
and solve VIE (5) numerically.

The basic VIE (5) is not appropriate for numerical
evaluation. We must remove the singular point by
performing volume integration over an infinitesimal
sphere of which the center is located at observation
point x. This procedure is well known and can be
found in the literature.?2-3¢ The integral equation
can be rewritten as

—k? ffj [e(x") — 1]G(x|x")
v
-Ef(x')dv' + [e(x) + 2]/3E(x)
=ky’ JJJ [edx) — egu(x)]G(x]x)
v
CExdu!, (xE€ V). (6)
The integral in Eq. (6) denotes a principal-value inte-

gration over volume V. Multiplying both sides of Eq.
(6) by £.(x) — 1, we can obtain the following equation:

—ky’le(x) — 1] fjj G(x|x")
v
X(x)dv’ + [e(x) + 2]/3x°(x)
= kﬂz[Er(x} - 1] jjj [E,.(X’) - Ssluh(xr)]é(x|x’)
1%

E(x)d’, (x€V). (D)
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The unknown function of VEI (7) changes to the func-
tion

X‘(x) = [e,(x) — 1]E‘(x). (8)

Since the relation between the unknown function
x°(x) and the dyadic Green’s function is given by the
convolution in Eq. (7), we can use fast Fourier trans-
formation (FFT) to solve Eq. (7) by the iteration
technique.35-37

The unknown function x°(x) can be obtained nu-
merically in Eq. (7), and the electric field E°(x) can be
obtained from Eq. (8). Once the electric field, de-
noted by E°(x), in the metallic screen has been ob-
tained numerically, the total electric field in region
(II) above the metallic screen can be calculated from
Egs. (1) and (2) as

E(x) = ky* ”f [e(x") — 1]G(x|x")
\%
[Ef(x) + B(x)]dv’ + E(x)

= k2 m [e,(x) — 1]G(x|x’) - E°(x")dv’
v

+ k’Dz ffj [E,-(X’) - Eslub(x’)]G(xixr)
v

CEM(x)dv’ + E(x), x € (ID). ©)

For the derivation of Eq. (9) we used Eq. (4). The
scattered far field E*(r, 0, ¢) produced by the aper-

ture in the metallic screen can be expressed as (see
Appendix A)

Es(ry 05 d)) = [@XP(_j-""ﬂ"')/(kor)]F(O, d)): ko." = 1:

(10)

where F(0, ¢) is the scattering coefficient and can be
written as

F(0, ) = —i, X i, X (f—;)[lzoa f“ [e,(x') — 1]

t

E‘(x')exp(jkox’ - i,)dv

+ k():j J‘J‘J‘ [Er{xl) - E’slnb(x’)]ESlab(x’)
Vv

exp(jkox’ - i,.)du’}. (11)

In Egs. (10) and (11) polar coordinates (r, 6, ¢) are as
shown in Fig. 1; i, is a unit vector in the radial direc-
tion in these polar coordinates. The scattering cross
section W of the aperture can be written as

/2 2w
W= f J |F(6, ¢)|* sin 6d0dd. (12)

0 0



IE «(x )

kox
Fig. 2. Dependence of near-field distributions |E_ (kx, 0.0, 0.1)*
above the aperture on the discretized volume size of the screen
used for the numerical calculation: (a) kyb, X kyb, X kow = 3.2 X
3.2 X 0.3, (b) kob, X kob, X kow = 7.2 X 7.2 X 0.3, (c) kb, X
kob, X kow = 11.2 % 11.2 x 0.3. The screen is metal 1 (g, =
—1.68 — j4.46). The surrounding region is a vacuum (g, = 1), and
the size of the SA is kga, = kya, = 1.2.

We can regard W as the power transmitted through
the aperture in the metallic screen into region (II) for
the case of an incident plane wave of unit amplitude.

3. Confirmation of Numerical Results

In this paper we fix the following parameters: wave-
length A, incident angle 6; = 0, the incident electric
vector E'(x) is parallel to the x axis in Fig. 1, the SA
size is kga, = koa, = 1.2 (approximately 0.19\ X
0.19\) and the complex permittivities of the metallic
screen are given by g, = —1.68 — j4.46 (metal 1) and
g, = —7.38 — j7.18 (metal 2). The techniques for
numerically solving a VIE such as Eq. (7) are well
established in the field of computational electromag-
netic theory.31-37  Here we employ the method of mo-
ment using the pulse function as a basis function and
the delta function as a testing function in the discreti-
zation of VIE (7).32 The width of the basis pulse
function (size of cubes used as a discretized element)
is kod, = kod, = kod, = 0.1, and the number of un-
known resultant linear systems exceeds one million
for the problems in this paper. We solved the result-
ant large-scale system of linear equations using an
iteration method referred to as the generalized con-
jugate residual method combined with FFT.38:39
The finite-size volume integral region of b, X b, X w
was used in the practical numerical calculation of Eq.
(7) as shown in Fig. 1. We confirmed the numerical
results by using the following procedure.

