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Purpose: We propose a single network trained by pixel-to-label deep learning to address the general
issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography
(CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for
automatically assigning labels to each pixel/voxel in a 2D/3D CT image.
Methods: We simplify the segmentation algorithms of anatomical structures (including multiple
organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation
of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inher-
its the spirit of fully convolutional networks (FCNs) that consist of “convolution” and “deconvolu-
tion” layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D
transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are
trained pixel-to-label from a small number of CT cases with human annotations as the ground truth.
The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases
of different sizes that cover arbitrary scan regions without any adjustment.
Results: The proposed network was trained and validated using the simultaneous segmentation of 19
anatomical structures in the human torso, including 17 major organs and two special regions (lumen
and content inside of stomach). Some of these structures have never been reported in previous
research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D
CT scans, together with their manually annotated ground-truth segmentations, was used in our exper-
iments. The results show that the 19 structures of interest were segmented with acceptable accuracy
(88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly)
against the ground truth.
Conclusions: We propose a single network based on pixel-to-label deep learning to address the chal-
lenging issue of anatomical structure segmentation in 3D CT cases. The novelty of this work is the
policy of deep learning of the different 2D sectional appearances of 3D anatomical structures for CT
cases and the majority voting of the 3D segmentation results from multiple crossed 2D sections to
achieve availability and reliability with better efficiency, generality, and flexibility than conventional
segmentation methods, which must be guided by human expertise. © 2017 The Authors. Medical
Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in
Medicine. [https://doi.org/10.1002/mp.12480]
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1. INTRODUCTION

Three-dimensional (3D) computed tomography (CT) images
provide useful internal information about the human anatomy
that can be used to support diagnosis, surgery, and therapy.
The recognition and segmentation of anatomical structures
play critical roles in the quantitative interpretation of CT
images, and, conventionally, the image processing is accom-
plished through human interpretation and manual annotations
by expert radiologists. However, human interpretation is often
qualitative and subjective, with relatively high intra and

interobserver variability. Manual annotations also have limited
reproducibility and are very time-consuming. Therefore, auto-
matic image segmentation would offer improved efficiency and
reliability, as well as reducing the burden on radiologists.1,2

Fully automatic image segmentation, which transfers the
physical image signal to a useful abstraction, is a crucial pre-
requisite for computer-based image analysis of 3D CT cases.3

Nevertheless, this task is challenging for several reasons.
First, there is a large variation in the appearance of anatomi-
cal structures in clinical image data (abnormal in most cases),
and this is difficult to represent using mathematical rules.
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Second, low intensity contrast and high image noise usually
lead to ambiguous and blurred boundaries between different
organ or tissue regions in CT images. These boundaries are
difficult to identify using low-level digital signal/image pro-
cessing. Third, different CT cases may cover different parts of
the human body using different spatial image resolutions
according to specific clinical requirements. It is difficult and
costly to prepare models that are applicable to all possible CT
cases and apply these models to CT image segmentation.
Therefore, accurate CT image segmentation has become the
bottleneck in many applications of computer-based medical
image analysis and image interpretation.

CT image segmentation3 covers a wide range of research
fields. In this paper, we focus on simultaneous multiple
organ segmentation across a wide range of the human body
in 3D CT images, which is a major research topic in com-
puter-aided diagnosis. Conventional approaches for multiple
organ segmentation typically use pixel-based methods. In
these approaches, image segmentations are divided into a
number of functional modules, and numerous hand-crafted
signal processing algorithms and image features are exam-
ined according to human experience and knowledge.
Although some mathematical models4–11 have recently been
introduced, conventional CT image segmentation methods
still attempt to emulate limited human-specified rules or
operations in segmenting CT images directly. These methods
can achieve reasonable segmentation results on CT images
for a special organ type within a known narrow scan range.
However, they may fail in many clinical cases that include
anatomical structures that are seriously deformed and gener-
ally cannot deal with scan ranges that are unknown a priori.
To further improve the accuracy and robustness of CT image
segmentation, the developed segmentation methods are
expected to handle a larger variety of ambiguous image
appearances, shapes, and relationships of anatomical struc-
tures. It is difficult to achieve this goal by defining and con-
sidering human knowledge and rules explicitly. Instead,
data-driven approaches using large sets of image data —
such as a deep convolutional neural network (CNN) — are
more appropriate for solving this segmentation problem.

Recently, deep CNNs have been applied to medical image
analysis in several studies. Most of them have used deep
CNNs for lesion detection or classification,12–15 while others
have embedded CNNs into conventional organ-segmentation
processes to reduce the false positive rate in the segmentation
results or to predict the likelihood of the image patches.16–18

Studies of this type usually divide CT images into numerous
small 2D/3D patches at different locations, and then classify
these patches into multiple predefined categories. Deep
CNNs can also be used to learn a set of optimized image fea-
tures (sometimes combined with a classifier) to achieve the
optimal classification rate for these image patches. However,
the anatomical segmentation of CT images over a wide region
of the human body is still challenging because of similarities
in the images of different structures, as well as the difficulty
of ensuring global spatial consistency in the labeling of
patches in different CT cases.

