

Effects of Attractive KK⁻ and Repulsive KK Interactions in KKK⁻ Three-Body Resonance

メタデータ	言語: English
	出版者:
	公開日: 2021-04-19
	キーワード (Ja):
	キーワード (En):
	作成者: SHINMURA, Shoji, HARA, Kento, YAMADA,
	Tatsuya
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12099/81410

Proc. 8th Int. Conf. Quarks and Nuclear Physics (QNP2018) JPS Conf. Proc. 26, 023003 (2019) https://doi.org/10.7566/JPSCP.26.023003

Effects of Attractive $K\bar{K}$ and Repulsive KK Interactions in $KK\bar{K}$ Three-Body Resonance

Shoji Shinmura, Kento Hara and Tatsuya Yamada

Applied Physics Course, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan

E-mail: shinmura@gifu-u.ac.jp

(Received January 16, 2019)

 $KK\bar{K}$ three-body resonance is discussed based on the coupled-channel complex-scaling method. We introduce three channels $KK\bar{K}$, $\pi\pi K$ and $\pi\eta K$ and determine the resonance energy and width using two-body KK, $K\bar{K}-\pi\pi$, $K\bar{K}-\pi\eta$ and πK potentials determined to fit two-body scattering properties. It is shown that the three-body resonance can be interpreted as K(1460). The $\pi\pi K$ channel and the range of interaction make important effects on the resonance width and the $\pi\eta K$ channel and the repulsive KK interaction play essential roles in the resonance energy.

KEYWORDS: three-body meson resonance, complex scaling method, hadron molecule

1. Introduction

Recently, two-body and three-body hadronic resonances have been discussed intensively. Because the hadron number is not a good quantum number, the concept of *compositeness* of hadronic resonances is important to characterize these resonances [1]. $\Lambda(1405)$ has been interpreted as coupled-channel $\pi\Sigma$ - $\bar{K}N$ resonance and $a_0(980)$ and $f_0(980)$ were described by coupled-channel two-meson $\pi\eta$ - $K\bar{K}$ and $\pi\pi$ - $K\bar{K}$ resonances, respectively.

Using the Faddeev equation and the variational calculation, A. M. Torres et al. [2] showed that a possible three-meson $KK\bar{K}$ - $\pi\pi K$ - $\pi\eta K$ resonance can be interpreted as K(1460). But they did not determine the resonance energy directly. In this paper, we use the complex-scaling method [5,6] in the semi-relativistic framework to determine the three-meson resonance $KK\bar{K}$ - $\pi\pi K$ - $\pi\eta K$. Using simple local meson-meson potentials determined so as to reproduce meson-meson scattering properties, we obtain a three-body resonance and show that this resonance can be interpreted as K(1460). We discuss the effects of the interaction range and repulsive KK interaction on the resonance energy and width.

2. Semi-relativistic coupled-channel complex-scaling method for three-meson system

To determine the three-body resonance in the coupled-channel $KK\bar{K}-\pi\pi K-\pi\eta K$ system, we use the semi-relativistic coupled-channel complex-scaling method. The relativistic kinematics is essential because of very light pion mass. We start from the semi-relativistic Hamiltonian $H = \{H_{A,B}\}$ given by

$$H_{A,B} = \delta_{A,B} \left\{ \sqrt{m_{A1}^2 + \boldsymbol{p}_1^2} + \sqrt{m_{A2}^2 + \boldsymbol{p}_2^2} + \sqrt{m_{A3}^2 + \boldsymbol{p}_3^2} \right\} + V_{A,B}(\boldsymbol{r}_1, \boldsymbol{r}_2, \boldsymbol{r}_3)$$
(1)

under the condition $p_1 + p_2 + p_3 = 0$. A, B = 1, 2, 3 correspond to the channels $|KK\bar{K}\rangle$, $|\pi\pi K\rangle$ and $|\pi\eta K\rangle$, respectively. $V_{A,B}$ consists of the sum of meson-meson potentials (coupling potentials for $A \neq B$).