A. Invariance of the Near Field with Respect to the
Truncated Volume Size

Since the solution of Eq. (7) must be that for an infi-
nitely large metallic screen on the x—y plane, the nu-
merical results must be independent of the truncated
volume size of the screen on the x—y plane given by b, X
b, in the numerical calculation. In Figs. 2 and 3 the
resultant near-field intensities |E (kyx, 0.0, 0.1)* and
|E,(kox, 0.0, 0.1)|* obtained on the line parallel to the x

L

-6 -4 -2 0 2 4 6

kox
Fig. 3. Dependence of near-field distributions |E,(kyx, 0.0, 0.1)*
above the aperture on the discretized volume size of the screen
used for the numerical calculation: (a) kob, X kyb, X kqw = 3.2 X
3.2 % 0.3, (b) kob, % kob, X kow = 7.2 X 7.2 X 0.3, (¢) kob, *
kob, X kow = 11.2 X 11.2 X 0.3. The screen is metal 1 (g, =
—1.68 — j4.46). The surrounding region is a vacuum (g, = 1), and
the size of the SA is kya, = koa, = 1.2,

axis above the aperture are shown as parameter
kob, = kob,. The field intensity |E,[* was smaller
than one tenth of |E,|* and |E_|*> and so is omitted in
this calculation. The screen is metal 1 and the thick-
ness of the screen is given by kow = 0.3 (approximately
0.05N). From Figs. 2 and 3, when the truncated size
of the screen used in the numerical calculation is
greater than that given by kb, X kob, = 11.2 X 11.2
(approximately 1.78\ X 1.78\), we can see that calcu-
lated near-field intensities are independent of the size
of the truncated screen size. Note that the ordinate of
Fig. 3 is a logarithmic scale. Results of the screen of
metal 2 are similar to those of metal 1.

The validity of the assumption in Eq. (2) is based on
the physically reasonable idea that can be stated as the
effects of the aperture on the fields, i.e., E(x), will
vanish at points far from the aperture inside the dis-
sipative dielectric screen. However, when the decay
of E°(x) is small, we must use a large truncated dis-
cretized volume size and the size of the system of linear
equations could exceed the ability of the system.
SPPs excited on the screen surfaces parallel to the x—y
plane have a somewhat small attenuation constant.
However, when the aperture size is small and the in-
cident angle is nearly vertical to the screen surface, we
can expect the amplitude of an excited SPP on the
screen surfaces parallel to the x—y plane to be small.
In Fig. 2, at points far from the aperture, the x com-
ponent of the total near-field intensity is close to |7]* =
0.32, that is, the power transmission coefficient of the
slab without an aperture shown by a broken line in
Fig.2. Thez component of E°(x), which does not exist
above the screen without an aperture for x-directed
incident polarization, decays fast at points far from the
aperture as shown in Fig. 3. This result also shows
that E°(x) decays effectively at points far from the
aperture and SPPs excited on the screen surface by an
aperture are small. These results show the validity of
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Fig. 4. Dependence of scattering cross section W of the SA on the
discretized volume size used for the numerical calculation. The
screen thickness is fixed at kqw = 0.3. The size of the SAiskqa, =
koa, = 1.2.

the idea in the mathematical formulation and the code
introduced in this paper.

B. Invariance of Scattering Cross Section W with
Respect to the Truncated Volume Size

We have also confirmed the invariance of scattering
cross section W with respect to the truncated size of
screen kb, X kyb, used for the numerical calcula-
tion. In Fig. 4 the dependences of scattering coef-
ficient W on the truncated size used in volume
integration kyb, = kyb, are shown. The thickness
of the slab is kqw = 0.3. From Fig. 4 we can see
that calculated scattering coefficient W is indepen-
dent of the truncated volume size of the screen,
when the truncated volume size is sufficiently large.
These results show the numerical convergence of
the numerical results solved by the mathematical
formulation shown in this paper and the code used
in this paper.