This paper proposes a deep learning-based approach to
the general multiple organ-segmentation problem in 2D/3D
CT images. The initial idea of this approach was presented
in a conference with a preliminary result.19 Our method tack-
les three critical issues in CT image segmentation. First,
efficiency and generality: our approach uses pixel-to-label
learning to train all of the variable arguments together for
general multiple organ segmentations. This is much more
convenient to use and extend than conventional methods,
which require specific models and algorithms to be prepared
for each type of organ. Second, performance and complex-
ity: our method tackles 3D image segmentation as an itera-
tion of single 2D CNN, which is implemented as GPU-
based parallel processing. This greatly speeds up the seg-
mentation process compared with CPU-based systems.
Third, applicability and flexibility: the core component of
image segmentation uses a fully convolutional network
(FCN), which is naturally adaptive to segmenting different
content from different-size images that may cover arbitrary
CT scan ranges (e.g., body, chest, abdomen). No CT image
segmentation technique with this capability has previously
been published.

2. METHODS

2.A. Overview

The basis of our method for CT image segmentation can
be summarized as “multiple 2D proposals followed by 3D
integration.”19 This comes from the way in which a radiolo-
gist interprets CT cases — observing many 2D sections and
then reconstructing/imagining the 3D anatomical structure.
Multiple organ segmentations on 2D CT sections are much
more difficult than direct segmentation on a 3D CT vol-
ume, because 2D sectional fragments of 3D anatomical
structures from different perspectives may appear to have
little in common and are difficult to integrate using conven-
tional modeling approaches. The reasons we use a 2D sec-
tional image segmentation as the basic processing unit,
rather than directly segmenting the 3D CT volumes, are to
(a) learn a model with features in a pixel-to-label way that
can successfully represent anatomical structures as com-
pletely as possible under the current computer hardware
resources (NVIDIA graphics processing units (GPUs) in a
Linux environment), (b) gain better segmentation perfor-
mance by employing majority voting over multiple 2D seg-
mentation results (increasing redundancy) on the same
location in 3D, and (c) satisfy the needs of clinical medi-
cine regarding 3D or 2D images over an arbitrary CT scan
range (e.g., body, chest, abdomen). To model the large vari-
ance of 2D sectional image appearances, we train a deep
CNN to encode the anatomical structures from a relatively
small number of 3D CT images, and accomplish CT image
segmentation using pixel-wise labeling and decoding the
input image based on the trained deep CNN.

The proposed segmentation method is illustrated in Fig. 1.
The input is a 3D CT image (a 2D case can be regarded as a
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degenerate 3D case with only one section), and the output is
a label map of the same size and dimensions in which the
labels are an annotated set of anatomical structures. Our seg-
mentation process is repeated to sample 2D sections from a
3D CT image, pass them to the deep CNN for pixel-wise
annotation, and stack the 2D labeled results back into 3D.
Finally, the anatomical structure label at each voxel is deter-
mined based on majority voting from multiple 2D labeled
results crossed at the voxel. The 2D segmentation uses an
FCN20 for the anatomical segmentation of 2D CT image sec-
tions. This FCN is trained on a set of 3D CT images, with
human annotations as the ground truth. The processing steps
in our segmentation are integrated into a single network
under a simple architecture without the need for conventional
image-processing algorithms such as smoothing, filtering,
and level-set methods. The parameters of the network are

learnable and optimized based on a pixel-to-label training
scheme.

2.B. 2D CT image segmentation using FCN

FCNs have achieved state-of-the-art performance on natu-
ral image segmentation tasks and feature representation for
dense classification.20 This dense classification can also be
used to predict the probability of each pixel belonging to a
specific anatomical structure in a CT image. The architecture
of FCNs includes two modules (down-sampling path and up-
sampling path) that are integrated into a simple network
trained in a pixel-to-label way. The motivation behind the
FCN is that the down-sampling path extracts high-level
abstraction information (target location and type), while the
up-sampling path predicts the low-level (pixel-wise)

FIG. 1. Network of the proposed anatomical structure segmentation for 3D CT image. See Fig. 2 for the details of the FCN part.
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information (target shape and contour). The parameters in
these two modules of the FCN are globally optimized in the
training stage. The structure of the FCN used in the proposed
method for 2D CT image segmentation is shown in Fig. 2.

The FCN predicts scores (probability of each label class)
based on intensity–texture information within a given recep-
tive field (e.g., an image patch with a predefined size). To
avoid confusing similar patches that belong to different
organs in CT images, our method uses a variable-size recep-
tive field and regards the whole region of a 2D CT sectional
image as one receptive field. This enables all information in a
2D CT section to be used directly to predict complex struc-
tures (multiple labels). Using the FCN architecture, our seg-
mentation network provides the capability to adapt naturally
to input CT images of any size and any scan range across the
human body, producing an output with the corresponding
spatial dimensions.