In the complex-scaling method, we introduce the rotation angle θ and define the complex-scaled Hamiltonian $H^{\theta} = \{H_{A,B}^{\theta}\}$ by the transformations $\mathbf{r}_i \to \mathbf{r}_i e^{i\theta}$ and $\mathbf{p}_i \to \mathbf{p}_i e^{-i\theta}$ (i = 1, 2, 3) in Eq. (1).

Using suitable basic functions, we determine the eigenvalues of H^{θ} . In practice, we use the Gaussian basis functions (the *Gaussian expansion method*) for every Jacobi coordinates ρ_{Ai} , R_{Ai} (A = 1, 2, 3, i = 1, 2, 3) and give the wave function in the form like as

$$\Psi = \Psi_1 | KK\bar{K} \rangle + \Psi_2 | \pi \pi K \rangle + \Psi_3 | \pi \eta K \rangle, \tag{2}$$

$$\Psi_A = \Phi_{A1}(\rho_{A1}, \mathbf{R}_{A1}) + \Phi_{A2}(\rho_{A2}, \mathbf{R}_{A2}) + \Phi_{A3}(\rho_{A3}, \mathbf{R}_{A3}), \tag{3}$$

$$\Phi_{Ai}(\boldsymbol{\rho}_{Ai}, \boldsymbol{R}_{Ai}) = \sum_{\alpha\beta} C_{A,i,\alpha,\beta} N_{\alpha} \exp(-\rho_{Ai}^2/\rho_{\alpha}^2) N_{\beta} \exp(-R_{Ai}^2/R_{\beta}^2). \tag{4}$$

In our calculations, we introduce 18 Gaussian basis functions for each Jacobi coordinates, that is, $\alpha, \beta = 1, \dots, 18$ in Eq. (4). The coefficients $C_{A,i,\alpha,\beta}$ are given as the solutions of the generalized eigenvalue problem of the complex symmetric matrix H^{θ} :

$$\sum_{B,j,\alpha',\beta'} H^{\theta}_{A,i,\alpha,\beta;B,j,\alpha',\beta'} C_{B,j,\alpha',\beta'} = E \sum_{j,\alpha',\beta'} N_{A,i,\alpha,\beta;A,j,\alpha'\beta'} C_{A,j,\alpha',\beta'}$$
(5)

By symmetry consideration of boson system, the dimension of the matrix to be diagonalized is reduced to $2268 = 7 \times 18 \times 18$. The θ -independent eigenvalues are identified with the energies of resonances or bound states.

3. Meson-meson potentials

Among meson-meson potentials relevant to the coupled-channel $KK\bar{K}-\pi\pi K-\pi\eta K$ system (with I=1/2 and angular momentum J=0), we assume temporarily $V_{\pi\eta-\pi\eta}=V_{\pi K-\eta K}=V_{\eta K-\eta K}=0$ (we ignore the coupling between channels 2 and 3). For simplicity, we assume one-range Gaussian potentials with a common range r_G . We try some different ranges $r_G=0.3, 0.4, 0.5, 0.6$ and 0.7 fm and discuss the r_G -dependence of the three-meson resonance. Potential strengths are determined to reproduce meson-meson scattering properties and their values for each r_G are listed in Table I.

For $V_{K\bar{K}-K\bar{K}}$, $V_{\pi\pi-K\bar{K}}$, $V_{\pi\pi-\pi\pi}$ (I=0,J=0) potentials, we have three potential strengths, V_{11} , V_{12} and V_{22} , that is,

$$V_{\pi\pi-\pi\pi} = V_{11}e^{-r^2/r_G^2}, \quad V_{\pi\pi-K\bar{K}} = V_{12}e^{-r^2/r_G^2}, \quad V_{K\bar{K}-K\bar{K}} = V_{22}e^{-r^2/r_G^2}.$$
 (6)