C. Reciprocity

We use the reciprocity relation, which is valid for the
scattering problem of a dissipative medium, to con-
firm the numerical results. Since the concrete ex-
pression of the reciprocity relation for the scattering
problem shown in Fig. 1 has not yet been reported, we
derive the reciprocity relation for the problem shown
in Fig. 1 in Appendix B as

R, -Fy(m - 06, (\bl) + Tl ) Fz(el, dby)
=Ry Fi(m — 0y, ¢y) + Ty Fi(0y, by),

where R,, T; and R,, T, represent the vector re-
flection and transmission coefficients of plane
waves with a screen (slab) without an aperture for
incident angles of (8, ¢,) and (05, ¢s), respectively
(see Appendix B). Similarly, F,(8, ¢) and Fy(6, ¢)
represent the scattering coefficients given by Eq.
(11) for incident angles of (6,, ¢,) and (0,5, ¢,), re-
spectively (see Appendix A). We solved the prob-
lem by using a volume size of kyb, X kyb, X kow =
20.0 X 20.0 % 0.3 and calculated the RHS and left-

(13)
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Table 1. Verification of Reciprocity of the Problem (0, = &, = &y = 0)

LHS of Eq. (13)

0, (deg)
5.0 (metal 1)

RHS of Eq. (13)

—0.029862 + j0.046526
10.0 (metal 1) —0.028227 + j0.045531
5.0 (metal 2) —0.145388 + j0.027705
10.0 (metal 2) —0.140179 + j0.029362

~0.030988 + j0.046524
~0.030676 + j0.046151
~0.155554 + j0.024608
~0.154507 + j0.024806

hand side (LHS) of Eq. (13) for the case of 6, = 5.0
(deg) and 0, = 10.0 (deg) under fixed values of 6, =
b; = by = 0 for metal 1 and metal 2 screens. The
results are shown in Table 1. Based on the numer-
ical results in Table 1, when incident angle 6; is less
than 5 deg, the numerical results satisfy reciprocity
relation (13) to an acceptable degree of accuracy.
These results demonstrate the validity of the nu-
merical evaluation for small values of incident an-
gles 6,. The reciprocity discrepancy for large
values of incident angle 0, could be due to the exci-
tation of SPPs that propagate along the screen sur-
faces to infinity. Under these conditions, large
truncated volume size is required for the numerical
evaluation, which was difficult in our system. All
the numerical results hereafter are those for the
case of normal incidence of §; = 0 and ¢; =

4. Near-Field Distributions of an Aperture

A. Square Aperture

We first consider the case of a SA of 2ya, = kya
1.2 of thickness kow = 1.9 (approximately 0.30\) in
Figs. 5 and 6. Distribution of total near-field in-
tensities [E(kx, koy, 0.1)]* and their components
|E (kox, koy, 0.1)]% |E (kox, koy, 0. 1)|2 and |E,(kyx,
koy, 0.1)|* above the §A are shown in Fig. 5 for the
metal 1 screen and in Fig. 6 for the metal 2 screen,
respectively, for the x-directed incident polarization
in Fig. 1. All the distributions in this paper are
those on the plane parallel to the x—y plane placed
at kyz = 0.1 (approximately 0.016\) above the
screen. We note that the transmitted plane wave
is negligibly small for a screen thickness of
kow = 1.9 for both the metal 1 and the metal 2
screens. Note the difference in scale range be-
tween Figs. 5 and 6. From these figures, we con-
clude the following:

(a) Two main spots of high optical intensity are
created along the side boundaries, which are perpen-
dicular to the incident polarization of the aperture.
The optical intensities just above the aperture center
are smaller than those at these two spots.

(b) These two spots exist in the region outside
boundaries of the aperture.

(¢) The main component of the electric fields at
these two spots of high intensity is the z component
(perpendicular to the screen).

(d) The basic characteristics of the intensity distri-
butions for metals 1 and 2 are similar. Therefore,
we hereafter show only the intensity distributions of
the metal 2 screen.



(a) (b)

(©) (d)

Fig. 5. Electric near-field distributions normalized by the inten-
sity of the incident wave on the plane parallel to the x—y plane
placed at kyz = 0.1 for a SA in a metal 1 screen (g, = —1.68 —
J446): (a) [B(kex, kyy, 0.1)[% (b) |E,(kyx, koy, 0.1, (c) |E,(kyx,
koy, 0.1)% (d) |E.(kyx, kgy, 0.1)]*. The thickness of the screen is
kow = 1.9. The square indicates the kya, = kya, = 1.2 aperture.
The arrow in (a) indicates incident polarization. The intensity
ranges are (a) (0-0.1), (b) (0-0.04), (c) (0-0.01), (d) (0-0.08).