The down-sampling path of our FCN uses the VGG16 net
structure21 (16 3 9 3 convolution layers interleaved with five
maximum pooling layers plus three fully connected layers),
as shown in Fig. 2. We change the three fully connected lay-
ers of VGG16 to convolutional layers.20 The final fully con-
nected classifier is a 1 9 1 convolution layer whose channel
dimension is fixed according to the number of labels (22 in
our case). The up-sampling path contains five deconvolu-
tional (backward-stride convolution) and convolutional lay-
ers. These have a skip structure that passes information lost
in the lower convolution layers of VGG16 directly into the
deconvolution process, enabling detailed contours to be
recovered sequentially under a higher image resolution.20

Rectified Linear Unit (ReLU) is used as the activation func-
tion in both the up- and down-sampling paths. A graph for

easily visualizing the details of our FCN structure is pre-
sented in the Appendix.

2.C. 3D CT image segmentation by expanding FCN
with 3D-2D-3D transformation

Each voxel in a 3D CT image can lie on different 2D
sections that pass through the voxel with different orienta-
tions. Our idea of 3D CT image segmentation is to use the
rich image information of the entire 2D section to predict
the anatomical label of this voxel. The robustness and accu-
racy of this technique are increased by redundantly labeling
this voxel on the multiple 2D sections with different orien-
tations. We sample a 3D CT case over numerous sections
(2D images) with different orientations, segment each 2D
section using the FCN, and then assemble the output of the
segmentation (i.e., labeled 2D maps) back into 3D. In this
work, we select all the 2D sections in three orthogonal
directions (axial, sagittal, and coronal body); this ensures
that each voxel in the 3D image is located on three 2D CT
sections. After the 2D image segmentation, each voxel is
redundantly annotated three times, once for each 2D CT
section. The annotated results for each voxel should ideally
be identical, but may differ because of mislabeling by the
FCN during the 2D image segmentation. The labels are
fused using majority voting (selecting the mode of the three
labels) to improve the stability and accuracy of the final
decision (refer to Fig. 3). When there is no duplication
among the three labels, our method selects the label of an
organ type with the largest volume (the highest prior for
the voxel appearances in CT images based on anatomical
knowledge) as the output.

FIG. 2. Semantic image segmentation of 2D CT slice using a fully convolutional network (FCN).20 (K kernel size, S: stride).
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2.D. Network training based on pixel-to-label
learning and transfer learning

The proposed network is trained using a set of 3D CT
cases with human-annotated anatomical structures by pixel-
to-label learning. We assume the labels of each voxel on any
2D CT section are identical, and do not invoke the majority
voting step during the training process. We combine all the
2D CT sections (and their corresponding label maps) along
the three body orientations to train the FCN. The training pro-
cess repeats feed-forward computation and back-propagation
to minimize the loss function, which is defined as the sum of
the pixel-wise losses between the network prediction and the
label map annotated by the human experts.

Because of the expensive and complicated acquisition pro-
cess, there is a scarcity of 3D CT cases with accurate annota-
tions. However, we can decompose 3D CT volumes into a
number of 2D sectional images to greatly increase the num-
ber of training samples. The total number of 2D image sam-
ples (about 100,000 in our experiments) may still be
insufficient for training a deep CNN (in computer vision
tasks, CNN-based image segmentation and object detection
are usually trained on the ImageNet dataset, which has about

10,000,000 labeled images). Transfer learning is a useful
method of alleviating the problem of insufficient training data
in the medical domain.12 The learned parameters (features) in
the lower layers of a deep CNN are general, whereas those in
higher layers are more specific to different tasks. Thus, trans-
ferring the rich feature hierarchies with embedded knowledge
in lower layers of a deep CNN learned from a huge number
of natural images (such as the ImageNet dataset) should help
to reduce the overfitting caused by the limited number of
training CT scans and further boost performance.

In this study, we used an off-the-shelf model from
VGG16,21 which has been trained on the ImageNet
ILSVRC-2014 dataset. Compared to our small-scale dataset
(240 CT scans), ImageNet has a huge number of image
samples with a large range of content. We initialized the
layers in the down-sampling path with pretrained parame-
ters from VGG16, and set the parameters of the remaining
layers to small random numbers with zero mean. The whole
network was then fine-tuned using our CT image dataset in
a pixel-to-label way.

The fine-tuning was achieved sequentially by adding
deconvolution layers.20 Initially, a coarse prediction (using
32-pixel strides) was supplied to the modified VGG16

Voxel based voting

Stacking

 A single 2D-FCN
A 3D CT image

Segmentation result

FIG. 3. 3D CT image segmentation using a single FCN with 3D-2D-3D transformation.
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network with one deconvolution layer (called FCN32s). A
finer training sample was then added after inserting one fur-
ther deconvolution layer at the end of the network. This was
done using skips that combine the final prediction layer and a
lower layer with a finer stride in the modified VGG16 net-
work. This fine-grained training was repeated with more net-
work layers trained from the predictions of 16, 8, 4, and 2
strides on the CT images to build FCN16s, 8s, 4s, and 2s,
respectively. The detailed network structure of FCN2s can be
found in the Appendix.