These strengths are determined so as to reproduce f_0 resonance (M =980 MeV, $\Gamma/2$ =35MeV) and $\pi\pi$ phase shift (δ = 55° at \sqrt{s} =600MeV) given by experimental analysis. For $V_{K\bar{K}-K\bar{K}}$ and $V_{\pi\eta-K\bar{K}}$ (I = 1, J = 0) potentials ($V_{\pi\eta-\pi\eta}$ = 0 is assumed), we have only two strengths parameters:

$$V_{\pi\eta-\pi\eta} = 0, \quad V_{\pi\eta-K\bar{K}} = V_{12}e^{-r^2/r_G^2}, \quad V_{K\bar{K}-K\bar{K}} = V_{22}e^{-r^2/r_G^2}$$
 (7)

which are determined to reproduce a_0 -resonance (M =980 MeV, $\Gamma/2$ =35 MeV). For $V_{\pi K}$ potentials (I = 1/2 and 3/2), the strengths are determined to reproduce the phenomenological πK phase shifts (δ = 40° at \sqrt{s} =900 MeV for I = 1/2, and δ = -15° at \sqrt{s} =900 MeV for I = 3/2).

For KK (I=1, J=0) potential, experimental phase shifts are not yet available but have been predicted based on theoretical models [7,8]. These models predicted the repulsive phase shifts around -10° at $\sqrt{s} = 1200$ MeV. We employ this value and introduce an artificial factor f like as

$$V_{KK-KK} = f \times V_{11} e^{-r^2/r_G^2}$$
 (8)

By changing f, we discuss the effect of the repulsive KK interaction on the three-meson resonance.

(MeV)

 $\pi \eta - K \bar{K}(I=1)$ $\pi\pi - K\bar{K}(I=0)$ $\pi K(I = 1/2)$ $\pi K(I = 3/2)$ KK(I=1) \overline{V}_{11} V_{22} \overline{V}_{11} V_{22} V_{12} V_{11} V_{11} V_{12} r_G 0.3 -1877-417-2006 1099 -1335-14893694 903.0 0 0.4 -1164-383-13270 -686 -928-8951174 366.3 0.5 -800-350-9690 -480-695-607556 196.4 -5900 125.5 0.6 -322-763-362-550-405324 -3050 -288-35788.3 0.7 -456-635-456215

Table I. Meson-meson potentials used in the $KK\bar{K}-\pi\pi K-\pi\eta K$ (I=1/2,J=0) calculations.

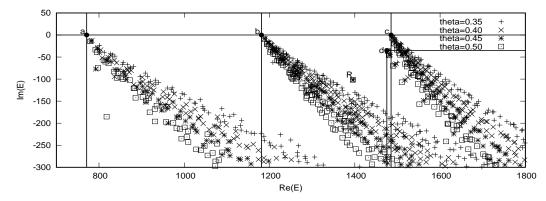


Fig. 1. An example of eigenvalues of complex-scaled Hamiltonian $H_{A,B}^{\theta}$ for $\theta = 0.35$, 0.40, 0.45, 0.50 radian $(r_G = 0.5 \text{ fm})$. Points a, b, c and d are $\pi\pi K$, $\pi\eta K$, $KK\bar{K}$ and f_0K thresholds, respectively. A θ -independent eigenvalue is found at E = 1395 - 102i MeV, which is labeled R.

4. Result

(fm)

An example of the eigenvalues for the coupled-channel $KK\bar{K}$ - $\pi\pi K$ - $\pi\eta K$ system is shown in Fig. 1. For each θ , we find three lines (not exactly linear due to relativisitic kinematics) of eigenvalues starting from the three channel-thresholds (points a, b and c in Fig. 1) and a line from f_0K threshold (point d at 1475 - 35i MeV). In addition, we find a θ -independent eigenvalue at E = 1395 - 102i MeV, which corresponds to the three-meson resonance with mass 1395 MeV and width 204 MeV.

For various ranges r_G , we find resonances as listed in Table II. In the two-channel $KK\bar{K}-\pi\pi K$ calculation, we obtain resonances with much higher mass and somewhat narrower width than three-channel calculation (no resonance is found for $r_G=0.3$ and 0.7 fm). On the other hand, in the two-channel $KK\bar{K}-\pi\eta K$ calculation, we obtain the resonances with much narrower width than the three channel calculation. We find that the $\pi\pi K$ channel provides very important contribution to the width and the $\pi\eta K$ channel does to the mass of the resonance. This can be understood by strengths of channel coupling and differences between thresholds.