B. Circular Aperture

Distributions of near-field intensity for the case of a
circular aperture (CA) having an area equal to that of
the SA of kya, X kga, = 1.2 X 1.2 in a metal 2 screen
of thickness kqw = 1.9. The total near-field intensi-
ties [E(kox, koy, 0.1)]* on the plane at kyz = 0.1 are
shown in Fig. 7. The basic characteristics of the in-
tensity distributions agree with those of the BB theo-
ry56 for an infinitely thin perfect conductor.
However, the details of the intensity distributions
shown in Fig. 7 differ from those of the BB theory. In
the BB theory two primary spots exist in the range
inside the CA, and their main electric field component
is parallel to the incident polarization. However, as
shown in Fig. 7, for a sufficiently thick metallic screen,
the two primary spots are located in the region outside
the CA, and their main electric field component is per-
pendicular to the screen for the sufficiently thick me-
tallic screen. These characteristics are identical to
characteristics (a), (b), and (c¢) for the SAs shown in
Figs.5and 6. The results of Fig. 7 agree qualitatively
with the experimental results reported by Molenda et
al.® and Hippener et al.*! The average intensity for
the CA in Fig. 7 is smaller than that for the SA in Fig.
6 under the condition of equal aperture area.

C. Triangular Aperture

Distribution of near-field intensity for the case of a
triangular aperture (TA) having an area equal to that

() (d)

Fig. 6. Electric near-field distributions normalized by the inten-
sity of the incident wave on the plane parallel to the x—y plane
placed at 2,z = 0.1 for a SA in a metal 2 screen (g, = —7.38 —
J7.18): (a) [E(kex, key, 0.1)]% (b) |E (kox, koy, 0.1)%, (¢) |E,(kox,
koy, 0.1))%, (d) |E,(kyx, koy, 0.1)]%. The thickness of the screen is
kow = 1.9. The square indicates the kya, = kya, = 1.2 aperture.
The arrow in (a) indicates incident polarization. The intensity
ranges are (a) (0-0.1), (b) (0-0.04), (c) (0-0.01), (d) (0-0.08).

of the SA of kya, * kya, = 1.2 X 1.2 in a metal 2 screen
of kyw = 1.9 thickness. The total near-field intensi-
ties [E(kyx, koy, 0.1)% on the plane at k,z = 0.1 are
shown in Fig. 8(a) for x-directed incident polarization
and in Fig. 8(b) for y-directed incident polarization.
Note that the scale ranges in Figs. 8(a) and 8(b) are
double those of Figs. 5-7. The average intensities for
the TA are larger than those for the SA and CA under
the condition of equal aperture area. Naber et al.4?
reported optical intensity distributions for a TA made

Fig. 7. Total electric near-field distributions normalized by the
intensity of an incident wave on the plane parallel to the x—y plane
placed at k,z = 0.1 for a CA in a metal 2 screen (g, = —7.38 —
J7.18). The thickness of the screen is kyw = 1.9. The circle
indicates the aperture whose area is the same as that of a SA of
koa, = kga, = 1.2. The arrow indicates incident polarization.
The intensii:y ranges from O to 0.1.
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(a) (b)
Fig. 8. Total electric near-field distributions [E(kyx, kqy, 0.1)
normalized by the intensity of the incident wave on the plane
parallel to the x—y plane placed at k,z = 0.1 for TAs in a metal 2
screen (g, = —7.38 — j7.18). The thickness of the screen is kyw =
1.9. The triangle indicates the aperture whose area is the same
as that of a SA of kya, = koa, = 1.2, The arrows indicate incident
polarization. The intensity ranges from 0 to 0.2.

on the probe tip as measured experimentally by use of
an excellent technique that involves a fluorescent
nanosphere. Although the parameters used in their
experiments differ from those we used, their experi-
mentally obtained characteristics of the intensity dis-
tributions for a TA agree well with the numerical
results shown in Figs. 8(a) and 8(b). They reported
that an enhanced single spot near the base of the TA
appears for a specific incident polarization. This sin-
gle spot can be observed for y-directed incident polar-
ization in Fig. 8(b). These results indicate the
validity of the numerical evaluation in this paper.