2.E. Implementation details

Our network was developed based on the open-source
library Caffe22 and the reference implementation of FCN.20

In the training stage, we used two optimization functions:
stochastic gradient descent (SGD) with a momentum of 0.9
and ADAM23 for comparison. A mini-batch size of 20
images, learning rate of 10�4, and weight decay of 2�4 were
used as the training parameters. In addition, we incorporated
dropout layers (drop rate 0.5) and local contrast normaliza-
tion (LCN) layers (local size 3, alpha = 5 9 10�5,
beta = 0.75) into the deconvolution layers to validate the per-
formance. A workstation with the CUDA Library on a GPU
(NVIDIA GeForce TITAN-X with 12 GB of memory) was
used for network training and testing.

3. EXPERIMENTS AND RESULTS

3.A. Dataset

Our research was conducted with the approval of the
Institutional Review Boards at Gifu and Tokushima Univer-
sities, Japan. We evaluated our method on a shared dataset
produced by a research project entitled “Computational
Anatomy.”24 This dataset consists of 640 3D volumetric
CT scans that are used for the diagnosis of diverse types of
lesions at Tokushima University Hospital. The anatomical
ground truth (a maximum of 19 labels that show major
organ types and interesting regions inside the human body)
of 240 CT scans from 200 patients (167 patients with one
CT scan, 24 patients with two CT scans, seven patients
with three CT scans, and one patient with four CT scans)
was also included in the dataset. The anatomical structures
in the CT scans were first annotated manually by many
members in different research groups; then, the annotated
results were validated and refined intensively by medical
experts on a committee of this research project to maintain
a high quality. A semiautomatic method was developed to
support the annotation task.25 Our experimental study used
all 240 CT scans with the ground truth, comprising 89
torso, 17 chest, and 134 abdomen or pelvis scans. The scan
ranges of the CT images are shown in Fig. 4. The total
number of target organs is listed in Table I. These CT
image scanned by a multislice CT scanner (Aquilion from
Toshiba Medical Systems Corporation, Otawara-shi, Japan)
and reconstructed by different protocols and kernel

functions, leading to different image resolutions (distributed
from 0.625 to 1.148 mm with 1.0 mm slice thickness) and
different image quality (specialized for lung or abdominal
observations). Contrast media enhancements were applied
in 155 CT scans. Although the size, density, texture, and
spatial resolution of these CT images are not identical, we
used them for training and testing directly, without any nor-
malization. The down-sampling path of our network is
based on the structure of VGG16, which requires an 8-bit
RGB color image as input. Thus, we transformed the CT
images (12-bit one-channel gray-level format) at the
entrance of the network into 8-bit RGB color images. Actu-
ally, this transformation used a linear interpolation that con-
verted each CT number in a CT image into an 8-bit (0–
255) gray level and duplicated this gray level to each RGB
channel at the same location in the CT image.

2

1

89

9 108
14

7

10

FIG. 4. Number of CT scans in our dataset that cover different ranges of
human body, shown by the brackets in the coronal body direction. [Color fig-
ure can be viewed at wileyonlinelibrary.com]

TABLE I. Number of target regions involved in 240 CT scans.

Target names CT scans

Right lung 106

Left lung 106

Heart 106

Aorta 97

Esophagus 95

Liver 231

Gallbladder 228

Stomach and duodenum (2nd pos.) 230

Stomach and duodenum lumen 153

Contents inside of stomach and duodenum 137

Spleen 228

Right kidney 225

Left kidney 229

Inferior vena cava 223

Portal vein, splenic vein, and superior mesenteric vein 230

Pancreas 230

Bladder 108

Prostate 72

Uterus 32
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3.B. Experimental setting

We randomly picked 5% of the samples from the torso,
chest, and abdomen CT scans as the testing dataset (total of
12 CT scans) and used the remaining 228 CT cases to train
the network. Multiple CT scans from the same patients were
only used for training. We repeated this procedure three times
to train three networks, applied them to three testing datasets,
and obtained segmentation results for a total of 36 (3 9 12)
CT scans without overlap.

In each training stage, a single network was trained using
the ground-truth labels of the 19 target regions (Heart; right/
left Lung; Aorta; Esophagus; Liver; Gallbladder; Stomach
and Duodenum (lumen and contents); Spleen; right/left Kid-
ney; Inferior Vena Cava; region of Portal Vein, Splenic Vein,
and Superior Mesenteric Vein; Pancreas; Uterus; Prostate;
and Bladder). The trained network was then applied to the 12
test samples. Three examples of the segmentation for a 3D
CT case covering the human torso, chest, and abdomen are
shown in Fig. 5.

3.C. Quantitative evaluations

The accuracy of the segmentation was evaluated for each
organ type and each image. First, we measured the intersec-
tion over union (IU)20 (also known as the Jaccard similarity
coefficient) between the segmentation result and the ground
truth. The mean and standard deviation of IU values per
organ type are presented in Table II for all of the 684 training
and 36 testing CT scans used in the experiments.