In Fig.2, we show the r_G - and f-dependence of the resonance position in the three channel calculation. We find that the width (-2Im(E)) depends strongly on the potential range r_G . This can be explained by the overlap between the coupling potential and the resonance wave function. On the other hand, the resonance mass (Re(E)) depends strongly on f (the strength of repulsive KK potential). This means that the main component of resonance is $KK\bar{K}$, that is, the resonance is almost the quasi-bound state of $KK\bar{K}$, which seems to have f_0K structure. From Fig.2, we can say that this resonance is interpreted as K(1460) for the range $r_G = 0.5 - 0.6$ fm and the repulsive KK interaction.

Table II. Resonance positions in three-channel $KK\bar{K}$ - $\pi\pi K$ - $\pi\eta K$ and two-channel $KK\bar{K}$ - $\pi\pi K$ and $KK\bar{K}$ - $\pi\eta K$ calculations. Hyphens mean no resonance is found.

	$KK\bar{K}$ - $\pi\pi K$ - $\pi\eta K$		$KK\bar{K}$ - $\pi\pi K$		$KKar{K}$ - $\pi\eta K$	
r_G	Re(E)	Im(E)	Re(E)	Im(E)	Re(E)	$\operatorname{Im}(E)$
0.3	1436.0	-57.1	-	-	1445.5	-12.9
0.4	1406.7	-74.4	1464.7	-48.7	1432.4	-14.0
0.5	1395.2	-101.9	1457.7	-72.0	1424.0	-14.3
0.6	1396.1	-133.0	1465.3	-87.3	1414.5	-14.6
0.7	-	-	-	-	1404.0	-16.2
(fm)						(MeV)

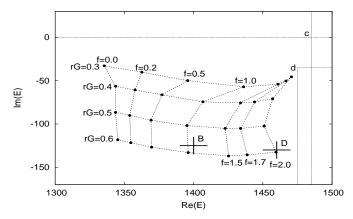


Fig. 2. r_G - and f-dependence of the $KK\bar{K}$ - $\pi\pi K$ - $\pi\eta K$ resonance. Points c and d are the same with those in Fig. 1. Crosses B and D are experimental resonance position of K(1460) [3,4] (their sizes are arbitrary).

5. Summary

Using the complex-scaling method, we determined the three-meson $KK\bar{K}-\pi\pi K-\pi\eta K$ resonance. This resonance can be interpreted as K(1460) resonance discovered in two SLAC experiments. For this interpretation, the interaction range $r_G \sim 0.5-0.6$ fm is supported and the repulsive KK interaction is necessary. In addition, the coupling to the $\pi\pi K$ channel is essential to reproduce the large width of the resonance and the coupling to $\pi\eta K$ channel makes large contribution to the mass of the resonance. We need some refinements, for example, to use more realistic two-body potentials, to include p-wave components and to include the $\eta\eta K$ channel. In addition, to confirm our interpretation, we must calculate the partial decay widths for ϵK , $K^*\pi$ and ρK modes observed in experiments.

References

- [1] T. Hyodo, D. Jido, and A. Hosaka, Phys. Rev. C85, 015201 (2012).
- [2] A. M. Torres, D. Jido, and Y. Kanada-Enyo, Phys. Rev. C 83, 065205 (2001).
- [3] G. W. Brandenburg, et al. Phys. Rev. Lett. 36, 1239(1976).
- [4] C. Daum, et al. Nucl. Phys. **B187**, 1 (1981).
- [5] T. Myo, Y. Kikuchi, H. Masui, and K. Kato, Prog. Part. Nucl. Phys. 79. 1 (2014).
- [6] A. Dote, T. Inoue, and T. Myo, Prog. Theor. Exp. Phys. 2015, 043D02 (2015).
- [7] N. T. H. Xiem, and S. Shinmura, Prog. Theor. Exp. Phys. 2014, 023D04 (2014).
- [8] D. Lohse, J. W. Durso, K. Holinde, and J. Speth, Nucl. Phys. A516, 513 (1990).