5. Explanation of Near-Field Distributions by Surface
Plasmon Polaritons

Since the screen thickness is much larger than the
skin depth of metal 2 in the given wavelength in
Figs. 5—8, the two primary spots for a SA and a CA
and a single spot for a TA are not due to the waves
that propagate directly inside the screen material.
Considering that the main electric field component
of the spot is perpendicular to the screen and exists
along the boundary perpendicular to the incident
polarization, it is possible to explain these spots by
the SPPs that progress along the sidewalls inside
the aperture as shown in Fig. 9. We consider only

x=-ay2 | x=a/2

\ 1P
{ Region (II)

Qbservation plane
S

|E,l? Region (1)

Fig. 9. Explanation of the numerical results obtained with SPPs
on the sidewalls of the aperture.
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the case of a SA for simplicity. We assume that the
field near y = 0 inside the aperture is due to SPPs
excited on the sidewalls at x = *a,/2. The electric
field of SPPs on the walls have components E_ and
E, and numerical results have this property approx-
imately. When the aperture is not in a cutoff
condition, i.e., kya, = m, we can consider that E. is
smaller than E, inside the aperture from a two-
dimensional calculation of SPPs.42 However, the
aperture is very small and is under a cutoff condi-
tion, i.e., kga, << m, shown in this paper, E, inside
the aperture is suppressed because Poynting vector
E,. X H, must be small under a cutoff condition.
So, it is reasonable that E, is not much smaller than
E_ inside the aperture. The field |E,|> must be con-
tinuous across the walls at x = *a,/2 inside the
aperture from boundary conditions and decrease
exponentially from both walls inside the aperture
and the metallic screen in the range of —w <z <0
shown by the dotted curves in Fig. 9. So, a maxi-
mum optical intensity exists at both walls at x =
*a,/2in the —w <z < 0range. Numerical results
agree with these characteristics and show the va-
lidity of the assumption.

Let us consider the distribution of |E,|* on the ob-
servation plane just above and close to the screen in
the free space (z > 0) shown by solid curves in Fig. 9.
The field |E,|? just above the aperture is similar to that
inside the aperture because there is no change of rel-
ative permittivity across the planeatz = 0. However,
|E.|? just above the metallic screen is enhanced by the
factor [e,/¢o|* because electric fluxes perpendicular to
the screen surface must be continuous across the
screen surface atz = 0, i.e.,, g, E, = g,E,, shown in Fig.
9. Furthermore, E, in the free space (z > 0) must
distribute continuously because there are no aperture
boundaries in this region. Therefore, positions of the
maximum optical intensity (primary spots) | E,|* above
the metallic screen in free space are shifted to the outer
direction from aperture boundaries at x = *a,/2.
The enhanced field |E._|* outside the boundary can be-
come larger than |E,|” just above the aperture on the
observation plane in Fig. 9. For a SA, numerical re-
sults show that the distributions of E, just below the
x—y plane at z = 0 along the y axis near the walls atx =
*a, can be approximated by cos(w/a,y), which is de-
termined by the boundary condition on the walls aty =
*a,/2. So, from the above-mentioned consideration
we can consider that two spots in the near-field distri-
bution of a SA and a CA as shown in Figs. 5-7 are due
to the SPPs excited on the sidewalls of the aperture.
The SPPs can be excited most effectively on the side-
wall that is straight and is perfectly perpendicular to
the given incident polarization. Since there is only
one straight sidewall that satisfies the above condition
for a TA in Fig. 8(b), it is reasonable that only one spot
can be observed as shown in Fig. 8(b). We can also
understand that the near-field intensity of the CA
shown in Fig. 7 is smaller than that of the SA shown in
Fig. 6, because there is no straight sidewall that is
perfectly perpendicular to the given incident polariza-
tion for the CA in Fig. 7. The propagation of SPPs
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Fig. 10. Dependence of scattering cross section W of a SA on
screen thickness kqw. The size of the SA is kya, = koa, = 1.2.
The solid and dotted curves represent the power transmission
coefficients |T|? of the metal 2 and metal 1 slabs without an aper-
ture, respectively, of thickness kow. The solid line represents
Bethe’s results for the scattering cross section of a CA having an
area equal to that of the SA.

along the walls inside the aperture under cutoff con-
ditions requires further investigation. However, we
can state that these results reveal that the BB theory
is insufficient for analysis of the aperture problem in a
thick metallic screen that is often used in NFO, be-
cause the BB theory completely neglects the effects of
SPPs. Using the characteristic of SPPs excited on the
sidewalls of an aperture, it is possible to make an
aperture that gives high intensity and a small spot size
of near-field intensity in a thick metallic screen.*