Generally speaking, a CT scan may contain different
anatomical structures, and this information is unknown
before the segmentation. We performed a comprehensive
evaluation of multiple target segmentation results for all
images in the test dataset by considering the variance of the

organ number and volume. The measures (mean voxel accu-
racy, mean IU, and frequency-weighted IU) that are com-
monly used in semantic segmentation and scene parsing were
employed in this study for the evaluations.20 Let nij be the
number of pixels in target i classified as target j, ncl be the

(a) (b)

FIG. 5. (a): Three examples of segmentation in 3D CT case covering torso (upper), chest (middle), and abdomen (lower) regions along with segmented regions
labeled with different colors for one 2D coronal CT slice (middle column) and 3D visualization based on surface-rendering method (right column). (b): Corre-
sponding ground-truth segmentations for three cases.

TABLE II. Accuracy evaluations in terms of mean value and standard devia-
tion (SD) of IUs for 19 target types between segmentation and ground truth
in 684 (228 9 3) training and 36 (12 9 3) test CT scans.

Target name

IU

Testing
samples

Training
samples

Mean SD Mean SD

Right lung 0.916 0.0286 0.916 0.096

Left lung 0.890 0.0449 0.898 0.089

Heart 0.817 0.0370 0.839 0.035

Aorta 0.585 0.1107 0.628 0.109

Esophagus 0.107 0.0624 0.065 0.053

Liver 0.882 0.0507 0.880 0.036

Gallbladder 0.424 0.2136 0.478 0.187

Stomach and duodenum (2nd_pos.) 0.454 0.1471 0.414 0.163

Stomach and duodenum lumen 0.389 0.2739 0.405 0.248

Contents inside of stomach and duodenum 0.120 0.1752 0.129 0.151

Spleen 0.767 0.0847 0.766 0.098

Right kidney 0.792 0.0659 0.768 0.106

Left kidney 0.792 0.0611 0.755 0.103

Inferior vena cava 0.435 0.1749 0.412 0.157

Portal vein, splenic vein, and
superior mesenteric vein

0.126 0.1110 0.130 0.115

Pancreas 0.390 0.1217 0.360 0.119

Bladder 0.589 0.1325 0.543 0.195

Prostate 0.276 0.2028 0.305 0.170

Uterus 0.326 0.1587 0.207 0.147
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total number of different targets in a CT case, and ti ¼
P

j nij
be the total number of pixels in target i. These measures are
defined as:

• Mean voxel accuracy:
P

i nii=ti
� ��

ncl ð1Þ

• Mean IU:
P

i nii
�

ti þ
P

j nji � nii
� �� ��

ncl ð2Þ

• Frequency-weighted IU:

X
k
tk

� ��1X
i
tinii

�

ti þ
X

j
nji � nii

� � ð3Þ

The evaluation results for the mean voxel accuracy and
frequency-weighted IU were 87.9% and 80.5%, respectively,
when averaged over all the segmentation results of the test
dataset. These results mean that 87.9% of the voxels within
the anatomical structures (constructed using multiple target
regions) were labeled correctly, with an overlap ratio of
80.5% for the test dataset. We conducted the same evaluation
on the training dataset, and found corresponding values of
88.1% and 79.9%.

3.D. Segmentation performance

We validated the performance of the proposed network by
evaluating the segmentation results of FCN 8s. The network
was trained over 160,000 iterations using the ADAM opti-
mizer with the training protocol described above. The trained
network was then applied to the test CT cases. Except for one
gallbladder and one prostate, our network recognized and
extracted all organs correctly. Because our segmentation tar-
gets cover a wide range of shapes, volumes, and sizes, either
with or without contrast enhancement, and come from differ-
ent locations in the human body, these experimental results
offer an excellent demonstration of the capability of our
approach to recognize anatomical structures in the types of
CT images actually used in clinical medicine. Table II pre-
sents the mean per-target IUs between the segmentation
results and ground truth in both the testing and training data.
We found that the mean IUs of organs with larger volumes
(e.g., lung) were comparable to those achieved by previous
methods.6–11 For some smaller organs (e.g., gallbladder) and
stomach contents (which have not previously been reported),
our segmentation did not produce particularly high IUs. The
limited image resolution is likely to be the major cause of this
poor performance for these organs. Our evaluation shows that
the average segmentation accuracy of all targets over both the
test and training CT images is approximately 80.5% and
79.9% in terms of the frequency-weighted IUs. Because the
performance of deep learning is highly dependent to the
amount of training data, we reduced the number of CT scans
in the training stage from 95% to 75% and increased the
number CT scans for testing from 5% to 25% by using the
same dataset and experimental setting and used a fourfold
cross-validation to evaluate the performance again. These
additional experimental results demonstrated that the average
segmentation accuracy of all targets over the 240 (4 9 60)

test CT scans was approximately 78.3% in terms of the fre-
quency-weighted IUs and 86.1% in terms of the mean voxel
accuracy, which are comparable to the performance (80.5%
and 87.9%) in the previous experiment. The IUs of most
organ types showed similar values, except that the spleen,
prostate, and uterus showed a large decrease in the accuracy
of more than 10% in terms of the IU. These decreases in the
performance were caused by the shortage of the training sam-
ples and may be improved by increasing the number of CT
scans in the training stage. Thus, our approach can recognize
and extract all types of major anatomical structures simulta-
neously, achieving a reasonable accuracy according to the
organ volume in the CT images.

