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Abstract

The spectrum of values v for which a 1-rotational Steiner triple system of order v
exists over a dicyclic group is determined.
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1 Introduction

Let V be a set of v points and B be a collection of 3-subsets, called blocks (or
triples), of V . A pair (V,B) is called a Steiner triple system of order v, denoted
by STS(v), if every pair of points is contained in exactly one block.

An automorphism group of a Steiner triple system, (V,B), is a group of bi-
jections on V preserving B. An STS(v), (V,B), is said to be 1-rotational over
a group G if it admits an automorphism group fixing a single point (usually
denoted by ∞) and acting regularly on the remaining v − 1 points under the
action of G. In this case, V is identified with {∞} ∪ G.

Phelps and Rosa [4] first introduced the concept of a 1-rotational STS(v)
and gave the spectrum of 1-rotational STS(v), i.e., the set of values v for
which a 1-rotational STS(v) exists, over a cyclic group. Buratti [3] investigated
the spectra A1r,Q1r and G1r of 1-rotational STS(v) over an abelian group, a
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dicyclic group and an arbitrary group, respectively. In [3], besides completely
determining A1r, he gave partial answers about Q1r and G1r.

In this paper, the spectrum Q1r of 1-rotational STS(v) over a dicyclic group
will be completely settled.

Proposition 1 ([3]) A necessary condition for the existence of a 1-rotational
STS(v) over a dicyclic group is that v ≡ 9 (mod 24). That is, Q1r ⊆ 24N +9,
where N is the set of nonnegative integers.

In Section 9 of [3], Buratti conjectured that Q1r = 24N + 9 and proved

(96N + 9) ∪ (96N + 33) ⊆ Q1r,

which assures “half” of the sufficiency of Proposition 1. In the next section,
the remaining half will be proved. That is,

(96N + 57) ∪ (96N + 81) ⊆ Q1r (1)

will be shown.

2 Completion of the Spectrum Q1r

The dicyclic group (also called the generalized quaternion group) of order 4t,
denoted by Q4t, has the following defining relations (see [5]):

Q4t = 〈x, y | x2t = 1, y2 = xt, yx = x−1y〉.

Equivalently, we have

Q4t = {1, x, x2, . . . , x2t−1, y, xy, x2y, . . . , x2t−1y}

with x2t = 1, y2 = xt and yxi = x−iy for any i.

In order to prove Q1r = 24N +9, we need extended Skolem sequences. Among
several ways to describe the definition of an extended Skolem sequence, here
we adopt the one in [3].

Definition 2 Let k and n be integers with 1 ≤ k ≤ 2n + 1. A k-extended
Skolem sequence of order n, denoted by k-ext Sn, is a sequence (a1, a2, . . . , an)
of n integers such that

n∪
i=1

{ai, ai − i} = {1, 2, . . . , 2n + 1} \ {k}.

When k = 2n + 1, it is simply called a Skolem sequence of order n.
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The existence of k-ext Sn is known for arbitrary k due to Baker [2].

Theorem 3 ([2]) There exists a k-ext Sn, 1 ≤ k ≤ 2n + 1, if and only if
either

(i) k is odd and n ≡ 0 or 1 (mod 4), or

(ii) k is even and n ≡ 2 or 3 (mod 4).

Now we are going to confirm (1).

Theorem 4 There exists a 1-rotational STS(24m + 9) over Q24m+8 for any
m ≡ 2 or 3 (mod 4). That is, (96N + 57) ∪ (96N + 81) ⊆ Q1r.

Proof. Applying Theorem 3, it is trivial to see that for every m ≡ 2 or
3 (mod 4) there exist a 2m-ext Sm and a 3m-ext S3m.

Now let (a1, a2, . . . , am) and (b1, b2, . . . , b3m) be the 2m-ext Sm and the 3m-ext
S3m, respectively, and take a set of triples as follows:

F ={{∞, 1, x6m+2}} ∪ {{1, xai−i+m, xai+m} | i = 1, 2, . . . ,m}∪
{{1, x3m+1+j, xb3m+1−jy} | j = 1, 2, . . . , 3m} ∪ {{1, x3m, x6m+2y}}.

By checking the differences arising from F , it can be readily verified that F
is a 1-rotational (24m + 9, 3, 1) difference family over Q24m+8 and hence it
generates a 1-rotational STS(24m+9) (see [1] for the definition and existence
results of 1-rotational difference families).

Note that F\{{∞, 1, x6m+2}} is particularly called a 1-rotational (Q24m+8, {1, x6m+2},
3, 1) difference family (for the precise definition, see [3]). 2

Remark 5 Since xiy(xi+ty) = xix−(i+t)y2 = x−txt = 1,

(xiy)−1 = xi+ty

holds over Q4t. For instance, over Q24m+8, the differences arising from {1, x3m, x6m+2y}
are calculated as follows:

{x3m, x−3m, x6m+2y, (x6m+2y)−1, x3m(x6m+2y)−1, x6m+2yx−3m}
= {x3m, x9m+4, x6m+2y, y, x3my, x9m+2y}.

Example 6 A 1-rotational STS(57) over Q56. In this case, m = 2. Take

(2, 5) and (2, 5, 12, 11, 13, 10)

as the 4-ext S2 and the 6-ext S6, respectively. Then the short block or-
bit is represented by {∞, 1, x14}, and full block orbits are represented by
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{1, x3, x4}, {1, x5, x7}, {1, x8, x10y}, {1, x9, x13y}, {1, x10, x11y}, {1, x11, x12y},
{1, x12, x5y}, {1, x13, x2y} and {1, x6, x14y}.

Example 7 A 1-rotational STS(81) over Q80. In this case, m = 3. Take

(2, 5, 7) and (2, 7, 6, 18, 15, 17, 19, 16, 13)

as the 6-ext S3 and the 9-ext S9, respectively. Then the short block or-
bit is represented by {∞, 1, x20}, and full block orbits are represented by
{1, x4, x5}, {1, x6, x8}, {1, x7, x10} {1, x11, x13y}, {1, x12, x16y}, {1, x13, x19y},
{1, x14, x17y}, {1, x15, x15y}, {1, x16, x18y}, {1, x17, x6y}, {1, x18, x7y}, {1, x19, x2y}
and {1, x9, x20y}.

Bringing together Theorem 9.1 in [3] and Theorem 4, we can establish the
following.

Theorem 8 There exists a 1-rotational STS(v) over a dicyclic group if and
only if v ≡ 9 (mod 24). That is, Q1r = 24N + 9.
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