6. Dependence of Scattering Cross Section W on
Screen Thickness and Aperture Area

The dependence of a transmitted optical far field
through a SA, i.e., scattering cross section W of the
SA, on screen thickness kyw is important for appli-
cation of the small aperture to NFO technology.
The results for a metal 2 screen are represented by
filled circles in Fig. 10, and those for a metal 1
screen are represented by open circles. In Fig. 10
the power transmission coefficients |T|* of a metallic
slab without aperture, where T is the vector trans-
mission coefficient of the metallic slab without ap-
erture defined by Eq. (A7) in Appendix A, are shown
for the metal 2 slab by a solid curve and those for
the metal 1 slab are shown by a dotted curve. Be-
the’s results for the scattering cross section and the
results for a circular aperture having an area equal
to that of the SA are shown. The thickness that
yields maximum scattering cross section W is found
to be kyw = 0.6 for the metal 2 screen and kyw = 0.9
for the metal 1 screen in Fig. 10. When the screen
is thinner than the skin depth, the scattering cross
section W can be small because most of the incident
energy is transmitted through the screen as the
transmitted plane wave. When the screen is suf-
ficiently thick, the transmitted plane wave becomes
small, as shown in Fig. 10, and the transmitted

10
L | eei=738718
o1 0 €1 =-168-4.46
’ — Result with Bethe's theory
0.01
&
0.001
0.0001 [
0.00001 | 8
0.000001
0.01 0.1 1 10
kﬂax'k{)ax
Fig. 11. Dependence of scattering cross section W of a SA in a

thick metallic screen having an aperture area of kya, X kya,. The
screen thickness is £gw = 1.9. The solid line represents the scat-
tering cross section as calculated by use of Bethe's theory.

power through the aperture, i.e., W, must be small.
Therefore, the existence of a screen thickness that
produces a maximum scattering cross section W is
reasonable. The thickness that produces a maxi-
mum scattering cross section W will be useful in the
design of an aperture for the probe tip of NFO tech-
nology.

The dependences of scattering cross section W on
the area of the SA are shown in Fig. 11 by open
circles for the metal 1 screen and by filled circles for
the metal 2 screen, for a screen of large thickness
kow = 1.9. The solid line represents Bethe's re-
sults for a circular aperture of area equal to that of
the SA. These characteristics do not differ greatly
from Bethe’s result.

7. Conclusions

The scattering of optical waves by a small aperture
in a thick metallic screen has been analyzed by use
of a volume integral equation together with the
generalized conjugate residual method and FFT.
The near-field distribution above the aperture in
the thick metallic screen differs from that of the
Bethe—-Bouwkamp theory. These results are im-
portant for near-field optics technology. Numeri-
cal results show that the surface plasmon
polaritons can play an important role in the diffrac-
tion of optical waves by a subwavelength aperture.
So, the Bethe—Bouwkamp theory is insufficient to
explain the basic characteristics of the near field
around the subwavelength aperture in a practical
metallic screen.

Appendix A

The scattered field E°(x) can be obtained by subtract-
ing transmitted plane wave E‘(x) from total field Eq.
(9). We show only how to obtain the scattered field
expression of only the first term on the RHS of Eq. (9)
as follows:

E'(x) = k¢’ fff [e.(x") — 1]G(x|x") - E(x")dv".
v
(A1)
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The dyadic Green’s function can be expressed as

Gx|x') =+ 1/k)’VV)g(x, x'), (A2)

where
Vig(x, x') + ko'g(x, x') = -3(x, x'),  (A3)
g(x, x') = exp(—ky|x — x'|)/(47|x — x'|), (A4)

and Iis a unitdyad. Substituting Eqs. (A2) and (A3)
into Eq. (A1), we can rewrite Eq. (Al) as

E'(x) = &y’ m [e(x') = 1][ = (1/ke")Vig(x, x)I
+ (l/ko‘;)VVg(x, x')]- Ef(x")dv’
= ”f [e(x) — 1)[-Vig(x, x)I
+ \':Vg(x, x')] - Ef(x")dv’
= m [e,(x') — 1][V X V X g(x, x')I]
-E":x’)dv’

=V X VX fff [e(x") — 1]g(x, x')

v

Ef(x')dv’. (A5)

When observation point x is far from source point x',
we can use the asymptotic expression of the free-
space scalar Green’s function as

g(x, x') = exp(—jkyr)/(4wr)

X exp(jkox' -1,), kor =1, (A6)

where r is the distance between the observation point
x and the origin. So we can show that

V x g(x, x"E(x') = — jki, exp(—jkor)/(dwr)
kor=1.
(A7)

We finally obtain the expression for the scattered far
field:

X E(x")exp(jkox'*1,),

E'(x) = exp(—jkor)/(4mwkor)| —i, X i,

X kOSJ‘J‘J‘ e (x') — 1]E(x")exp(jkyx' - i,)dv"].

(A8)

We can obtain a similar expression for the second
term in Eq. (9) and can obtain relation (10).