4. DISCUSSION

4.A. Transfer learning and training protocols

For comparison, we trained our network to “learn from
scratch” by initializing all parameters of an FCN to small ran-
dom numbers with zero mean. No convergence was observed
within 80,000 learning iterations, and the network then failed
to segment any of the targets in the test dataset. These results
indicate that the size of our CT dataset with current training
protocols is insufficient to train the proposed network suc-
cessfully when starting from scratch. However, when we fine-
tuned our network using VGG16,21 which is pretrained using
ImageNet, convergence was achieved after 22,000 iterations.
The trained network fine-tuned from VGG16 in 80,000 learn-
ing iterations could segment multiple organs successfully in
CT images from both the testing and training datasets. This
demonstrates that comprehensive knowledge learned from
large-scale, well-annotated datasets can be transferred to our
network to accomplish the CT image segmentation task.

We also compared the performance of networks optimized
by SGD and ADAM with the same training protocols
described in Section 2.E. The segmentation results on the test
data indicate that the network trained by ADAM offers
slightly better performance (up by 0.3% in voxel accuracy,
0.15% in frequency-weighted IU) than that trained by SGD.
Because the learning rate does not need to be tuned in
ADAM and the default parameters are likely to achieve good
results, we used this function as the default optimizer for our
network in subsequent experiments.

The performance of the network may be affected by the
number of training iterations. We compared the segmentation
results on the test dataset given by networks after 80,000,
160,000, and 550,000 training iterations. We found that
160,000 iterations was sufficient to train the network. Further
training iterations may improve the segmentation accuracy of
some organ types, but could not improve the overall perfor-
mance across all organ types.

4.B. Network structure

For comparison, we incorporated dropout layers with each
deconvolution layer in the up-sampling path and retrained the
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network. We found that the network performance with the test
dataset decreased (down by 23% in voxel accuracy and 28%
in frequency-weighted IU) after inserting these dropout lay-
ers. We also tried to incorporate LCN layers in the same way,
but did not observe any significant improvement in perfor-
mance. Based on these results, we do not include dropout
and LCN layers in the up-sampling path of the proposed
network.

The up-sampling path consists of five deconvolutional lay-
ers (FCN32s to FCN2s). We investigated the segmentation
results in the test samples after applying each FCN layer to
the network sequentially. We found that the frequency-
weighted IUs increased monotonically (69.8%, 81.1%, 84.9%
and 88.0% at FCN32s, 16s, 8s, and 4s, respectively), and no
further improvement was observed by FCN2s. This result
demonstrates that diminishing returns of gradient descent
occurred from FCN4s in the training stage. A similar
phenomenon was noted in the original FCN structures20 and
confirmed in our preliminary reports.19,26

Some alterations to the deep CNN architecture have
recently been reported in the field of computer vision and
medical image analysis.27–29 The well-known SegNet27 net-
work achieved better segmentation performance than FCN,20

especially for small targets in natural images. We replaced the
FCN part of our network with SegNet and examined its per-
formance in CT image segmentation. This experiment
showed that the original SegNet implementation could only
deal with predefined input image sizes. Even when all CT
cases were re-scaled accordingly, the preliminary experimen-
tal results did not suggest better performance than the FCN.
It is possible that a customized version of SegNet is needed
for CT image segmentation. However, further investigation of
the differences in performance offered by FCN and SegNet is
beyond the scope of this paper. Our current results show that
FCN is the best deep learning network for our CT image seg-
mentation task.

4.C. Insights offered by the trained FCN

To infer the functions of different layers learned from the
CT images, we investigated the output of several “key”middle
layers (two score maps of the pooling layers, and the final
layer of the down-sampling path) in the trained FCN. An
example of the intermediate results when passing a chest CT
image through the trained network is presented in Fig. 6. The
low-level image features (edges) are filtered and transferred
along the network to become concentrated in the high-level
abstract region (organ-wise heat map). We hypothesize that
the down-sampling path of the network learned a set of fea-
tures from the training dataset to successfully represent each
target appearance in the CT images. These representation
results act as the “probabilistic atlas” proposed in conven-
tional approaches to show the approximate range of each
target region corresponding to an input image. For the up-
sampling path, we compared the output of each deconvolution
layer (two examples before and after the first deconvolution
layer are shown in Fig. 6). The detailed contour of each target

region was restored sequentially, and the image resolution of
the outputs increased. We believe that the up-sampling layers
learn the shape information of the target regions from the
training dataset, and this information guides the deconvolu-
tion layers to selectively detect the edges in the images for
each specific target. Compared to conventional segmentation
methods, all of these functions are enveloped into one net-
work and optimized globally in our approach.

4.D. Comparison between 2D and 3D
segmentations

We compared the segmentation results before and after the
3D majority voting process. The average value of mean IUs of
19 targets in testing samples without 3D majority voting was
49.1%, 50.3%, and 48.4% by stacking 2D segmentation results
only in axial, coronal, and sagittal direction. After the 3D
majority voting, the average value of mean IUs was improved
to 53% (refer to Table II). The mean IUs of each target given
by the segmentation results in three body directions were close
to the mean IUs given by the final 3D voting results. We found
that the best IU value of the 2D segmentation results is also
comparable to the final results in 3D (refer to Fig. 3).
Although some mislabeling was observed in individual 2D
sections, especially in the sagittal body direction (caused by
symmetry of anatomy), our network still displayed the poten-
tial to support real-time 2D image interpretation by a radiolo-
gist tracing and interpreting what is shown on the screen.

A major concern for our approach is the advantage of using
a 2D FCN instead of a 3D FCN, which seems to be more
straightforward for 3D image segmentation. We expanded our
FCN from 2D to 3D, and confirmed that the 3D FCN could
not operate under our computer environment with the current
CT dataset because of insufficient memory in the GPU (NVI-
DIAGeForce TITAN-X with 12 GB of memory).

Recently, a number of studies30–34 have applied an FCN to
3D medical image processes, and 3D U-Net (a 3D extension
of an FCN with a good reputation) showed effective 3D image
segmentation.30 Therefore, we tested 3D U-Net with our
training/testing CT scans. The experimental results showed
that the original 3D U-Net did not work directly for multiple
organ segmentation of CT images because a typical input
image matrix of 3D U-Net is 248 9 244 9 64 and cannot be
extended any further owing to the memory limitations of the
GPU (NVIDIA GeForce TITAN-X with 12 GB of memory).
This ROI-sized input did not have a sufficient image resolu-
tion to represent the anatomical structures sufficiently for
entire CT images (maximum size of 512 9 512 9 1141 for
the image matrix in our dataset) by a down-sampling process.

This problem may be addressed by dividing the CT
images into a number of 3D patches before training and test-
ing. Under this consideration, cutting-edge technology34

based on 3D U-Net using a two-stage, coarse-to-fine
approach (two 3D U-Nets with a cascade structure, which we
call Cascade U-Nets) to accomplish a multiple organ segmen-
tation was proposed and showed state-of-the-art performance.
We compared our method with this novel approach34 based
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on the same training (228) and testing (12) CT scans. The
experiment showed the accuracies (IUs) in each target type
on average of 12 testing CT scans obtained using our method
were better than a single 3D U-Net with ROI-sized inputs,
and still better than the Cascade U-Nets for nine target types,
except for the other nine types of target (having a small vol-
ume or tube structures). The performance in terms of the fre-
quency-weighted IUs of our method (80.5%) was comparable
to the Cascade U-Nets (80.3%) for the test dataset.

Considering the difference between the two structures
(two 3D U-Nets versus a single 2D FCN + voting), we must
conclude that our 2D FCN is currently a realistic method for
CT image segmentation.

4.E. Comparison to previous work

The previous studies most closely related to our work are
those of Udupa et al.,10,11 Wolz et al.,8 Shimizu et al.,7 Okada
et al.,9 and Lay et al.6 Common to all these works is that they
focused on multiple organ segmentation in CT images, as in
our study. It is difficult to give a direct quantitative grading for
all of these previous techniques, because the datasets, acquisi-
tion protocols, image resolutions, targets of interest, training
and testing subdivisions, validation methods, and computer
platforms were different. We directly compared the proposed
method to a method (Okada et al.9) that was state-of-the-art
among the conventional methods using the same experimental
setting (228 CT scans for training of the models and 12 CT
scans for testing). The training and testing processes used a
computer with a CPU (Intel Core i7-2700K, 3.50 GHz,
16.0 GB memory). We confirmed that the method9 only
worked successfully for abdomen CT scans as its original
design. As a result, the models for seven organ types were suc-
cessfully constructed based on 93 contrast-enhanced abdomen
CT scans from 93 patients within 228 training CT scans, and

reasonable segmentation results for these organ types were
obtained for seven contrast-enhanced abdomen CT scans
within 12 testing CT scans. The time of organ segmentation
for one abdomen CT scan (512 9 512 9 221 image matrix)
was 40 min using multithreaded parallel computing. A com-
parison of the results with those of our proposed method for
the seven testing CTscans is presented in Table III. The exper-
imental results indicated that our method showed a better
accuracy (mean value of IUs) for six organ types and worse
accuracy for the gallbladder. The standard deviation of the
IUs for all organ types of our proposed method was better than
that of the conventional method.9 This experimental results
demonstrated the advantage of our proposed FCN-based
method with regards to the accuracy (higher mean value of
IUs), robustness (stability with a lower standard deviation of
IUs), generality (one model for all organ types), and usability
(ability to adapt to CT scans of different portions).