Appendix B

We consider the geometry shown in Fig. 12. We
define total electric and magnetic fields by (E,, H,) for
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.
: (8,90

Region ()

Fig. 12. Geometry of the problem used for derivation of reciproc-
ity of the problem.

incident angles of (8, ¢,) and by (E,, H,) for incident
angles of (0,, ¢,) in the space whose permittivity and
permeability are given by € and ., respectively. Let
us start with the well-known reciprocity relation be-
tween total fields (E,, H;) and (E,, H,) derived from
Maxwell’s equations without source terms as

f (B, x H, - E, x H)) -i,ds =0,  (Bl)
S

where S is an infinitely large sphere enclosing a me-
tallic screen with an aperture that intersects the
screen far from the aperture, as shown in Fig. 12, and
i, is an outward unit vector perpendicular to surface
S. We decompose the total fields into components of
scattered fields E,°, E,° and plane wave terms E,”,
E.)’ as

E.’a = Ekp + Efrss Hk = Hkp + Hir.q) (k = 1: 2): (BQ')
where
E/ =E, + E,/, xexistsin region (I),
=E), (k=1,2) xexistsinregion (II), (B3)
H/’=H,'+ H,, xexistsin region (I),
=H,)', (k=1,2) xexistsinregion (II), (B4)
E,' = €, exp(—jkox - i),
1
Hk, = E (ik X Ek)exp( ‘_jkox' ife)) (k = 1: 2), (85)
E," = Ry exp(—jkox - ig),
1
H/ = E (ige X Rpexp(—jkox - igy), (k=1,2), (B6)
E,' = T, exp(—jkox - i),
1
H/'= ¢ (i X Tyexp(—jkox-1), (k=1,2), (B7)



where { = (¢/p)?. Since we consider the field on
surface S of an infinitely large sphere that encloses
the metallic screen, we can use asymptotic expres-
sions of the scattered far field (see Appendix A) as

exp(—jkor)

Eks(ry G: (b) = kor T Fk(G; (b)’ (k = 1; 2)’
0

(B8)

Hfzs(rw 97 d)) = % [ir X Eks(rw 9» (b)L (k' = 1’ 2)-
(B9)

In Eqgs. (B5)-(B7) and approximations (B8) and (B9),
i, represents the unit vectors of incident direction of
incident angle (8, &) for £ = 1 and (8, o) for & = 2,
and i, is equal to those of the transmitted direction as
given by Eqgs. (B7). Unit vectors g, (k = 1, 2) rep-
resent the polarization of the incident wave. Unit
vectors ig, (k = 1, 2) represent the unit vector of the
reflected direction, as shown in Fig. 12. The expres-
sions R, (8 = 1, 2) represent the vector reflection
coefficients defined by Egs. (B6) for incident angle (8,,
¢,) fork = 1 and (04, dy) for k = 2. Similarly, T), (k =
1, 2) represents the vector transmission coefficients
defined by Eqs. (B7) for incident angle (84, ¢,) for 2 =
1 and (85, ¢y) for £ = 2. A unit vector i, represents
the radial direction shown in Fig. 12.
Substituting Egs. (B2) into Eq. (B1), we obtain

j (Ey” + E) X (H” + Hy')
S

- (E + E) X (H + H]i,ds = 0. (B10)
Equation (B10) yields
J (E" X Hy’ = E” X Hy") - i,ds + f (E" X Hy
S S

- E;’ X Hy)-i,ds + J. (Ef X Hy' — E” X Hy)

s

“i,ds + J (Ef X Hy — E X HY) -i,ds = 0. (B11)
S

Considering the relations

.r (Elp X H‘Z - Eﬂﬂ X Hip) ) i”dS = 01 (B12)
S

f (B X Hy' = E) X Hy) -i,ds = 0, (B13)
S

(E," X Hy

we obtain the following relation from Eq. (B11):
(E/ X Hy - Bf x Hy)-i,ds + f
s

|
-E’ xH/”) - i,ds=0. (B14)
Substituting Eqs. (B12)—(B14) into Eq. (B11), we de-

rive the following equation:

A

(B, x Hy' — E,' X Hy)) - i,ds + j (E,* X H'

S_

- E;’ X H]i) “i,ds + f (E," X st - E)

S-

X Hy*)-i,ds + f (E X Hy — E* x H))

S-

-1,ds + J (E) X Hy — E,/ X H{®) - i,ds
S

+

+ f (B X H) - E xH,)-i,ds =0, (B15)
5.
where S_ and S, represent, respectively, the lower
surface of S in region (I) and that of the upper surface

in region (II) in Fig. 12. It is not difficult to show the
following relations:

f (E]i X Hgs - Ezi X HJS) * indS_ = 0,
S

J (Ef X H, - Ef xH)i,ds_=0. (B16)
S

We now calculate one of the surviving terms in Eq.
(B15). For example, we can perform the following
calculation:

|

(E/ X Hy — B, x H/) - i,ds = j
S

[Rl exp(—jkoX * ig;) X exp

(—jkor)