The advantage of the proposed network is that it combines
the model generation and image segmentation steps within
the same network using pixel-to-label learning. This provides
more opportunities to use sufficient features suitable for CT
image segmentation. Experimental results indicate that most
of the target organs considered by previous studies can be
segmented successfully using our network without any addi-
tional modification. Some difficult organs such as the stom-
ach were also recognized and extracted. Thus, the proposed
single network has sufficient generality to enable the segmen-
tation of anatomical structures in CT images. In addition, the
simple structure and GPU-based implementation of our seg-
mentation process is computationally efficient. The comput-
ing time for training an FCN is approximately 3 days. The
multiple organ segmentation of one 3D CT scan with a
512 9 512 9 221 matrix takes 3 min 43 s. The efficiency in
terms of system development and improvement is much better
than that of previous studies that attempted to incorporate

FIG. 6. Insight of learned FCN. Lower: outputs of MaxPooling layers and final result of down-sampling path; Upper: outputs before and after the first deconvolu-
tion layer. [Color figure can be viewed at wileyonlinelibrary.com]
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human specialist experience into complex algorithms for seg-
menting different organs. Although labeling the anatomical
structures in the training samples still takes time, this burden
can be reduced using bespoke and advanced semiautomatic
algorithms.25

The initial study of this work was presented in a confer-
ence paper19 that validated our idea of “2D FCN with 3D vot-
ing” for CT image segmentation with a preliminary
experiment.26 In this work, we improved the segmentation
performance of this idea by refining the network structure
and training method and reported more experimental results,
including the exploration of the relation between the network
parameters and the resulting performance and the compar-
isons with related works based on the same dataset. The per-
formance of the network proposed in this work and its
advantages over that presented in previous work were demon-
strated for the first time in this paper with detailed descrip-
tions of the methodology.

The drawback of our network is the poor accuracy (IUs)
when segmenting smaller structures. This will be improved
in future by using a larger training dataset and new network
structures.34 We will also expand the proposed network to
other imaging modalities such as FDG-PET and MR images.
We also plan to use more 2D slices for 2D FCN training
and learn a weighted 3D voxel voting by sampling slices
from more arbitrary directions in each 3D CT case.

5. CONCLUSIONS

For the automatic segmentation of anatomical structures
(multiple organs) in CT images with different scan ranges, we
proposed a single network trained by pixel-to-label learning.
This network was applied to segment 19 types of targets in
240 3D CT scans, demonstrating highly promising results.
Our work is the first to tackle anatomical segmentation (with
a maximum of 19 targets) on scale-free CT scans (both 2D
and 3D images) through a single deep neural network.

Compared with previous work, the novelty and advan-
tages of our study are as follows. (a) Our approach uses

voxel-to-voxel labeling with pixel-to-label global optimiza-
tion of parameters, which has the advantage of better per-
formance and flexibility in accommodating the large variety
of anatomical structures in different CT cases. (b) Our
method can automatically learn a set of image features to
represent all organ types collectively using a 2D FCN with
majority voting (a simple structure for both model training
and implementation) for image segmentation. This approach
leads to more robust image segmentation that is easier to
implement and extend based on current hardware resources.
Image segmentation using our approach has more advan-
tages than previous methods in terms of usability (it can be
used to segment any type of organ), adaptability (it can
handle 2D or 3D CT images over any scan range), and effi-
ciency (it is much easier to implement and extend). The
proposed approach could also be extended as a general
solution for more complex anatomical structure segmenta-
tion in other image modalities, which present fundamental
problems in medical physics (e.g., MR and FDG-PET
imaging).
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TABLE III. Accuracy comparison between the proposed method (FCN) and a conventional method9 in terms of the IUs between the segmentation and the ground
truth based on 228 training and 12 test CT scans. We only show the IUs of seven organ types along with mean and standard deviation (SD) for seven testing abdo-
men CT cases for which the conventional method9 worked successfully.

Case

Spleen Liver Gallblader Right Kidney Left Kidney
Inferior Vena

Cava Pancreas

FCN Ref. [9] FCN Ref. [9] FCN Ref. [9] FCN Ref. [9] FCN Ref. [9] FCN Ref. [9] FCN Ref. [9]

1 0.880 0.922 0.937 0.957 0.632 0.896 0.885 0.888 0.857 0.910 0.705 0.756 0.553 0.694

2 0.745 0.760 0.747 0.638 0.000 0.000 0.837 0.277 0.776 0.705 0.565 0.819 0.169 0.115

3 0.810 0.044 0.926 0.921 0.764 0.819 0.919 0.931 0.855 0.120 0.610 0.517 0.434 0.279

4 0.782 0.327 0.933 0.913 0.004 0.078 0.851 0.884 0.804 0.876 0.205 0.153 0.074 0.836

5 0.892 0.316 0.903 0.892 0.668 0.922 0.887 0.898 0.858 0.707 0.595 0.563 0.509 0.133

6 0.861 0.941 0.934 0.923 0.011 0.000 0.833 0.873 0.849 0.912 0.681 0.676 0.442 0.617

7 0.879 0.001 0.869 0.682 N/A N/A 0.900 0.827 0.905 0.010 0.630 0.501 0.536 0.005

Mean 0.836 0.473 0.893 0.846 0.346 0.453 0.873 0.797 0.843 0.606 0.570 0.569 0.388 0.383

SD 0.057 0.399 0.069 0.129 0.377 0.469 0.033 0.232 0.042 0.381 0.168 0.220 0.189 0.328

Medical Physics, 44 (10), October 2017

5231 Zhou et al.: CT image segmentation based on deep learning 5231



APPENDIX

A graph that shows the network structure of FCN2s for the image segmentation of CT images.
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