1.
(ko?’) (E)[lr X FZ(B-: d))]

—jk 1
~ R, expl—jkox - igg) X exp Lo () [i, % F, (0, ¢>J] i,ds
(kor) g
1 —ik
= (_) f [EXP (7 Ur)exp(‘.].kor‘ ip)[R) X i, X Fy(0, ¢)]
L S (kor)
(—jkor) . . . .
- (kar) exp(—jkox - ig)[Ry X i, X Fy(0, )] -1,ds. (B17)
ol
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exp —

(kor)
(_jkor)

f (E/xH - E’xH)) i,ds = J.
5. S

'k 1
[ ko) g (o, (|))><(E)(ifezXRz)EXP(‘jkox'inz)

— exp

— exp

(kor)

()] o

(—Jkor)
(kor)

exp(—jkox - ig)[Fa(0, ¢) X ig X Rl]] -i,ds

1
F.(0, ¢) X (E) (ig; X Ry)exp(—jkox - im)] “i,ds

(%«——5—) BXP( .]kox le)[Fl(e d)) X 1R2 X RZ]

(B22)

When surface S is sufficiently large, we can set i, =
i,. Using Eqgs. (A8), we derive the relation as

ir: ' {Rl X [1 X FE(H d’)}}
=i, [Ry Fy(0, )]i, —
= ll’l . [Rl ' FE 8) ¢))]lr

“(Ry-i,)Fy(0, ¢)
= Rl * Fz(ﬁ, (b) (B].S)

Therefore, we can calculate Eq. (B17) as

Using the relation

i, [F(0, &) Xig X Ry] = i, - [F1(0, ¢) * Rylip,

=i, [Fy(0, ¢) - ig]R,

= [F.(0, ¢) - R2](in “ige) — [F1(0, ¢)

* iRZ](in ' iRZ))
(B23)

g (kor)

=(}) [ex (=jkyr)
4 (kyr)

(—Jjkor

(kor)

— exp

(Ek 2)

1 —jkor
() f [ exp 7 OQ exp(—jkox * ig))[Ry - Fyo(0, d)] — exp
S-

exp( —J2kor)[Ry - Fyo(Ogy, dpy)] +

(—Jkor)
(kor)

exp(—jkox - ig)[Ry - Fy(6, d))]}ds

exp(—jkox - ig))[R, - Fy(0, ¢)]r* sin 8d6d¢}

)exp( —jkox *ig)[Ry - F1(0, ¢)]r? sin 6dodd

When calculating Eq. (B19), we used the following
saddle-point integration formula:

1= j 2(0, &)expljEf (0, &)]d0dd

=~ j2mo(af — ‘lz) 2 g(0o, dy)
[Jkf(By, bo)]
exp————

5 for k >, (B20)
where
folb, (b)lﬂtu(,,tbabn =0, f¢(9, ¢)|0:n“‘y:¢n =0,
a = fim(eﬂ, (b())l B = ftbdj(alh (b[))’ Y= feq.(eo, (b[)),
o=+1aBf >+ a>0), ~1ap > % a <0),
—j(ap <+v%. (B21)

Similarly, we can calculate
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i_jk 2) exp(—j2kor)[Ry - Fi(0gs, bgo)]. (B19)

0

we can derive Eq. (B24) [see next page]. Here

Opir=m =0, Ope=7—0s g =d, bre= bo
(B25)

The remaining terms of Eq. (B15) can be calculated
similarly. Finally, the surviving terms of Eq. (B15)
can be written as

R, Fao(0py, dg)) + Ty Fy(by, dy)
=Ry Fi(0gy, dbpo) + Ty Fi(0,, b)),
and Eq. (B26) can be expressed as Eq. (13).

(B26)
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1 ko
(—) f (exp CTROT) (o i ([P0, &) - R1(, - i)
C» S (kor)

exp(—jkox g ){[Fa(0, &) - Ry (i, - ip) — [Fa(0, &) - ip (i,

— k .
~ [P0, &) - igalli, - Ry} — exp 270"
(kor)
—2j
. R1)} ds = 5 exp(*z)"knr)[Rz . Fi(BRZ; d)Rz)]
(Cko")

2jm .
+ 5 exp(—27kor)[Ry - Fy(0gy, dr)].  (B24)
(Cko%)
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